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Abstract

Recent advancements in human preference001
optimization, originally developed for Large002
Language Models (LLMs), have shown signif-003
icant potential in improving text-to-image dif-004
fusion models. These methods aim to learn the005
distribution of preferred samples while distin-006
guishing them from less preferred ones. How-007
ever, existing preference datasets often exhibit008
overlap between these distributions, leading to009
a conflict distribution. Additionally, we iden-010
tified that input prompts contain irrelevant in-011
formation for less preferred images, limiting012
the denoising network’s ability to accurately013
predict noise in preference optimization meth-014
ods, known as the irrelevant prompt issue. To015
address these challenges, we propose Dual016
Caption Preference Optimization (DCPO),017
a novel approach that utilizes two distinct cap-018
tions to mitigate irrelevant prompts. To tackle019
conflict distribution, we introduce the Pick-020
Double Caption dataset, a modified version of021
Pick-a-Pic v2 with separate captions for pre-022
ferred and less preferred images. We further023
propose three different strategies for generat-024
ing distinct captions: captioning, perturbation,025
and hybrid methods. Our experiments show026
that DCPO significantly improves image qual-027
ity and relevance to prompts, outperforming028
other methods.029

1 Introduction030

Image synthesis models (Rombach et al., 2022;031

Esser et al., 2024) have achieved remarkable ad-032

vancements in generating photo-realistic and high-033

quality images. Text-conditioned diffusion (Song034

et al., 2020a) models have led this progress due035

to their strong generalization abilities and profi-036

ciency in modeling high-dimensional data distri-037

butions. As a result, they have found wide range of038

applications in image editing (Brooks et al., 2023),039

video generation (Wu et al., 2023a) and robotics040

(Carvalho et al., 2023). Consequently, efforts have041
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'A beaver in formal attire
stands next to a stack of

books in a library.'

'A cat sitting besides a
rocket on a planet with a lot

of cactuses.'

'A photo of a book and a
laptop'

'Photo of Violet Parr from
The Incredibles in a two-
piece dress at the beach.'

Figure 1: Sample image outputs generated by differ-
ent methods from benchmarks of HPSv2, Geneval, and
Pickscore. DCPO helps generate images that are no-
tably better aligned with the prompts and also in higher
visual appeal. See more examples in Appendix H.

focused on aligning them with human preferences, 042

targeting specific attributes like safety (Liu et al., 043

2024b), style (Everaert et al., 2023), and personal- 044

ization (Ruiz et al., 2023), thereby improving their 045

usability and adaptability. 046

Similar to the alignment process of Large Lan- 047

guage Models (LLMs), aligning diffusion models 048

involves two main steps: 1. Pre-training and 2. 049

Supervised Fine-Tuning (SFT). Recent fine-tuning 050

based methods have been introduced to optimize 051

diffusion models according to human preferences 052

by leveraging Reinforcement Learning with Hu- 053

man Feedback (RLHF) (Ouyang et al., 2022), the 054

aim of which is to maximize an explicit reward. 055

However, challenges such as fine-tuning a separate 056
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Pick-Double Caption Dataset
{ ,  ,  ,  }  

DCPO-c
Captioning
Method

Less Preferred Image 

Caption 
"Two astronauts on the moon,
standing near a chess set, with

the moon's surface as the
backdrop."

'Caption' 
"playing chess
tournament on

the moon."

VLM

Caption    
"Playing chess on

the moon."

Weak Perturbation

Caption  
"The moon chess

tournament. "

Medium Perturbation

Caption    
"Once upon a time
on the moon, there

was a chess
tournament."

Strong Perturbation Caption   
"Two lunar explorers
near a chessboard, a

moonscape as
backdrop."

DCPO-h
Hybrid
Method

Caption   
"The moon landing. Two

moonwalkers near a
chessboard. The moon
surface as a backdrop."

DIPPER
(T5-XXL)

LLM

DIPPER
(T5-XXL)

LLM

DCPO-p
Perturbation
Method

Weak Perturbation

Medium Perturbation

Caption 
"The image shows a chessboard

with white pieces set up on a
lunar surface, suggesting a

chess tournament on the moon."

VLM
Caption 

"The image shows a chessboard
with white pieces set up on a
lunar surface, suggesting a

chess tournament on the moon."

Preferred Image 

Prompt  
"playing chess
tournament on

the moon."

Figure 2: The DCPO pipeline in 3 variants: DCPO-c, DCPO-p, and DCPO-h, all of which require a duo of a
captioned preferred image (xw

0 , z
w) and a captioned less-preferred image (xl

0, z
l). DCPO-c (Top Left): We use

a captioning model to generate distinctive captions respectively for images xw
0 and xl

0 given the shared prompt c.
DCPO-p (Bottom Left): We take prompt c as the caption for image xw

0 , then we use a Large Language Model
(LLM) to generate a semantically perturbed prompt zlp given prompt c as the caption for image xl

0. DCPO-h
(Right): A hybrid method where the generated caption zl is now perturbed into zlp for image xl

0. Our Pick-
Double Caption Dataset discussed in Section 4.1 is constructed using DCPO-c.

reward model and reward hacking have led to the057

adoption of Direct Preference Optimization (DPO)058

(Rafailov et al., 2024) techniques like Diffusion-059

DPO (Wallace et al., 2024). Intuitively, Diffusion-060

DPO involves maximizing the difference between061

a preferred image and a less preferred image for a062

given prompt.063

Although DPO-based methods are effective in064

comparison to SFT-based approaches, applying di-065

rect optimization in multi-modal settings presents066

certain challenges. Current preference optimiza-067

tion datasets consist of a preferred (xw) and a less068

preferred (xl) image for a given prompt (c). Ide-069

ally, xw should show a higher correlation with c070

compared to xl. However, we find that in current071

datasets, both the images share the same distribu-072

tion for the given prompt c, which we refer to as073

conflict distribution in the data. Additionally, irrel-074

ative information in c restricts the U-Net’s ability075

to predict noises from xl in the diffusion reverse076

process, which we refer to as irrelevant prompts.077

This entails that there is a lack of sufficient distin-078

guishing features between the two pairs (xw, c),079

(xl, c), thereby increasing the complexity of the080

optimization process.081

To address the aforementioned bottleneck, we082

propose DCPO: Dual Caption Preference Op-083

timization, a novel preference optimization tech- 084

nique designed to align diffusion models by uti- 085

lizing two distinct captions corresponding to the 086

preferred and less preferred image. DCPO broadly 087

consists of two steps - a text generation framework 088

that develops better aligned captions and a novel 089

objective function that utilizes these captions as 090

part of the training process. 091

The text generation framework seeks to alle- 092

viate the conflict distribution present in existing 093

datasets. We hypothesize that c does not serve as 094

the optimal signal for optimization because they 095

do not convey the reasons why an image is pre- 096

ferred or dis-preferred; based on the above, we 097

devise the following techniques to generate bet- 098

ter aligned captions. The first method involves us- 099

ing a captioning model Qϕ(z
i|xi, c); which gen- 100

erates a new prompt zi based on an image xi and 101

the original prompt c, where i ∈ (w, l). The sec- 102

ond method introduces perturbation techniques f , 103

such that c = zw, zl = f(c); i.e. generating zl, 104

to represent the less preferred image, considering 105

the original prompt c as the prompt aligned with 106

the preferred image. We investigate multiple se- 107

mantic variants of f , where each variant differs in 108

the degree of perturbation applied to the original 109

caption c. Finally, we also explore a hybrid com- 110
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bination of the above methods, where we combine111

the strong prior of the captioning model and the ef-112

ficient nature of the perturbation method. All the113

above methods are designed to generate captions114

that effectively discriminate between the preferred115

and less preferred images.116

We introduce a novel objective function that117

allows DCPO to incorporate zw and zl into its118

optimization process. Specifically, during opti-119

mization, the policy model pθ increases the like-120

lihood of the preferred image xw conditioned on121

the prompt zw, while simultaneously decreasing122

the likelihood of the less preferred image xl con-123

ditioned on the prompt zl. The results in Tables124

1 and 2 demonstrate that DCPO consistently out-125

performs other methods, with notable improve-126

ments of +0.21 in Pickscore, +0.45 in HPSv2.1,127

+1.8 in normalized ImageReward, +0.15 in CLIP-128

score, and +3% in GenEval. Additionally, DCPO129

achieved 58% in general preference and 66% in130

visual appeal compared to Diffusion-DPO on the131

PartiPrompts dataset, as evaluated by GPT-4o (see132

Figure 7).133

In summary, our contributions are as follows :134

Double Caption Generation. We introduce the135

Captioning and Perturbation methods to address136

the conflict distribution issue, as illustrated in Fig-137

ure 3. In the Captioning method, we employ state-138

of-the-art models like LLaVA (Liu et al., 2024a)139

and Emu2 (Sun et al., 2024) to generate a caption140

z based on the image x and prompt c. Addition-141

ally, we use DIPPER (Krishna et al., 2024), a para-142

phrase generation model built by fine-tuning the143

T5-XXL model to create three levels of perturba-144

tion from the prompt c.145

Dual Caption Preference Optimization146

(DCPO). We propose DCPO, a modified147

version of Diffusion-DPO, that leverages the148

U-Net encoder embedding space for preference149

optimization. This method enhances diffusion150

models by aligning them more closely with151

human preferences, using two distinct captions152

for the preferred and less preferred images during153

optimization.154

Improved Model Performance. We demon-155

strate that our approach significantly outperforms156

SD 2.1, SFT, Diffusion-DPO, and MaPO across157

metrics such as Pickscore, HPSv2.1, GenEval,158

CLIPscore, normalized ImageReward, and GPT-159

4o (Achiam et al., 2023) evaluations.160

0 5 10 15 20 25 30 35 40 45 50
CLIPScore

Oc
cu

re
nc

e

l = 25.418, w = 26.746,  = 1.328

prompt c, less preferred xl
0

prompt c, preferred xw
0

Figure 3: Conflict distribution in the Pick-a-Picv2
dataset. µl and µw are the average CLIPscores for pre-
ferred and less preferred images.

