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ABSTRACT

We propose a self-supervised method that builds sentence embeddings from the
combination of diverse explicit syntactic structures of a sentence. We assume
structure is crucial to build consistent representations as we expect sentence mean-
ing to be a function from both syntax and semantic aspects. In this perspective,
we hypothesize that some linguistic representations might be better adapted given
the considered task or sentence. We, therefore, propose to jointly learn individual
representation functions for different syntactic frameworks. Again, by hypothe-
sis, all such functions should encode similar semantic information differently and
consequently, be complementary for building better sentential semantic embed-
dings. To assess such hypothesis, we propose an original contrastive multi-view
framework that induces an explicit interaction between models during the training
phase. We make experiments combining various structures such as dependency,
constituency, or sequential schemes. We evaluate our method on standard sen-
tence embedding benchmarks. Our results outperform comparable methods on
several tasks.

1 INTRODUCTION

We propose a self-supervised method that builds sentence embeddings from the combination of di-
verse explicit syntactic structures. Such a method aims at improving the ability of models to perform
compositional knowledge. In particular, we evaluate the embedding potential to solve downstream
tasks.

Building generic sentence embeddings remains an open question. Many training methods have been
explored: generating past and previous sentences (Kiros et al., [2015} [Hill et al., |2016), discrimi-
nating context sentences (Logeswaran & Leel 2018)), predicting specific relations between pairs of
sentences (Conneau et al.||2017; Nie et al.,|2019). While all these methods propose efficient training
objectives, they all rely on a similar RNN as encoder architecture. Nonetheless, model architectures
have been subject to extensive work as well (Tai et al., 2015} [Zhao et al., 2015} |Arora et al., 2017;
Lin et al.,|2017)), and in supervised frameworks, many encoder structures outperform standard RNN
networks.

We hypothesize structure is a crucial element to perform compositional knowledge. In particular,
the heterogeneity of performances given models and tasks makes us assume that some structures
may be better adapted for a given example or task. Therefore, combining diverse structures should
be more robust for tasks requiring complex word composition to derive their meaning. Hence, we
aim here to evaluate the potential benefit from interactions between pairs of encoders. In particular,
we propose a training method for which distinct encoders are learned jointly. We conjecture this
association might improve our embeddings’ power of generalization and propose an experimental
setup to corroborate our hypothesis.

We take inspiration from multi-view learning, which is successfully applied in a variety of domains.
In such a framework, the model learns representations by aligning separate observations of the same
object. Traditionally, views are issued from a complementary natural perception of the data. For
example, a picture and a sound recording of a dog. However, it can be extended to any pair of
samples that share similar semantic content, such as the translation of the same sentence in two
different languages. The definition can be extended to synthetic views, which are derived from the
same unimodal data. In our case, we derived multiple views from a single sentence by pairing it with
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a distinct syntactic framework. We illustrated in Figure 2] two views derived from the same input
sentence by applying respectively a constituent or dependency parser.

As proposed in image processing (Tian et al., 2019 [Bachman et al., [2019), we propose to align
the different views using a contrastive learning framework. Indeed, contrastive learning is broadly
used in NLP Mikolov et al.| (2013bza); [Logeswaran & Lee| (2018)). We proposed to enhance the
sentence embedding framework proposed in|Logeswaran & Lee|(2018)) with a multi-view paradigm.
As detailed in Section [2] composing multiple views has demonstrated its effectiveness in many
NLP applications. However, as far as we are aware, combining distinct structured models to build
standalone embeddings has not yet be explored. Nevertheless, this paradigm benefits from several
structural advantages: as already mentioned, it pairs nicely with contrastive learning. It might thus
be trained in a self-supervised manner that does not require data annotation. Moreover, contrary to
models presented in Section[2] our method is not specific to a certain kind of encoder architecture. It
does not require, for example, the use of attention layers or tree-structured models. More generally,
it could be extended to any notion of view, even in other domains than language processing. Our
setup could therefore be extended with any encoding function. Finally, our training method induces
an interaction between models during inference and, paramountly, during the training phase.

Our paper is organized as follows: we detail our contrastive multi-view framework in Section
In Section 4] we propose an evaluation of our framework on standard evaluation benchmarks and
propose qualitative analysis from our embeddings.

