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ABSTRACT

With the rapid advancement of sensor technologies, analyzing and modeling large
spatiotemporal datasets has become crucial, enabling system state predictions for
intelligent transportation, urban planning, public safety, and environmental protec-
tion. Current models—statistical, classical deep learning (e.g., TCN, GCN), and
large-scale methods—struggle with noise, complexity, high dimensionality, and
dynamics, with static TCN/GCN structures limiting performance and large models
facing high computational costs, keeping classical methods relevant. This paper
proposes a spatiotemporal prediction framework based on dynamic and adaptive
convolution networks (STDACN), which overcomes weight-sharing limits, featur-
ing a high-order gated TCN with recursive causality to capture temporal depen-
dencies and an adaptive GCN for spatial topologies, boosting efficiency and gen-
eralization. Excelling in traffic, weather, and population predictions across varied
scales, STDACN offers a simple yet innovative path for classical deep learning in
complex spatiotemporal modeling.

1 INTRODUCTION

Due to the growing availability and significance of large spatiotemporal datasets like maps, remote
sensing images, population, and traffic data, spatiotemporal data mining and prediction Hamdi et al.
(2022) has emerged as a key focus in smart cities and spatial big data, widely applied in weather,
traffic flow, and earthquake forecasting Yuan et al. (2024). These models analyze time series re-
lationships and capture spatiotemporal dependencies in graph-based spatial networks (e.g., traffic
road networks), delivering valuable applications in intelligent transportation, urban planning, public
safety, and environmental protection.

Currently, spatiotemporal data models Hamdi et al. (2022) include statistical models, classical deep
learning models, rising large models Fang et al. (2024), etc. Real-world data, with its complex fea-
tures, high dimensions, frequency, and noise, challenges predictive models. Despite large models’
growing popularity, their high computational and inference demands sustain the development of
classical spatiotemporal deep learning, led by Temporal Convolutional Networks (TCN) and Graph
Convolutional Networks (GCN) for effective data modeling. For instance, Graph WaveNet Wu et al.
(2019) utilizes dilation convolution to capture time-dependent features and multigraph diffusion
convolution to extract spatial features. CSTN Song et al. (2020) utilizes TCN operations to capture
temporal evolution context, local spatial context, and global correlation context. STHGCN Wang
et al. (2022) leverages TCN Bai et al. (2018) and GCN Kipf & Welling (2017) operations to extract
higher-order spatiotemporal dependencies from spatiotemporal data. TCGCN Wang et al. (2024a)
integrates cross-dimensional attention to discern features and relationships across different dimen-
sions of spatiotemporal data.

However, there is a lack of research on the spatiotemporal dynamic characteristics of these models,
particularly given the recent surge in large model development. The application of simple methods
from classical deep learning for dynamic adaptive learning of spatiotemporal information is uncom-
mon, highlighting the limitations of traditional and effective spatiotemporal prediction models.

Fig. 1 illustrates that spatiotemporal data comprises three dimensions, with varying attributes over
time. Convolution operators in deep learning algorithms exhibit translation invariance, facilitated by
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local connectivity and shared weights. Studies indicate that strict weight sharing may not optimize
feature extraction in spatiotemporal data analysis with distinct time, space, and feature dimensions.
Utilizing shared convolution weights for multidimensional feature extraction along the time dimen-
sion is suboptimal in such scenarios. Conversely, a Temporal Adaptive Dynamic Adjacency Matrix-
based approach, such as WAN, enables dynamic fusion of spatial information without a substantial
parameter increase.

Figure 1: Tensor and Characteristics of ST Data

To address this issue, we propose a spatiotemporal prediction framework based on dynamic and
adaptive convolution networks (STDACN), which overcomes the weight sharing limitations. It fea-
tures a novel high-order dynamic gated TCN with a response time readout function to adjust tempo-
ral kernels and mitigate gradient vanishing, alongside a global adaptive GCN module using dynamic
diffusion convolution to capture spatial topologies. This approach adapts to diverse temporal and
spatial scales, excelling in analyzing complex, dynamic, high-dimensional spatiotemporal data. The
key contributions of this study are summarized as follows:

• We introduce a novel spatiotemporal prediction framework, termed STDACN, which of-
fers dynamic adaptive modeling capabilities to accommodate varying time intervals and
spatial resolutions. This model, characterized by its simplicity and clarity, establishes a
novel theoretical foundation and practical avenue for leveraging traditional deep learning
approaches in the modeling of intricate spatiotemporal datasets.

• For dynamic and high-order time dependence, the high-order dynamic gating TCN is com-
bined with a dynamic recursive causality mechanism to break the weight sharing constraint.
By combining the adjacency matrix with a dynamic recursive causality mechanism, the
time dependence of data is captured, and the gradient disappearance is effectively avoided.

• An adaptive dynamic graph convolutional network (GCN) utilizing diffusion convolution
is developed to address spatial correlation. The conventional GCN convolution module is
expanded to a dynamic GCN using a regular network. The dynamic diffusion convolution
incorporates both global dynamic and temporal dynamic spatial relationship information.

• Project STDACN was evaluated using actual spatiotemporal data sets (including traffic data
and electricity data) and showed a reduction in prediction error of approximately 4.7% -
1.2% compared to all baseline models.

2 METHOD

This section includes model structure, dynamic time convolution, adaptive GCN module, and de-
coding, and introduces the design details of STDACN.

2.1 OVERVIEW OF THE STDACN’S STRUCTURE

The whole framework of STDACN shown in Fig. 2 is composed of an encoder and a decoder, which
respectively extract spatiotemporal dependent feature embedding and map this embedding into a
prediction vector. This section will detail the core layers of STDACN based on the input Xs.

