

000 001 002 003 004 STDACN: A SPATIOTEMPORAL PREDICTION FRAME- 005 006 007 008 009 010 011 012 WORK BASED ON DYNAMIC AND ADAPTIVE CONVO- 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 LUTION NETWORKS

036 **Anonymous authors**

037 Paper under double-blind review

038 ABSTRACT

039 With the rapid advancement of sensor technologies, analyzing and modeling large
040 spatiotemporal datasets has become crucial, enabling system state predictions for
041 intelligent transportation, urban planning, public safety, and environmental protec-
042 tion. Current models—statistical, classical deep learning (e.g., TCN, GCN), and
043 large-scale methods—struggle with noise, complexity, high dimensionality, and
044 dynamics, with static TCN/GCN structures limiting performance and large models
045 facing high computational costs, keeping classical methods relevant. This paper
046 proposes a spatiotemporal prediction framework based on dynamic and adaptive
047 convolution networks (STDACN), which overcomes weight-sharing limits, featur-
048 ing a high-order gated TCN with recursive causality to capture temporal depen-
049 dencies and an adaptive GCN for spatial topologies, boosting efficiency and gen-
050 eralization. Excelling in traffic, weather, and population predictions across varied
051 scales, STDACN offers a simple yet innovative path for classical deep learning in
052 complex spatiotemporal modeling.

053 1 INTRODUCTION

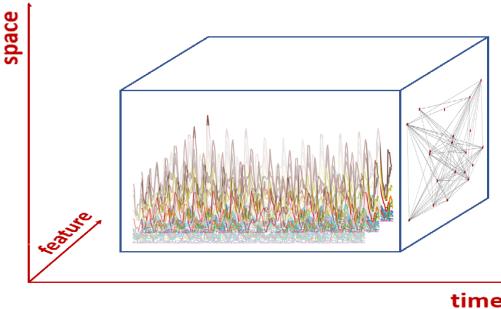
054 Due to the growing availability and significance of large spatiotemporal datasets like maps, remote
055 sensing images, population, and traffic data, spatiotemporal data mining and prediction Hamdi et al.
056 (2022) has emerged as a key focus in smart cities and spatial big data, widely applied in weather,
057 traffic flow, and earthquake forecasting Yuan et al. (2024). These models analyze time series re-
058 lationships and capture spatiotemporal dependencies in graph-based spatial networks (e.g., traffic
059 road networks), delivering valuable applications in intelligent transportation, urban planning, public
060 safety, and environmental protection.

061 Currently, spatiotemporal data models Hamdi et al. (2022) include statistical models, classical deep
062 learning models, rising large models Fang et al. (2024), etc. Real-world data, with its complex fea-
063 tures, high dimensions, frequency, and noise, challenges predictive models. Despite large models’
064 growing popularity, their high computational and inference demands sustain the development of
065 classical spatiotemporal deep learning, led by Temporal Convolutional Networks (TCN) and Graph
066 Convolutional Networks (GCN) for effective data modeling. For instance, Graph WaveNet Wu et al.
067 (2019) utilizes dilation convolution to capture time-dependent features and multigraph diffusion
068 convolution to extract spatial features. CSTN Song et al. (2020) utilizes TCN operations to capture
069 temporal evolution context, local spatial context, and global correlation context. STHGCN Wang
070 et al. (2022) leverages TCN Bai et al. (2018) and GCN Kipf & Welling (2017) operations to extract
071 higher-order spatiotemporal dependencies from spatiotemporal data. TCGCN Wang et al. (2024a)
072 integrates cross-dimensional attention to discern features and relationships across different dimen-
073 sions of spatiotemporal data.

074 However, there is a lack of research on the spatiotemporal dynamic characteristics of these models,
075 particularly given the recent surge in large model development. The application of simple methods
076 from classical deep learning for dynamic adaptive learning of spatiotemporal information is uncom-
077 mon, highlighting the limitations of traditional and effective spatiotemporal prediction models.

078 Fig. 1 illustrates that spatiotemporal data comprises three dimensions, with varying attributes over
079 time. Convolution operators in deep learning algorithms exhibit translation invariance, facilitated by

054 local connectivity and shared weights. Studies indicate that strict weight sharing may not optimize
 055 feature extraction in spatiotemporal data analysis with distinct time, space, and feature dimensions.
 056 Utilizing shared convolution weights for multidimensional feature extraction along the time dimen-
 057 sion is suboptimal in such scenarios. Conversely, a Temporal Adaptive Dynamic Adjacency Matrix-
 058 based approach, such as WAN, enables dynamic fusion of spatial information without a substantial
 059 parameter increase.



060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 15

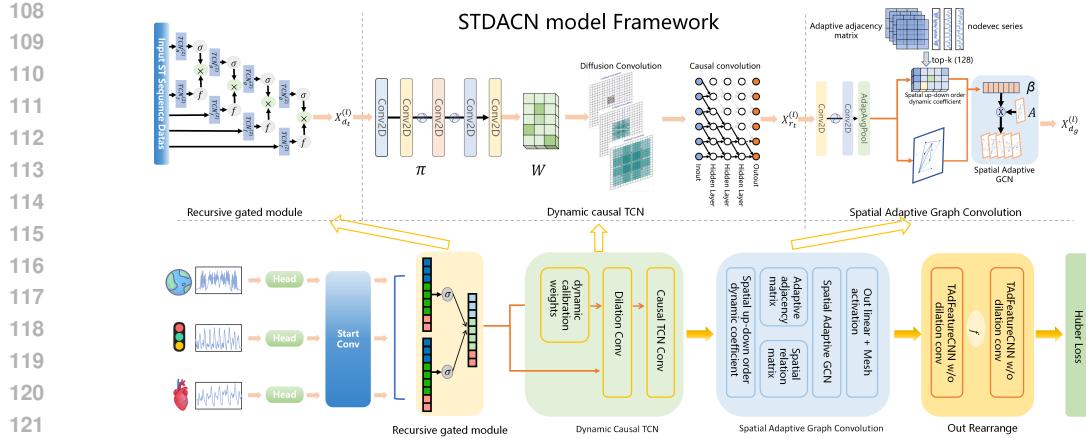


Figure 2: The STDACN structure includes an encoder and a decoder.

high-order dynamic temporal dependencies, while the Dynamic GCN layer establishes spatial topology dependence using adaptive relations and calibration vectors. The decoder, comprising a linear layer and two Dynamic CNN layers, translates the spatiotemporal embedding into a prediction vector. Following the approach of previous deep-learning models for spatiotemporal prediction Wang et al. (2022), STDACN initially conducts a 2D convolution on the time and space dimensions of input matrix $X \in \mathbb{R}^{F \times N \times P}$, where F represents the convolution channel and H denotes the hidden feature dimensions.

2.2 THE TEMPORAL CONVOLUTION LAYER TCN

Spatiotemporal data is essentially a multivariate time series, which has obvious temporal dependence. The efficient and dynamic features of temporal dependence are very important for spatiotemporal prediction. WaveNet Wu et al. (2019) uses dilated causal convolution and a gated mechanism as TCN to capture temporal trends, expanding the receptive field with layer depth. To address the long-term dependency issues of RNN methods Fan et al. (2022), transformer-based architectures Zhou et al. (2021) are widely adopted for temporal interaction, though dot-product self-attention is less effective. For efficiency, STDACN’s TCN employs recursive gated convolution g^n Conv, using dynamic kernels for high-order temporal interactions.