2 Related Works 161

Aligning Diffusion Models. Recent advances 162

in preference alignment methods of text-to-image 163

diffusion models have shown that reinforcement 164

learning-free (RL-free) methods (Yang et al., 165

2024; Li et al., 2024; Yuan et al., 2024; Gam- 166

bashidze et al., 2024; Park et al., 2024) outper- 167

form RL-based approaches (Fan and Lee, 2023; 168

Fan et al., 2023; Hao et al., 2023; Lee et al., 2023; 169

Prabhudesai et al., 2024; Black et al., 2024; Clark 170

et al., 2024) mainly because they eliminate the 171

need for an explicit reward model. Diffusion- 172

DPO (Wallace et al., 2024) directly adopts the 173

DPO method (Rafailov et al., 2024) into text-to- 174

image diffusion models, using pairwise preference 175

datasets as alignment guidance. Diffusion-KTO 176

(Li et al., 2024) incorporates Kahneman & Tver- 177

sky model of human utility to align these mod- 178

els, simplifying the process by using images with 179

binary feedback signals in terms of likes or dis- 180

likes, instead of pairwise preference data. For bet- 181

ter flexibility, Hong et al. (2024) introduce MaPO, 182

an alignment technique independent of a reference 183

model previously used by other methods, enabling 184

greater control over stylistic adaptations. How- 185

ever, previous alignment methods optimize diffu- 186

sion models based on a single prompt for a pair 187

of images, which supports the irrelevant prompts 188

issue explored in Section 3.1. 189

Text-to-image Preference Datasets. Text-to- 190

image image preference datasets commonly in- 191

volve the text prompt to generate the images, and 192

two or more images are ranked according to hu- 193

man preference. HPS (Wu et al., 2023c) and 194

HPSv2 (Wu et al., 2023b) create multiple im- 195
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Figure 4: Effect of perturbation on semantic distribu-
tions (CLIPScore): (a) shows zw and zl distributions
from LLaVA, while (b-d) depict increasing perturba-
tion levels on zl, amplifying the distribution gap. See
Appendix E for details.

ages using a series of image generation models196

for a single prompt, and the images are ranked ac-197

cording to real-world human preferences. More-198

over, a classifier is trained using the gathered199

preference dataset, which can be used as a met-200

ric for image-aligning tasks. Also, Pick-a-Pic v2201

(Kirstain et al., 2023) follows a similar structure202

to create a pairwise preference dataset along with203

their CLIP (Radford et al., 2021) based scoring204

function, Pickscore. While these datasets are care-205

fully created, having only one prompt for both206

or all the images introduces conflict distribution,207

which will be further discussed in Section 3.1. For208

this reason, we modified the Pick-a-Pic v2 dataset209

using recaptioning and perturbation methods to210

improve image alignment performance.211

3 Method212

In this section, we present the conflict distribution213

issue in preference datasets, where preferred214

and less-preferred images generated from the215

same prompt c exhibit significant overlap. We216

also explain the irrelevant prompt issue found in217

previous direct preference optimization methods.218

To address these challenges, we propose Dual219

Caption Preference Optimization (DCPO), a220

method that uses distinct captions for preferred221

and less preferred images to improve diffusion222

model alignment.223

224

3.1 The Challenges225

Generally, to optimize a Large Language Model226

(LLM) using preference algorithms, we need a227

dataset D = {c, yw, yl}, where yw and yl rep- 228

resent the preferred and less preferred responses 229

to a given prompt c. Ideally, the distributions of 230

these responses should differ significantly. Sim- 231

ilarly, in diffusion model alignment, the distribu- 232

tions of preferred and less preferred images should 233

be distinct for the same prompt c. However, our 234

analysis shows a substantial overlap between these 235

distributions, which we call conflict distribution, 236

as illustrated in Figure 3. 237

Another issue emerges when direct preference 238

optimizes a diffusion model. In the reverse denois- 239

ing process, the U-Net model predicts noise for 240

both preferred and less preferred images using the 241

same prompt c. As prompt c is more relevant to the 242

preferred image, it becomes less effective for pre- 243

dicting the less preferred one, leading to reduced 244

performance. We call this the irrelevant prompts 245

problem. 246

3.2 DCPO: Dual Caption Preference 247

Optimization 248

Motivated by the conflict distribution and ir- 249

relevant prompts issues, we propose DCPO, a 250

new preference optimization method that opti- 251

mizes diffusion models using two distinct cap- 252

tions. DCPO is a refined version of Diffusion- 253

DPO designed to address these challenges. More 254

details are in Appendix B. 1 255

We start with a fixed dataset D = {c, xw0 , xl0}, 256

where each entry contains a prompt c and a pair 257

of images generated by a reference model pref . 258

The human labels indicate a preference, with xw0 259

preferred over xl0. We assume the existence of 260

a model Rϕ(z|c, x), which generates a caption 261

z given a prompt c and an image x. Using 262

this model, we transform the dataset into D′ = 263

{zw, zl, xw0 , xl0}, where zw and zl are captions for 264

the preferred image xw0 and the less-preferred im- 265

age xl0, respectively. Our goal is to train a new 266

model pθ, aligned with human preferences, to gen- 267

erate outputs that are more desirable than those 268

produced by the reference model. 269

The objective of RLHF is to maximize the re- 270

ward r(c, x0) for the reverse process pθ(x0:T |z), 271

while maintaining alignment with the original ref- 272

erence reverse process distribution. Building on 273

prior work (Wallace et al., 2024), the DCPO ob- 274

jective is defined by direct optimization through 275

the conditional distribution pθ(x0:T |z) as follows: 276

1For additional background about diffusion and prefer-
ence optimization, refer to Appendix A.
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277 LDCPO(θ) = −E(xw
0 ,xl

0)∼D′278

log σ
[
βExw

1:T∼pθ(x
w
1:T |xw

0 ,zw),xl
1:T∼pθ(x

l
1:T |xl

0,z
l)279 (

log
pθ(x

w
0:T |zw)

pref(xw0:T |zw)
− log

pθ(x
l
0:T |zl)

pref(xl0:T |zl)

)]
(1)280

where log[·] is the sigmoid function.281

However, as noted in Diffusion-DPO (Wal-282

lace et al., 2024), the sampling process x1:T ∼283

p(x1:T |x0) is inefficient and intractable. To over-284

come this, we follow a similar approach by ap-285

plying Jensen’s inequality and utilizing the con-286

vexity of the − log(·) function to bring the ex-287

pectation outside. By approximating the reverse288

process pθ(x1:T |x0, z) with the forward process289

q(x1:T |x0), and through algebraic manipulation290

and simplification, the DCPO loss can be ex-291

pressed as:292

LDCPO(θ) =293

− E(xw
0 ,xl

0)∼D′,t∼µ(0,T ),xw
t ∼q(xw

t |xw
0 ),xl

t∼q(xl
t|xl

0)
294

log σ
[
− βTw(λt)295 (

(||ϵw−ϵθ(x
w
t , z

w, t)||22−||ϵw−ϵref(x
w
t , z

w, t)||22)296

−(||ϵl−ϵθ(x
l
t, z

l, t)||22−||ϵl−ϵref(x
l
t, z

l, t)||22)
)]

(2)

