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ABSTRACT

With the rapid advancement of sensor technologies, analyzing and modeling large
spatiotemporal datasets has become crucial, enabling system state predictions for
intelligent transportation, urban planning, public safety, and environmental protec-
tion. Current models—statistical, classical deep learning (e.g., TCN, GCN), and
large-scale methods—struggle with noise, complexity, high dimensionality, and
dynamics, with static TCN/GCN structures limiting performance and large models
facing high computational costs, keeping classical methods relevant. This paper
proposes a spatiotemporal prediction framework based on dynamic and adaptive
convolution networks (STDACN), which overcomes weight-sharing limits, featur-
ing a high-order gated TCN with recursive causality to capture temporal depen-
dencies and an adaptive GCN for spatial topologies, boosting efficiency and gen-
eralization. Excelling in traffic, weather, and population predictions across varied
scales, STDACN offers a simple yet innovative path for classical deep learning in
complex spatiotemporal modeling.

1 INTRODUCTION

Due to the growing availability and significance of large spatiotemporal datasets like maps, remote
sensing images, population, and traffic data, spatiotemporal data mining and prediction [Hamdi1 et al.
(2022) has emerged as a key focus in smart cities and spatial big data, widely applied in weather,
traffic flow, and earthquake forecasting |Yuan et al.| (2024). These models analyze time series re-
lationships and capture spatiotemporal dependencies in graph-based spatial networks (e.g., traffic
road networks), delivering valuable applications in intelligent transportation, urban planning, public
safety, and environmental protection.

Currently, spatiotemporal data models |[Hamdi et al.[(2022)) include statistical models, classical deep
learning models, rising large models [Fang et al.| (2024), etc. Real-world data, with its complex fea-
tures, high dimensions, frequency, and noise, challenges predictive models. Despite large models’
growing popularity, their high computational and inference demands sustain the development of
classical spatiotemporal deep learning, led by Temporal Convolutional Networks (TCN) and Graph
Convolutional Networks (GCN) for effective data modeling. For instance, Graph WaveNet|(Wu et al.
(2019) utilizes dilation convolution to capture time-dependent features and multigraph diffusion
convolution to extract spatial features. CSTN Song et al.| (2020) utilizes TCN operations to capture
temporal evolution context, local spatial context, and global correlation context. STHGCN Wang
et al.| (2022) leverages TCN Bai et al.| (2018) and GCN Kipf & Welling|(2017) operations to extract
higher-order spatiotemporal dependencies from spatiotemporal data. TCGCN Wang et al.| (2024a)
integrates cross-dimensional attention to discern features and relationships across different dimen-
sions of spatiotemporal data.

However, there is a lack of research on the spatiotemporal dynamic characteristics of these models,
particularly given the recent surge in large model development. The application of simple methods
from classical deep learning for dynamic adaptive learning of spatiotemporal information is uncom-
mon, highlighting the limitations of traditional and effective spatiotemporal prediction models.

Fig. [T)illustrates that spatiotemporal data comprises three dimensions, with varying attributes over
time. Convolution operators in deep learning algorithms exhibit translation invariance, facilitated by



Under review as a conference paper at ICLR 2026

local connectivity and shared weights. Studies indicate that strict weight sharing may not optimize
feature extraction in spatiotemporal data analysis with distinct time, space, and feature dimensions.
Utilizing shared convolution weights for multidimensional feature extraction along the time dimen-
sion is suboptimal in such scenarios. Conversely, a Temporal Adaptive Dynamic Adjacency Matrix-
based approach, such as WAN, enables dynamic fusion of spatial information without a substantial
parameter increase.
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Figure 1: Tensor and Characteristics of ST Data

To address this issue, we propose a spatiotemporal prediction framework based on dynamic and
adaptive convolution networks (STDACN), which overcomes the weight sharing limitations. It fea-
tures a novel high-order dynamic gated TCN with a response time readout function to adjust tempo-
ral kernels and mitigate gradient vanishing, alongside a global adaptive GCN module using dynamic
diffusion convolution to capture spatial topologies. This approach adapts to diverse temporal and
spatial scales, excelling in analyzing complex, dynamic, high-dimensional spatiotemporal data. The
key contributions of this study are summarized as follows:

* We introduce a novel spatiotemporal prediction framework, termed STDACN, which of-
fers dynamic adaptive modeling capabilities to accommodate varying time intervals and
spatial resolutions. This model, characterized by its simplicity and clarity, establishes a
novel theoretical foundation and practical avenue for leveraging traditional deep learning
approaches in the modeling of intricate spatiotemporal datasets.

* For dynamic and high-order time dependence, the high-order dynamic gating TCN is com-
bined with a dynamic recursive causality mechanism to break the weight sharing constraint.
By combining the adjacency matrix with a dynamic recursive causality mechanism, the
time dependence of data is captured, and the gradient disappearance is effectively avoided.

* An adaptive dynamic graph convolutional network (GCN) utilizing diffusion convolution
is developed to address spatial correlation. The conventional GCN convolution module is
expanded to a dynamic GCN using a regular network. The dynamic diffusion convolution
incorporates both global dynamic and temporal dynamic spatial relationship information.

* Project STDACN was evaluated using actual spatiotemporal data sets (including traffic data
and electricity data) and showed a reduction in prediction error of approximately 4.7% -
1.2% compared to all baseline models.

2 METHOD

This section includes model structure, dynamic time convolution, adaptive GCN module, and de-
coding, and introduces the design details of STDACN.

2.1 OVERVIEW OF THE STDACN’S STRUCTURE

The whole framework of STDACN shown in Fig. [2]is composed of an encoder and a decoder, which
respectively extract spatiotemporal dependent feature embedding and map this embedding into a
prediction vector. This section will detail the core layers of STDACN based on the input Xj.