2.2.1 THE RECURSIVE GATED TEMPORAL CONVOLUTION

The calculation process of g^n Conv is shown in Fig. 2 Sub-chart A. Assume that the input of the l -th layer is spatiotemporal data $X^{(l)} \in \mathbb{R}^{H \times N \times P^{(l)}}$, where $l \in \{0, \dots, L-1\}$ and the $P^{(l)}$ is the temporal dimensions of the l -th layer, and then g^n Conv has expressed as follows:

$$\begin{aligned} TCN_g^{(k)}(X_k^{(l)}) &= \sigma \left(\text{conv2D}_g(X_k^{(l)}) \right), \\ TCN_f^{(k)}(X^{(l)}) &= f \left(\text{conv2D}_f(X^{(l)}) \right), \\ X_{k+1}^{(l)} &= TCN_g^{(k)}(X_k^{(l)}) \odot TCN_f^{(k)}(X^{(l)}) \end{aligned} \quad (1)$$

where conv2D_g and conv2D_f are 2D convolution operations with kernel size $k = 1 \times 3$ and padding $p = 0 \times 1$, preserving the temporal dimension length and spatial order. The activation functions $\sigma(x) = \frac{1}{1+e^{-x}}$, $f(x) = x \tanh(\ln(1+e^x))$ Misra (2019). K is the recursive order of g^n Conv, $k = 0, 1, \dots, K-1$.

Compared with the standard Gated TCN like in Wu et al. (2019), the activation function tanh is instead by the mish function, because the range of mish has no positive boundary, so it can avoid the disappearance of gradient generated in recursive transfer. It can be seen from the formula (1) that the g^n Conv has stronger information filtering ability than the standard Gated TCN, because its output is $X_{k+1}^{(l)}$, and the filter has larger receptive field and higher interactive capacity of time information.

162 2.2.2 THE DYNAMIC CAUSAL TEMPORAL CONVOLUTION
163

164 Beyond requiring recursive high-order temporal dependence and dynamic time-based adjustments,
165 the core of this section focuses on constructing the channel dimension ($X_K^{(l)}$) temporal filters for
166 dynamic convolution to enhance prediction accuracy. The core calculation process is shown in
167 Fig. 2 Sub-chart B, and formally, the process can be obtained by:

$$168 \quad X_{dt}^{(l)} = \sigma \left(X_K^{(l)} \star (\pi \cdot W) \right), \quad (2)$$

170 where $X_K^{(l)} \in \mathbb{R}^{H \times N \times P^{(l)}}$ is the input of the dynamic TCN and is the output of formula (1), \star
171 is the convolution operator with the kernel weights $W \in \mathbb{R}^{c_{out} \times c_{in} \times 1 \times k}$ and the dilation rate r_d ,
172 $\sigma = \text{mish}$ is the active function, and $\pi = \Pi(X_K^{(l)}) \in \mathbb{R}^{c_{in}}$ is the dynamic calibration weights
173 which is the dynamic causal TCN's key module. It can be seen from formula (2) and Fig. 2 Sub-
174 chart B that the calibration generation function $\pi = \Pi(X_K^{(l)}) \in \mathbb{R}^{c_{in}}$ could extract dynamic change
175 information of spatiotemporal data along the input channel dimension $X_K^{(l)}$. We initially employ a
176 down-up type convolution to transform the data for enabling Π with learning capability, that is:
177

$$179 \quad X_{ud}^{(l)} = \sigma \left(\text{conv2D}_r(\text{norm}(\sigma(\text{conv2D}_{\frac{1}{r}}(X_K^{(l)})))) \right) \quad (3)$$

180 where σ is the activate function, $\text{conv2D}_{\frac{1}{r}}$ and conv2D_r are the 2d convolutions which input chan-
181 nels are $\frac{c_{in}}{r}$ and c_{in} and r is a hyperparameter. The adaptive average pool function is used to extract
182 features from space-time dimension of $X_{ud}^{(l)} \in \mathbb{R}^{H \times N \times P^{(l)}}$, which is formulated as:
183

$$185 \quad X_{rt}^{(l)} = \text{mean}(X_{ud}^{(l)}) \in \mathbb{R}^{H \times 1 \times \frac{P^{(l)}}{r_t}}, \quad (4)$$

$$187 \quad \pi = \Pi(X_K^{(l)}) = \text{fc}(X_{rt}^{(l)}) \quad (5)$$

189 where r_t is the hyperparameter for temporal dimension average partitioning.
190

191 2.3 THE SPATIAL ADAPTIVE GRAPH CONVOLUTION
192

193 Spatiotemporal data represent multivariable time series with inherent spatial patterns. Enhancing the
194 integration of spatial dynamics in spatiotemporal data analysis is crucial, building upon the dynamic
195 examination of temporal characteristics. By combining pre-defined spatial dependencies and self-
196 learned hidden graph dependencies, we proposed the following GCN operator:
197

$$198 \quad Z = \sum_{k=0}^K P^k X W_{kP} + \tilde{A}_{apt}^k X W_{kA}, \quad (6)$$

$$200 \quad \tilde{A}_{adp} = \text{SoftMax}(\text{ReLU}(E_1 E_2^T)) \quad (7)$$

201 where K is the order of the GCN, P is the pre-defined spatial structure, \tilde{A}_{adp} is a self-adaptive
202 adjacency matrix constructed by randomly initializing two learnable node embedding dictionaries
203 $E_1, E_2 \in \mathbb{R}^{N \times d}$, with W_{kP} and W_{kA} as GCN parameters.
204

205 However, the spatial topology structures in formulas (6, 7) are global, that is, all samples at any
206 time share P and \tilde{A}_{adp} . DGCRN Li et al. (2021) uses dynamic topology with RNN, while increasing
207 computation parameters and facing gradient disappearance issues. Based on the above factors,
208 STDACN develops an adaptive dynamic GCN by incorporating a spatial network dynamic generation
209 factor, denoted as β . This approach is inspired by the global topology generation dynamic
210 formula(2). The module has shown in Fig. 2 Sub-chart C and could be formulated as follows:
211

$$212 \quad X_{dg}^{(l)} = \sum_{k=0}^K (\beta P)^k X_{dt}^{(l)} W_{kP} + \left(\beta \tilde{A}_{apt} \right)^k X_{dt}^{(l)} W_{kA}, \quad (8)$$

$$215 \quad \mathcal{B} = \text{mean} \left(\text{Conv2D}_r \left(\sigma \left(\text{Conv2D}_{1/r} \left(X_{dt}^{(l)} \right) \right) \right) \right) \quad (9)$$

216 where $X_{dt}^{(l)}$ is the input of dynamic GCN and the output of formula (2). It can be seen from formula
 217 (8) and Fig. 2 Sub-chart C that the adjacency matrices are $\beta P, \beta \tilde{A}_{apt} \in \mathbb{R}^{P^{(l)} \times N \times N}$ which dynamic
 218 change over time. Among them, calculating the spatial calibration weight $\beta = \mathcal{B}(X_{dt}^{(l)})$ is the key
 219 point, which is similar to formulas (3) and (4), its generation process can be described by formula
 220 (9). Finally, the output of layer l is $X^{(l+1)} = \text{norm}(X_{dg}^{(l)} + X^{(l)})$, where norm normalizes the data
 221 to enhance training.