297

where x∗t = αtx
∗
0 + σtϵ

∗, and ϵ∗ ∼ N (0, I) is a298

sample drawn from q(x∗t |x∗0). λt = α2
t /σ

2
t rep-299

resents the signal-to-noise ratio, and ω(λt) is a300

weighting function.301

To optimize a diffusion model using DCPO, a302

dataset D = {zw, zl, xw0 , xl0} is required, where303

captions are paired with the images. However, the304

current preference dataset only contains prompts c305

and image pairs without captions. To address this,306

we propose three methods for generating captions307

z and introduce a new high-quality dataset, Pick-308

Double Caption, which provides specific captions309

for each image, based on Pick-a-Pic v2 (Kirstain310

et al., 2023).311

3.2.1 DCPO-c: Captioning Method312

In this method, the captioning model Qϕ(z|c, x)313

generates the caption z based on the image x314

and the original prompt c. As a result, we ob-315

tain a preferred caption zw ∼ Qϕ(z
w|c, xw) for316

the preferred image and a less preferred caption317

zl ∼ Qϕ(z
l|c, xl) for the less preferred image, as318

illustrated in a sample in Figure 2. Thus, based on319

the generated captions zw and zl, we can optimize320

a diffusion model using the DCPO method.321

In the experiment section, we evaluate the per- 322

formance of DCPO-c and demonstrate that this 323

method effectively mitigates the conflict distribu- 324

tion by creating two differentiable distributions. 325

However, the question of how much divergence is 326

needed between the two distributions remains. To 327

investigate this, we propose Hypothesis 1. 328

Hyphothesis 1. Let d(z, x) represent the seman- 329

tic distribution between a caption z and an image 330

x, with µ being the mean of the distribution d, and 331

∆µ = µ(d(zw0 , x
w
0 )) − µ(d(zl0, x

l
0)) as the dif- 332

ference between the two distributions. Increasing 333

∆µ between the preferred and less-preferred im- 334

age distributions in a preference dataset beyond a 335

threshold t (i.e., ∆µ > t), can improve the perfor- 336

mance of the model pθ. 337

Our hypothesis suggests that increasing the dis- 338

tance between the two distributions up to a cer- 339

tain threshold t can improve alignment perfor- 340

mance. To examine this, we propose the pertur- 341

bation method to control the distance between the 342

two distributions, represented by ∆µ. 343

3.2.2 DCPO-p: Perturbation Method 344

While using a captioning model is an effective way 345

to address the conflict distribution, it risks deviat- 346

ing from the original distribution of prompt c, and 347

the distributions of preferred and less preferred 348

images may still remain close. To tackle these is- 349

sues, we propose a perturbation method. In this 350

approach, we assume that prompt c is highly rel- 351

evant to the preferred image xw0 and aim to gen- 352

erate a less relevant caption, denoted as cp, based 353

on prompt c. To achieve this, we use the model 354

Wϕ(cp|c), which generates a perturbed version of 355

prompt c, altering its semantic meaning. In this 356

framework, prompt c corresponds to the preferred 357

caption zw (c = zw), while the perturbed prompt 358

cp represents the less-preferred caption zl (cp = 359

zl). For the perturbation model Wϕ, we utilized 360

the DIPPER model (Krishna et al., 2024) built by 361

fine-tuning the T5-XXL (Chung et al., 2022) to 362

produce a degraded version of the prompt c. 363

We define three levels of perturbation: 364

1) Weak: where prompt cp has high semantic 365

similarity to prompt c, with minimal differences. 366

2) Medium: where the semantic difference 367

between prompt cp and c is more pronounced 368

than in the weak level. 3) Strong: where the 369

majority of the semantics in prompt cp differ 370

significantly from prompt c. For further details on 371

5



the perturbation method, see Appendix E.372

The main advantage of DCPO-p is to reduce the373

captioning process cost while staying closer to the374

original data distribution by using prompt c as the375

preferred caption. However, we observe that the376

quality of captions in DCPO-c outperforms that of377

the original prompt c, as shown in Table 8 in Ap-378

pendix D. Based on this observation, we propose379

a hybrid method to improve the alignment perfor-380

mance by combining captioning and perturbation381

techniques.382

3.2.3 DCPO-h: Hybrid Method383

In this method, instead of perturbing the prompt384

c, we perturb the caption z generated by the model385

Qϕ(z|x, c) based on the image x and prompt c. As386

discussed in Section 3.2.1, the goal of the pertur-387

bation method is to increase the distance between388

the two distributions. However, the correlation be-389

tween the image x0 and prompt c significantly im-390

pacts alignment performance. Therefore, we pro-391

pose Hypothesis 2.392

Hypothesis 2. Let S(c, x) represent the corre-393

lation score between prompt c and image x, and394

P (pθ(c1, c2)) denote the performance of model395

pθ optimized on captions c1 and c2 with DCPO,396

where Wϕ is the perturbation model. If S(z, x) >397

S(c, x), then P (pθ(z
w, zwp ∼ Wϕ(z

w
p |zw))) >398

P (pθ(c, cp ∼ Wϕ(cp|c))).399

In Section 4.3, we provide experimental evi-400

dence supporting Hypothesis 2 and investigate the401

potential of using zlp ∼ Wϕ(z
l
p|zl) as the less-402

preferred caption zl, instead of zwp ∼ Wϕ(z
w
p |zw)403

as originally proposed in Hypothesis 2.404

4 Experiments405

We fine-tuned the U-Net model of Stable Diffu-406

sion (SD) 2.1 using DCPO on the Pick-Double407

Caption dataset and compared it with SD 2.1 mod-408

els fine-tuned with SFTChosen, Diffusion-DPO, and409

MaPO on Pick-a-Picv2 in various metrics. We410

first describe the Pick-Double Caption dataset and411

compare it to Pick-a-Picv2. Subsequently, we pro-412

vide an in-depth analysis of the results. Details on413

fine-tuning are in Appendix F, and further compar-414

isons are in Appendix C.415

4.1 Pick-Double Caption Dataset416

Motivated by the conflict distribution observed in417

previous preference datasets, we applied the cap-418

tioning method described in Section 3.2.1 to gen-419

Pick
Score (↑) HPSv2.1 (↑) Image

Reward (↑) CLIP
Score (↑)

Results from other methods
SD 2.1 20.30 25.17 55.8 26.84
SFTChosen 20.35 25.09 56.4 26.98
Diffusion-DPO 20.36 25.10 56.4 26.98
MaPO 19.41 24.47 50.4 24.82

Results from our methods
DCPO-c (LLaVA) 20.46 25.10 56.5 27.00
DCPO-c (Emu2) 20.46 25.06 56.6 26.97
DCPO-p 20.28 25.42 54.2 26.98
DCPO-h (LLaVA) 20.57 25.62 58.2 27.13

Table 1: Results on PickScore, HSPv2.1, ImageReward
(normalized), and CLIPScore.

erate unique captions for each image in the Pick- 420

a-Pic v2 dataset. For the Pick-Double Caption 421

dataset, we sampled 20,000 instances from Pick- 422

a-Pic v2 and cleaned the samples as detailed in 423

Appendix D. We then employed two state-of-the- 424

art captioning models, LLaVa-1.6-34B and Emu2- 425

37B, to generate captions for both the preferred 426

and less preferred images, as shown in Figure 2. 427

To generate the captions, we used two differ- 428

ent prompting strategies: 1) Conditional prompt: 429

where the model was explicitly instructed to gen- 430

erate a caption for image x based on the given 431

prompt c, and 2) Non-conditional prompt: where 432

the model provided a general description of the 433

image in one sentence without referring to a spe- 434

cific prompt. More details are in Appendix D. 435

We evaluated the captions generated by LLaVA 436

and Emu2 using CLIPscore, which revealed sev- 437

eral key insights. LLaVA produced captions 438

that have more correlation with the images for 439

both preferred and less preferred samples com- 440

pared to Emu2 and the original captions, although 441

LLaVA’s captions were significantly longer (see 442

Table 8 in Appendix D). Models fine-tuned on 443

captions from the conditional prompt strategy out- 444

performed those using the non-conditional ap- 445

proach, though the conditional prompt captions 446

were twice as long. Interestingly, despite Emu2 447

generating much shorter captions, the models fine- 448

tuned on Emu2 were comparable to those fine- 449

tuned on the original prompts from Pick-a-Pic v2. 450

451

A key challenge is generating captions for the 452

less preferred images using the captioning method. 453

We observed that in both prompting strategies, 454

the captions for the preferred images are more 455

aligned with the original prompt c distribution. 456

However, the non-conditional prompt strategy of- 457

2Note that we rerun all the models on the same seeds to
have a fair comparison.
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Figure 5: Performances in CLIPScore by four variants of DCPO-c and DCPO-h on different perturbation levels
∆µ. All the regression lines show that the performances peak when ∆µ is around a threshold t (orange boundary).