The encoder consists of multi-layer spatiotemporal modules: High-order gated, Dynamic CNN, and
Dynamic GCN layers. The High-order gated and Dynamic CNN layers form the TCN for extracting
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STDACN model Framework
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Figure 2: The STDACN structure includes an encoder and a decoder.

Spatial Adaptive
GCN

siybiom
uoneiqie>
SiweuAp
)
)
Xunew
fouaselpe
anndepy

uonene

Auo) uoneliq
AUOD NDL [esned
JuBIY4905 J1weufp
13pi0 umop-dn feneds
ND9 aandepy eneds
Ysa + Jeau| Ino
AUO> uone|ip
/M NNDRIMea3pyL
s
AUO uone|p
O/M NND2IMEa3pyL

5507 49qnH

Xujew
uonejes
|eneds

Q

i
|
I

Recursive gated module Dynamic Causal TCN Spatial Adaptive Graph Convolution Out Rearrange

high-order dynamic temporal dependencies, while the Dynamic GCN layer establishes spatial topol-
ogy dependence using adaptive relations and calibration vectors. The decoder, comprising a linear
layer and two Dynamic CNN layers, translates the spatiotemporal embedding into a prediction vec-
tor. Following the approach of previous deep-learning models for spatiotemporal prediction Wang
et al.| (2022), STDACN initially conducts a 2D convolution on the time and space dimensions of
input matrix X € RF*N*P where I represents the convolution channel and H denotes the hidden
feature dimensions.

2.2 THE TEMPORAL CONVOLUTION LAYER TCN

Spatiotemporal data is essentially a multivariate time series, which has obvious temporal depen-
dence. The efficient and dynamic features of temporal dependence are very important for spa-
tiotemporal prediction. WaveNet Wu et al.| (2019) uses dilated causal convolution and a gated
mechanism as TCN to capture temporal trends, expanding the receptive field with layer depth. To
address the long-term dependency issues of RNN methods |[Fan et al.| (2022)), transformer-based
architectures |Zhou et al.| (2021) are widely adopted for temporal interaction, though dot-product
self-attention is less effective. For efficiency, STDACN’s TCN employs recursive gated convolution
g™ Conv, using dynamic kernels for high-order temporal interactions.

2.2.1 THE RECURSIVE GATED TEMPORAL CONVOLUTION

The calculation process of ¢g" Conv is shown in lil)g (2] Sub-chart A. Assume that the input of the
I-th layer is spatiotemporal data X () € REXNxP" "where | € {0,--- ,L — 1} and the P® is the
temporal dimensions of the [-th layer, and then ¢g" Conv has expressed as follows:

l l
TON® (x") =0 (conVQDg(X,g ) )) ,
TCN® (xV) =f (conv2D f(X“))) , (1)
X\, =reN®(x) o TONP (X V)

where conv2D, and conv2D  are 2D convolution operations with kernel size £ = 1 x 3 and padding
p = 0 x 1, preserving the temporal dimension length and spatial order. The activation functions
o(z) = g3, f(z) = xtanh (In (1 + €*)) Misra (2019). K is the recursive order of g" Conv,

k=0,1,--- K — 1.

Compared with the standard Gated TCN like in /Wu et al| (2019)), the activation function tanh is
instead by the mish function, because the range of mish has no positive boundary, so it can avoid
the disappearance of gradient generated in recursive transfer. It can be seen from the formula (T)
that the g” Conv has stronger information filtering ability than the standard Gated TCN, because
its output is X 1&21’ and the filter has larger receptive field and higher interactive capacity of time
information.
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2.2.2 THE DYNAMIC CAUSAL TEMPORAL CONVOLUTION

Beyond requiring recursive high-order temporal dependence and dynamic time-based adjustments,

the core of this section focuses on constructing the channel dimension (X %)) temporal filters for
dynamic convolution to enhance prediction accuracy. The core calculation process is shown in
Fig.[2| Sub-chart B, and formally, the process can be obtained by:

x4 (X(” N (mW)) , )

where X - () ¢ REXNxPY s the input of the dynamic TCN and is the output of formula 1| *
is the convolutlon operator with the kernel weights W € RCoutX¢inX1xk and the dilation rate rq,

o = mish is the active function, and 7 = II (X%))

€ R¢n is the dynamic calibration weights
which is the dynamic causal TCN’s key module. It can be seen from formula (Z) and Fig. 2] Sub-
chart B that the calibration generation function 7 = II(X %)) € R%» could extract dynamic change

information of spatiotemporal data along the input channel dimension X %). We initially employ a
down-up type convolution to transform the data for enabling II with learning capability, that is:

l l

( ) =0 (conv2D (norm(o(conv2D 1 (X;g))))) 3)
where o is the activate functlon, conv2D 1 and conv2D,. are the 2d convolutions which input chan-
nels are “i= and c;;, and 7 is a hyperparameter. The adaptive average pool function is used to extract

features from space-time dimension of X 753 € RHxNxP m, which is formulated as:
0]
Xr(t) _ mean( (l)> c RH><1><7PT,s , 4)
=TI(X[) = fe(X,7) 5)

where r; is the hyperparameter for temporal dimension average partitioning.

2.3 THE SPATIAL ADAPTIVE GRAPH CONVOLUTION

Spatiotemporal data represent multivariable time series with inherent spatial patterns. Enhancing the
integration of spatial dynamics in spatiotemporal data analysis is crucial, building upon the dynamic
examination of temporal characteristics. By combining pre-defined spatial dependencies and self-
learned hidden graph dependencies, we proposed the following GCN operator:

K
Z =Y P*XWip + AL, XWya, (6)
k=0
Aqap = SoftMax (ReLU (E1 E)) )

where K is the order of the GCN, P is the pre-defined spatial structure, fladp is a self-adaptive
adjacency matrix constructed by randomly initializing two learnable node embedding dictionaries
FEi,Ey € RNV*e with Wi, p and Wy, 4 as GCN parameters.