224 2.4 THE DECODER AND LOSS FUNCTION

225 After the encoder encodes spatiotemporal dependence into $X^{(L-1)} \in \mathbb{R}^{H \times N \times P^{(L-1)}}$, the STDACN
 226 decoder, featuring a linear layer and two dynamic TCN layers (as seen in Fig. 2), transforms the
 227 input temporal dimension $P^{(L-1)}$ to 1, encoding it into the output temporal feature dimension H .
 228 Subsequently, two-layer dynamic temporal convolutions convert this into the prediction temporal
 229 dimension. It can be a formula as:

$$231 \quad X_f = \sigma \left(\text{liner}(X^{(L-1)}) \right) \in \mathbb{R}^{H \times N \times 1}, \quad (10)$$

$$233 \quad \hat{Y} = f_{d1}(f_{d2}(X_f)), \quad (11)$$

234 where f_{d1}, f_{d2} are dynamic convolutions like formula (2) without dilation, obtaining the final pre-
 235 diction $\hat{Y} \in \mathbb{R}^{N \times Q}$.

236 The STDACN model employs Huber loss Huber (1992) for its reduced sensitivity to outliers com-
 237 pared to squared error loss, where Y represents the real training values, the formula has shown as
 238 follows:

$$241 \quad L_{\text{Huber}}(\hat{Y}, Y) = \begin{cases} \frac{1}{2}(Y - \hat{Y})^2 & |Y - \hat{Y}| \leq \delta \\ \delta|Y - \hat{Y}| - \frac{1}{2}\delta^2 & \text{otherwise} \end{cases}, \quad (12)$$

244 3 EXPERIMENTAL

246 3.1 EXPERIMENTAL DESIGN

248 **Datasets and Baselines.** The STDACN model was assessed using four public datasets: METR-LA
 249 and PEMS-BAY for evaluating its robustness in handling missing data and ability to capture complex
 250 topologies and long-term dependencies, respectively, and PEMS03 and PEMS08 for assessing its
 251 performance in modeling sparse nodes and implicit spatial relationships. To comprehensively assess
 252 the efficacy, we conducted a comparative analysis with 12 baseline methods, as follows:

- 253 • Time Series Forecasting Models include Crossformer Zhang & Yan (2023) for multivariate
 254 forecasting, TimeMixer Wang et al. (2024b) with multiscale mixing, PatchTST Nie et al.
 255 (2022) with channel-independent Transformers, Informer Zhou et al. (2021) for efficient
 256 long-sequence forecasting, AutoFormer Wu et al. (2021) with decomposition and auto-
 257 correlation, and DLinear Zeng et al. (2023) blending Autoformer and FEDformer with
 258 linear layers.
- 259 • Graph Neural Network Models include DCRNN Li et al. (2017) integrating diffusion
 260 convolution with recurrence, GRUGCN Guan et al. (2024) combining GCN with GRU,
 261 EVOLVE-GCN Pareja et al. (2020) for dynamic graphs, and ACGRN Habimana et al.
 262 (2020) using attention with convolutional and gated recurrent components.
- 263 • Other Deep Learning Models include Transformer Vaswani et al. (2017), Fully Con-
 264 volutional Recurrent Network (FCRNN) Xie et al. (2016), and Masked Autoencoders
 265 (MAE) He et al. (2022).

267 **Metrics and Other Setting.** Two metrics are used to evaluate the performance of STDACN, i.e.,
 268 Mean Squared Error(MSE) and Mean Absolute Error(MAE). The smaller the values of MSE and
 269 MAE are, the better the prediction effect is. The encoder is composed of 4 layers. The hidden
 feature dimension is 32 across all formulas (1, 3, 9). And the recursive order of $g^n\text{Conv}$ in formula

270

271

Table 1: Comparison Experiment on PEMS03 and PEMS04 datasets.

272

Note: Bold values indicate the best, underlined values are the 2nd best. Values are mean \pm standard deviation, rounded to four decimal places.

273

Method	Metric	METR-LA			PEMS-BAY		
		15 min	30 min	1 hour	15 min	30 min	1 hour
DCRNN	MSE	<u>23.9089 \pm 0.1527</u>	33.2664 \pm 0.4808	50.3408 \pm 0.6579	5.7367 \pm 0.0347	11.0026 \pm 0.0616	22.2272 \pm 1.2995
	MAE	2.6118 \pm 0.0091	2.9951 \pm 0.0290	3.7132 \pm 0.0658	1.1567 \pm 0.0016	1.4914 \pm 0.0213	2.1590 \pm 0.1313
Crossformer	MSE	37.2844 \pm 1.9783	57.6993 \pm 0.8503	83.1203 \pm 1.6651	6.0253 \pm 0.1342	11.6840 \pm 0.2159	24.5290 \pm 0.3049
	MAE	2.1574 \pm 0.0299	3.3667 \pm 0.161	3.6924 \pm 0.0299	1.1615 \pm 0.0072	1.4794 \pm 0.0094	2.0486 \pm 0.0140
Transformer	MSE	26.9624 \pm 0.0700	36.4084 \pm 0.0875	51.6760 \pm 0.1967	5.8855 \pm 0.0166	10.3876 \pm 0.0438	16.9596 \pm 0.0912
	MAE	2.7647 \pm 0.0009	3.0443 \pm 0.0014	3.5266 \pm 0.0026	1.1640 \pm 0.0009	1.4240 \pm 0.0016	1.7626 \pm 0.0040
GRUGCN	MSE	27.3614 \pm 0.1289	36.7763 \pm 0.1335	52.0067 \pm 0.2243	6.0600 \pm 0.0124	10.7874 \pm 0.0226	17.9192 \pm 0.0677
	MAE	2.7949 \pm 0.0026	3.0805 \pm 0.0024	3.5862 \pm 0.0066	1.1890 \pm 0.0009	1.4638 \pm 0.0011	1.8209 \pm 0.0016
EVOLVEGCN	MSE	28.2634 \pm 0.4547	38.0367 \pm 0.5528	54.1686 \pm 1.1673	6.8048 \pm 0.1520	11.9731 \pm 0.7483	18.9596 \pm 0.2410
	MAE	2.9793 \pm 0.0258	3.3160 \pm 0.0349	3.8805 \pm 0.0428	1.2575 \pm 0.0036	1.5748 \pm 0.0269	1.9411 \pm 0.0118
FCRNN	MSE	33.5810 \pm 0.2417	39.4437 \pm 0.2245	47.7373 \pm 0.3385	20.4053 \pm 0.0860	21.6630 \pm 0.1237	23.2935 \pm 0.1411
	MAE	3.0822 \pm 0.0067	3.2689 \pm 0.0068	3.5213 \pm 0.0106	2.1516 \pm 0.0045	2.2158 \pm 0.0057	2.2897 \pm 0.0086
TimeMixer	MSE	57.8965 \pm 0.9375	101.7485 \pm 2.4809	152.8255 \pm 2.1446	5.5164 \pm 0.02907	13.6072 \pm 0.1964	24.8927 \pm 0.7291
	MAE	3.1189 \pm 0.0638	4.1347 \pm 0.0212	8.7074 \pm 0.2841	1.1628 \pm 0.01496	1.6217 \pm 0.0182	2.1149 \pm 0.0253
PatchTST	MSE	94.3087 \pm 2.6543	114.4104 \pm 3.8901	154.1911 \pm 2.7341	9.9580 \pm 0.4760	13.4908 \pm 0.8306	21.1281 \pm 0.8042
	MAE	3.9452 \pm 0.1028	13.8437 \pm 0.7117	8.7328 \pm 0.2008	1.4227 \pm 0.0081	1.8660 \pm 0.0519	2.2256 \pm 0.9012
Informer	MSE	86.4470 \pm 1.3904	139.0305 \pm 2.3116	371.3622 \pm 14.8193	10.4633 \pm 0.4107	18.7256 \pm 0.8341	181.9524 \pm 2.5301
	MAE	5.0092 \pm 0.1012	5.9870 \pm 0.0391	19.8189 \pm 1.0594	18.4184 \pm 0.0735	2.3845 \pm 0.1042	7.5687 \pm 0.2491
AutoFormer	MSE	57.4641 \pm 1.2284	103.1607 \pm 1.7691	228.2421 \pm 4.2641	<u>5.3970 \pm 0.0812</u>	12.2767 \pm 0.4762	81.3859 \pm 1.6980
	MAE	3.3332 \pm 0.0416	4.8013 \pm 0.1037	14.7905 \pm 0.5918	1.1785 \pm 0.0121	1.7677 \pm 0.0091	3.7912 \pm 0.1012
DLinear	MSE	357.9130 \pm 11.4169	372.3605 \pm 10.2941	467.3746 \pm 16.6081	22.3304 \pm 1.8271	24.9341 \pm 1.6072	28.3458 \pm 1.7512
	MAE	7.4557 \pm 0.5280	9.7525 \pm 0.8271	13.6325 \pm 0.7148	2.1570 \pm 0.157	2.4208 \pm 0.0141	2.9455 \pm 0.0207
ACGRN	MSE	25.4307 \pm 1.5281	<u>31.8665 \pm 2.3597</u>	40.7954 \pm 2.8890	5.6712 \pm 0.2438	8.9690 \pm 0.6088	<u>13.8427 \pm 0.8677</u>
	MAE	2.6416 \pm 0.0185	<u>2.8467 \pm 0.0292</u>	<u>3.1526 \pm 0.0391</u>	1.1505 \pm 0.0239	<u>1.3627 \pm 0.0173</u>	<u>1.6569 \pm 0.0101</u>
STDACN	MSE	20.5581 \pm 0.0664	27.7909 \pm 0.2143	37.4338 \pm 0.4711	5.2106 \pm 0.0939	8.4034 \pm 0.0728	13.4774 \pm 0.1826
	MAE	<u>2.3817 \pm 0.0059</u>	<u>2.6570 \pm 0.0047</u>	<u>3.0522 \pm 0.0293</u>	<u>1.1276 \pm 0.0040</u>	<u>1.3389 \pm 0.0023</u>	<u>1.6284 \pm 0.0022</u>