2 RELATED WORK

Multi-view is effectively used in a broad variety of domains. For image processing, some methods
aim to learn representations by filling the missing part of an image or solving jigsaw puzzles. For
video, (Tian et al.| (2019) propose to build image tuples using video frames and flow. For audio,
van den Oord et al.|[(2018) maximize the mutual information between the embedding of the signal
at different time steps.

Regarding NLP, combining different structural views has already been proven to be successful. Kong
& Zhou|(2011) provide a heuristic to combine dependency and constituency analysis for coreference
resolution. Zhou et al.| (2016); |/Ahmed et al.| (2019) combine Tree LSTM and standard sequential
LSTM with a cross-attention method and observe improvement on a semantic textual similarity
task. |Chen et al|(2017a) combine CNN and Tree LSTM using attention methods on a sentiment
classification task, and CNN outperforms both Tree-LSTM and CNN separately. Finally, |Chen et al.
(2017b) combine sequential LSTM and Tree LSTM for natural language inference tasks. However,
to our knowledge, combining distinct structured models in a contrastive learning setup was not
attempted to build sentence embeddings.

3 METHOD

Given a sentence s, the model aims at discriminating the sentences s* in the neighborhood of s
from sentences s~ outside of this neighborhood. This is contrastive learning (Section [3.1). The
representation of each sentence is acquired by using multiple views (Section[3.2)).

3.1 CONTRASTIVE LEARNING

Contrastive learning is successfully applied in a variety of domains including audio [van den Oord
et al.| (2018), image (Wu et al., 2018} Tian et al., |2019)), video or natural language processing for
word embedding (Mikolov et al., 2013b) or sentence embedding (Logeswaran & Lee, [2018). Some
mathematical foundations are detailed in/Saunshi et al.|(2019)). The idea is to build a dataset such that
each sample z is combined with another sample =™, which is somehow close. For word or sentence
embeddings, the close samples are the words or the sentences appearing in the given textual context.
For image processing, close samples might be two different parts of the same image. Systems are
trained to bring close sentences together while dispersing negative examples.

In particular, a sentence embedding framework is proposed by [Logeswaran & Lee| (2018). The
method takes inspiration from the distributional hypothesis successfully applied for word, but this
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time, to identify context sentences. The network is trained using a contrastive method. Given
a sentence s, a corresponding context sentence st and a set of K negative samples s; - - - sy, the
training objective is to maximize the probability of discriminate the correct sentence among negative
samples: p(sT|s, s7 -+ s).

The algorithm architecture used to estimate p is close to word2vec (Mikolov et al., |2013bza). Two
sentences encoders f and g are defined and the conditional probability is estimated as follow:

of () a(s™)

T el ) L N e f@)Tos)

p(sls, sy - s5)

At inference time, the sentence representation is obtained as the concatenation of the two encoders
f and g such as s — [f(s);g(s)]. In|Logeswaran & Lee|(2018)), f and g are chosen identical and
consist in two RNN. However, the authors observe that the encoders might learn redundant features.
To limit this effect, they propose to use a distinct set of embeddings for each encoder.

We propose addressing this aspect by enhancing the method with a multi-view framework and using
a distinct structured model for the encodes f and g. We hypothesize that some structures may be
better adapted for a given example or task. For example, Figure J]illustrates that dependency parsing
uses the verb “filled” as the root node. Whereas in constituency parsing, subject and verb are respec-
tively, the right and left child from the root node. Therefore, the combination of different structures
should be more robust for tasks requiring complex word composition and be less sensitive to lexical
variations. Consequently, we propose a training procedure that allows the model to benefit from the
interaction of various syntactic structures. The choice for the encoder architecture is detailed in the
following section.

Aguitar is being played by theman. X fx)
the music is filled with rage and fury.  x+ g(x*) > f(D)Tg(C])

- — - 3 J(=)ri(=)
Abunch of guys is on the shore. ~ ¥1 ﬂ g (x1) T — e > _ e
f(@)g(® £ log\ F@me® 1 3@ @
Someone is feeding an animal. Xz m g(x3) F(@)7Tg(m) @
Metric pairwise Trai I
comparison raining loss
N L /
N '
Multi-view Contrastive

Figure 1: Contrastive training method. The objective is to reconstruct the storyline. Sentences
are presented in their original order. Given an anchor sentence x, the algorithm should identify the
context sentence = out of negative samples z , z, . Sentences are encoded using separate views,
which are composed within a pairwise distance matrix. A softmax classifier outputs the probability
of each sentence pair to share the same context. In practice, we consider two distance matrices given
the view f or g used to encode the anchor sentence and the target samples. We estimate the final
probability as the average of the two resulting probabilities.