However, the spatial topology structures in formulas (6} [7) are global, that is, all samples at any
time share PP and Aadp. DGCRN Li et al.| (2021) uses dynamic topology with RNN, while increas-
ing computation parameters and facing gradient disappearance issues. Based on the above factors,
STDACN develops an adaptive dynamic GCN by incorporating a spatial network dynamic gener-
ation factor, denoted as . This approach is inspired by the global topology generation dynamic
formula(2). The module has shown in Fig. ] Sub-chart C and could be formulated as follows:

X0 =3 () XYW + (BAupe)" XWi ®)
k=0
B = mean Conv2D, (o (Conv2Dy /,(X}))) ©)
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where X (glt) is the input of dynamic GCN and the output of formula .It can be seen from formula
and Fig.Sub—chart C that the adjacency matrices are 5P, fA,p; € R WXNXN which dynamic

change over time. Among them, calculating the spatial calibration weight § = B(X (;?) is the key
point, which is similar to formulas and (@), its generation process can be described by formula

lgb Finally, the output of layer [ is X ‘1) = norm(X éi]) + X 1), where norm normalizes the data
to enhance training.

2.4 THE DECODER AND L0OSS FUNCTION

After the encoder encodes spatiotemporal dependence into X (£—1) € RH*NxPE™Y e STDACN
decoder, featuring a linear layer and two dynamic TCN layers (as seen in Fig. [, transforms the
input temporal dimension P(*~1 to 1, encoding it into the output temporal feature dimension H.
Subsequently, two-layer dynamic temporal convolutions convert this into the prediction temporal
dimension. It can be a formula as:

Xy = o (Tiner(X271)) & RN, (10)
Y = fur(fae(Xy)), (11)

where f41, f42 are dynamic convolutions like formula (2) without dilation, obtaining the final pre-
diction Y € RV*@,

The STDACN model employs Huber loss [Huber| (1992) for its reduced sensitivity to outliers com-
pared to squared error loss, where Y represents the real training values, the formula has shown as
follows:

1 O\ 2 9
. {Q(Y—Y) Y -¥|<s 12)

L Y,Y)= 3
Huber (YY) SIY = Y| — 16 otherwise

3 EXPERIMENTAL

3.1 EXPERIMENTAL DESIGN

Datasets and Baselines.The STDACN model was assessed using four public datasets: METR-LA
and PEMS-BAY for evaluating its robustness in handling missing data and ability to capture complex
topologies and long-term dependencies, respectively, and PEMS03 and PEMSO08 for assessing its
performance in modeling sparse nodes and implicit spatial relationships. To comprehensively assess
the efficacy, we conducted a comparative analysis with 12 baseline methods, as follows:

* Time Series Forecasting Models include Crossformer Zhang & Yan|(2023) for multivariate
forecasting, TimeMixer Wang et al|(2024b)) with multiscale mixing, PatchTST [Nie et al.
(2022) with channel-independent Transformers, Informer [Zhou et al.| (2021)) for efficient
long-sequence forecasting, AutoFormer Wu et al| (2021) with decomposition and auto-
correlation, and DLinear |Zeng et al| (2023) blending Autoformer and FEDformer with
linear layers.

* Graph Neural Network Models include DCRNN |Li et al.| (2017) integrating diffusion
convolution with recurrence, GRUGCN |Guan et al.| (2024) combining GCN with GRU,
EVOLVE-GCN [Pareja et al| (2020) for dynamic graphs, and ACGRN |[Habimana et al.
(2020) using attention with convolutional and gated recurrent components.

e Other Deep Learning Models include Transformer |Vaswani et al. (2017), Fully Con-
volutional Recurrent Network (FCRNN) Xie et al. (2016), and Masked Autoencoders
(MAE) |He et al.| (2022).

Metrics and Other Setting. Two metrics are used to evaluate the performance of STDACN, i.e.,
Mean Squared Error(MSE) and Mean Absolute Error(MAE). The smaller the values of MSE and
MAE are, the better the prediction effect is. The encoder is composed of 4 layers. The hidden
feature dimension is 32 across all formulas B). And the recursive order of g”Conv in formula
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Table 1: Comparison Experiment on PEMS03 and PEMS04 datasets.
Note: Bold values indicate the best, underlined values are the 2nd best. Values are mean =+ standard deviation,
rounded to four decimal places.

Method Metric METR-LA PEMS-BAY
15 min 30 min 1 hour 15 min 30 min 1 hour
DCRNN MSE 23.9089 £ 0.1527  33.2664 £+ 0.4808  50.3408 + 0.6579 5.7367 & 0.0347 11.0026 + 0.0616 22.2272 + 1.2995