293

(1) is 2. The ratio of the output channels of the down-up type convolution in formula (3) is $r = 4$, and in formula (9) is $r = 2$.

294

The loss functions of DCRNN, GRU-GCN, EVOLVE-GCN, FCRNN, and ACGRN are Huber loss refer to formula (12), and the batch size are all 64. Other spatiotemporal series and large-scale model methods adopt the best training parameters. The dataset is split into training, validation, and test sets in an 8:1:1 ratio. The best model after 50 epochs is tested on the test set, averaged over 5 runs.

295

300

3.2 FORECASTING PERFORMANCE COMPARISON

301

302

This subsection presents results across 15-minute, 30-minute, and 1-hour horizons, with the best and 2nd performances bolded and underlined, respectively. The Tables 8 illustrates that STDACN outperformed baseline methods across all test datasets, ranking either first or second in terms of index results. Notably, STDACN outperforms newer models like EVOLVE-GCN, FCRNN, ACGRN, PatchTST, and TimeMixer due to its multi-layer time recursive gating structure, integrating dynamic convolution kernels and adaptive weight generation to capture temporal dynamics effectively, ideal for non-stationary spatiotemporal sequences. Its dynamic graph convolution module and adaptive spatial calibration parameters enhance dynamic information extraction, surpassing traditional GCN's static limitations, and optimize efficiency, stability, and overall performance through improved temporal-spatial interaction.

312

313

3.3 HYPERPARAMETER STUDY

314

This section investigates crucial parameters in the experiment, including temporal recursion level, maximum neighbor link number, and hidden dimension of spatial feature recognition. These parameters play a pivotal role in temporal dimension recognition and spatial feature extraction, influencing the model's innovation level and predictive performance enhancements.

315

316

317

A. Steps Of Time Recursion Experiment. The recursive order K of g^n Conv from formula (1) is identified as a key hyperparameter affecting gradient updates in the recursive model. The larger K may complicate updates, while the smaller K could hinder efficient temporal interaction, raising the question of its impact. In determining the optimal recursion order K , we evaluated model performance on two datasets with input and output lengths ranging from 3 to 12 steps. As shown in Table 2, analysis indicates $K = 2$ yields the highest performance, highlighting that a double-

layer time convolution, as in TCN, boosts the model’s ability to capture temporal dynamics and enhance feature extraction for complex patterns in STDACN. However, excessive recursive layers may increase computational overhead and overfitting risks. Thus, two layers strike the optimal balance between accuracy and stability in predictive modeling.

Table 2: **Seps of time recursion Experiment on METR-LA, Solar across 3 to 12 horizons**

Dataset	Horizon	MSE				MAE			
		Layers	1	2	3	4	1	2	3
METR	3	21.0887	20.8447	21.1404	20.9793	2.4875	2.4735	2.4873	2.4846
	4	23.5862	23.2015	23.7405	23.5004	2.5937	2.5805	2.6037	2.5868
	5	25.8116	25.8001	26.1318	26.4090	2.6826	2.6760	2.6925	2.6949
	6	28.1393	27.9413	28.2526	28.6147	2.7708	2.7276	2.7667	2.7738
	7	30.1345	30.7863	30.2364	30.8494	2.8275	2.8589	2.8396	2.8631
	8	32.4366	32.1729	32.9769	32.5877	2.9105	2.8980	2.9070	2.9192
	9	34.2635	34.1478	34.8145	34.1920	2.9786	2.9684	2.9862	2.9753
	10	36.0550	35.1417	35.2847	36.5490	3.0318	3.0242	3.0264	3.0308
	11	37.1137	36.6709	37.6002	36.8220	3.0749	3.0265	3.1005	3.0622
	12	39.0394	38.0798	39.3730	38.8301	3.1227	3.1056	3.1370	3.1205
Solar	3	5.6102	5.5058	5.5758	5.5228	1.2635	1.2256	1.2461	1.2311
	4	6.9606	6.8459	6.9303	6.9468	1.4329	1.4162	1.4439	1.4406
	5	8.3877	8.2283	8.2853	8.4649	1.6185	1.6068	1.6145	1.6309
	6	9.8233	9.4471	9.6664	9.6812	1.7792	1.7402	1.7787	1.7714
	7	10.9045	10.8692	10.9611	10.9843	1.8998	1.9026	1.9198	1.9092
	8	12.3331	12.3589	12.4400	12.4110	2.0532	2.0458	2.0484	2.0594
	9	13.8980	13.7772	13.8023	13.7815	2.1820	2.1676	2.2020	2.1925
	10	14.9697	14.9048	15.3873	15.1245	2.3037	2.2293	2.3429	2.3118
	11	16.2645	16.5844	16.8956	16.6476	2.4266	2.4191	2.4119	2.4422
	12	18.5231	17.7397	17.9982	18.2235	2.6193	2.5358	2.5859	2.5859

B. Maximum Neighborhood Connections. The study evaluates the model’s performance with varying Maximum Neighborhood Connections on two datasets over 3, 6, and 12-month spans. This parameter controls the number of neighboring nodes in the adaptive adjacency matrix, balancing computational efficiency and node interconnection capture for graph sparsification. Table 3 shows that 128 connections typically optimize performance, accuracy, and stability. The slight performance variation highlights the model’s adaptability, enhancing its predictive capabilities across diverse scenarios.