The encoder consists of multi-layer spatiotemporal modules: High-order gated, Dynamic CNN, and
Dynamic GCN layers. The High-order gated and Dynamic CNN layers form the TCN for extracting
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Figure 2: The STDACN structure includes an encoder and a decoder.

high-order dynamic temporal dependencies, while the Dynamic GCN layer establishes spatial topol-
ogy dependence using adaptive relations and calibration vectors. The decoder, comprising a linear
layer and two Dynamic CNN layers, translates the spatiotemporal embedding into a prediction vec-
tor. Following the approach of previous deep-learning models for spatiotemporal prediction Wang
et al. (2022), STDACN initially conducts a 2D convolution on the time and space dimensions of
input matrix X ∈ RF×N×P , where F represents the convolution channel and H denotes the hidden
feature dimensions.

2.2 THE TEMPORAL CONVOLUTION LAYER TCN

Spatiotemporal data is essentially a multivariate time series, which has obvious temporal depen-
dence. The efficient and dynamic features of temporal dependence are very important for spa-
tiotemporal prediction. WaveNet Wu et al. (2019) uses dilated causal convolution and a gated
mechanism as TCN to capture temporal trends, expanding the receptive field with layer depth. To
address the long-term dependency issues of RNN methods Fan et al. (2022), transformer-based
architectures Zhou et al. (2021) are widely adopted for temporal interaction, though dot-product
self-attention is less effective. For efficiency, STDACN’s TCN employs recursive gated convolution
gn Conv, using dynamic kernels for high-order temporal interactions.

2.2.1 THE RECURSIVE GATED TEMPORAL CONVOLUTION

The calculation process of gn Conv is shown in Fig. 2 Sub-chart A. Assume that the input of the
l-th layer is spatiotemporal data X(l) ∈ RH×N×P (l)

, where l ∈ {0, · · · , L− 1} and the P (l) is the
temporal dimensions of the l-th layer, and then gn Conv has expressed as follows:

TCN (k)
g (X

(l)
k ) =σ

(
conv2Dg(X

(l)
k )

)
,

TCN
(k)
f (X(l)) =f

(
conv2Df (X

(l))
)
,

X
(l)
k+1 =TCN (k)

g (X
(l)
k )⊙ TCN

(k)
f (X(l))

(1)

where conv2Dg and conv2Df are 2D convolution operations with kernel size k = 1×3 and padding
p = 0 × 1, preserving the temporal dimension length and spatial order. The activation functions
σ(x) = 1

1+e−1 , f(x) = x tanh (ln (1 + ex)) Misra (2019). K is the recursive order of gn Conv,
k = 0, 1, · · · ,K − 1.

Compared with the standard Gated TCN like in Wu et al. (2019), the activation function tanh is
instead by the mish function, because the range of mish has no positive boundary, so it can avoid
the disappearance of gradient generated in recursive transfer. It can be seen from the formula (1)
that the gn Conv has stronger information filtering ability than the standard Gated TCN, because
its output is X

(l)
k+1, and the filter has larger receptive field and higher interactive capacity of time

information.
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2.2.2 THE DYNAMIC CAUSAL TEMPORAL CONVOLUTION

Beyond requiring recursive high-order temporal dependence and dynamic time-based adjustments,
the core of this section focuses on constructing the channel dimension (X(l)

K ) temporal filters for
dynamic convolution to enhance prediction accuracy. The core calculation process is shown in
Fig. 2 Sub-chart B, and formally, the process can be obtained by:

X
(l)
dt = σ

(
X

(l)
K ⋆ (π.W )

)
, (2)

where X
(l)
K ∈ RH×N×P (l)

is the input of the dynamic TCN and is the output of formula (1), ⋆
is the convolution operator with the kernel weights W ∈ Rcout×cin×1×k and the dilation rate rd,
σ = mish is the active function, and π = Π

(
X

(l)
K

)
∈ Rcin is the dynamic calibration weights

which is the dynamic causal TCN’s key module. It can be seen from formula (2) and Fig. 2 Sub-
chart B that the calibration generation function π = Π(X

(l)
K ) ∈ Rcin could extract dynamic change

information of spatiotemporal data along the input channel dimension X
(l)
K . We initially employ a

down-up type convolution to transform the data for enabling Π with learning capability, that is:

X
(l)
ud = σ

(
conv2Dr(norm(σ(conv2D 1

r
(X

(l)
K ))))

)
(3)

where σ is the activate function, conv2D 1
r

and conv2Dr are the 2d convolutions which input chan-
nels are cin

r and cin and r is a hyperparameter. The adaptive average pool function is used to extract
features from space-time dimension of X(l)

ud ∈ RH×N×P (l)

, which is formulated as:

X
(l)
rt = mean(X

(l)
ud ) ∈ RH×1×,P

(l)

rt , (4)

π = Π(X
(l)
K ) = fc(X

(l)
rt ) (5)

where rt is the hyperparameter for temporal dimension average partitioning.

2.3 THE SPATIAL ADAPTIVE GRAPH CONVOLUTION

Spatiotemporal data represent multivariable time series with inherent spatial patterns. Enhancing the
integration of spatial dynamics in spatiotemporal data analysis is crucial, building upon the dynamic
examination of temporal characteristics. By combining pre-defined spatial dependencies and self-
learned hidden graph dependencies, we proposed the following GCN operator:

Z =
K∑

k=0

P kXWkP + Ãk
aptXWkA, (6)

Ãadp = SoftMax
(
ReLU

(
E1E

T
2

))
(7)

where K is the order of the GCN, P is the pre-defined spatial structure, Ãadp is a self-adaptive
adjacency matrix constructed by randomly initializing two learnable node embedding dictionaries
E1, E2 ∈ RN×d, with WkP and WkA as GCN parameters.