MAE 2.6118 £ 0.0091 2.9951 £ 0.0290 3.7132 £ 0.0658  1.1567 +0.0016 1.4914 £ 0.0213  2.1590 + 0.1313
Crossformer MSE 37.2844 £1.9783  57.6993 +0.8503  83.1203 4 1.6651 6.0253 4 0.1342 11.6840 £ 0.2159  24.5290 + 0.3049
MAE 2.1574 £ 0.0299 3.3667 = 0.0161 3.6924 +0.0299 1.1615 £ 0.0072  1.4794 £ 0.0094  2.0486 + 0.0140
Transformer MSE 26.9624 +0.0700  36.4084 + 0.0875  51.6760 £ 0.1967 5.8855 + 0.0166 10.3876 + 0.0438  16.9596 + 0.0912
MAE 2.7647 £ 0.0009 3.0443 £ 0.0014 3.5266 4 0.0026  1.1640 & 0.0009  1.4240 £ 0.0016  1.7626 + 0.0040
GRUGCN MSE 27.3614 +0.1289  36.7763 + 0.1335  52.0067 £ 0.2243  6.0600 + 0.0124 10.7874 + 0.0226  17.9192 £ 0.0677
MAE 2.7949 £ 0.0026 3.0805 + 0.0024 3.5862 4 0.0066 1.1890 & 0.0009 1.4638 £ 0.0011  1.8209 + 0.0016
EVOLVEGCN MSE 28.2634 +0.4547  38.0367 +0.5528  54.1686 + 1.1673  6.8048 + 0.1520 11.9731 +0.7483  18.9596 + 0.2410
MAE 2.9793 +0.0258 3.3160 £ 0.0349 3.8805 4+ 0.0428  1.2575 +0.0036  1.5748 £ 0.0269  1.9411 £ 0.0118
FCRNN MSE 33.5810 £0.2417  39.4437 £0.2245  47.7373 4 0.3385 20.4053 £ 0.0860 21.6630 £ 0.1237 23.2935 + 0.1411
MAE 3.0822 £ 0.0067 3.2689 + 0.0068 3.5213£0.0106 2.1516 +0.0045 2.2158 £ 0.0057  2.2897 + 0.0086
TimeMixer MSE 57.8965 +0.9375  101.7485 +2.4809  152.8255 £ 2.1446 5.5164 £ 0.02907 13.6072 + 0.1964  24.8927 + 0.7291
MAE 3.1189 + 0.0638 4.1347 £0.0212 8.7074 +0.2841 1.1628 +0.01496 1.6217 +£0.0182  2.1149 + 0.0253

PatchTST MSE 94.3087 +2.6543  114.4104 +3.8901  154.1911 £2.7341  9.9580 + 0.4760 13.4908 + 0.8306 21.1281 £ 0.8042
MAE 3.9452 +£0.1028  13.8437 £ 0.7117 8.7328 +0.2008  1.4227 +0.0081 1.8660 £+ 0.0519  2.2256 + 0.9012
Informer MSE 86.4470 £ 1.3904  139.0305 £ 2.3116 371.3622 + 14.8193 10.4633 £ 0.4107 18.7256 £ 0.8341 181.9524 + 2.5301

MAE 5.0092 £+ 0.1012 5.9870 + 0.0391 19.8189 +1.0594 1.8418 £0.0735 2.3845 £0.1042  7.5687 + 0.2491
AutoFormer MSE 57.4641 +1.2284 103.1607 + 1.7691  228.2421 £4.2641 5.3970 + 0.0812 12.2767 + 0.4762  81.3859 + 1.6980
MAE 3.3332 £ 0.0416 4.8013 £0.1037 147905 £ 0.5918 1.1785 £ 0.0121  1.7677 £ 0.0091  3.7912 £ 0.1012

DLinear MSE 357.9130 £ 11.4169 372.3605 £ 10.2941 467.3746 £ 16.6081 22.3304 & 1.8271 24.9341 4 1.6072 28.3458 + 1.7512
MAE 7.4557 £ 0.5280 9.7525 £ 0.8271 13.6325 4+ 0.7148  2.1570 £ 0.157 2.4208 £ 0.0141  2.9455 4 0.0207
ACGRN MSE 254307 £ 1.5281  31.8665 4 2.3597  40.7954 £ 2.8890 5.6712 4 0.2438 8.9690 + 0.6088 13.8427 £ 0.8677
MAE 2.6416 4 0.0185 2.8467 4 0.0292 3.1526 4+ 0.0391  1.1505 £ 0.0239  1.3627 £0.0173  1.6569 £ 0.0101
STDACN MSE 20.5581 & 0.0664  27.7909 + 0.2143  37.4338 + 0.4711 5.2106 + 0.0939 8.4034 + 0.0728 13.4774 + 0.1826

MAE 2.3817 4 0.0059 2.6570 + 0.0047 3.0522 +0.0293  1.1276 + 0.0040  1.3389 + 0.0023  1.6284 + 0.0022

(T) is 2. The ratio of the output channels of the down-up type convolution in formula (3) is r = 4,
and in formula (@) is r = 2.

The loss functions of DCRNN, GRU-GCN, EVOLVE-GCN, FCRNN, and ACGRN are Huber loss
refer to formula (12), and the batch size are all 64. Other spatiotemporal series and large-scale model
methods adopt the best training parameters. The dataset is split into training, validation, and test sets
in an 8:1:1 ratio. The best model after 50 epochs is tested on the test set, averaged over 5 runs.

3.2 FORECASTING PERFORMANCE COMPARISON

This subsection presents results across 15-minute, 30-minute, and 1-hour horizons, with the best
and 2nd performances bolded and underlined, respectively. The Tables [§] illustrates that STDACN
outperformed baseline methods across all test datasets, ranking either first or second in terms of
index results. Notably, STDACN outperforms newer models like EVOLVE-GCN, FCRNN, AC-
GRN, PatchTST, and TimeMixer due to its multi-layer time recursive gating structure, integrating
dynamic convolution kernels and adaptive weight generation to capture temporal dynamics effec-
tively, ideal for non-stationary spatiotemporal sequences. Its dynamic graph convolution module
and adaptive spatial calibration parameters enhance dynamic information extraction, surpassing tra-
ditional GCN’s static limitations, and optimize efficiency, stability, and overall performance through
improved temporal-spatial interaction.

3.3 HYPERPARAMETER STUDY

This section investigates crucial parameters in the experiment, including temporal recursion level,
maximum neighbor link number, and hidden dimension of spatial feature recognition. These param-
eters play a pivotal role in temporal dimension recognition and spatial feature extraction, influencing
the model’s innovation level and predictive performance enhancements.

A. Steps Of Time Recursion Experiment. The recursive order K of g"Conv from formula (T))
is identified as a key hyperparameter affecting gradient updates in the recursive model. The larger
K may complicate updates, while the smaller K could hinder efficient temporal interaction, raising
the question of its impact. In determining the optimal recursion order K, we evaluated model
performance on two datasets with input and output lengths ranging from 3 to 12 steps. As shown
in Table 2] analysis indicates K = 2 yields the highest performance, highlighting that a double-
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layer time convolution, as in TCN, boosts the model’s ability to capture temporal dynamics and
enhance feature extraction for complex patterns in STDACN. However, excessive recursive layers
may increase computational overhead and overfitting risks. Thus, two layers strike the optimal
balance between accuracy and stability in predictive modeling.