Table 3: **Max. neighborhood connect steps Experiment**

Dataset	Horizon	MSE					MAE				
		Steps	96	112	128	144	160	96	112	128	144
METR	3	21.6647	22.3733	20.5581	22.1060	21.9180	2.5339	2.5506	2.3817	2.5409	2.5390
	6	29.5659	29.5117	27.7909	29.8756	29.2171	2.8121	2.8351	2.6570	2.8204	2.8227
	12	39.4492	39.5913	37.4338	39.9129	39.2612	3.1828	3.1659	3.0522	3.1600	3.1597
PEMS03	3	501.8891	484.5887	512.8035	511.5046	502.0468	13.8491	13.9116	13.8181	13.9070	13.8551
	6	568.3179	566.3710	539.8447	553.1515	567.1391	14.4047	14.4897	14.4207	14.3259	14.4890
	12	642.3393	652.3588	648.7122	653.2710	657.5727	15.2947	15.4512	15.3007	15.3178	15.3410

C. Embedding Dimensions Experiment. This section evaluates the model’s predictive performance on two datasets using spatiotemporal feature embedding dimensions of 6, 8, 10, and 12. Table 4 shows optimal performance at a specific dimension, highlighting its superior predictive ability. Adjusting embedding dimensions to dataset characteristics improves accuracy, emphasizing the importance of optimization for enhanced prediction and adaptability.

Table 4: **Embedding Dimensions Experiment**

Dataset	Horizon	MSE				MAE			
		Embed Dim	6	8	10	12	6	8	10
METR	3	21.9693	21.5281	20.5581	21.6883	2.5485	2.5369	2.3817	2.5390
	6	39.1484	29.3826	27.7909	29.4906	2.8079	2.8143	2.6570	2.8238
	12	39.1484	39.9738	37.4338	39.5605	3.1551	3.1942	3.0522	3.1735
PEMS03	3	536.7852	517.5540	512.8035	503.7646	13.9394	13.8256	13.8181	13.8957
	6	580.0443	570.4965	539.8447	553.5356	14.4459	14.4269	14.4207	14.4772
	12	649.3734	658.3918	648.7122	620.2323	15.3388	15.2591	15.2007	15.2849

378 3.4 COMPONENT EXPERIMENTS
379

380 The component experiment results are shown in Table 5, which examine model performance across
381 various activation functions, convolution types, and parameters to find the best settings. Activation
382 functions like delta, Sigmoid, and Tanh underperform compared to the Mish function, which offers
383 clear advantages. We also find that higher-order gated convolution designs outperform 2D Conv,
384 gated Conv, and gated + 2D Conv. Additionally, adaptive dynamic graph convolution surpasses
385 traditional GCN variants (original, adaptive, and dynamic GCN). These results highlight STDACN’s
386 unique component integration, boosting prediction accuracy and robustness for complex ST-data.

387

388

389 **Table 5: Different components performance Experiment**

Method Component	MSE			MAE		
	3	6	12	3	6	12
Activation Function Comparison						
STDACN	20.5582	27.7909	37.4339	2.3817	2.6570	3.0522
δ Activation	25.9292	33.4192	43.6290	2.7994	3.0349	3.3773
Sigmoid Activation	22.1816	29.7810	39.5736	2.5651	2.8352	3.1964
Tanh Activation	21.6930	29.5346	40.0122	2.5292	2.8159	3.1628
Convolution Type Comparison						
STDACN	20.5582	27.7909	37.4339	2.3817	2.6570	3.0522
2D Conv.	24.7999	33.5339	45.5577	2.7007	2.9839	3.4138
Gated Conv.	22.1050	29.1382	39.5585	2.5528	2.8185	3.1784
Gated+2D Conv.	22.5234	29.6166	39.1621	2.5923	2.8435	3.1919
Graph Convolution Comparison						
STDACN	20.5582	27.7909	37.4339	2.3817	2.6570	3.0522
GCN	21.3318	28.0773	37.5429	2.5123	2.7439	3.0766
Adapt. GCN	21.7875	29.8753	38.1135	2.5558	2.8367	3.1333
Adapt. w/o β	22.1189	29.2167	39.8782	2.5472	2.8098	3.1651

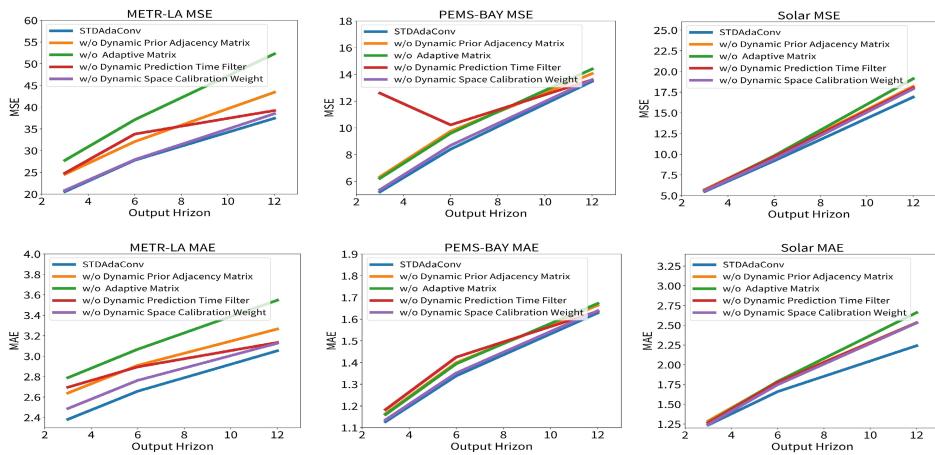
403

404

405 **3.5 ABLATION EXPERIMENTS**

406

407 The ablation study assessed the impact of removing key modules—spatial self-learning matrix, tem-
408 poral causal convolution, spatial adaptive module, and dynamic learning coefficient—on perfor-
409 mance, as shown in Fig. 3 for METR-LA, PEMS-BAY, and Solar datasets across 3, 6, and 12-
410 step horizons. The spatial self-learning matrix updates topology dynamically, enhancing resolution,
411 while adaptive temporal causal convolution outperforms fixed-kernel TCNs. The spatial adaptive
412 module and dynamic learning coefficients in GCNs derive calibration weights β from $X_{dt}^{(l)}$, improv-
413 ing spatial dependency modeling. Results confirm each component’s critical role, especially spatial
414 adaptation and self-learning matrices, in enhancing ST-prediction accuracy across diverse datasets.

431 **Figure 3: Ablation Experiments.**

3.6 EFFICIENCY EXPERIMENT

Efficiency Analysis Experiment We analyze the differences between STDACN model and other mainstream spatiotemporal data prediction methods in terms of model size, training time, inference time, and model accuracy. The results presented in Table 6, the method maintains the second largest model size, while its training time and inference time are also short, only lagging behind the lighter model, but providing the best prediction accuracy. These results prove that the model has high efficiency and optimal performance for large-scale spatiotemporal tasks, and is excellent in reasoning speed and analysis accuracy.

Table 6: Efficiency comparison of various methods.