However, the spatial topology structures in formulas (6, 7) are global, that is, all samples at any
time share P and Ãadp. DGCRN Li et al. (2021) uses dynamic topology with RNN, while increas-
ing computation parameters and facing gradient disappearance issues. Based on the above factors,
STDACN develops an adaptive dynamic GCN by incorporating a spatial network dynamic gener-
ation factor, denoted as β. This approach is inspired by the global topology generation dynamic
formula(2). The module has shown in Fig. 2 Sub-chart C and could be formulated as follows:

X
(l)
dg =

K∑
k=0

(βP )
k
X

(l)
dt WkP +

(
βÃapt

)k

X
(l)
dt WkA, (8)

B = mean
(
Conv2Dr

(
σ
(
Conv2D1/r(X

(l)
dt )

)))
(9)
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where X
(l)
dt is the input of dynamic GCN and the output of formula (2).It can be seen from formula

(8) and Fig. 2 Sub-chart C that the adjacency matrices are βP, βÃapt ∈ RP (l)×N×N which dynamic
change over time. Among them, calculating the spatial calibration weight β = B(X(l)

dt ) is the key
point, which is similar to formulas (3) and (4), its generation process can be described by formula
(9). Finally, the output of layer l is X(l+1) = norm(X

(l)
dg +X(l)), where norm normalizes the data

to enhance training.

2.4 THE DECODER AND LOSS FUNCTION

After the encoder encodes spatiotemporal dependence into X(L−1) ∈ RH×N×P (L−1)

, the STDACN
decoder, featuring a linear layer and two dynamic TCN layers (as seen in Fig. 2), transforms the
input temporal dimension P (L−1) to 1, encoding it into the output temporal feature dimension H .
Subsequently, two-layer dynamic temporal convolutions convert this into the prediction temporal
dimension. It can be a formula as:

Xf = σ
(
liner(X(L−1))

)
∈ RH×N×1, (10)

Ŷ = fd1(fd2(Xf )), (11)

where fd1, fd2 are dynamic convolutions like formula (2) without dilation, obtaining the final pre-
diction Ŷ ∈ RN×Q.

The STDACN model employs Huber loss Huber (1992) for its reduced sensitivity to outliers com-
pared to squared error loss, where Y represents the real training values, the formula has shown as
follows:

LHuber (Ŷ , Y ) =

{
1
2
(Y − Ŷ )2 |Y − Ŷ | ≤ δ

δ|Y − Ŷ | − 1
2
δ2 otherwise

, (12)

3 EXPERIMENTAL

3.1 EXPERIMENTAL DESIGN

Datasets and Baselines.The STDACN model was assessed using four public datasets: METR-LA
and PEMS-BAY for evaluating its robustness in handling missing data and ability to capture complex
topologies and long-term dependencies, respectively, and PEMS03 and PEMS08 for assessing its
performance in modeling sparse nodes and implicit spatial relationships. To comprehensively assess
the efficacy, we conducted a comparative analysis with 12 baseline methods, as follows:

• Time Series Forecasting Models include Crossformer Zhang & Yan (2023) for multivariate
forecasting, TimeMixer Wang et al. (2024b) with multiscale mixing, PatchTST Nie et al.
(2022) with channel-independent Transformers, Informer Zhou et al. (2021) for efficient
long-sequence forecasting, AutoFormer Wu et al. (2021) with decomposition and auto-
correlation, and DLinear Zeng et al. (2023) blending Autoformer and FEDformer with
linear layers.

• Graph Neural Network Models include DCRNN Li et al. (2017) integrating diffusion
convolution with recurrence, GRUGCN Guan et al. (2024) combining GCN with GRU,
EVOLVE-GCN Pareja et al. (2020) for dynamic graphs, and ACGRN Habimana et al.
(2020) using attention with convolutional and gated recurrent components.

• Other Deep Learning Models include Transformer Vaswani et al. (2017), Fully Con-
volutional Recurrent Network (FCRNN) Xie et al. (2016), and Masked Autoencoders
(MAE) He et al. (2022).

Metrics and Other Setting. Two metrics are used to evaluate the performance of STDACN, i.e.,
Mean Squared Error(MSE) and Mean Absolute Error(MAE). The smaller the values of MSE and
MAE are, the better the prediction effect is. The encoder is composed of 4 layers. The hidden
feature dimension is 32 across all formulas (1, 3, 9). And the recursive order of gnConv in formula
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Table 1: Comparison Experiment on PEMS03 and PEMS04 datasets.
Note: Bold values indicate the best, underlined values are the 2nd best. Values are mean ± standard deviation,
rounded to four decimal places.

Method Metric METR-LA PEMS-BAY

15 min 30 min 1 hour 15 min 30 min 1 hour

DCRNN MSE 23.9089 ± 0.1527 33.2664 ± 0.4808 50.3408 ± 0.6579 5.7367 ± 0.0347 11.0026 ± 0.0616 22.2272 ± 1.2995
MAE 2.6118 ± 0.0091 2.9951 ± 0.0290 3.7132 ± 0.0658 1.1567 ± 0.0016 1.4914 ± 0.0213 2.1590 ± 0.1313

Crossformer MSE 37.2844 ± 1.9783 57.6993 ± 0.8503 83.1203 ± 1.6651 6.0253 ± 0.1342 11.6840 ± 0.2159 24.5290 ± 0.3049
MAE 2.1574 ± 0.0299 3.3667 ± 0.0161 3.6924 ± 0.0299 1.1615 ± 0.0072 1.4794 ± 0.0094 2.0486 ± 0.0140

Transformer MSE 26.9624 ± 0.0700 36.4084 ± 0.0875 51.6760 ± 0.1967 5.8855 ± 0.0166 10.3876 ± 0.0438 16.9596 ± 0.0912
MAE 2.7647 ± 0.0009 3.0443 ± 0.0014 3.5266 ± 0.0026 1.1640 ± 0.0009 1.4240 ± 0.0016 1.7626 ± 0.0040