Table 2: Seps of time recursion Experiment on METR-LA, Solar across 3 to 12 horizons

Dataset Horizon MSE MAE
Layers 1 2 3 4 1 2 3 4
3 21.0887 20.8447 21.1404 20.9793 2.4875 24735 24873 2.4846
4 23.5862 23.2015 23.7405 23.5004 2.5937 2.5805 2.6037 2.5868
5 258116 25.8001 26.1318 26.4090 2.6826 2.6760 2.6925 2.6949
6 28.1393 27.9413 282526 28.6147 2.7708 2.7276 2.7667 2.7738
METR 7 30.1345 30.7863 30.2364 30.8449 2.8275 2.8589 2.8396 2.8631
8 324366 321729 329769 32.5877 29105 2.8980 2.9070 2.9192
9 342635 34.1478 34.8145 34.1920 2.9786 2.9684 29862 2.9753
10 36.0550 35.1417 35.2847 36.5490 3.0318 3.0242 3.0264 3.0308
11 37.1137  36.6709 37.6002 36.8220 3.0749 3.0265 3.1005 3.0622
12 39.0394 38.0798 39.3730 38.8301 3.1227 3.1056 3.1370 3.1205
3 5.6102 55058 55758 55228 1.2635 1.2256 1.2461 1.2311
4 6.9606  6.8459 69303  6.9468 1.4329 1.4162 1.4439 1.4406
5 83877  8.2283 82853  8.4649 1.6185 1.6068 1.6145 1.6309
6 9.8233  9.4471  9.6664  9.6812 1.7792 1.7402 1.7787 1.7714
Solar 7 10.9045 10.8692 10.9611 10.9843 1.8998 1.9026 1.9198 1.9092
8 12,3331  12.3589  12.4400 12.4110 2.0532 2.0458 2.0484 2.0594
9 13.8980 13.7772 13.8023 13.7815 2.1820 2.1676 2.2020 2.1925
10 149697 149048 15.3873 15.1245 2.3037 2.2293 23429 23118
11 16.2645 16.5844 16.8956 16.6476 2.4266 2.4191 2.4119 2.4422
12 18.5231 17.7397 17.9982 18.2235 2.6193 2.5358 2.5859 2.5859

B. Maximum Neighborhood Connections. The study evaluates the model’s performance with
varying Maximum Neighborhood Connections on two datasets over 3, 6, and 12-month spans. This
parameter controls the number of neighboring nodes in the adaptive adjacency matrix, balancing
computational efficiency and node interconnection capture for graph sparsification. Table [3] shows
that 128 connections typically optimize performance, accuracy, and stability. The slight performance
variation highlights the model’s adaptability, enhancing its predictive capabilities across diverse
scenarios.

Table 3: Max. neighborhood connect steps Experiment

Dataset  Horizon MSE MAE
Steps 96 112 128 144 160 96 112 128 144 160
3 21.6647 22.3733 20.5581 22.1060 219180  2.5339 2.5506  2.3817 25409  2.5390
METR 6 29.5659  29.5117 27.7909  29.8756  29.2171 2.8121 2.8351 2.6570  2.8204  2.8227
12 39.4492  39.5913 37.4338 399129  39.2612  3.1828 3.1659  3.0522  3.1600  3.1597
3 501.8891 484.5887 512.8035 511.5046 502.0468 13.8491 139116 13.8181 13.9070 13.8551
PEMS03 6 568.3179 566.3710 539.8447 553.1515 567.1391 14.4047 14.4897 14.4207 14.3259 14.4890
12 642.3393 6523588 648.7122 653.2710 657.5727 15.2947 154512 15.3007 153178 15.3410

C. Embedding Dimensions Experiment. This section evaluates the model’s predictive perfor-
mance on two datasets using spatiotemporal feature embedding dimensions of 6, 8, 10, and 12.
Table ] shows optimal performance at a specific dimension, highlighting its superior predictive abil-
ity. Adjusting embedding dimensions to dataset characteristics improves accuracy, emphasizing the
importance of optimization for enhanced prediction and adaptability.

Table 4: Embedding Dimensions Experiment

Dataset Horizon MSE MAE
Embed Dim 6 8 10 12 6 8 10 12
3 21.9693  21.5281 20.5581  21.6883  2.5485  2.5369 23817  2.5390
METR 6 39.1484 293826  27.7909  29.4906  2.8079  2.8143  2.6570  2.8238
12 39.1484  39.9738  37.4338  39.5605  3.1551 3.1942  3.0522  3.1735
3 536.7852 517.5540 512.8035 503.7646 13.9394 13.8256 13.8181 13.8957
PEMS03 6 580.0443 570.4965 539.8447 553.5356 14.4459 144269 14.4207 144772
12 649.3734 658.3918 648.7122 620.2323 15.3388 15.2591 15.2007 15.2849
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3.4 COMPONENT EXPERIMENTS

The component experiment results are shown in Table 5] which examine model performance across
various activation functions, convolution types, and parameters to find the best settings. Activation
functions like delta, Sigmoid, and Tanh underperform compared to the Mish function, which offers
clear advantages. We also find that higher-order gated convolution designs outperform 2D Conv,
gated Conv, and gated + 2D Conv. Additionally, adaptive dynamic graph convolution surpasses
traditional GCN variants (original, adaptive, and dynamic GCN). These results highlight STDACN’s
unique component integration, boosting prediction accuracy and robustness for complex ST-data.