Methods	In/Out	Model size	Training time	Inference Time	MSE	MAE
TimeMixer		175,177	26.1935	62.3523	152.8255	8.7074
Crossformer		2,335,116	178.9818	6.5167	83.1203	3.6924
PatchTST		113,579	9.5499	3.5398	154.1911	8.7328
Informer	Input:12	7,322,831	22.3132	0.6114	371.3622	19.8189
AutoFormer	Output:12	6,842,575	24.8419	0.0311	228.2421	14.7905
DLinear		2,328	15.5330	0.0016	467.3746	13.6325
Transformer		6,534,863	16.8897	0.7171	51.676	3.5266
ACGRN		751,650	550.3586	0.0286	40.7954	3.1526
STDACN		<u>87,858</u>	<u>15.3111</u>	0.5418	37.4339	<u>3.0522</u>

3.7 ANTI-NOISE EXPERIMENT

This section validates STDACN's performance under spatial noise, with Table 7 showing results for 3, 6, and 12-step predictions on METR-LA, PEMS03, and Solar datasets, comparing normal data to 20%, 60%, and 100% noise levels. METR-LA exhibits minimal error increase, PEMS03 shows no significant degradation, while Solar data is more noise-sensitive in long-term predictions. STDACN maintains stability with less than 5% performance loss, demonstrating the dynamic adaptive spatial module's effectiveness in handling noise for reliable real-world predictions.

Table 7: Anti-noise Analysis Capability Examination

Dataset	Condition	MSE			MAE		
		3	6	12	3	6	12
METR-LA	100% Data	20.5581	27.7909	37.4338	2.3817	2.6570	3.0522
	20% Noise	<u>21.6851</u>	28.9091	40.1571	<u>2.5320</u>	<u>2.8005</u>	3.1979
	60% Noise	22.3113	29.4559	40.0812	2.5537	2.8213	3.1971
	100% Noise	21.7943	<u>28.9002</u>	<u>40.0186</u>	2.5342	2.8089	3.2183
PEMS03	100% Data	512.8035	539.8447	648.7122	13.8181	14.4207	15.3007
	20% Noise	522.8550	572.2609	687.9156	13.8074	14.4293	15.5739
	60% Noise	477.7003	586.0765	692.9213	<u>13.7968</u>	14.5882	15.9085
	100% Noise	513.0293	<u>558.4977</u>	647.3211	<u>13.7266</u>	14.3808	15.2827
Solar	100% Data	<u>5.4933</u>	9.2019	16.9010	1.2369	1.6599	2.2409
	20% Noise	5.6141	9.4426	<u>25.4844</u>	1.2556	1.7246	3.1514
	60% Noise	5.5416	9.2854	26.7097	1.2518	1.7133	3.2582
	100% Noise	5.2492	9.5612	26.3236	1.2005	1.7448	3.1987

4 CONCLUSION AND FUTURE

The STDACN framework uses dynamic and adaptive convolutional networks, including a high-order gated Temporal Convolutional Network (TCN) and an adaptive dynamic Graph Convolutional Network (GCN), to effectively capture complex spatiotemporal dependencies, boosting prediction capabilities. Its optimized hyperparameters and robust performance under noisy conditions highlight its potential for real-world use. With a streamlined parameter count and efficient training and inference times, STDACN is highly practical across domains. Future work could integrate multimodal data (e.g., weather, social media, traffic sensors), extend frameworks for real-time edge computing, enhance scalability for large networks, and explore advanced loss functions or attention mechanisms to improve robustness and adaptability while addressing computational constraints and evolving data patterns.

486 REFERENCES
487

488 Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
489 network for traffic forecasting. *Advances in neural information processing systems*, 33:17804–
490 17815, 2020.

491 S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and recurrent
492 networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018. doi: 10.48550/arXiv.
493 1803.01271. Published in a revised form in *Transactions on Machine Learning Research*.
494

495 Wele Gedara Chaminda Bandara, Naman Patel, Ali Gholami, Mehdi Nikkhah, Motilal Agrawal, and
496 Vishal M Patel. Adamae: Adaptive masking for efficient spatiotemporal learning with masked
497 autoencoders. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
498 Recognition*, pp. 14507–14517, 2023.

499 Jie Bao, Hao Yu, and Jiaming Wu. Short-term ffbs demand prediction with multi-source data in a
500 hybrid deep learning framework. *IET Intelligent Transport Systems*, 13(9):1340–1347, 2019.
501

502 Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long. Simmtm:
503 A simple pre-training framework for masked time-series modeling. *Advances in Neural Informa-
504 tion Processing Systems*, 36:29996–30025, 2023.

505 Joshua Fan, Junwen Bai, Zhiyun Li, Ariel Ortiz-Bobea, and Carla P. Gomes. A gnn-rnn approach
506 for harnessing geospatial and temporal information: Application to crop yield prediction. In
507 *Proceedings of the 36th AAAI Conference on Artificial Intelligence*, pp. 11873–11881, 2022.
508

509 Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach, Diego
510 Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models (llms) on tab-
511 ular data: Prediction, generation, and understanding—a survey. *arXiv preprint arXiv:2402.17944*,
512 2024.

513 Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. Timegpt-1. *arXiv preprint
514 arXiv:2310.03589*, 2023.
515

516 Deyong Guan, Na Ren, Ke Wang, Qi Wang, and Hualong Zhang. Checkpoint data-driven gcn-gru
517 vehicle trajectory and traffic flow prediction. *Scientific Reports*, 14(1):1–17, 2024.

518 Olivier Habimana, Yuhua Li, Ruixuan Li, Xiwu Gu, and Wenjin Yan. Attentive convolutional gated
519 recurrent network: a contextual model to sentiment analysis. *International Journal of Machine
520 Learning and Cybernetics*, 11:2637–2651, 2020.
521

522 Ali Hamdi, Khaled Shaban, Abdelkarim Erradi, Amr Mohamed, Shakila Khan Rumi, and Flora D
523 Salim. Spatiotemporal data mining: a survey on challenges and open problems. *Artificial Intelli-
524 gence Review*, pp. 1–48, 2022.
525

526 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
527 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
528 vision and pattern recognition*, pp. 16000–16009, 2022.

529 Ziyuan Huang, Shiwei Zhang, Liang Pan, Zhiwu Qing, Mingqian Tang, Ziwei Liu, and Marcelo H
530 Ang Jr. Tada! temporally-adaptive convolutions for video understanding. *arXiv preprint
531 arXiv:2110.06178*, 2021.
532

533 Peter J Huber. Robust estimation of a location parameter. In *Breakthroughs in statistics*, pp. 492–
534 518. Springer, 1992.
535

536 T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. *In-
537 ternational Conference on Learning Representations (ICLR)*, 2017. URL <https://arxiv.org/abs/1609.02907>. Published as a conference paper at ICLR 2017.
538

539 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. *arXiv preprint arXiv:1609.02907*, 2016.

540 Chao Li, Aojun Zhou, and Anbang Yao. Omni-dimensional dynamic convolution. *arXiv preprint*
 541 *arXiv:2209.07947*, 2022a.

542

543 Fuxian Li, Jie Feng, Huan Yan, Guangyin Jin, Fan Yang, Funing Sun, Depeng Jin, and Yong Li.
 544 Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution.
 545 *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 2021.

546

547 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
 548 work: Data-driven traffic forecasting. *arXiv preprint arXiv:1707.01926*, 2017.

549

550 Zhonghang Li, Chao Huang, Lianghao Xia, Yong Xu, and Jian Pei. Spatial-temporal hypergraph
 551 self-supervised learning for crime prediction. *arXiv preprint arXiv:2204.08587*, 2022b.

552

553 Chenxi Liu, Sun Yang, Qianxiong Xu, Zhishuai Li, Cheng Long, Ziyue Li, and Rui Zhao. Spatial-
 554 temporal large language model for traffic prediction. In *2024 25th IEEE International Conference*
555 on Mobile Data Management (MDM), pp. 31–40. IEEE, 2024.