GRUGCN MSE 27.3614 ± 0.1289 36.7763 ± 0.1335 52.0067 ± 0.2243 6.0600 ± 0.0124 10.7874 ± 0.0226 17.9192 ± 0.0677
MAE 2.7949 ± 0.0026 3.0805 ± 0.0024 3.5862 ± 0.0066 1.1890 ± 0.0009 1.4638 ± 0.0011 1.8209 ± 0.0016

EVOLVEGCN MSE 28.2634 ± 0.4547 38.0367 ± 0.5528 54.1686 ± 1.1673 6.8048 ± 0.1520 11.9731 ± 0.7483 18.9596 ± 0.2410
MAE 2.9793 ± 0.0258 3.3160 ± 0.0349 3.8805 ± 0.0428 1.2575 ± 0.0036 1.5748 ± 0.0269 1.9411 ± 0.0118

FCRNN MSE 33.5810 ± 0.2417 39.4437 ± 0.2245 47.7373 ± 0.3385 20.4053 ± 0.0860 21.6630 ± 0.1237 23.2935 ± 0.1411
MAE 3.0822 ± 0.0067 3.2689 ± 0.0068 3.5213 ± 0.0106 2.1516 ± 0.0045 2.2158 ± 0.0057 2.2897 ± 0.0086

TimeMixer MSE 57.8965 ± 0.9375 101.7485 ± 2.4809 152.8255 ± 2.1446 5.5164 ± 0.02907 13.6072 ± 0.1964 24.8927 ± 0.7291
MAE 3.1189 ± 0.0638 4.1347 ± 0.0212 8.7074 ± 0.2841 1.1628 ± 0.01496 1.6217 ± 0.0182 2.1149 ± 0.0253

PatchTST MSE 94.3087 ± 2.6543 114.4104 ± 3.8901 154.1911 ± 2.7341 9.9580 ± 0.4760 13.4908 ± 0.8306 21.1281 ± 0.8042
MAE 3.9452 ± 0.1028 13.8437 ± 0.7117 8.7328 ± 0.2008 1.4227 ± 0.0081 1.8660 ± 0.0519 2.2256 ± 0.9012

Informer MSE 86.4470 ± 1.3904 139.0305 ± 2.3116 371.3622 ± 14.8193 10.4633 ± 0.4107 18.7256 ± 0.8341 181.9524 ± 2.5301
MAE 5.0092 ± 0.1012 5.9870 ± 0.0391 19.8189 ± 1.0594 1.8418 ± 0.0735 2.3845 ± 0.1042 7.5687 ± 0.2491

AutoFormer MSE 57.4641 ± 1.2284 103.1607 ± 1.7691 228.2421 ± 4.2641 5.3970 ± 0.0812 12.2767 ± 0.4762 81.3859 ± 1.6980
MAE 3.3332 ± 0.0416 4.8013 ± 0.1037 14.7905 ± 0.5918 1.1785 ± 0.0121 1.7677 ± 0.0091 3.7912 ± 0.1012

DLinear MSE 357.9130 ± 11.4169 372.3605 ± 10.2941 467.3746 ± 16.6081 22.3304 ± 1.8271 24.9341 ± 1.6072 28.3458 ± 1.7512
MAE 7.4557 ± 0.5280 9.7525 ± 0.8271 13.6325 ± 0.7148 2.1570 ± 0.157 2.4208 ± 0.0141 2.9455 ± 0.0207

ACGRN MSE 25.4307 ± 1.5281 31.8665 ± 2.3597 40.7954 ± 2.8890 5.6712 ± 0.2438 8.9690 ± 0.6088 13.8427 ± 0.8677
MAE 2.6416 ± 0.0185 2.8467 ± 0.0292 3.1526 ± 0.0391 1.1505 ± 0.0239 1.3627 ± 0.0173 1.6569 ± 0.0101

STDACN MSE 20.5581 ± 0.0664 27.7909 ± 0.2143 37.4338 ± 0.4711 5.2106 ± 0.0939 8.4034 ± 0.0728 13.4774 ± 0.1826
MAE 2.3817 ± 0.0059 2.6570 ± 0.0047 3.0522 ± 0.0293 1.1276 ± 0.0040 1.3389 ± 0.0023 1.6284 ± 0.0022

(1) is 2. The ratio of the output channels of the down-up type convolution in formula (3) is r = 4,
and in formula (9) is r = 2.

The loss functions of DCRNN, GRU-GCN, EVOLVE-GCN, FCRNN, and ACGRN are Huber loss
refer to formula (12), and the batch size are all 64. Other spatiotemporal series and large-scale model
methods adopt the best training parameters. The dataset is split into training, validation, and test sets
in an 8:1:1 ratio. The best model after 50 epochs is tested on the test set, averaged over 5 runs.

3.2 FORECASTING PERFORMANCE COMPARISON

This subsection presents results across 15-minute, 30-minute, and 1-hour horizons, with the best
and 2nd performances bolded and underlined, respectively. The Tables 8 illustrates that STDACN
outperformed baseline methods across all test datasets, ranking either first or second in terms of
index results. Notably, STDACN outperforms newer models like EVOLVE-GCN, FCRNN, AC-
GRN, PatchTST, and TimeMixer due to its multi-layer time recursive gating structure, integrating
dynamic convolution kernels and adaptive weight generation to capture temporal dynamics effec-
tively, ideal for non-stationary spatiotemporal sequences. Its dynamic graph convolution module
and adaptive spatial calibration parameters enhance dynamic information extraction, surpassing tra-
ditional GCN’s static limitations, and optimize efficiency, stability, and overall performance through
improved temporal-spatial interaction.