ten produces captions for less preferred images458

that are out-of-distribution (OOD) from the orig-459

inal prompt c in most cases. We will explore this460

further in Section 4.3.461

Finally, we observe that the key advantage of462

the Pick-Double Caption dataset is the greater dif-463

ference in CLIPscore (∆µ) between preferred and464

less preferred images compared to the original465

prompts. Specifically, while the original prompt466

has a ∆µ of 1.3, LLaVA shows a much larger dif-467

ference at 4.3, and Emu2 at 2.8. This increased468

gap reflects improved alignment performance in469

models fine-tuned on this dataset, indicating that470

the captioning method mitigates the conflict dis-471

tribution.472

4.2 Performance Comparisons473

We evaluated all methods on 2,500 unique474

prompts from the Pick-a-Picv2 (Kirstain et al.,475

2023) dataset, measuring performance using476

Pickscore (Kirstain et al., 2023), CLIPscore (Hes-477

sel et al., 2022), and Normalized ImageReward478

(Xu et al., 2023). Additionally, we generated479

images from 3,200 prompts in the HPSv2 (Wu480

et al., 2023b) benchmark and evaluated them us-481

ing the HPSv2.1 model. To provide a comprehen-482

sive evaluation, we also compared the methods us-483

ing GenEval (Ghosh et al., 2023), focusing on how484

well the fine-tuned models generated images with485

the correct number of objects, accurate colors, and486

proper object positioning.487

We compared different versions of DCPO, in-488

cluding the captioning (DCPO-c), perturbation489

(DCPO-p), and hybrid (DCPO-h) methods, with490

other approaches, as outlined in Section 3.2. For491

more information on the fine-tuning process of the492

models, refer to Appendix F.493

The results in Tables 1 and 2 show that DCPO-494

h significantly outperforms the best scores from495

other methods, with improvements of +0.21 in496

Pickscore, +0.45 in HPSv2.1, +1.8 in ImageRe-497

ward, +0.15 in CLIPscore, and +3% in GenEval. 498

Additionally, the results demonstrate that DCPO- 499

c outperforms all other methods on GenEval, 500

Pickscore, and CLIPscore. While DCPO-p per- 501

forms slightly worse than DCPO-c, it still ex- 502

ceeds SD 2.1, SFT, Diffusion-DPO, and MaPO 503

on GenEval. However, its scores on ImageRe- 504

ward and Pickscore suggest that it underperforms 505

compared to the other approaches. Importantly, 506

DCPO-p shows significant improvement over the 507

other methods on HPSv2.1, highlighting the effec- 508

tiveness of the perturbation method. 509

Method Overall Single
object

Two
objects Counting Colors Position Attribute

binding
Results from other methods
SD 2.12 0.4775 0.96 0.52 0.35 0.80 0.09 0.15
SFTChosen 0.4797 1.00 0.42 0.42 0.81 0.07 0.14
Diffusion-DPO 0.4857 0.99 0.48 0.46 0.83 0.04 0.11
MaPO 0.4106 0.98 0.40 0.28 0.66 0.06 0.09

Results from our methods
DCPO-c (LLaVA) 0.4971 1.00 0.43 0.53 0.85 0.02 0.14
DCPO-c (Emu2) 0.4925 1.00 0.41 0.50 0.85 0.04 0.15
DCPO-p 0.4906 1.00 0.41 0.50 0.83 0.03 0.17
DCPO-h (LLaVA) 0.5100 0.99 0.51 0.54 0.84 0.05 0.14

Table 2: Results on the GenEval Benchmark.

4.3 Ablation Studies and Analysis 510

Support of Hypothesis 1. As described in Sec- 511

tion 3.2.2, we defined three levels of perturbation: 512

weak, medium, and strong. In Hypothesis 1, we 513

proposed that increasing the distance between the 514

distributions of preferred and less preferred im- 515

ages ∆µ improves model alignment performance. 516

To explore this, we fine-tuned SD 2.1 using the 517

DCPO-h method with three levels of perturbation 518

applied to the less preferred captions zl generated 519

by LLaVA. The results in Figure 5 show that in- 520

creasing the distance ∆µ between the two distri- 521

butions enhances performance. However, this dis- 522

tance must be controlled and kept below a thresh- 523

old t, a hyperparameter that may vary depending 524

on the task. These findings support our hypothesis. 525

Support of Hypothesis 2. To illustrate the im- 526

pact of the correlation between the prompt c and 527
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Figure 6: Comparisons of DCPO-h’s performances over In-distribution vs. out-of-distribution data.

image x on the perturbation method, we perturbed528

both the original prompt c and the less preferred529

caption zw, generated by the model Qϕ, where530

zw ∼ Wϕ(z
w|Qϕ(z

w|xw, c)). At the same time,531

we kept the caption generated by Qϕ for the532

preferred image as the preferred caption, zw ∼533

Q(zw|xw, c). In this case, we assume Qϕ =534

LLaVA and Wϕ = DIPPER. The results in Ta-535

ble 8 in Appendix D show that the caption z gen-536

erated by LLaVA is more correlated with the im-537

age x than the original prompt c, indicating that538

S(z, x) > S(c, x). Based on the results in Table 3539

in Appendix C, we conclude that perturbing more540

correlated captions leads to better performance.541

In- vs. Out-of Distribution. We evaluated542

DCPO on in-distribution and out-of-distribution543

(OOD) data. As discussed in Section 4.1, the cap-544

tioning model can generate OOD captions. To545

explore this, we fine-tuned SD 2.1 with DCPO-546

h using LLaVA and Emu2 captions at a medium547

perturbation level. Figure 6 Left shows that in-548

distribution data significantly improve alignment549

performance, while OOD results for LLaVA in550

GenEval, Pickscore, and CLIPscore are compara-551

ble to Diffusion-DPO. Similar behavior was ob-552

served for DCPO-c, as noted in Appendix F.553

Effectiveness of the DCPO. Our analysis shows554

that LLaVA captions are twice the length of the555

original prompt c, raising the question of whether556

DCPO’s improvement is due to data quality or the557

optimization method. To explore this, we fine-558

tuned SD 2.1 with Diffusion-DPO using LLaVA559

and Emu2 captions instead of the original prompt.560

The results in Table 4 in Appendix C show that561

models fine-tuned on LLaVA captions outperform562

Diffusion-DPO with the original prompt. How-563

ever, DCPO-h still surpasses the new Diffusion-564

DPO models, demonstrating the effectiveness of565

the proposed optimization algorithm.566

DCPO-h vs Diffusion-DPO on GPT-4o Judg-567

ment. We evaluated DCPO-h and Diffusion-568

DPO using GPT-4o on the PartiPrompts bench-569

mark, consisting of 1,632 prompts. GPT-4o as-570

Diffusion-DPO DCPO-h (ours) Diffusion-DPO DCPO-h (ours)

'A raccoon wearing formal clothes, wearing a
tophat and holding a cane. The raccoon is holding
a garbage bag. Oil painting in the style of pixel art.'

''A mixed media image with a photograph of a
woman with long orange hair over a background

that is a sketch of a city skyline.'

Figure 7: (Top) PartiPrompts benchmark results for
three GPT-4o-voted questions. (Bottom) Qualitative
comparison of DCPO-h and Diffusion-DPO.

sessed images based on three criteria: Q1) Gen- 571

eral Preference (Which image do you prefer given 572

the prompt?), Q2) Visual Appeal (Which image is 573

more visually appealing?), and Q3) Prompt Align- 574

ment (Which image better fits the text descrip- 575

tion?). As shown in Figure 7, DCPO-h outper- 576

formed Diffusion-DPO in Q1 and Q2, with win 577

rates of 58% and 66%. Refer to Appendix G for 578

details on the prompt style and the analysis of po- 579

sition bias in GPT-4o judgments. 580

5 Conclusion 581

In this paper, we present a novel preference opti- 582

mization method for aligning text-to-image diffu- 583

sion models called Dual Caption Preference Opti- 584

mization (DCPO). We tackle two major challenges 585

in previous preference datasets and optimization 586

algorithms: the conflict distribution and irrelevant 587

prompt. To overcome these issues, we introduce 588

the Pick-Double Caption dataset, a modified ver- 589

sion of the Pick-a-Pic v2 dataset. We also identify 590

difficulties in generating captions, particularly the 591

risk of out-of-distribution captions for images, and 592

propose three approaches: 1) captioning (DCPO- 593

c), 2) perturbation (DCPO-p), and 3) a hybrid 594

method (DCPO-h). Our results show that DCPO- 595

h significantly enhances alignment performance, 596

outperforming methods like MaPO and Diffusion- 597

DPO across multiple metrics. 598
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Limitation599

While DCPO achieves strong performance on var-600

ious benchmarking metrics, its captioning and per-601

turbation processes require considerable computa-602

tional resources. We encourage future research to603

explore more efficient and cost-effective alterna-604

tives to further enhance its practicality. The pre-605

liminary results in Section C indicate that DCPO606

outperforms Diffusion-DPO across different back-607

bones, such as Stable Diffusion XL (SDXL)608

(Podell et al., 2023). However, further investi-609

gation into its performance with emerging state-610

of-the-art models remains essential. Additionally,611

exploring DCPO’s applications in safety-related612

tasks could be a valuable direction for future work.613

We believe our research will contribute signifi-614

cantly to the alignment community and inspire fur-615

ther advancements in this field.616

Ethical Considerations617

The authors state that this work is in accordance618

with the ACL Code of Ethics and does not raise619

ethical issues. AI assistants, specifically Gram-620

marly and ChatGPT, were utilized to correct gram-621

matical errors and restructure sentences.622
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A Preliminary875

A.1 Diffusion Models876

Based on samples from a data distribution q(x0), a noise scheduling function αt and σt (Rombach et al.,877

2022) denoising diffusion models (Song et al., 2020b) are generative models pθ(x0) that operate through878

a discrete-time reverse process structured as a Markov Decision Proces where879

pθ(xt−1|xt) = N (xt−1;µθ(xt), σ
2
t|t−1

σ2
t−1

σ2
t

I). (3)880

The training process involves minimizing the evidence lower bound (ELBO) associated with this881

model (Song et al., 2021):882

LDM = Ex0,ϵ,t,xt [ω(λt)||ϵ− ϵθ(xt, t)||22] (4)883

where ϵ ∼ N (0, I), t ∼ U(o, T ), xt q(xt|x0) = N (xt;αtx0, σ
2
t I).λt = α2

t /σ
2
t is a signal-to-noise884

ratio (Kingma et al., 2021), ω(λt) is a predefined weighting function (Song and Ermon, 2019).885