556

557 Diganta Misra. Mish: A self regularized non-monotonic neural activation function. *arXiv preprint*
 558 *arXiv:1908.08681*, 4(2):10–48550, 2019.

559

560 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 561 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022.

562

563 Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
 564 Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional net-
 565 works for dynamic graphs. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 566 volume 34, pp. 5363–5370, 2020.

567

568 Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. Spatial-temporal synchronous graph
 569 convolutional networks: A new framework for spatial-temporal network data forecasting. In
 570 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 914–921, 2020.

571

572 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 573 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 574 tion processing systems*, 30, 2017.

575

576 Jun Wang, Wenjun Wang, Wei Yu, Xueli Liu, Keyong Jia, Xiaoming Li, Min Zhong, Yueheng Sun,
 577 and Yuqing Xu. Sthgcn: A spatiotemporal prediction framework based on higher-order graph
 578 convolution networks. *Knowledge-Based Systems*, 258:109985, 2022.

579

580 Lei Wang, Deke Guo, Huaming Wu, Keqiu Li, and Wei Yu. Tc-gen: Triple cross-attention and
 581 graph convolutional network for traffic forecasting. *Information Fusion*, 105:102229, 2024a. doi:
 582 10.1016/j.inffus.2023.102229.

583

584 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
 585 and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. *arXiv*
586 preprint arXiv:2405.14616, 2024b.

587

588 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 589 formers with auto-correlation for long-term series forecasting. *Advances in neural informa-
 590 tion processing systems*, 34:22419–22430, 2021.

591

592 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
 593 spatial-temporal graph modeling. *arXiv preprint arXiv:1906.00121*, 2019.

594

595 Zecheng Xie, Zenghui Sun, Lianwen Jin, Ziyong Feng, and Shuye Zhang. Fully convolutional re-
 596 current network for handwritten chinese text recognition. In *2016 23rd International Conference*
 597 *on Pattern Recognition (ICPR)*, pp. 4011–4016. IEEE, 2016.

598

599 Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. Condconv: Conditionally parame-
 600 terized convolutions for efficient inference. *Advances in Neural Information Processing Systems*,
 601 32, 2019.

594 Yuan Yuan, Jingtao Ding, Jie Feng, Depeng Jin, and Yong Li. Unist: a prompt-empowered universal
595 model for urban spatio-temporal prediction. In *Proceedings of the 30th ACM SIGKDD Conference*
596 *on Knowledge Discovery and Data Mining*, pp. 4095–4106, 2024.

597

598 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
599 forecasting? In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp.
600 11121–11128, 2023.

601 Dalin Zhang, Yunjuan Peng, Yumei Zhang, Daohua Wu, Hongwei Wang, and Hailong Zhang. Train
602 time delay prediction for high-speed train dispatching based on spatio-temporal graph convo-
603 lutional network. *IEEE Transactions on Intelligent Transportation Systems*, 23(3):2434–2444,
604 2021.

605

606 Qi Zhang, Jianlong Chang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. Spatio-temporal
607 graph structure learning for traffic forecasting. In *Proceedings of the AAAI Conference on Artifi-
608 cial Intelligence*, volume 34, pp. 1177–1185, 2020.

609 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
610 multivariate time series forecasting. In *International Conference on Learning Representations*,
611 2023.

612 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
613 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
614 *of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 11106–11115, 2021.

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A APPENDIX**649 **A.1 RELATED WORK**

650 **Spatiotemporal prediction method based on shared convolution kernel.** As shown in Fig. 1,
 651 spatiotemporal data feature tensors include temporal, spatial, and feature dimensions, with accurate
 652 prediction depending on effectively characterizing their relationships. Recent research mainly fo-
 653 cuses on statistically analyzing inherent data relationships. For instance, HDL-net Bao et al. (2019)
 654 employs a multilayer ConvLSTM for capturing temporal and spatial characteristics of shared bicycle
 655 demand, TSTGCN Zhang et al. (2021) integrates CNN and GCN for spatiotemporal attention predic-
 656 tion, ST-HSL Li et al. (2022b) combines CNN and TCN for time series analysis, and incorporates
 657 spatial dependence through hypergraph information maximization. Nevertheless, most methods rely
 658 on shared convolution kernels for space-time analysis, hindering the extraction of dynamic patterns
 659 varying with time and space.

660 **Spatiotemporal prediction methods based on static graph structure.** Many spatial relation mod-
 661eling methods rely on GCN Kipf & Welling (2016). These methods are classified into explicit
 662 (EX-GCN) and implicit (IM-GCN) Wang et al. (2022) based on spatial topological relation con-
 663 struction, with EX-GCN using physical relations and IM-GCN leveraging semantic-derived implicit
 664 relations, sparking growing research interest in IM-GCN. SLCNN Zhang et al. (2020) incorpo-
 665 rates global and local local SLC module relationships for predicting traffic spatiotemporal data.
 666 AGCRN Bai et al. (2020) establishes hidden spatial relationships through node attribute learning,
 667 while Graph Wavenet Wu et al. (2019) employs an adaptive approach to learn global spatial rela-
 668 tionships. DGCRN Li et al. (2021) dynamically generates implicit spatial relations to learn dynamic
 669 topological relations. However, these approaches often overlook the interconnectedness between
 670 global and local, or static and dynamic spatial topological relationships, which are crucial in practi-
 671 cal applications.

672 **Spatiotemporal prediction methods based on large-scale models.** Integrating spatiotemporal fea-
 673 ture learning with transformer architecture boosts prediction accuracy and robustness but faces com-
 674 putational efficiency and power demand issues. SimMTM Dong et al. (2023) enhances time series
 675 prediction and classification with masking and manifold learning, though multipoint aggregation
 676 reduces efficiency. AdaMAE Bandara et al. (2023) uses adaptive masking and reinforcement learn-
 677 ing for video classification, but iterative optimization increases costs. TimeGPT Garza et al. (2023)
 678 excels in homodyne inference yet struggles with real-time use due to complexity. ST-LLM Liu et al.
 679 (2024) employs high-parameter spatiotemporal embedding for dynamic system modeling. Despite
 680 improved accuracy, these methods face resource constraints, efficiency challenges in large-scale
 681 scenarios, and latency in real-time applications.

682 **Dynamic spatiotemporal prediction methods.** The local connectivity inherent Huang et al. (2021)
 683 in static convolution yields translation invariance, whereas dynamic convolution enhances the per-
 684 formance of existing convolutional models by generating new weight parameters through the dy-
 685 namic integration of multiple convolution kernels. For instance, CondConv Yang et al. (2019)
 686 introduces a conditional parameter convolution approach that assigns a specific convolution ker-
 687 nel parameter to each example, thereby increasing model size and capacity without compromis-
 688 ing computational efficiency. Building upon this concept, ODConv Li et al. (2022a) extends the
 689 one-dimensional dynamic properties of CondConv to incorporate spatial, input, and output channel
 690 dynamics. TAdaConv Huang et al. (2021) introduces a temporal adaptive convolution algorithm tai-
 691 ledored for video comprehension. However, this multi-convolution dynamic optimization mechanism
 692 will greatly increase the operation cost and affect the efficiency and generalization ability of the
 693 model.

694 **A.2 MATHEMATICAL DEFINITION**

695 This paper aims to enhance spatiotemporal prediction accuracy using dynamic spatiotemporal con-
 696 volution.

697 **Definition 1** *We use the spatial topological relation network as a weighted undirected graph $G =$
 698 (V, E, A) to describe the structure of the space relationship, where $V = \{v_0, \dots, v_N\}$ is N spatial*

702 nodes, the adjacency matrix $A \in \mathbb{R}^{N \times N}$ is used to represent the connection strength. The G is
 703 dynamically changing with time, which is recorded as G_t .
 704

705 **Definition 2** Spatiotemporal feature matrix X . The information on the spatial relationship network
 706 G is regarded as attribute features of nodes V , which is indicated by $X \in \mathbb{R}^{F \times N \times T}$, where F is the
 707 number of node attribute features, T represents the length of the historical time series, and N is the
 708 number of sensor nodes.