3.3 HYPERPARAMETER STUDY

This section investigates crucial parameters in the experiment, including temporal recursion level,
maximum neighbor link number, and hidden dimension of spatial feature recognition. These param-
eters play a pivotal role in temporal dimension recognition and spatial feature extraction, influencing
the model’s innovation level and predictive performance enhancements.

A. Steps Of Time Recursion Experiment. The recursive order K of gnConv from formula (1)
is identified as a key hyperparameter affecting gradient updates in the recursive model. The larger
K may complicate updates, while the smaller K could hinder efficient temporal interaction, raising
the question of its impact. In determining the optimal recursion order K, we evaluated model
performance on two datasets with input and output lengths ranging from 3 to 12 steps. As shown
in Table 2, analysis indicates K = 2 yields the highest performance, highlighting that a double-
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layer time convolution, as in TCN, boosts the model’s ability to capture temporal dynamics and
enhance feature extraction for complex patterns in STDACN. However, excessive recursive layers
may increase computational overhead and overfitting risks. Thus, two layers strike the optimal
balance between accuracy and stability in predictive modeling.

Table 2: Seps of time recursion Experiment on METR-LA, Solar across 3 to 12 horizons
Dataset Horizon MSE MAE

Layers 1 2 3 4 1 2 3 4

METR

3 21.0887 20.8447 21.1404 20.9793 2.4875 2.4735 2.4873 2.4846
4 23.5862 23.2015 23.7405 23.5004 2.5937 2.5805 2.6037 2.5868
5 25.8116 25.8001 26.1318 26.4090 2.6826 2.6760 2.6925 2.6949
6 28.1393 27.9413 28.2526 28.6147 2.7708 2.7276 2.7667 2.7738
7 30.1345 30.7863 30.2364 30.8449 2.8275 2.8589 2.8396 2.8631
8 32.4366 32.1729 32.9769 32.5877 2.9105 2.8980 2.9070 2.9192
9 34.2635 34.1478 34.8145 34.1920 2.9786 2.9684 2.9862 2.9753
10 36.0550 35.1417 35.2847 36.5490 3.0318 3.0242 3.0264 3.0308
11 37.1137 36.6709 37.6002 36.8220 3.0749 3.0265 3.1005 3.0622
12 39.0394 38.0798 39.3730 38.8301 3.1227 3.1056 3.1370 3.1205

Solar

3 5.6102 5.5058 5.5758 5.5228 1.2635 1.2256 1.2461 1.2311
4 6.9606 6.8459 6.9303 6.9468 1.4329 1.4162 1.4439 1.4406
5 8.3877 8.2283 8.2853 8.4649 1.6185 1.6068 1.6145 1.6309
6 9.8233 9.4471 9.6664 9.6812 1.7792 1.7402 1.7787 1.7714
7 10.9045 10.8692 10.9611 10.9843 1.8998 1.9026 1.9198 1.9092
8 12.3331 12.3589 12.4400 12.4110 2.0532 2.0458 2.0484 2.0594
9 13.8980 13.7772 13.8023 13.7815 2.1820 2.1676 2.2020 2.1925
10 14.9697 14.9048 15.3873 15.1245 2.3037 2.2293 2.3429 2.3118
11 16.2645 16.5844 16.8956 16.6476 2.4266 2.4191 2.4119 2.4422
12 18.5231 17.7397 17.9982 18.2235 2.6193 2.5358 2.5859 2.5859

B. Maximum Neighborhood Connections. The study evaluates the model’s performance with
varying Maximum Neighborhood Connections on two datasets over 3, 6, and 12-month spans. This
parameter controls the number of neighboring nodes in the adaptive adjacency matrix, balancing
computational efficiency and node interconnection capture for graph sparsification. Table 3 shows
that 128 connections typically optimize performance, accuracy, and stability. The slight performance
variation highlights the model’s adaptability, enhancing its predictive capabilities across diverse
scenarios.

Table 3: Max. neighborhood connect steps Experiment
Dataset Horizon MSE MAE

Steps 96 112 128 144 160 96 112 128 144 160

METR
3 21.6647 22.3733 20.5581 22.1060 21.9180 2.5339 2.5506 2.3817 2.5409 2.5390
6 29.5659 29.5117 27.7909 29.8756 29.2171 2.8121 2.8351 2.6570 2.8204 2.8227

12 39.4492 39.5913 37.4338 39.9129 39.2612 3.1828 3.1659 3.0522 3.1600 3.1597

PEMS03
3 501.8891 484.5887 512.8035 511.5046 502.0468 13.8491 13.9116 13.8181 13.9070 13.8551
6 568.3179 566.3710 539.8447 553.1515 567.1391 14.4047 14.4897 14.4207 14.3259 14.4890

12 642.3393 652.3588 648.7122 653.2710 657.5727 15.2947 15.4512 15.3007 15.3178 15.3410

C. Embedding Dimensions Experiment. This section evaluates the model’s predictive perfor-
mance on two datasets using spatiotemporal feature embedding dimensions of 6, 8, 10, and 12.
Table 4 shows optimal performance at a specific dimension, highlighting its superior predictive abil-
ity. Adjusting embedding dimensions to dataset characteristics improves accuracy, emphasizing the
importance of optimization for enhanced prediction and adaptability.

Table 4: Embedding Dimensions Experiment
Dataset Horizon MSE MAE

Embed Dim 6 8 10 12 6 8 10 12

METR
3 21.9693 21.5281 20.5581 21.6883 2.5485 2.5369 2.3817 2.5390
6 39.1484 29.3826 27.7909 29.4906 2.8079 2.8143 2.6570 2.8238

12 39.1484 39.9738 37.4338 39.5605 3.1551 3.1942 3.0522 3.1735

PEMS03
3 536.7852 517.5540 512.8035 503.7646 13.9394 13.8256 13.8181 13.8957
6 580.0443 570.4965 539.8447 553.5356 14.4459 14.4269 14.4207 14.4772

12 649.3734 658.3918 648.7122 620.2323 15.3388 15.2591 15.2007 15.2849
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3.4 COMPONENT EXPERIMENTS

The component experiment results are shown in Table 5, which examine model performance across
various activation functions, convolution types, and parameters to find the best settings. Activation
functions like delta, Sigmoid, and Tanh underperform compared to the Mish function, which offers
clear advantages. We also find that higher-order gated convolution designs outperform 2D Conv,
gated Conv, and gated + 2D Conv. Additionally, adaptive dynamic graph convolution surpasses
traditional GCN variants (original, adaptive, and dynamic GCN). These results highlight STDACN’s
unique component integration, boosting prediction accuracy and robustness for complex ST-data.