A.2 Preference Optimization886

Aligning a generative model typically involves fine-tuning it to produce outputs that are more aligned887

with human preferences. Estimating the reward model r based on human preference is generally chal-888

lenging, as we do not have direct access to the reward model. However, if we assume the availability889

of ranked data generated under a given condition c, where xw0 ≻ xl0|c (with xw0 representing the pre-890

ferred sample and xl0 the less-preferred sample), we can apply the Bradley-Terry theory to model these891

preferences. The Bradley-Terry (BT) model expresses human preferences as follows:892

pBT (x
w
0 ≻ xl0|c) = σ(r(c, xw0 )− r(c, xl0)) (5)893

where σ(·) is the sigmoid function, and r(x0, c) is derived from a neural network parameterized by ϕ.894

Subsequently, ϕ is estimated by maximum likelihood training for binary classification as follows:895

LBT (ϕ) = −Ec,xw
0 ,xl

0[log σ(rϕ(c,x
w
0 )−rϕ(c,x

l
0))]

(6)896

where prompt c and data pair (xw0 , x
l
0) are sourced from a human-annotated dataset.897

This approach to reward modeling has gained popularity in aligning large language models, partic-898

ularly when combined with reinforcement learning (RL) techniques like proximal policy optimization899

(PPO) (Schulman et al., 2017) to fine-tune the model based on rewards learned from human prefer-900

ences, known as Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022). The901

goal of RLHF is to optimize the conditional distribution p(x0|c) (where c ∼ Dc) such that the reward902

model r(c, x0) is maximized, while keeping the policy model within the desired distribution using a903

KL-divergence term to ensure it remains reachable under the following objective:904

max
pθ

Ec∼Dc,x0∼pθ(x0|c)[r(c, x0)]− βDKL[pθ(x0|c)||pref(x0|c)] (7)905

where β controls how far the policy model pθ can deviate from the reference model pref .906

It can be demonstrated that the objective in Equation 7 converges to the following policy model:907

p∗θ(x0|c) = pref(x0|c) exp(r(c, x0)/β)/Z(c) (8)908

where Z is the partition function.909

The training objective for pθ, inspired by DPO, has been derived to be equivalent to Equation 8 without910

the need for an explicit reward model r(x, c). Instead, RLHF learns directly from the preference data911

(c, xw0 , x
l
0) ∼ D:912

LDPO(θ) = −Ec,xw
0 ,xl

0

[
log σ

(
β log

pθ(x
w
0 |c)

pref(xw0 |c)
− β log

pθ(x
l
0|c)

pref(xl0|c)

)]
(9)913
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where σ(·) is the sigmoid function. 914

Through this re-parameterization, instead of optimizing the reward function r before applying rein- 915

forcement learning, the RLHF method directly optimizes the conditional distribution pθ(x0|c). 916

B Formal Proofs Regarding DCPO 917

B.1 Optimizing the DCPO Loss is Optimizing the DPO Loss 918

Inspired by Bansal et al. (2024), we can intuitively assume that the DCPO objective is to learn an aligned 919

model pθ by weighting the joint probability of preferred images pθ(xw0 , z
w) over less preferred images 920

pθ(x
l
0, z

l). We set the optimization objective of DCPO is to minimize the following: 921

LDCPO(θ) = −E(xw
0 ,xl

0,z
l,zw)∼D′ log σ(βExw

1:T∼pθ(x
w
1:T |xw

0 ,zw),xl
1:T∼pθ(x

l
1:T ,xl

0,z
l)

[log
pθ(x

w
0:T , z

w)

pref(xw0:T , z
w)

− log
pθ(x

l
0:T , z

l)

pref(xl0:T |zl)
])

(10) 922

923

Here, we highlight that reducing LDCPO(θ) is equivalently reducing LDPO(θ) when the captions are the 924

same for the preferred and less preferred images. 925

Lemma 1. Under the case where Ddefine = {xw0 , c, xl0, c}, that is, the image captions are identical 926

for the given pair of preferred and less preferred images (xw0 , x
l
0), we have LDPO(θ;DDPO;β; pref) = 927

LDCPO(θ;Ddefine;β; pref), in which DDPO = {c, xw0 , xl0}. 928

Proof of Lemma 1.

LDCPO(θ;D′, β, pref) = E(xw
0 ,xl

0,z
w,zl)∼D′[

log

(
σ

(
β log

pθ(x
w
0 , z

w)

pref(xw0 , z
w)

− β log
pθ(x

l
0, z

l)

pref(xl0, z
l)

))]
= E(xw

0 ,xl
0,z

w,zl)∼D′[
log

(
σ

(
β log

pθ(x
w
0 |zw)pθ(zw)

pref(xw0 |zw)pref(zw)
−β log

pθ(x
l
0|zl)pθ(zl)

pref(xl0|zl)pref(zl)

))] (11) 929

LDCPO(θ;Ddefine, β, pref)
zw=zl=c

= E(xw
0 ,c,xl

0,c)∼Ddefine[
log

(
σ

(
pθ(c)

pref(c)

(
β log

pθ(x
w
0 |c)

pref(xw0 |c)
− β log

pθ(x
l
0|c)

pref(xl0|c)

)))]
pθ(c)

pref(c)
=C

= E(xw
0 ,xl

0,c)∼DDPO[
log

(
σ

(
C · β log

pθ(x
w
0 |c)

pref(xw0 |c)
− C · β log

pθ(x
l
0|c)

pref(xl0|c)

))]
= LDPO(θ;DDPO, β, pref)

(12) 930

In Equation 12, C is a constant value that equates to pθ(c)
pref(c)

. The proof above follows the Bayes rule by 931

substituting c according to zw = zl = c. 932

B.2 Analyses of DCPO’s Effectiveness 933

In this section, we present the formal proofs of why our DCPO leads to a more optimized L(θ) of a 934

Diffusion-based model and, consequently, better performance in preference alignment tasks. 935
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Proof 1. Increasing the difference between ∆preferred and ∆less-preferred improves the optimization of
L(θ).
For better clarity, the loss function L(θ) can be written as:

L(θ) = −E
[
log σ

(
− βTω(λt) ·M

)]
where σ(x) is the sigmoid function that squashes its input x into the output range (0, 1), and936

M = ∆preferred − ∆less-preferred, i.e., the margin between the respective importance of the preferred and937

less preferred predictions.938

939

Characteristically, the gradient of σ(x) is at its maximum near x = 0 and decreases as |x| in-940

creases. A larger margin in terms of M makes it easier for the optimization to drive the sigmoid function941

towards its asymptotes, reducing loss.942

• When M is small (|M | ≈ 0): The sigmoid σ(−βTω(λt) · M) is near 0.5 (its midpoint). Also,943

the gradient of log σ(x) is the largest near this point, meaning the model struggles to differentiate944

between preferred and less preferred predictions effectively.945

• When M is large (|M | ≫ 0): The sigmoid σ(−βTω(λt) · M) moves closer to 0 or 1, depending946

on the sign of M . For a well-aligned model, if the preferred predictions are correct, M > 0 and947

σ(−βTω(λt) ·M) approach 1, thus minimizing the loss.948

Intuitively, an ideally large M represents a clear distinction between the preferred image-caption versus949

the less preferred image-caption. Thus, by maximizing M , we may push the loss L(θ) towards its950

minimum, leading to better soft-margin optimization.951

952

953

Proof 2. Replacing caption c with the specifically generated caption zl for the less-preferred image xl
0

decreases ∆less-preferred.

To analyze how replacing c with zl, where c ⊂ zl and zl ∼ Q(zl|xl, c), for the less-preferred
image xl

0 improves the optimization, we delve into how the loss function is affected by this substitution.
The term relevant to the less-preferred image xl

t in the loss is:

∆less-preferred = ∥ϵl − ϵθ(x
l
t, t, c)∥22 − ∥ϵl − ϵref(x

l
t, t, c)∥22.

Replacing c with zl modifies the predicted noise term ϵθ(x
l
t, t, c) to ϵθ(x

l
t, t, z

l). Since zl better954

represents xl
t, we have:955

∥ϵl − ϵθ(x
l
t, t, z

l)∥22 < ∥ϵl − ϵθ(x
l
t, t, c)∥22 (13)956

When ∥ϵl−ϵθ(x
l
t, t, z

l)∥22 becomes smaller, the term ∆less-preferred decreases. This leads to ∆preferred−957

∆less-preferred becoming larger, which improves the soft-margin optimization in the loss function L(θ) that958

we have shown in Proof 1.959

We further elaborate on why Equation 13 is true. In the context of mean squared error (MSE) mini-960

mization, the optimal predictor of ϵl given some information is the conditional expectation:961

• When conditioned on (xl
t, t, c):

ϵ∗θ(x
l
t, t, c) = E

[
ϵl | xl

t, t, c
]

• When conditioned on (xl
t, t, z

l):

ϵ∗θ(x
l
t, t, z

l) = E
[
ϵl | xl

t, t, z
l
]
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The total variance of ϵl can be decomposed as by the Law of Total Variance (conditional variance for- 962

mula) (Ross, 2014): 963

Var
(
ϵl
)
= E

[
Var

(
ϵl | xl

t, t, c
)]

+Var
(
E
[
ϵl | xl

t, t, c
])

Similarly, when conditioning on zl:

Var
(
ϵl
)
= E

[
Var

(
ϵl | xl

t, t, z
l
)]

+Var
(
E
[
ϵl | xl

t, t, z
l
])

Since c ⊂ zl, the information provided by zl is richer than that of c. In probability theory, conditioning 964

on more information does not increase the conditional variance: 965

Var
(
ϵl | xl

t, t, z
l
)
≤ Var

(
ϵl | xl

t, t, c
)

(14) 966

This inequality holds because conditioning on additional information (zl) can only reduce or leave un- 967

changed the uncertainty (variance) about ϵl. 968

The expected squared error when using the optimal predictor is equal to the conditional variance: 969

E
[∥∥∥ϵl − ϵ∗θ(x

l
t, t, c)

∥∥∥2
2

]
= E

[
Var

(
ϵl | xl

t, t, c
)]

Similarly, 970

E
[∥∥∥ϵl − ϵ∗θ(x

l
t, t, z

l)
∥∥∥2
2

]
= E

[
Var

(
ϵl | xl

t, t, z
l
)]

From 14, we have: 971

Var
(
ϵl | xl

t, t, z
l
)
≤ Var

(
ϵl | xl

t, t, c
)

Taking expectations on both sides: 972

E
[
Var

(
ϵl | xl

t, t, z
l
)]

≤ E
[
Var

(
ϵl | xl

t, t, c
)]

Therefore, 973

E
[∥∥∥ϵl − ϵ∗θ(x

l
t, t, z

l)
∥∥∥2
2

]
≤ E

[∥∥∥ϵl − ϵ∗θ(x
l
t, t, c)

∥∥∥2
2

]
Assuming that the neural network ϵθ is capable of approximating the optimal predictor ϵ∗θ, especially 974

as training progresses and the model capacity is sufficient, we can write: 975∥∥∥ϵl − ϵθ(x
l
t, t, z

l)
∥∥∥2
2
≈

∥∥∥ϵl − ϵ∗θ(x
l
t, t, z

l)
∥∥∥2
2

Similarly for c 976∥∥∥ϵl − ϵθ(x
l
t, t, c)

∥∥∥2
2
≈

∥∥∥ϵl − ϵ∗θ(x
l
t, t, c)

∥∥∥2
2
.

Therefore, the expected squared error satisfies: 977

E
[∥∥∥ϵl − ϵθ(x

l
t, t, z

l)
∥∥∥2
2

]
≤ E

[∥∥∥ϵl − ϵθ(x
l
t, t, c)

∥∥∥2
2

]
Since the term of ∆less-preferred in the loss function involves the difference of squared errors, using zl 978

instead of c for the less preferred sample results in a lower error term: 979

∆
(zl)
less-preferred =

∥∥∥ϵl − ϵθ(x
l
t, t, z

l)
∥∥∥2
2
−
∥∥∥ϵl − ϵref(x

l
t, t, z

l)
∥∥∥2
2
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Comparing with the original:980

∆
(c)
less-preferred =

∥∥∥ϵl − ϵθ(x
l
t, t, c)

∥∥∥2
2
−
∥∥∥ϵl − ϵref(x

l
t, t, c)

∥∥∥2
2

Assuming the reference model ϵref remains the same or also benefits similarly from the additional981

information in zl, the net effect is that the first term decreases more than the second term, leading to a982

reduced ∆less-preferred.983

984

985

Proof 3 Replacing caption c with the specifically generated caption zw for the preferred image xw
0

increases ∆preferred.

To prove that replacing c with zw ∼ Q(zw|xw, c), where c ⊂ zw, for xw
0 also contributes to a

better optimized loss L(θ), we examine how this particular substitution affects the loss function.
We let

Rθ(c) = ∥ϵw − ϵθ(x
w
t , t, c)∥22,

Rref(c) = ∥ϵw − ϵref(x
w
t , t, c)∥22.

The rate of decrease in Rθ due to zw is proportional to the model’s ability to exploit the additional
conditioning. Since ϵθ is learnable, it can more effectively leverage zw than ϵref, yielding:

∆Rθ = Rθ(c)−Rθ(z
w) ≫ ∆Rref = Rref(c)−Rref(z

w).

We further elaborate on why the learnable model’s noise prediction residual (Rθ) decreases faster986

than the reference model’s residual (Rref) when c is replaced by zw. The residuals for the learnable and987

reference models are defined as:988

Rθ(c) = ∥ϵw − ϵθ(x
w
t , t, c)∥22,

Rref(c) = ∥ϵw − ϵref(x
w
t , t, c)∥22.

When c is replaced with zw (where c ⊂ zw), the residuals become:989

Rθ(z
w) = ∥ϵw − ϵθ(x

w
t , t, z

w)∥22,

Rref(z
w) = ∥ϵw − ϵref(x

w
t , t, z

w)∥22.

The rate of decrease for each residual is defined as:

∆Rθ = Rθ(c)−Rθ(z
w),

∆Rref = Rref(c)−Rref(z
w).

The quality of conditioning, Q(c), represents how well the conditioning c aligns with the true noise ϵw.
We assume that

Q(zw) > Q(c),

where the improvement in conditioning quality ∆Q is defined as

∆Q = Q(zw)−Q(c).

The residual for Rθ is proportional to the misalignment between Q(c) and ϵw:

Rθ(c) ∝
1

Q(c)
.

5



Replacing c with zw (higher Q) results in a larger proportional reduction:

Rθ(z
w) ∝ 1

Q(zw)
with ∆Rθ ∝ ∆Q.

The reference model’s residual Rref depends weakly on Q(c), as it is fixed or less adaptable:

Rref(c) ∝
1

Qref(c)
,

where Qref(c) is less sensitive to changes in c. 990

Thus, the proportional improvement in Rθ due to ∆Q is significantly larger than for Rref. 991

The preferred difference term is:
∆preferred = Rθ −Rref.

As Rθ decreases significantly more than Rref, the gap Rθ −Rref becomes larger, increasing ∆preferred:

∆Rθ ≫ ∆Rref =⇒ ∆preferred increases.

The learnable model ϵθ benefits more from the improved conditioning zw because of its adaptability
and training dynamics. This results in a larger reduction in Rθ compared to Rref. Mathematically, the
relative rate of decrease:

Relative Rate =
∆Rθ

∆Rref
≫ 1,

which ensures that ∆preferred also increases, hence improving the optimization process in L(θ) and 992

helping the model distinguish predictions on preferred and less preferred image-captions more effec- 993

tively. 994

C Additional Experiments and Analyses on DCPO 995

A preference alignment dataset, such as Pick-a-Pic (Kirstain et al., 2023), is defined as D = {c, xw, xl}, 996

where xw and xl represent the preferred and less preferred images for the prompt c. Diffusion-KTO 997

(Li et al., 2024) hypothesizes the optimization of a diffusion model using only a single preference label 998

based on whether an image x is suitable or not for a given prompt c. Diffusion-KTO uses a differently 999

formatted input dataset D = {c, x}, where x is a generated image corresponding to the prompt c. 1000

Diffusion-KTO’s hypothesis is fundamentally different from our DCPO’s. While Diffusion-KTO 1001

focuses on binary preferences (like/dislike) for individual image-prompt pairs, our approach involves 1002

paired preferences. We observe that using the same prompt c for both preferred and less preferred im- 1003

ages may not be ideal. To address this, we propose optimizing a diffusion model using a dataset in terms 1004

of D = {zw, zl, xw, xl}, where zw and zl are the captions generated by a static captioning model Qϕ for 1005

the preferred and less preferred images, respectively, referring to the original prompt. 1006

Method Pair Caption Perturbed Level Pickscore (↑) HPSv2.1 (↑) ImageReward (↑) CLIPscore (↑) GenEval (↑)

DCPO-p (c, cp) weak 20.28 25.42 54.20 26.98 0.4906
DCPO-h (zw, zwp ) weak 20.55 25.61 57.70 27.07 0.5070
DCPO-h (zw, zlp) weak 20.58 25.70 58.10 27.15 0.5060

DCPO-p (c, cp) medium 20.21 25.34 53.10 26.87 0.4852
DCPO-h (zw, zwp ) medium 20.59 25.73 58.47 27.12 0.5008
DCPO-h (zw, zlp) medium 20.57 25.62 58.20 27.13 0.5100

DCPO-p (c, cp) strong 20.31 25.06 54.60 27.03 0.4868
DCPO-h (zw, zwp ) strong 20.57 25.27 57.43 27.18 0.5110
DCPO-h (zw, zlp) strong 20.58 25.43 57.90 27.21 0.4993

Table 3: Performance comparison of DCPO-h and DCPO-p across different perturbation levels. The perturbation
method has a strong impact on captions that are more closely correlated with images.
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Method Input Prompt Token Length (Avg) Pickscore (↑) HPSv2.1 (↑) ImageReward (↑) CLIPscore (↑) GenEval (↑)

Diffusion-DPO prompt c 15.95 20.36 25.10 56.4 26.98 0.4857
Diffusion-DPO caption zw (LLaVA) 32.32 20.40 25.19 56.6 27.10 0.4958
Diffusion-DPO caption zw (Emu2) 7.75 20.36 25.08 56.3 26.98 0.4960

DCPO-h (LLaVA) Pair (zw,zlp) (32.32, 31.17) 20.57 25.62 58.2 27.13 0.5100
DCPO-h (LLaVA) Pair (zw,zwp ) (32.32, 27.01) 20.57 25.27 57.4 27.18 0.5110

Table 4: Performance comparison of DCPO and Diffusion-DPO fine-tuned on the Pick-Double Caption dataset.
While larger captions improve the performance of Diffusion-DPO, DCPO-h still significantly outperforms
Diffusion-DPO.