709 The problem of spatiotemporal prediction is considered to predict future data $\hat{Y} =$
 710 $(\hat{x}_{T+1}, \dots, \hat{x}_{T+\tau})$ from current data $X = (x_1, \dots, x_T)$. With the above definition, we should
 712 learn the mapping function f from X to \hat{Y} , that is:

$$713 \hat{Y} = f_{\theta}(X, G), \quad (13)$$

715 where θ is the model parameter. the real future data are $Y = (x_{T+1}, \dots, x_{T+\tau})$ and the training
 716 process makes the distance between \hat{Y} and Y increasingly smaller.

718 A.3 SUPPLEMENTARY EXPERIMENTS

720 We conducted additional comparative experiments on the dataset and carried out a more comprehensive
 721 performance analysis. Our model continues to demonstrate superior performance; the results
 722 are as follows:

724 **Table 8: Comparison Experiment on PEMS03 and PEMS04 datasets.**

726 Method	Metric	PEMS03			PEMS08		
		15 min	30 min	1 hour	15 min	30 min	1 hour
728 DCRNN	MSE	572.9481 \pm 6.2247	674.2108 \pm 5.3580	846.0167 \pm 13.3477	538.2844 \pm 0.8367	666.7077 \pm 10.9641	1386.2029 \pm 147.4780
	MAE	14.2457 \pm 0.0431	15.3870 \pm 0.0820	17.5119 \pm 0.1082	15.1848 \pm 0.0504	17.0471 \pm 0.1884	25.4170 \pm 1.7328
729 CFFormer	MSE	345.4315 \pm 6.1329	569.8165 \pm 17.9203	499.9477 \pm 26.5685	750.9642 \pm 4.2122	863.7393 \pm 11.4401	1092.6679 \pm 12.8182
	MAE	12.6388 \pm 0.0869	15.4411 \pm 0.2115	14.7761 \pm 0.2656	19.5578 \pm 0.0338	20.7773 \pm 0.1361	21.2692 \pm 0.0795
731 Transformer	MSE	557.4231 \pm 20.9859	615.8816 \pm 16.6908	725.2109 \pm 6.6085	538.9656 \pm 0.8856	598.6457 \pm 2.3719	693.0868 \pm 4.1460
	MAE	13.8957 \pm 0.0565	14.5521 \pm 0.0406	15.8781 \pm 0.0318	14.7976 \pm 0.0416	15.3489 \pm 0.0463	16.3003 \pm 0.0616
732 GRUGCN	MSE	526.1056 \pm 1.3160	630.4568 \pm 1.7699	805.1929 \pm 5.1585	577.5853 \pm 1.4448	690.5662 \pm 1.4979	880.8742 \pm 2.9947
	MAE	14.5308 \pm 0.0132	15.6593 \pm 0.0244	17.5197 \pm 0.0364	15.4032 \pm 0.0207	16.7139 \pm 0.0215	18.7708 \pm 0.0264
733 EVOLVEGCN	MSE	659.6220 \pm 86.3013	878.9086 \pm 50.3883	978.7947 \pm 49.7286	679.0293 \pm 3.3324	802.6686 \pm 4.3030	5141.8217 \pm 8253.8358
	MAE	15.8614 \pm 0.0620	17.1105 \pm 0.0391	18.9810 \pm 0.0662	16.7804 \pm 0.0334	18.1757 \pm 0.0440	40.5428 \pm 40.1884
735 FCRNN	MSE	1117.6096 \pm 23.8709	1131.6569 \pm 28.2207	1143.9044 \pm 8.2393	1167.0077 \pm 14.1085	1183.4153 \pm 27.9255	1212.4311 \pm 10.1895
	MAE	18.8406 \pm 0.1791	19.1202 \pm 0.2217	19.3827 \pm 0.0730	20.7240 \pm 0.1020	21.0194 \pm 0.1594	21.3018 \pm 0.0615
736 TimeMixer	MSE	580.6508 \pm 22.2139	686.3181 \pm 36.1629	1073.0527 \pm 70.3147	598.3445 \pm 21.1839	745.6439 \pm 19.1338	1088.7059 \pm 37.4260
	MAE	14.5278 \pm 0.8647	16.9218 \pm 1.1092	20.5205 \pm 1.2733	15.9938 \pm 1.2401	17.4957 \pm 1.1637	20.8164 \pm 1.1143
738 PatchTST	MSE	576.3602 \pm 22.6158	614.0498 \pm 30.8192	691.7393 \pm 24.4209	541.7598 \pm 18.3164	617.3783 \pm 23.1965	764.9968 \pm 29.3392
	MAE	13.8834 \pm 0.8174	14.3375 \pm 0.9527	16.7915 \pm 0.9819	15.1952 \pm 1.0334	16.8763 \pm 0.9171	17.7116 \pm 0.9842
739 Informer	MSE	856.0954 \pm 45.2617	975.9937 \pm 39.1326	1222.3432 \pm 108.8122	582.4223 \pm 28.4113	639.0414 \pm 31.2371	667.5425 \pm 22.5188
	MAE	16.4171 \pm 0.9177	17.8803 \pm 1.1283	19.7738 \pm 1.2507	15.0627 \pm 0.8390	15.8433 \pm 0.8274	16.1083 \pm 0.7486
741 AutoFormer	MSE	522.4533 \pm 17.5178	552.8334 \pm 22.0388	1878.6222 \pm 187.2339	685.2832 \pm 27.1372	727.3796 \pm 31.5008	813.4028 \pm 33.1468
	MAE	13.9836 \pm 0.6496	15.1984 \pm 0.8172	28.8514 \pm 1.3760	16.3894 \pm 0.0334	17.1013 \pm 0.9012	18.5997 \pm 1.1331
742 DLinear	MSE	9299.81 \pm 437.52	9802.14 \pm 347.21	11782.53 \pm 898.10	3930.44 \pm 198.72	4583.53 \pm 274.51	5206.44 \pm 308.92
	MAE	63.5546 \pm 2.9833	65.5238 \pm 2.8972	76.7675 \pm 5.9350	26.1483 \pm 1.4807	28.9994 \pm 1.8211	30.7945 \pm 2.1609
744 ACGRN	MSE	46317.02 \pm 1807.21	62880.80 \pm 2471.41	52807.63 \pm 1847.10	119761.65 \pm 2398.51	125888.52 \pm 3182.92	120153.48 \pm 3183.77
	MAE	168.9331 \pm 8.1548	203.1996 \pm 13.1372	186.2947 \pm 17.2339	317.3416 \pm 21.6239	322.2049 \pm 28.7401	303.3234 \pm 19.0326
746 STDACN	MSE	512.8035 \pm 15.4352	539.8447 \pm 12.6211	648.7122 \pm 18.4802	528.9281 \pm 2.8034	587.4261 \pm 3.7328	654.0064 \pm 4.4649
	MAE	13.8181 \pm 0.0315	14.4207 \pm 0.0586	15.3007 \pm 0.0529	14.7299 \pm 0.0442	15.3360 \pm 0.0375	16.2167 \pm 0.0723

747
 748
 749
 750
 751
 752
 753
 754
 755