Table 5: Different components performance Experiment
MSE MAE

Method Component 3 6 12 3 6 12
Activation Function Comparison

STDACN 20.5582 27.7909 37.4339 2.3817 2.6570 3.0522
δ Activation 25.9292 33.4192 43.6290 2.7994 3.0349 3.3773

Sigmoid Activation 22.1816 29.7810 39.5736 2.5651 2.8352 3.1964
Tanh Activation 21.6930 29.5346 40.0122 2.5292 2.8159 3.1628

Convolution Type Comparison
STDACN 20.5582 27.7909 37.4339 2.3817 2.6570 3.0522
2D Conv. 24.7999 33.5339 45.5572 2.7007 2.9839 3.4138

Gated Conv. 22.1050 29.1382 39.5585 2.5528 2.8185 3.1784
Gated+2D Conv. 22.5234 29.6166 39.1621 2.5923 2.8435 3.1919

Graph Convolution Comparison
STDACN 20.5582 27.7909 37.4339 2.3817 2.6570 3.0522

GCN 21.3318 28.0773 37.5429 2.5123 2.7439 3.0766
Adapt. GCN 21.7875 29.8753 38.1135 2.5558 2.8367 3.1333
Adapt. w/o β 22.1189 29.2167 39.8782 2.5472 2.8098 3.1651

3.5 ABLATION EXPERIMENTS

The ablation study assessed the impact of removing key modules—spatial self-learning matrix, tem-
poral causal convolution, spatial adaptive module, and dynamic learning coefficient—on perfor-
mance, as shown in Fig. 3 for METR-LA, PEMS-BAY, and Solar datasets across 3, 6, and 12-
step horizons. The spatial self-learning matrix updates topology dynamically, enhancing resolution,
while adaptive temporal causal convolution outperforms fixed-kernel TCNs. The spatial adaptive
module and dynamic learning coefficients in GCNs derive calibration weights β from X

(l)
dt , improv-

ing spatial dependency modeling. Results confirm each component’s critical role, especially spatial
adaptation and self-learning matrices, in enhancing ST-prediction accuracy across diverse datasets.

Figure 3: Ablation Experiments.
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3.6 EFFICIENCY EXPERIMENT

Efficiency Analysis Experiment We analyze the differences between STDACN model and other
mainstream spatiotemporal data prediction methods in terms of model size, training time, inference
time, and model accuracy. The results presented in Table 6, the method maintains the second largest
model size, while its training time and inference time are also short, only lagging behind the lighter
model, but providing the best prediction accuracy. These results prove that the model has high ef-
ficiency and optimal performance for large-scale spatiotemporal tasks, and is excellent in reasoning
speed and analysis accuracy.

Table 6: Efficiency comparison of various methods.
Methods In/Out Model size Training time Inference Time MSE MAE
TimeMixer 175,177 26.1935 62.3523 152.8255 8.7074
Crossformer 2,335,116 178.9818 6.5167 83.1203 3.6924
PatchTST 113,579 9.5499 3.5398 154.1911 8.7328
Informer Input:12 7,322,831 22.3132 0.6114 371.3622 19.8189
AutoFormer Output:12 6,842,575 24.8419 0.0311 228.2421 14.7905
DLinear 2,328 15.5330 0.0016 467.3746 13.6325
Transformer 6,534,863 16.8897 0.7171 51.676 3.5266
ACGRN 751,650 550.3586 0.0286 40.7954 3.1526
STDACN 87,858 15.3111 0.5418 37.4339 3.0522

3.7 ANTI-NOISE EXPERIMENT

This section validates STDACN’s performance under spatial noise, with Table 7 showing results for
3, 6, and 12-step predictions on METR-LA, PEMS03, and Solar datasets, comparing normal data to
20%, 60%, and 100% noise levels. METR-LA exhibits minimal error increase, PEMS03 shows no
significant degradation, while Solar data is more noise-sensitive in long-term predictions. STDACN
maintains stability with less than 5% performance loss, demonstrating the dynamic adaptive spatial
module’s effectiveness in handling noise for reliable real-world predictions.

Table 7: Anti-noise Analysis Capability Examination

Dataset Condition MSE MAE

3 6 12 3 6 12

METR-LA

100% Data 20.5581 27.7909 37.4338 2.3817 2.6570 3.0522
20% Noise 21.6851 28.9091 40.1571 2.5320 2.8005 3.1979
60% Noise 22.3113 29.4559 40.0812 2.5537 2.8213 3.1971
100% Noise 21.7943 28.9002 40.0186 2.5342 2.8089 3.2183

PEMS03

100% Data 512.8035 539.8447 648.7122 13.8181 14.4207 15.3007
20% Noise 522.8550 572.2609 687.9156 13.8074 14.4293 15.5739
60% Noise 477.7003 586.0765 692.9213 13.7968 14.5882 15.9085
100% Noise 513.0293 558.4977 647.3211 13.7266 14.3808 15.2827

Solar

100% Data 5.4933 9.2019 16.9010 1.2369 1.6599 2.2409
20% Noise 5.6141 9.4426 25.4844 1.2556 1.7246 3.1514
60% Noise 5.5416 9.2854 26.7097 1.2518 1.7133 3.2582
100% Noise 5.2492 9.5612 26.3236 1.2005 1.7448 3.1987