Table 5: Different components performance Experiment

MSE MAE
Method Component 3 6 12 3 6 12
Activation Function Comparison
STDACN 20.5582 27.7909 37.4339 23817 2.6570 3.0522
¢ Activation 25.9292 334192 43.6290 2.7994 3.0349 3.3773

Sigmoid Activation ~ 22.1816 29.7810 39.5736 2.5651 2.8352 3.1964
Tanh Activation 21.6930 29.5346 40.0122 2.5292 2.8159 3.1628

Convolution Type Comparison

STDACN 20.5582 27.7909 37.4339 23817 2.6570 3.0522
2D Conv. 247999 335339 45.5572 2.7007 29839 3.4138
Gated Conv. 22.1050 29.1382 39.5585 2.5528 2.8185 3.1784

Gated+2D Conv. 225234  29.6166 39.1621 2.5923 2.8435 3.1919
Graph Convolution Comparison

STDACN 20.5582 27.7909 37.4339 23817 2.6570 3.0522
GCN 21.3318 28.0773 37.5429 2.5123 2.7439 3.0766
Adapt. GCN 21.7875 29.8753 38.1135 2.5558 2.8367 3.1333
Adapt. w/o 3 22.1189 29.2167 39.8782 2.5472 2.8098 3.1651

3.5 ABLATION EXPERIMENTS

The ablation study assessed the impact of removing key modules—spatial self-learning matrix, tem-
poral causal convolution, spatial adaptive module, and dynamic learning coefficient—on perfor-
mance, as shown in Fig. |Z| for METR-LA, PEMS-BAY, and Solar datasets across 3, 6, and 12-
step horizons. The spatial self-learning matrix updates topology dynamically, enhancing resolution,
while adaptive temporal causal convolution outperforms fixed-kernel TCNs. The spatial adaptive

module and dynamic learning coefficients in GCNs derive calibration weights 3 from XCS?, improv-
ing spatial dependency modeling. Results confirm each component’s critical role, especially spatial
adaptation and self-learning matrices, in enhancing ST-prediction accuracy across diverse datasets.

METR-LA MSE PEMS-BAY MSE Solar MSE
— STDAdaConv — STDAdaConv 25.0 | wm= STDAdaConv
55 Ww/o Dynamic Prior Adjacency Matrix 16 w/o Dynamic Prior Adjacenc: y Matrix 22.5| — W/oDynamic Prior Adjacency Matrix
—— w/o Adaptive Matrix - —— Ww/o Adaptive Matrix +5| = w/o0 Adaptive Matrix
50w w/0 Dynamic Prediction Time Filter == W/0 Dynamic Prediction Time Filter 20.0| === w/o Dynamic Prediction Time Filter
45| — /o Pynamic Space Calibration Weight ~—— w/o Dynamic Space Calibration Weight ~—— w/o Dynamic Space Calibration Weight »
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w
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Figure 3: Ablation Experiments.
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3.6 EFFICIENCY EXPERIMENT

Efficiency Analysis Experiment We analyze the differences between STDACN model and other
mainstream spatiotemporal data prediction methods in terms of model size, training time, inference
time, and model accuracy. The results presented in Table[6} the method maintains the second largest
model size, while its training time and inference time are also short, only lagging behind the lighter
model, but providing the best prediction accuracy. These results prove that the model has high ef-
ficiency and optimal performance for large-scale spatiotemporal tasks, and is excellent in reasoning
speed and analysis accuracy.

Table 6: Efficiency comparison of various methods.

Methods In/Out  Model size Training time Inference Time MSE MAE
TimeMixer 175,177 26.1935 62.3523 152.8255  8.7074
Crossformer 2,335,116 178.9818 6.5167  83.1203  3.6924
PatchTST 113,579 9.5499 3.5398 154.1911  8.7328
Informer Input:12 7,322,831 22.3132 0.6114 371.3622 19.8189
AutoFormer  Output:12 6,842,575 24.8419 0.0311 2282421 14.7905
DLinear 2,328 15.5330 0.0016 467.3746 13.6325
Transformer 6,534,863 16.8897 0.7171 51.676  3.5266
ACGRN 751,650 550.3586 0.0286  40.7954  3.1526
STDACN 87,858 153111 0.5418  37.4339  3.0522

3.7 ANTI-NOISE EXPERIMENT

This section validates STDACN’s performance under spatial noise, with Table [/| showing results for
3, 6, and 12-step predictions on METR-LA, PEMS03, and Solar datasets, comparing normal data to
20%, 60%, and 100% noise levels. METR-LA exhibits minimal error increase, PEMS03 shows no
significant degradation, while Solar data is more noise-sensitive in long-term predictions. STDACN
maintains stability with less than 5% performance loss, demonstrating the dynamic adaptive spatial
module’s effectiveness in handling noise for reliable real-world predictions.

Table 7: Anti-noise Analysis Capability Examination
MSE MAE
3 6 12 3 6 12

100% Data 20.5581 27.7909 37.4338 2.3817 2.6570 3.0522
20% Noise 21.6851 28.9091 40.1571 2.5320 2.8005 3.1979

Dataset Condition

METR-LA  ¢0db Noise 223113 294559 400812  2.5537  2.8213  3.1971
100% Noise 217943 289002  40.0185  2.5342  2.8080 32183
100% Data  512.8035  539.8447 6487122 138181 144207 153007
peMsos 0% Noise 5228550 5722609 6879156 138074 144203 155739
60% Noise 4777003 5860765 6929213 137968  14.5882  15.9085
100% Noise ~ 513.0203 5584977 6473211 137266 14.3808  15.2827
100% Data 54933 92019 169010 12369  1.6599  2.2409
Solar 20% Noise 56141 04426 254844 12556 17246 3.1514
60% Noise 55416 92854 267007 12518 17133 32582