Method GenEval (↑) Pickscore (↑) HPSv2.1 (↑) ImageReward (↑) CLIPscore (↑)

Diffusion-KTO 0.5008 20.41 24.80 55.5 26.95
DCPO-h 0.5100 20.57 25.62 58.2 27.13

Table 5: Comparison of DCPO-h and Diffusion-KTO across various benchmarks.

We nonetheless conduct comparisons between Diffusion-KTO and DCPO on various preference align-1007

ment benchmarks. The results in Table 5 show that our DCPO-h consistently outperforms Diffusion-KTO1008

on all benchmarks, demonstrating the effectiveness of our DCPO method.1009

To further demonstrate DCPO’s versatility, we fine-tune Stable Diffusion 2.1 using Diffusion-DPO and1010

DCPO on another high-quality preference dataset Rapidata (Christodoulou and Kuhlmann-Jørgensen,1011

2024). Table 6 shows that our DCPO variants consistently outperform the Diffusion-DPO baseline on1012

multiple benchmarking metrics, including GenEval, Pickscore, HPSv2.1, ImageReward, and CLIPscore.1013

Method (SD2.1) Geneval Pickscore HPSv2.1 ImageReward CLIPscore

Diffusion-DPO 0.4813 20.34 25.10 55.4 26.84

DCPO-c 0.4867 20.44 25.43 55.7 26.86
DCPO-h 0.4978 20.42 25.10 55.6 26.91

Table 6: DCPO performances using SD2.1 on Rapidata (Christodoulou and Kuhlmann-Jørgensen, 2024).

We also perform additional experiments to evaluate the performance of DCPO using Stable Diffusion1014

XL (SDXL) (Podell et al., 2023), a different backbone model for T2I. Due to the larger parameter size1015

of SDXL, we conduct LoRA fine-tuning with minimal hyperparameter search. The results in Table 71016

show that DCPO outperforms Diffusion-DPO on key metrics such as Pickscore, Geneval, HPSv2, and1017

CLIPscore, while achieving comparable performance on ImageReward. We hope that our results would1018

encourage other researchers to further explore DCPO’s effectiveness on different datasets in future, gain-1019

ing more valuable insights into its broader applicability and robustness.1020

D Pick-Double Caption Dataset1021

In this section, we provide details about the Pick-Double Caption dataset. As discussed in Section 4.1,1022

we sampled 20,000 instances from the Pick-a-Pic v2 dataset and excluded those with equal preference1023

scores. We plot the distribution of the original prompts, as shown in Figure 8.1024

We observed that some prompts contained only one or two words, while others were excessively1025

long. To ensure a fair comparison, we removed prompts that were too short or too long, leaving us with1026

approximately 17,000 instances. We then generated captions using two state-of-the-art models, LLaVA-1027

1.6-34B, and Emu2-32B. The construction of the Pick-Double Caption dataset is illustrated in Figure 9,1028

which provides several examples.1029

We acknowledge that while captioning and perturbation introduce additional computational costs,1030

these are one-time expenses incurred only during pre-processing and do not affect training or evaluation1031

time. We introduce three variants of DCPO—c, p, and h—each with different processing requirements.1032

For instance, DCPO-c and DCPO-h involve captioning, whereas DCPO-p is more computationally effi-1033

cient as it only perturbs a less preferred caption. Furthermore, captioning 20,000 images using LLaVA1034
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Method (SDXL) Geneval (Overall) Pickscore HPSv2.1 ImageReward CLIPscore

Diffusion-DPO 0.5645 21.77 28.64 71.2 28.61

DCPO-c 0.5758 21.87 28.65 71.2 28.63
DCPO-h-weak 0.5704 21.87 28.64 71.2 28.62
DCPO-h-medium 0.5700 21.86 28.64 71.2 28.63
DCPO-h-strong 0.5696 21.86 28.64 71.2 28.62

Table 7: DCPO performances of using Stable Diffusion XL (SDXL) (Podell et al., 2023) as the backbone model.

0 50 100 150 200 250 300 350 400
Length of Prompt in Pick-a-Pic v2

Oc
cu

re
nc

e

Figure 8: The distribution of token lengths in the original prompts.

Prompt c
' "Soon" written in smoke'

 Preferred Image  Less Preferred Image 

Caption LLaVA
A man holding a baseball

bat stands in front of a
large, fiery "soon" sign.

Caption LLaVA

Caption Emu2 Caption Emu2

'The image shows a large, glowing,
three-dimensional sign spelling out

the word "SOON" with a dark,
billowing smoke cloud behind it, set

against a twilight sky.

The word soon is
written in flames.

A man standing in
front of the word soon.

Prompt c
' Glamorous dressing room with large mirror '

 Preferred Image  Less Preferred Image 

Caption LLaVA
A luxurious and well-

organized men's wardrobe
with a central island and

hanging suits.

Caption LLaVA

Caption Emu2 Caption Emu2

A modern bathroom
with a large mirror and

vanity.

A dressing room with
two sinks and mirrors.

A glamorous wardrobe
with a large mirror.

Prompt c
' Anime, Pretty Woman in Blue Dress, Sunset Horizon,
Focused, anime style illustration by Makoto Shinkai. '

 Preferred Image  Less Preferred Image 

Caption LLaVA
A young woman in a blue

dress sitting on grass,
looking out at a sunset over

a body of water.

Caption LLaVA

Caption Emu2 Caption Emu2

An animated character with
red hair and a blue dress,
standing against a sunset

sky.

An anime girl in a blue
dress standing on the

beach.

A woman sitting on the
grass looking at the

sunset.

Figure 9: Examples of Pick-Double Caption dataset.

requires less than 12 hours on a single A100:80G GPU, and this process can be significantly accelerated 1035

using multiple GPUs. 1036

As explained in Section 4.1, we utilized two types of prompts to generate captions: 1) Conditional 1037

prompt and 2) Non-conditional prompt. Below, we outline the specific prompts used for each captioning 1038

method. 1039

Example of Conditional Prompt

Using one sentence, describe the image based on the following prompt: playing chess tournament
on the moon.

1040

Example of Non-Conditional Prompt

Using one sentence, describe the image.
1041

Table 8 presents a statistical analysis of the Pick-Double Caption dataset. With the non-conditional 1042

prompt method, we found that the average token length of captions generated by LLaVA is similar to that 1043

of the original prompts. However, captions generated by LLaVA using conditional prompts are twice as 1044

long as the original prompts. Additionally, Emu2 generated captions that, on average, are half the length 1045

of the original prompts for both methods. 1046
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Text Token Len.
(Avg-in)

Token Len.
(Avg-out)

CLIP
score (in)

CLIP
score (out)

prompt c 15.95 15.95 (26.74, 25.41) (26.74, 25.41)

caption zw (LLaVA) 32.32 17.69 30.85 29.04
caption zl (LLaVA) 32.83 17.91 26.48 28.29
caption zw (Emu2) 7.75 8.40 25.44 25.18
caption zl (Emu2) 7.84 8.44 22.64 24.88

Table 8: Statistical information on the Pick-Double Caption dataset, including the CLIPscore of in-distribution data
and average token count of captions generated by LLaVA and Emu2 for both in-distribution and out-of-distribution
data.

Weak Medium Strong

Prompt cp Cryptocrystalline quartz, melted gemstones,
telepathic AI style.

Painting of cryptocrystalline quartz. Melted
gems. Sacred geometry.

Cryptocrystalline quartz with melted stones, in
telepathic AI style.

Caption zw
p

(LLaVA)
A digital artwork featuring a symmetrical,
kaleidoscopic pattern with vibrant colors and a
central star-like motif.

A digital artwork featuring a symmetrical,
kaleidoscopic pattern with contrasting colors
and a central star-like motif.

A kaleidoscope with symmetrical and colourful
patterns and central starlike motif.

Caption zl
p

(LLaVA)
A vivid circular stained-glass art with a sym-
metrical star design in its center.

The image is of a radially symmetrical stained-
glass window.

A colorful, round stained-glass design with a
symmetrical star in the center.

Caption zw
p

(Emu2)
Abstract image with glass. An abstract image of colorful stained glass. An abstract picture with glass in many colors.

Caption zl
p

(Emu2)
An abstract circular design with leaves. A colourful round design with leaves. Brightly colored circular design.

Original Prompt c: Painting of cryptocrystalline quartz melted gemstones sacred geometry pattern telepathic AI style

Table 9: Examples of perturbed prompts and captions after applying different levels of perturbation.