3.2 LANGUAGE VIEWS

Multi-view aims as learning representations from data represented by multiple independent sets
of features. The method is not specific for any particular nature of data and can be applied to a
broad scale of domains, making it an efficient framework in self-supervised representation learning.
As depicted in Section [I] we generalize the notion of view for a sentence as the application of a
specific syntactic framework. For each view, we use an ad-hoc algorithm that maps the structured
representation of the sentence into an embedding space.

For tree-based views, we consider both phrase structure trees and dependency trees. The phrase
structure of a sentence is represented as nested multi-word constituents. The dependency tree repre-
sents the relationship between individual words. Although equivalences might be derived between
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the two representations schemes, we hypothesize that, in our context, the corresponding sequence
of operations might allow capturing rather distinct linguistic properties. The various models may,
therefore, be complementary and their combination allows for more fine-grained analysis. Together
with the trees, we consider the following views of a sentence.

Bag Of Word (Bow) This setup does not assume any underlying structure. The sentence is mod-
eled as an unordered set of words. The associated encoding method is a simple commutative sum
operation of the word embeddings. In our case, vectors are initialized using GloVe vectors (Penning-
ton et al., 2014)) publicly availableﬂ We used 300-dimensional word vectors trained on the common
craw] dataset (840B tokens) with a vocabulary of 2.2M case sensitive words.

Vanilla LSTM (SEQ) assumes a sequential structure where each word depends on the previous
words in the sentence. The framework is a bidirectional sequential LSTM (Hochreiter & Schmid-
huber, |1997). The concatenation of the forward and backward last hidden state of the model is used
as sequence embedding.

ing with Ce i ing with De
parsing and N-Ary Tree LSTM parsing and Child-Sum Tree LSTM

Node operation (right) N-
Ary Tree LSTM Cell (left)
Child-Sum Tree LSTM Cell

Root node embedding,
used as the global
sentence embedding

[:] Constituent embeddings
D Word embeddings

filled

rage  and fury

Figure 2: (left) The sentence is parsed in constituency and the tree is binarized. The application
of the N-Ary Tree LSTM on the obtained structure is represented. (right) The sentence is parsed
in dependency and a Child-Sum Tree LSTM model is recursively applied. This example illustrates
the structural difference between these two views. Dependency parsing is articulated around the
verb "filled”, which is the root node. In constituency, subject and verb are connected through the
root node. The two architectures differ as the N-Ary Tree LSTM is structured as a binary tree and
differentiate the left and right children while the Child-Sum Tree LSTM might have an arbitrary
number of unordered nodes.

Dependency tree (DEP) In the dependency tree model, words are connected through dependency
edges. A word might have an arbitrary number of dependants. As illustrated in Figure[2] the sentence
can be represented as a tree where nodes correspond to words and edges indicate whether or not the
words are connected in the dependency tree. In our case, the dependency tree is obtained using the
deep biaffine parser from|Dozat & Manning (2017F0r this view, we compute sentence embeddings
with the Child-Sum Tree LSTM model described in [Tai et al.| (2015): Each node is assigned an
embedding given its dependent with a recursive function. The recursive node function is derived
from standard LSTM formulations but adapted for tree inputs. In particular, the hidden state is
computed as the sum of all children hidden states:

hij= > hg (1)
keC(j)

with C'(j), the set of children of node j. All equations are detailed in [Tai et al|(2015). However,
we slightly modify the computation of h; using Equation As in|Zhou et al.{(2016), we propose to

'nttps://nlp.stanford.edu/projects/glove/

2We use an open-source implementation of the parser and replace the pos-tags features with features ob-
tained with BERT. Therefore we do not need pos-tags annotations to parse our corpus: https://github.
com/yzhangcs/biaffine-parser
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compute iLj as the weighted sum of children vectors in order to allow the model to filter semantically
less relevant children.

hi= Y akjhi )

keC(j)
The parameters «; are attention weights computed using a soft attention layer. Given a node j, we
consider h1, ho, ..., h, the corresponding children hidden states. the soft attention layer produces a

weight oy, for each child’s hidden state. We did not use any external query to compute the attention
but instead use a projection from the current node embedding. The attention mechanism is detailed
in equations below:

¢ = WDz, 4+ p@ ®
i = WP hy + b @
.. T
oy = — Bk ©)
lgjll5 - Il
a; = softmaxy(ay; - - - anj) ©

The embedding at the root of the tree is used as the sentence embedding as the Tree LSTM model
computes representations bottom up.