4 CONCLUSION AND FUTURE

The STDACN framework uses dynamic and adaptive convolutional networks, including a high-
order gated Temporal Convolutional Network (TCN) and an adaptive dynamic Graph Convolutional
Network (GCN), to effectively capture complex spatiotemporal dependencies, boosting prediction
capabilities. Its optimized hyperparameters and robust performance under noisy conditions high-
light its potential for real-world use. With a streamlined parameter count and efficient training and
inference times, STDACN is highly practical across domains. Future work could integrate mul-
timodal data (e.g., weather, social media, traffic sensors), extend frameworks for real-time edge
computing, enhance scalability for large networks, and explore advanced loss functions or attention
mechanisms to improve robustness and adaptability while addressing computational constraints and
evolving data patterns.
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A APPENDIX

A.1 RELATED WORK

Spatiotemporal prediction method based on shared convolution kernel. As shown in Fig. 1,
spatiotemporal data feature tensors include temporal, spatial, and feature dimensions, with accurate
prediction depending on effectively characterizing their relationships. Recent research mainly fo-
cuses on statistically analyzing inherent data relationships. For instance, HDL-net Bao et al. (2019)
employs a multilayer ConvLSTM for capturing temporal and spatial characteristics of shared bicycle
demand, TSTGCNZhang et al. (2021) integrates CNN and GCN for spatiotemporal attention predic-
tion, ST-HSL Li et al. (2022b) combines CNN and TCN for time series analysis, and incorporates
spatial dependence through hypergraph information maximization. Nevertheless, most methods rely
on shared convolution kernels for space-time analysis, hindering the extraction of dynamic patterns
varying with time and space.

Spatiotemporal prediction methods based on static graph structure. Many spatial relation mod-
eling methods rely on GCNKipf & Welling (2016). These methods are classified into explicit
(EX-GCN) and implicit (IM-GCN) Wang et al. (2022) based on spatial topological relation con-
struction, with EX-GCN using physical relations and IM-GCN leveraging semantic-derived implicit
relations, sparking growing research interest in IM-GCN. SLCNN Zhang et al. (2020) incorpo-
rates global and local local SLC module relationships for predicting traffic spatiotemporal data.
AGCRN Bai et al. (2020) establishes hidden spatial relationships through node attribute learning,
while Graph Wavenet Wu et al. (2019) employs an adaptive approach to learn global spatial rela-
tionships. DGCRN Li et al. (2021) dynamically generates implicit spatial relations to learn dynamic
topological relations. However, these approaches often overlook the interconnectedness between
global and local, or static and dynamic spatial topological relationships, which are crucial in practi-
cal applications.

Spatiotemporal prediction methods based on large-scale models. Integrating spatiotemporal fea-
ture learning with transformer architecture boosts prediction accuracy and robustness but faces com-
putational efficiency and power demand issues. SimMTM Dong et al. (2023) enhances time series
prediction and classification with masking and manifold learning, though multipoint aggregation
reduces efficiency. AdaMAE Bandara et al. (2023) uses adaptive masking and reinforcement learn-
ing for video classification, but iterative optimization increases costs. TimeGPT Garza et al. (2023)
excels in homodyne inference yet struggles with real-time use due to complexity. ST-LLM Liu et al.
(2024) employs high-parameter spatiotemporal embedding for dynamic system modeling. Despite
improved accuracy, these methods face resource constraints, efficiency challenges in large-scale
scenarios, and latency in real-time applications.

Dynamic spatiotemporal prediction methods. The local connectivity inherent Huang et al. (2021)
in static convolution yields translation invariance, whereas dynamic convolution enhances the per-
formance of existing convolutional models by generating new weight parameters through the dy-
namic integration of multiple convolution kernels. For instance, CondConvYang et al. (2019)
introduces a conditional parameter convolution approach that assigns a specific convolution ker-
nel parameter to each example, thereby increasing model size and capacity without compromis-
ing computational efficiency. Building upon this concept, ODConv Li et al. (2022a) extends the
one-dimensional dynamic properties of CondConv to incorporate spatial, input, and output channel
dynamics. TAdaConv Huang et al. (2021) introduces a temporal adaptive convolution algorithm tai-
lored for video comprehension. However, this multi-convolution dynamic optimization mechanism
will greatly increase the operation cost and affect the efficiency and generalization ability of the
model.

A.2 MATHEMATICAL DEFINITION

This paper aims to enhance spatiotemporal prediction accuracy using dynamic spatiotemporal con-
volution.

Definition 1 We use the spatial topological relation network as a weighted undirected graph G =
(V,E,A) to describe the structure of the space relationship, where V = {v0, · · · , vN} is N spatial

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

nodes, the adjacency matrix A ∈ RN×N is used to represent the connection strength. The G is
dynamically changing with time, which is recorded as Gt.

Definition 2 Spatiotemporal feature matrix X . The information on the spatial relationship network
G is regarded as attribute features of nodes V , which is indicated by X ∈ RF×N×T , where F is the
number of node attribute features, T represents the length of the historical time series, and N is the
number of sensor nodes.

The problem of spatiotemporal prediction is considered to predict future data Ŷ =
(x̂T+1, · · · , x̂T+τ ) from current data X = (x1, · · · , xT ). With the above definition, we should
learn the mapping function f from X to Ŷ , that is:

Ŷ = fθ(X,G), (13)

where θ is the model parameter. the real future data are Y = (xT+1, · · · , xT+τ ) and the training
process makes the distance between Ŷ and Y increasingly smaller.

