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Abstract

In MRI, lengthy acquisition times often cause motion artifacts. We propose a new
method, Consistent Direct Diffusion Bridge with Injection (CCDBI), which leverages diffusion-
based image priors to reconstruct MRI from undersampled k -space data. Unlike traditional
diffusion methods starting with Gaussian noise, CCDBI begins sampling from actual mea-
surements, improving accuracy by aligning with the target image. By combining informa-
tion from noisy image domain and k -space adaptively, CCDBI ensures consistency in the
Direct Diffusion Bridge (DDB), enhancing reconstruction quality. Experimental results on
IXI and OASIS-2 datasets demonstrate CCDBI’s superiority over existing algorithms.
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1. Introduction

MRI’s lengthy data acquisition poses challenges: increased motion artifacts and limited pa-
tient access, potentially delaying diagnosis. Recent studies have suggested using diffusion-
based image prior to enhance performance for imagining tasks (Chung et al., 2022). How-
ever, diffusion models face challenges in inverse problem tasks due to its slow reconstruction
and hallucination, arising from the disparity between the Gaussian prior distribution and
actual data distribution.

The Direct Diffusion Bridge (DDB) (Chung et al., 2023), a novel adaptation of standard
diffusion models, starts directly from measurements, providing a more accurate starting
point aligned with the target image. While this reduces required sampling steps significantly,
DDB still lacks data sampling consistency. To address this, CDDB (Chung et al., 2023)
has applied standard diffusion guidance yet the authors have not thoroughly assessed its
impact on DDB’s sampling process.

In this paper, we investigate the effective conditioning methods for DDB sampling algo-
rithms that utilize k-space information, aiming to avoid any potential adverse effects on the
model’s performance. We refer to this new method as Consistent Direct Diffusion Bridge
with Injection (CCDBI), Algorithm 3 and Figure 1. Our experiments on IXI and OASIS-2
datasets show that CCDBI outperforms existing algorithms.
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Figure 1: Overview of the proposed method. CCDBI utilized the pretrained DDB for it-
erative generation starting from x1 and generating x̂0 applying the proposed
approach per each iteration choosing branch to apply following chosen scheme.

Algorithm 1: CDDBI (thresbig = 0.95, thressmallIXI/OASIS
= 0.7/0.1)

Input: α,ϕ, N,y,M , thresbig/small ∈ (0, 1), ξ,λ, d0 = d1 = 1
Output: x̂0
for i = N − 1 to 0 do

1 : x̂0|i ← xi+ϕi · sθ(xi, i); z ∼ N (0, I); r ∼ U(0, 1); // x̂0 prediction at timestep i

2 : thres =

{
thresbig d0 < d1

thressmall otherwise
// Adaptive threshold based on d0 and d1

3 :if thres > r then
4 : x̂0|i ← F−1((1−M)F(x̂0) + λiy + (1− λi)MF(x̂0)) // y injection

end
5 : xi−1 ← (1− α2

i−1|i)x̂0|i + α2
i−1|i · xi + σi−1|i · z

6 :if thres ≤ r then
7 : xi−1 ← xi−1 − ξi · ∇xi∥y −M · F(x̂0|i)∥22 // DPS guidance
8 : d1 ← d0; d0 ← ∥y −M · F(x̂0|i)∥22 // Storing difference norms

end

end

2. Method

Following the approach outlined in (Chung et al., 2023), the inverse sampling algorithm
integrates DPS (Chung et al., 2022) consistency-imposing gradient steps between reverse dif-
fusion steps. A guidance term (Algoritm 3, lines 7,8) is introduced to align current timestep
predictions with the provided measurements. The guidance via ∇xi ∥y −M · F(x̂0)∥22 for
unconditional model is necessary to enforce conditional sampling.

However, DPS guidance could potentially have a negative impact on DDB, as it incor-
porates prior (measurement) information during the training process. To prevent potential
perturbations, we propose to constrain the usage of DPS. Specifically, in Algoritm 3 (line 6)
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Algorithm 2: CDDBI 2 no time separated

Input: α,ϕ, N,y,M , thresdefault ∈ (0, 1), ξ, d0 = d1 = 1
Output: x̂0
for i = N − 1 to 0 do

1 : x̂0|i ← xi+ϕi · sθ(xi, i); z ∼ N (0, I); r ∼ U(0, 1); // x̂0 prediction at timestep i