100% Noise 5.2492 9.5612 26.3236 1.2005 1.7448 3.1987

4 CONCLUSION AND FUTURE

The STDACN framework uses dynamic and adaptive convolutional networks, including a high-
order gated Temporal Convolutional Network (TCN) and an adaptive dynamic Graph Convolutional
Network (GCN), to effectively capture complex spatiotemporal dependencies, boosting prediction
capabilities. Its optimized hyperparameters and robust performance under noisy conditions high-
light its potential for real-world use. With a streamlined parameter count and efficient training and
inference times, STDACN is highly practical across domains. Future work could integrate mul-
timodal data (e.g., weather, social media, traffic sensors), extend frameworks for real-time edge
computing, enhance scalability for large networks, and explore advanced loss functions or attention
mechanisms to improve robustness and adaptability while addressing computational constraints and
evolving data patterns.
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A APPENDIX

A.1 RELATED WORK

Spatiotemporal prediction method based on shared convolution kernel. As shown in Fig.
spatiotemporal data feature tensors include temporal, spatial, and feature dimensions, with accurate
prediction depending on effectively characterizing their relationships. Recent research mainly fo-
cuses on statistically analyzing inherent data relationships. For instance, HDL-netBao et al.| (2019)
employs a multilayer ConvLSTM for capturing temporal and spatial characteristics of shared bicycle
demand, TSTGCNZhang et al.|(2021) integrates CNN and GCN for spatiotemporal attention predic-
tion, ST-HSL |Li et al.|(2022b) combines CNN and TCN for time series analysis, and incorporates
spatial dependence through hypergraph information maximization. Nevertheless, most methods rely
on shared convolution kernels for space-time analysis, hindering the extraction of dynamic patterns
varying with time and space.

Spatiotemporal prediction methods based on static graph structure. Many spatial relation mod-
eling methods rely on GCNKipf & Welling| (2016). These methods are classified into explicit
(EX-GCN) and implicit (IM-GCN) [Wang et al.| (2022) based on spatial topological relation con-
struction, with EX-GCN using physical relations and IM-GCN leveraging semantic-derived implicit
relations, sparking growing research interest in IM-GCN. SLCNN [Zhang et al.| (2020) incorpo-
rates global and local local SLC module relationships for predicting traffic spatiotemporal data.
AGCRN Bai et al|(2020) establishes hidden spatial relationships through node attribute learning,
while Graph Wavenet Wu et al.[(2019) employs an adaptive approach to learn global spatial rela-
tionships. DGCRN L1 et al.|(2021)) dynamically generates implicit spatial relations to learn dynamic
topological relations. However, these approaches often overlook the interconnectedness between
global and local, or static and dynamic spatial topological relationships, which are crucial in practi-
cal applications.

Spatiotemporal prediction methods based on large-scale models. Integrating spatiotemporal fea-
ture learning with transformer architecture boosts prediction accuracy and robustness but faces com-
putational efficiency and power demand issues. SimMTM |Dong et al.| (2023) enhances time series
prediction and classification with masking and manifold learning, though multipoint aggregation
reduces efficiency. AdaMAE Bandara et al.| (2023)) uses adaptive masking and reinforcement learn-
ing for video classification, but iterative optimization increases costs. TimeGPT |Garza et al.| (2023)
excels in homodyne inference yet struggles with real-time use due to complexity. ST-LLM |Liu et al.
(2024) employs high-parameter spatiotemporal embedding for dynamic system modeling. Despite
improved accuracy, these methods face resource constraints, efficiency challenges in large-scale
scenarios, and latency in real-time applications.

Dynamic spatiotemporal prediction methods. The local connectivity inherent|Huang et al.|(2021)
in static convolution yields translation invariance, whereas dynamic convolution enhances the per-
formance of existing convolutional models by generating new weight parameters through the dy-
namic integration of multiple convolution kernels. For instance, CondConvYang et al. (2019)
introduces a conditional parameter convolution approach that assigns a specific convolution ker-
nel parameter to each example, thereby increasing model size and capacity without compromis-
ing computational efficiency. Building upon this concept, ODConv [Li et al.|(2022a)) extends the
one-dimensional dynamic properties of CondConv to incorporate spatial, input, and output channel
dynamics. TAdaConv Huang et al.|(2021) introduces a temporal adaptive convolution algorithm tai-
lored for video comprehension. However, this multi-convolution dynamic optimization mechanism
will greatly increase the operation cost and affect the efficiency and generalization ability of the
model.

A.2 MATHEMATICAL DEFINITION

This paper aims to enhance spatiotemporal prediction accuracy using dynamic spatiotemporal con-
volution.

Definition 1 We use the spatial topological relation network as a weighted undirected graph G =
(V, E, A) to describe the structure of the space relationship, where V.= {vg,--- ,un} is N spatial
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nodes, the adjacency matrix A € RYN*N is used to represent the connection strength. The G is

dynamically changing with time, which is recorded as G4.

Definition 2 Spatiotemporal feature matrix X. The information on the spatial relationship network
G is regarded as attribute features of nodes V, which is indicated by X € RF*NXT where F is the
number of node attribute features, T represents the length of the historical time series, and N is the
number of sensor nodes.

The problem of spatiotemporal prediction is considered to predict future data Yy =
(Zr41, -+ ,&74,) from current data X = (x1,--- ,z7). With the above definition, we should

learn the mapping function f from X to Y, that is:
Y = fo(X.G), (13)

where 6 is the model parameter. the real future data are Y = (xr41,- - ,274,) and the training
process makes the distance between Y and Y increasingly smaller.

A.3 SUPPLEMENTARY EXPERIMENTS
We conducted additional comparative experiments on the dataset and carried out a more comprehen-

sive performance analysis. Our model continues to demonstrate superior performance; the results
are as follows:

Table 8: Comparison Experiment on PEMS03 and PEMS04 datasets.