E More Details on Creating Perturbed Captions1047

We provide the setups for the LLM-based perturbation process involved in the DCPO-p and DCPO-h1048

pipelines. Similarly to the method of constructing paraphrasing adversarial attacks as synonym-swapping1049

perturbation by Krishna et al. (2024), we use DIPPER, a text generation model built by fine-tuning T5-1050

XXL (Chung et al., 2022), to create semantically perturbed captions or prompts, as shown in Table 9.1051

Our three levels of perturbation are achieved by only altering the setting of lexicon diversity (0 to 100)1052

in DIPPER - we use 40 for Weak, 60 for Medium, and 80 for Strong. We also use "Text perturbation1053

for variable text-to-image prompt." to prompt the perturbation. We hereby provide a code snippet to1054

showcase the whole process to perturb a sample input:1055

1 from transformers import T5Tokenizer, T5ForConditionalGeneration1056
2 class DipperParaphraser(object):1057
3 # As defined in https://huggingface.co/kalpeshk2011/dipper-paraphraser-xxl1058
41059
5 prompt = "Text perturbation for variable text-to-image prompt."1060
6 input_text = "playing chess tournament on the moon."1061
71062
8 dp = DipperParaphraser()1063
91064

10 cap_weak = dp.paraphrase(input_text, lex_diversity=40, prefix=prompt, do_sample=True1065
, top_p=0.75, top_k=None, max_length=256)1066

11 cap_medium = dp.paraphrase(input_text, lex_diversity=60, prefix=prompt, do_sample=1067
True, top_p=0.75, top_k=None, max_length=256)1068

12 cap_strong = dp.paraphrase(input_text, lex_diversity=80, prefix=prompt, do_sample=1069
True, top_p=0.75, top_k=None, max_length=256)1070

F More Details about Training of Diffusion Models1071

In this section, we provide a detailed explanation of the fine-tuning methods used. We fine-tuned SD 2.11072

with the best hyperparameters reported in the original papers for SFTChosen, Diffusion-DPO, and MaPO,1073
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Method Pair Caption Perturbed Level Pickscore (↑) HPSv2.1 (↑) ImageReward (↑) CLIPscore (↑) GenEval (↑)

DCPO-h (zw, zwp ) weak 20.10 21.23 49.7 26.87 0.5003
DCPO-h (zw, zlp) weak 20.32 23.4 53.8 27.06 0.5070

DCPO-h (zw, zwp ) medium 20.31 23.08 53.2 27.01 0.4895
DCPO-h (zw, zlp) medium 20.33 23.22 53.8 27.09 0.5009

DCPO-h (zw, zwp ) strong 20.31 22.95 53.1 27.11 0.4878
DCPO-h (zw, zlp) strong 20.35 23.24 53.63 27.08 0.5050

Table 10: Results of the perturbation method applied to Emu2 captions across different levels.

Method β Pickscore (↑) HPSv2.1 (↑) ImageReward (↑) CLIPscore (↑) GenEval (↑)

DCPO-h 500 20.43 26.42 58.1 27.02 0.5208
DCPO-h 1000 20.51 26.12 58.2 27.10 0.4900
DCPO-h 2500 20.53 25.81 58.0 27.02 0.5036

DCPO-h 5000 20.57 25.62 58.2 27.13 0.5100

Table 11: Results of DCPO-h across different β.

using 8 A100 80 GB GPUs for all models. To fine-tune SD 2.1 with Diffusion and MaPO methods, we 1074

used a dataset D = {c, xw, xl} where c, xw, xl represent the prompt, preferred image, and less preferred 1075

image. To optimize a SD2.1 with SFTChosen we utilized a dataset D = {c, xw} where c, xw represent 1076

the prompt, preferred image and image. In this paper, dataset D represents the sampled and cleaned 1077

version of the Pick-a-Pic v2 dataset. Additionally, we clarify the DCPO models DCPO-c, DCPO-p, and 1078

DCPO-h. In this paper, DCPO-c and DCPO-p refer to SD 2.1 models fine-tuned with the DCPO method, 1079

using LLaVA and Emu2 for captioning and perturbation methods at three distinct levels, respectively. 1080

The main results for DCPO-p in the text are based on weak perturbation applied to the original prompt. 1081

In Table 3, we also report DCPO-p’s performance across other perturbation levels. 1082

For DCPO-h, we applied perturbations to both the preferred and less preferred captions generated 1083

by LLaVA. The reported results for DCPO-h reflect a medium level of perturbation applied to the less 1084

preferred caption. In Table 3, we present the performance of DCPO-h across various perturbation levels, 1085

including perturbations to the preferred captions. Additionally, in Table 10, we show the results for 1086

DCPO-h using captions generated by Emu2. 1087

The key findings indicate that perturbation on short captions not only fails to improve performance but 1088

also produces worse outcomes compared to DCPO-c (Emu2). 1089

Additionally, we conducted more experiments on in-distribution and out-of-distribution data. For 1090

this, we generated out-of-distribution data using LLaVA and Emu2 in the captioning setup. As shown 1091

in Figure 10, in-distribution data generally outperformed out-of-distribution data. However, the most 1092

significant improvement was observed with the hybrid method, as reported in Figure 6. 1093
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Figure 10: Comparison of DCPO-c performance on in-distribution and out-of-distribution data.

Table 11 presents the performance details for different values of β, conducted using the medium level 1094

of DCPO-h. The results indicate that while lower values of β significantly improve GenEval and HPSv2.1 1095

on average, the optimal value for β is 5000. We suggest that this hyperparameter may vary based on the 1096

dataset and task. 1097
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Method General Preference Visual Appeal Prompt Alignment

DCPO-h 58% 64.5% 56.5%
Diffusion-DPO 42% 35.5% 43.5%

Table 12: Comparison of DCPO and Diffusion-DPO across different positions based on various criteria.

G GPT-4o as Evaluator1098

To obtain binary preferences from the API evaluator, we follow the approach outlined in the MaPO paper1099

(Hong et al., 2024). To address positional bias in GPT-4o’s evaluations, we alternate the positions of the1100

images across different criteria on 100 samples (explained in Section 4). The results in Table 12 show1101

that DCPO consistently achieves better performance than Diffusion-DPO, even when positional bias is1102

accounted for.1103

Similarly to Diffusion-DPO, we use three distinct questions to evaluate the images generated by1104

DCPO-h and other baseline models, all utilizing SD 2.1 as the backbone. These questions are presented1105

to GPT-4o to identify the preferred image. In the following, we provide details of the prompts used.

GPT-4o Evaluation Prompt for Q1: General Preference

Select the output (a) or (b) that best matches the given prompt. Choose your preferred output,
which can be subjective. Your answer should ONLY contain: Output (a) or Output (b).

## Prompt:
{prompt}

## Output (a):
The first image attached.

## Output (b):
The second image attached.

## Which image do you prefer given the prompt?

1106
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GPT-4o Evaluation Prompt for Q2: Visual Appeal

Select the output (a) or (b) that best matches the given prompt. Choose your preferred output,
which can be subjective. Your answer should ONLY contain: Output (a) or Output (b).

## Prompt:
{prompt}

## Output (a):
The first image attached.

## Output (b):
The second image attached.

## Which image is more visually appealing?

GPT-4o Evaluation Prompt for Q3: Prompt Alignment

Select the output (a) or (b) that best matches the given prompt. Choose your preferred output,
which can be subjective. Your answer should ONLY contain: Output (a) or Output (b).

## Prompt:
{prompt}

## Output (a):
The first image attached.

## Output (b):
The second image attached.

## Which image better fits the text description?

H Additional Generation Samples 1107

We also present additional samples for qualitative comparison generated by SD 2.1, SFTChosen, Diffusion- 1108

DPO, MaPO, and DCPO-h from prompts on Pickscore, HPSv2, and GenEval benchmarks. 1109
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DCPO-h (ours)MaPODiffusion-DPOSFTchosenSD 2.1 Base

'A ps2 anime witch
from madoka

magicka is flying on
a broom through

New York causing
people to run for

their lives due to a
terrorist attack.'

'Woman with a
motorcycle staring
over a bridge at a

wetlands.

'A close-up portrait
of Sailor Moon

standing in front of a
panel house with a

grey winter
landscape and an
Orthodox church in
the background.'

'Portrait of an ape
wearing an

astronaut helmet..'

'Photo of Violet Parr
from The

Incredibles in a two-
piece dress at the

beach.'

Figure 11: Additional generated outcomes using prompts from HPSv2 benchmark.
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DCPO-h (ours)MaPODiffusion-DPOSFTchosenSD 2.1 Base

'Fantasy landscape painting
of a river valley,

mountainous terrain during
a autumn season, fantasy
art, meadows and and fruit
trees along the meandering

river banks, midday of a
rainy and stormy day'

'Realistic portrait of
Thanos'

'Cinematic shot of a
Ferrari car in a

desert'

'Mugshot of a man
side profile in

1950's style black
and white grainy

image'

'a logo of a gym with
a lion and a barbell

or plate'

Figure 12: Additional generated outcomes using prompts from Pickscore benchmark.
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DCPO-h (ours)MaPODiffusion-DPOSFTchosenSD 2.1 Base

'A photo of a cat'

'A photo of a
broccoli and a
parking meter'

'A photo of a book
and a laptop'

'A photo of a
toaster'

'A photo of an
orange snowboard

and a green cat'

Figure 13: Additional generated outcomes using prompts from GenEval benchmark.
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