A.3 SUPPLEMENTARY EXPERIMENTS

We conducted additional comparative experiments on the dataset and carried out a more comprehen-
sive performance analysis. Our model continues to demonstrate superior performance; the results
are as follows:

Table 8: Comparison Experiment on PEMS03 and PEMS04 datasets.

Method Metric PEMS03 PEMS08

15 min 30 min 1 hour 15 min 30 min 1 hour

DCRNN MSE 572.9481 ± 6.2247 674.2108 ± 5.3580 846.0167 ± 13.3477 538.2844 ± 0.8367 666.7077 ± 10.9641 1386.2029 ± 147.4780

MAE 14.2457 ± 0.0431 15.3870 ± 0.0820 17.5119 ± 0.1082 15.1848 ± 0.0504 17.0471 ± 0.1884 25.4170 ± 1.7328

CFORMER MSE 345.4315 ± 6.1329 569.8165 ± 17.9203 499.9477 ± 26.5685 750.9642 ± 4.2122 863.7393 ± 11.4401 1092.6679 ± 12.8182

MAE 12.6388 ± 0.0869 15.4411 ± 0.2115 14.7761 ± 0.2656 19.5578 ± 0.0338 20.7773 ± 0.1361 21.2692 ± 0.0795

Transformer MSE 557.4231 ± 20.9859 615.8816 ± 16.6908 725.2109 ± 6.6085 538.9656 ± 0.8856 598.6457 ± 2.3719 693.0868 ± 4.1460

MAE 13.8957 ± 0.0565 14.5521 ± 0.0406 15.8781 ± 0.0318 14.7976 ± 0.0416 15.3489 ± 0.0463 16.3003 ± 0.0616

GRUGCN MSE 526.1056 ± 1.3160 630.4568 ± 1.7699 805.1929 ± 5.1585 577.5853 ± 1.4448 690.5662 ± 1.4979 880.8742 ± 2.9947

MAE 14.5308 ± 0.0132 15.6593 ± 0.0244 17.5197 ± 0.0364 15.4032 ± 0.0207 16.7139 ± 0.0215 18.7708 ± 0.0264

EVOLVEGCN MSE 659.6220 ± 86.3013 878.9086 ± 50.3883 978.7947 ± 49.7286 679.0293 ± 3.3324 802.6686 ± 4.3030 5141.8217 ± 8253.8358

MAE 15.8614 ± 0.0620 17.1105 ± 0.0391 18.9810 ± 0.0662 16.7804 ± 0.0334 18.1757 ± 0.0440 40.5428 ± 40.1884

FCRNN MSE 1117.6096 ± 23.8709 1131.6569 ± 28.2207 1143.9044 ± 8.2393 1167.0077 ± 14.1085 1183.4153 ± 27.9255 1212.4311 ± 10.1895

MAE 18.8406 ± 0.1791 19.1202 ± 0.2217 19.3827 ± 0.0730 20.7240 ± 0.1020 21.0194 ± 0.1594 21.3018 ± 0.0615

TimeMixer MSE 580.6508 ± 22.2139 686.3181 ± 36.1629 1073.0527 ± 70.3147 598.3445 ± 21.1839 745.6439 ± 19.1338 1088.7059 ± 37.4260

MAE 14.5278 ± 0.8647 16.9218 ± 1.1092 20.5205 ± 1.2733 15.9938 ± 1.2401 17.4957 ± 1.1637 20.8164 ± 1.1143

PatchTST MSE 576.3602 ± 22.6158 614.0498 ± 30.8192 691.7393 ± 24.4209 541.7598 ± 18.3164 617.3783 ± 23.1965 764.9968 ± 29.3392

MAE 13.8834 ± 0.8174 14.3375 ± 0.9527 16.7915 ± 0.9819 15.1952 ± 1.0334 16.8763 ± 0.9171 17.7116 ± 0.9842

Informer MSE 856.0954 ± 45.2617 975.9937 ± 39.1326 1222.3432 ± 108.8122 582.4223 ± 28.4113 639.0414 ± 31.2371 667.5425 ± 22.5188

MAE 16.4171 ± 0.9177 17.8803 ± 1.1283 19.7738 ± 1.2507 15.0627 ± 0.8390 15.8433 ± 0.8274 16.1083 ± 0.7486

AutoFormer MSE 522.4533 ± 17.5178 552.8334 ± 22.0388 1878.6222 ± 187.2339 685.2832 ± 27.1372 727.3796 ± 31.5008 813.4028 ± 33.1468

MAE 13.9836 ± 0.6496 15.1984 ± 0.8172 28.8514 ± 1.3760 16.3894 ± 1.0334 17.1013 ± 0.9012 18.5997 ± 1.1331

DLinear MSE 9299.81 ± 437.52 9802.14 ± 347.21 11782.53 ± 898.10 3930.44 ± 198.72 4583.53 ± 274.51 5206.44 ± 308.92

MAE 63.5546 ± 2.9833 65.5238 ± 2.8972 76.7675 ± 5.9350 26.1485 ± 1.4807 28.9994 ± 1.8211 30.7945 ± 2.1609

ACGRN MSE 46317.02 ± 1807.21 62880.80 ± 2471.41 52807.63 ± 1847.10 119761.65 ± 2398.51 125888.52 ± 3182.92 120153.48 ± 3183.77

MAE 168.9331 ± 8.1548 203.1996 ± 13.1372 186.2947 ± 17.2339 317.3416 ± 21.6239 322.2049 ± 28.7401 303.3234 ± 19.0326

STDACN MSE 512.8035 ± 15.4352 539.8447 ± 12.6211 648.7122 ± 18.4802 528.9281 ± 2.8034 587.4261 ± 3.7328 654.0064 ± 4.4649

MAE 13.8181 ± 0.0315 14.4207 ± 0.0586 15.3007 ± 0.0529 14.7299 ± 0.0442 15.3360 ± 0.0375 16.2167 ± 0.0723
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