Constituency tree (CONST) Constituent analysis describes the sentence as a nested multi-word
structure. In this framework, words are grouped recursively in constituents. In the resulting tree,
only leaf nodes correspond to words, while internal nodes encode recursively word sequences. The
structure is obtained using the constituency neural parser from [Kitaev & Klein| (2018). The frame-
work is associated with the N-Ary Tree LSTM, which is defined in Tai et al.[(2015). Similarly to
the original article, we binarize the trees to ensure that every node has exactly two dependents. The
binarization is performed using a left markovization and unary productions are collapsed in a single
node. Again the representation is computed bottom-up and the embedding of the tree root node is
used as sentence embedding. The equations detailed in [Ta1 et al.| (2015) make the distinction be-
tween right and left nodes. Therefore we do not propose to enhance the original architecture with a
weighted sum as on the DEP view.

4 EXPERIMENTS

4.1 TRAINING CONFIGURATION

‘We train our modelsﬂ on the UMBC dataseﬂ Han et al.| (2013). We filter 40M sentences from the
tokenized corpus. We build batches from successive sentences. Given a sentence in a batch, other
sentences not in the context are considered as negatives samples as presented in Section[3.1]

For the vocabulary, we follow the setup proposed in |[Logeswaran & Lee (2018) and we train two
models in each configuration. One initialized with pre-trained embedding vectors. The vectors are
not updated during training and the vocabulary includes the top 2M cased words from the 300-
dimensional GloVe embeddings |Pennington et al. (2014)). The other is limited SOK words initialized
with a Xavier distribution and updated during training. For inference, the vocabulary is expanded to
2M words using the linear projection proposed in|Logeswaran & Lee| (2018)); Kiros et al.|(2015).

All models are trained using a batch size of 400 and the Adam optimizer with a 5e~* learning rate.
Regarding the infrastructure, we use a Nvidia GTX 1080 Ti GPU. All model weights are initialized
with a Xavier distribution and biases set to 0. We do not apply any dropout. For the SEQ view, we
use GRU cells instead of LSTM to match the implementation proposed in|Logeswaran & Lee|(2018)
setup.

SHyperparameters of the models such as the hidden size and the optimization procedure such as learning
rate are fixed given literature on comparable work. In particular [Tai et al.[(2015)); [Logeswaran & Lee(2018)
and are detailed in Appendix.

“The bookcorpus introduced in (Zhu et al, [2015) and traditionally used sentence em-
bedding is no longer distributed. Therefore, we prefer a corpus freely available. The
UMBC dataset is available at: https://ebiquity.umbc.edu/blogger/2013/05/01/
umbc-webbase-corpus-of-3b-english-words/
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4.2 EVALUATION ON DOWNSTREAM TASKS

MRPC SICK-R

Model Dim Hrs | MR CR SUBJ MPQATREC Ace  F1 , o MSE

Context sentences prediction

FastSent < 500 2 70.8 784 887 806 768 722 803 — — —
FastSent + AE < 500 2 71.8 76.7 888 815 804 712 791 — — —
Skipthought 4800 336 | 76.5 80.1 93.6 87.1 922 730 820 858 792 269

Skipthought + LN 4800 672 | 79.4 83.1 937 893 — — — 85.8 788 270
Quickthoughts 4800 11 804 852 939 894 928 769 84.0 868 80.1 256

Sentence relations prediction

InferSent 4096 — | 81.1 863 924 902 882 762 831 884 — —
DisSent Books 5 4096 — | 802 854 932 902 912 761 — 845 — —
DisSent Books 8 4096 — | 798 850 934 905 930 761 — 854 — —

Pre-trained transformers
BERT-base [CLS] 768 9 | 787 849 942 882 914 711 — 7577 — —
BERT-base [NLI] 768 9 | 83.6 894 944 899 896 760 — g44F — —