2 : thres ← thresdefault ∗ d0
d1

// thres=clamp(thres, 0.05, 0.95)
3 : λi ← thres ∗ sin(...)
4 : x̂0|i ← ((1−M)x̂0 + λiy + (1− λi)Mx̂0) // y injection
5 : xi−1 ← (1− α2

i−1|i)x̂0|i + α2
i−1|i · xi + σi−1|i · z

6 : ξi ← ξmax ∗ (1− thres) ∗ sin(...)
7 : xi−1 ← xi−1 − ξi · ∇xi∥y −M · (x̂0|i)∥22 // DPS guidance
8 : d1 ← d0; d0 ← ∥y −M · (x̂0|i)∥22 // Storing difference norms

end

Algorithm 3: CDDBI 3 no mask

Input: α,ϕ, N,y,M , thresbig/small ∈ (0, 1), ξ,λ, d0 = d1 = 1
Output: x̂0
for i = N − 1 to 0 do

1 : x̂0|i ← xi+ϕi · sθ(xi, i); z ∼ N (0, I); r ∼ U(0, 1); // x̂0 prediction at timestep i

2 : thres ← thres + 1− d0
d1

// thres=clamp(thres, 0.05, 0.95)
3 : λi ← λmax ∗ thres ∗ sin(...)
4 : x̂0|i ← (λiy + (1− λi)x̂0) // y injection
5 : xi−1 ← (1− α2

i−1|i)x̂0|i + α2
i−1|i · xi + σi−1|i · z

6 : ξi ← ξmax ∗ (1− thres) ∗ sin(...)
7 : xi−1 ← xi−1 − ξi · ∇xi∥y −A · (x̂0|i)∥22 // DPS guidance
8 : d1 ← d0; d0 ← ∥y −A · (x̂0|i)∥22 // Storing difference norms

end

thres limits DPS activity during the sampling process. To balance the constraining effect
and enhance DDB’s generation consistency, we propose to introduce a conditional mecha-
nism over known regions (mask M) in k -space, which is referred to as Consistent Direct
Diffusion Bridge with Injection (CCDBI). Our method substitute the network reconstruc-
tion of initially known regions with the original measurements (injection) via a weighted
sum between the measurement and the timestep ith masked prediction (line 4 in Algorithm
3). Note that operating only over known areas of measurement y provides local condition-
ing effect. The hyperparameter λ is a scale that determines the influence of measurement
over final prediction.

Given the contrasting characteristics of the injection and DPS parts in the sampling
process, we further propose to switch between two modes (Algorithm 3, lines 3,6) by in-
troducing an adaptive threshold, denoted as thres. Specifically, we compare the current
and previous values of ∥y −M · F(x̂0|i)∥22 and check whether the algorithm starts priori-
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Table 1: Comparison results on IXI and OASIS-2 datasets.
IXI, Mask x4

RefGan FDB DPS I2SB CDDB
Ours

(w/o Injection)
Ours

(w/o DPS)
Ours
(full)

PSNR ↑ 21.78 14.62 21.13 22.25 22.27 22.30 22.40 22.72
SSIM ↑ 0.42 0.48 0.58 0.67 0.67 0.67 0.68 0.69

OASIS-2, Mask x4

PSNR ↑ 23.77 15.13 23.23 26.72 26.74 26.77 26.86 27.06
SSIM ↑ 0.43 0.78 0.52 0.84 0.84 0.84 0.84 0.85

tizing DPS branch. If it does, we replace thressmall with thresbig (thressmall < thresbig)
(Algorithm 3 line 2), which reduces the dependency to DPS guidance.

3. Results

We compare RefineGan (Quan et al., 2018), FDB (Mirza et al., 2023), DPS (Chung et al.,
2022), I2SB (Liu et al., 2023), and CDDB (Chung et al., 2023). Table 1 shows the results
for IXI and OASIS-2 datasets. Our proposed approach demonstrates superior performance
compared to the previous sampling approaches with PSNR= 22.72 dB and SSIM= 0.68,
with improvement of 0.45 dB for PSNR and 0.02 for SSIM. For OASIS-2 dataset, our
sampling algorithm also demonstrates better results with PSNR= 27.06 dB and SSIM=
0.85, with improvement of 0.32 dB for PSNR and 0.01 for SSIM.

4. Conclusion

We introduced a new approach for MRI reconstruction and proposed a direct diffusion
bridge sampling algorithm. The key component is utilizing both k -space and image domain
information during the reconstruction process to balance perturbations caused by the DPS
algorithm over DDB sampling. Our experimental results showed that our method outper-
forms other sampling algorithms on IXI and OASIS-2 datasets by exploiting information
from two spaces. To the best of our knowledge, we are the first to analyze the efficiency of
standard diffusion-based techniques application for DDB.
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