Method Metric PEMS03 PEMS08
15 min 30 min 1 hour 15 min 30 min 1 hour
DCRNN MSE 5729481 +6.2247  674.2108 & 5.3580  846.0167 £ 13.3477  538.2844 + 0.8367 666.7077 & 10.9641 1386.2029 + 147.4780
MAE 14.2457 + 0.0431 15.3870 + 0.0820 17.5119 £ 0.1082 15.1848 + 0.0504 17.0471 £+ 0.1884 254170 + 1.7328
CFORMER MSE 3454315 + 6.1329 569.8165 + 17.9203  499.9477 + 26.5685  750.9642 £ 4.2122 863.7393 4 11.4401  1092.6679 + 12.8182
MAE 12.6388 =+ 0.0869 15.4411 £ 0.2115 14.7761 =+ 0.2656 19.5578 £ 0.0338 20.7773 £ 0.1361 21.2692 + 0.0795
Transformer ~ MSE  557.4231 +20.9859 615.8816 4 16.6908 725.2109 £ 6.6085  538.9656 + 0.8856  598.6457 4 2.3719 693.0868 + 4.1460
MAE 13.8957 & 0.0565 14.5521 £ 0.0406 15.8781 £ 0.0318 14.7976 & 0.0416 15.3489 + 0.0463 16.3003 £ 0.0616
GRUGCN MSE  526.1056 4 1.3160  630.4568 = 1.7699 805.1929 £ 5.1585  577.5853 + 1.4448  690.5662 + 1.4979 880.8742 + 2.9947
MAE 14.5308 £ 0.0132 15.6593 £ 0.0244 17.5197 £ 0.0364 15.4032 £ 0.0207 16.7139 £ 0.0215 18.7708 £ 0.0264
EVOLVEGCN MSE  659.6220 & 86.3013 878.9086 & 50.3883  978.7947 4 49.7286  679.0293 & 3.3324  802.6686 = 4.3030 5141.8217 4 8253.8358
MAE 15.8614 + 0.0620 17.1105 + 0.0391 18.9810 £ 0.0662 16.7804 + 0.0334 18.1757 4 0.0440 40.5428 + 40.1884
FCRNN MSE 1117.6096 + 23.8709 1131.6569 + 28.2207  1143.9044 =+ 8.2393 1167.0077 + 14.1085 1183.4153 4 27.9255  1212.4311 + 10.1895
MAE 18.8406 + 0.1791 19.1202 4 0.2217 19.3827 +0.0730  20.7240 + 0.1020 21.0194 + 0.1594 21.3018 +0.0615
TimeMixer MSE  580.6508 £ 22.2139 686.3181 £ 36.1629 1073.0527 £ 70.3147 598.3445 + 21.1839 745.6439 & 19.1338  1088.7059 + 37.4260
MAE 14.5278 + 0.8647 16.9218 + 1.1092 20.5205 + 1.2733 15.9938 + 1.2401 17.4957 + 1.1637 20.8164 + 1.1143
PatchTST MSE  576.3602 + 22.6158 614.0498 4 30.8192  691.7393 4 24.4209 541.7598 £ 18.3164 617.3783 + 23.1965 764.9968 -+ 29.3392
MAE 13.8834 +0.8174 14.3375 + 0.9527 16.7915 + 0.9819 15.1952 + 1.0334 16.8763 £ 0.9171 17.7116 + 0.9842
Informer MSE  856.0954 £ 45.2617 975.9937 + 39.1326 1222.3432 4 108.8122 582.4223 + 28.4113 639.0414 & 31.2371 667.5425 £ 22.5188
MAE 16.4171 £ 0.9177 17.8803 + 1.1283 19.7738 £ 1.2507 15.0627 £ 0.8390 15.8433 4+ 0.8274 16.1083 =+ 0.7486
AutoFormer ~ MSE  522.4533 & 17.5178 552.8334 + 22.0388 1878.6222 + 187.2339 685.2832 + 27.1372 727.3796 + 31.5008 813.4028 + 33.1468
MAE 13.9836 + 0.6496 15.1984 + 0.8172 28.8514 & 1.3760 16.3894 + 1.0334 17.1013 + 0.9012 18.5997 &+ 1.1331
DLinear MSE 9299.81 + 437.52 9802.14 4 347.21 11782.53 £ 898.10 3930.44 £ 198.72  4583.53 £ 274.51 5206.44 + 308.92
MAE 63.5546 + 2.9833 65.5238 4 2.8972 76.7675 4+ 5.9350  26.1485 + 1.4807 28.9994 4 1.8211 30.7945 + 2.1609
ACGRN MSE  46317.02 + 1807.21 62880.80 = 2471.41  52807.63 & 1847.10 119761.65 + 2398.51 125888.52 4 3182.92  120153.48 + 3183.77
MAE  168.9331 4 8.1548 203.1996 + 13.1372  186.2947 + 17.2339 317.3416 & 21.6239 322.2049 =+ 28.7401 303.3234 £ 19.0326
STDACN MSE  512.8035 + 154352 539.8447 + 12.6211  648.7122 + 18.4802  528.9281 + 2.8034  587.4261 + 3.7328 654.0064 + 4.4649
MAE 13.8181 £ 0.0315 14.4207 £ 0.0586 15.3007 £ 0.0529 14.7299 =+ 0.0442 15.3360 =+ 0.0375 16.2167 £ 0.0723

14



	Introduction
	Method
	Overview of the STDACN's Structure
	The Temporal Convolution Layer TCN
	The Recursive Gated Temporal Convolution
	The Dynamic Causal Temporal Convolution

	The Spatial Adaptive Graph Convolution
	The Decoder and Loss Function

	Experimental
	Experimental Design
	Forecasting Performance Comparison
	Hyperparameter Study 
	Component Experiments
	Ablation Experiments
	Efficiency Experiment
	Anti-noise Experiment

	Conclusion and Future
	Appendix
	Related Work
	Mathematical Definition
	Supplementary Experiments