Our models (GloVe & Pretrained Embeddings)

SEQ, ConsT! 4800 41 79.8 829 946 885 904 764 837 86.1 789 263
DEP, SEQ' 4800 27 | 797 822 944 886 910 779 844 866 798 255
DEP, CONST' 4800 39 | 80.7 836 949 892 926 768 836 87.0 803 24.8

Table 1: SentEval Task Results Using Fixed Sentence Encoder. We divided the table into sections.
The first range of models is directly comparable to our model as the training objective is to identify
context sentences. The second section objective is to identify the correct relationship between a
pair of sentences. The third section reports pre-trained transformers based-models. The last section
reports the results from our models. FastSent is reported from Hill et al.| (2016). Skipthoughts
results from |Kiros et al.|(2015) Skipthoughts + LN which includes layer normalization method from
Ba et al| (2016). We considered the Quickthoughts results [Logeswaran & Lee|(2018) with a pre-
training on the bookcorpus dataset. DisSent and Infersent are reported from Nie et al.|(2019) and
Conneau et al.| (2017) respectively. Pre-trained transformers results are reported from |[Reimers &
Gurevych| (2019). The Hrs column indicates indicative training time, the Dim column corresponds
to the sentence embedding dimension. T indicates models that we had to re-train. Best results in
each section are shown in bold, best results overall are underlined. Performance for SICK-R results
are reported by convention as p and r x 100.

As usual for models aiming to build generic sentence embeddings (Kiros et al., 2015}, [Hill et al.,
2016; |Arora et al., 2017; |Conneau et al, [2017; Logeswaran & Lee} 2018 Nie et al.,[2019), we use
the SentEval benchmark. SentEval is specifically designed to assess the quality of the embeddings
themselves rather than the quality of a model specifically targeting a downstream task, as is the case
for the GLUE and SuperGLue benchmarks (Wang et al., 2019bza). Indeed, the evaluation protocol
prevents for fine-tuning the model during inference and the architecture to tackle the downstream
tasks is kept minimal. Moreover, the embedding as kept identical for all tasks, thus assessing their
properties of generalization.

Therefore, classification tasks from the SentEval benchmark are usually used for evaluation of
sentence representationf] (Conneau & Kielal 2018)): the tasks include sentiment and subjectivity
analysis (MR, CR, SUBJ, MPQA), question type classification (TREC), paraphrase identification
(MRPC) and semantic relatedness (SICK-R). Contrasting the results of our models on this set of
tasks will help to better understand its properties.

We use either the pre-defined train/dev/test splits or perform a 10-fold cross-validation. We follow
the linear evaluation protocol of Kiros et al.[{(2015)), where a logistic regression or softmax classifier

SSentEval tool and data are freely available: https://github.com/facebookresearch/
SentEval
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Figure 3: Projection of the embeddings from the SUBJ task. (left) The DEP, CONST model is
used (right) We train a Quick-thought model using scripts from [Logeswaran & Lee (2018ﬂ on the
UMBC dataset. Both dimension reductions are performed using the UMAP algorithm. In both
cases, samples appear well separated given their labels.

is trained on top of sentence representations. The dev set is used for choosing the regularization
parameter and results are reported on the test set.

4.3 EVALUATION ON DOWNSTREAM TASKS

We compare the properties of distinct views combination on downstream tasks and report the results
with respect to comparable state of the art methods in Table |1} The first set of methods (Context
sentences prediction) relies on a distributional hypothesis: models are trained to reconstruct books
storyline.

The second set of models (Sentence relations prediction) is pre-trained on a supervised task. In-
fersent/Conneau et al.|(2017) is trained on the SNLI dataset, which proposes to predict the entailment
relation between two sentences. DisSent Nie et al.| (2019) proposes a generalization of the method
and builds a corpus of sentence pairs with more possible relations between them. Finally, we include
models relying on transformer architectures (Pre-trained transformers) for comparison. In particular,
BERT-base model and a BERT-model fine-tuned on the SNLI dataset |Reimers & Gurevych|(2019).
In Table (1] we observe that our models expressing a combination of views such as (DEP, SEQ) or
(DEP, CONST) give better results than the use of the same view (SEQ, SEQ) used in Quick-Thought
model. It seems that the entanglement of views benefits the sentence embedding properties. In par-
ticular, we obtain state-of-the-art results for almost every metric from MRPC and SICK-R tasks,
which focus on paraphrase identification. For the MRPC task, we gain a full point in accuracy and
outperform BERT models. We hypothesize structure is important for achieving this task, especially
as the dataset is composed of rather long sentences. The SICK-R dataset is structurally designed to
discriminate models that rely on compositional operations.

This also explains the score improvement on this task. Tasks such as MR, CR or MPQA consist
in sentiment or subjectivity analysis. We hypothesize that our models are less relevant in this case:
such tasks are less sensitive to structure and depend more on individual word or lexical variation.

We finally observe our setup is competitive with models trained on broader datasets. Indeed, we
use the publicly available UMBC corpus and limited the size to 40M sentences. In comparison, the
BookCorpus used in [Kiros et al.|(2015); |[Logeswaran & Lee|(2018) consists in 74M sentences.

4.4 QUALTITATIVE RESULTS

We analyze the embeddings from a qualitative perspective and explore the sentences from the SICK-
R test set. We retrieved the closest neighbors using cosine distance. We compare the results with the
Quick-thought model. We illustrated in Table[2]a panel of examples presenting interesting linguistic
properties. Models seem somehow robust to adjective expansions illustrated in the first examples.
Indeed, the closest expression from A black bird ” is ”A bird , which is black”. However the second
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Encoder Query and two closest sentences Cosine distance

A black bird is sitting on a dead tree

A bird , which is black , is sitting on a dead tree 0.118
DEP, CONST A dead bird is near a black man sitting on a tree 0.139
CONST. SE A bird , which is black , is sitting on a dead tree 0.118
SEQ The black bird is sitting in a leafless tree 0.143
Quickthoughts A bird , which is black , is sitting on a dead tree 0.172
& A dead bird is near a black man sitting on a tree 0.172
Rugby is being played by some men
DEP, CONST Rugby players are t.ackhng each other 0.381
Some men are playing rugby 0.392
Guitar is being played by two men 0.401
CONST, SEQ Rugby players are tackling each other 0.403
. Guitar is being played by two men 0.455
Quickthoughts Rugby players are tackling each other 0.462
A crowd of people is near the water
A crowd of people is far from the water 0.079
DEP, CONST A group of people is near the ocean 0.356
A crowd of people is far from the water 0.063
CONST, SEQ A man is coming out of the water 0.313
. A crowd of people is far from the water 0.067
Quickthoughts Two people are wading through the water 0.388

Table 2: A qualitative exploration of the sentence embedding space We embed the sentences
from the SICK-R test set. Given a query sentence, we retrieve the closest two sentences from the
dataset using cosine distance. We compare the results of the semantic search using distinct views or
single views combinations.

retrieved sentence is semantically correct for the CONST, SEQ association only. Quick-thought and
DEP, CONST present a weakness toward word scrambling for this specific example. We investigate
passive forms in the second example. The CONST, SEQ and Quickthougth models seem to attach to
much weight to the sentence syntax rather than the semantic. This time the association of DEP and
CONST views retrieve to corresponding active sentences. Finally, we observe how models behave
when facing numeric information. Interestingly Quickthoughts and DEP, CONST are able to bring
together "crowd” and “group” notions.

From a graphic perspective, we projected in two dimensions the sentences from the SUBJ task, for
which we obtained state-of-the-art results. We use the UMAP algorithm for dimensionality reduc-
tion and compare our multi-view setup with the Quick-thought model. The projection is illustrated in
Figure [3] While the Figure does not reveal any critical distinction between models, samples appear
well separated in both cases.

5 CONCLUSION AND FUTURE WORK

Inspired from linguistic insights and work on supervised learning, we hypothesize that structure is a
central element to build sentence embedding. We propose in Section [3|an original contrastive multi-
view framework that aims to build embeddings from the interaction of various structured models.

In Section 4] we proposed to assess the quality of our embeddings and use them as a feature for the
dedicated SentEval benchmark. We obtain state-of-the-art results on tasks which are expected, by
hypothesis, to be more sensitive to sentence structure. Exploring our representation space from a
qualitative perspective, we observe the chosen pair of views might affect the reaction to linguistic
perturbations such as passive forms or adjective expansions. Some view pairs appear indeed more
robust for some specific examples.
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