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ABSTRACT

Disentangled representation learning remains challenging as the underlying fac-
tors of variation in the data do not naturally exist. The inherent complexity of
real-world data makes it unfeasible to exhaustively enumerate and encapsulate all
its variations within a finite set of factors. In light of this, we present Vocabu-
lary Disentangled Retrieval (VDR), a retrieval-based framework that harnesses
natural language as proxies of the underlying data variation to drive disentangled
representation learning. Our approach employs a bi-encoder model to represent
both data and natural language in a vocabulary space, enabling the model to dis-
tinguish dimensions that capture intrinsic characteristics within data through its
natural language counterpart, thus facilitating disentanglement. We extensively
assess the performance of VDR across 15 retrieval benchmark datasets, covering
text-to-text and cross-modal retrieval scenarios, as well as human evaluation. Our
experimental results compellingly demonstrate the superiority of VDR over previ-
ous bi-encoder retrievers with comparable model size and training costs, achieving
an impressive 8.7% improvement in NDCG@ 10 on the BEIR benchmark, a 5.3%
increase on MS COCO, and a 6.0% increase on Flickr30k in terms of mean recall
in the zero-shot setting. Moreover, the results from human evaluation indicate that
interpretability of our method is on par with SOTA captioning models.[ﬂ

1 INTRODUCTION

Disentangled representation learning (Bengio et al.| |2009; 2013} Higgins et al., 2017; [Chen et al.,
2018) aims to identify the underlying factors of variations within data and correlate them to distinct
units of the learned representation. Essentially, a well-disentangled representation independently
captures underlying factors that explain the data, thereby facilitating explainability, controllability,
and debugability of machine learning. However, as pointed out by Bengio et al.| (2013), a funda-
mental challenge lies in defining a set of factors that are sufficiently informative to represent the
data while remaining independent of the tasks at hand. Despite extensive research efforts spanning
several years, the journey to effectively address this challenge remains an ongoing endeavor.

Given the absence of an universal set of factors of variations behind data, supervising disentangle-
ment remains challenging. Early works (Higgins et al.,2017;|Chen et al.,2016; Kim & Mnih, [2018])
employ autoencoder framework without supervision, aiming to impose constraints on VAE (Kingma
& Welling||2013) to enhance the independence among latent factors, without explicitly defining their
meaning. These methods are later challenged by [Locatello et al.| (2019a), revealing that unsuper-
vised disentanglement is highly reliant on inductive biases, randomness, and parameter choices.
Subsequent research directions have shifted toward incorporating varying degrees of supervision.
For instance, certain research (Locatello et al.| |2019b; |Gabbay et al., |2021) explored supervising
disentanglement using a small subset of labeled data from synthetic toy datasets. These efforts often
revolve around tasks of controllable image generation, typically focusing on synthetic images (Reed
et al., 2015; |[Matthey et al., 2017) with limited explanatory factors such as object shape, color, and

'The code is available at: https://github.com/jzhoubu/VDR
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category. Nevertheless, the feasibility of applying these task-specific explanatory factors to real-
world scenarios remains constrained. Another line of research employ relational information among
data samples, such as group-wise (Locatello et al., 2020; Shakerinava et al.,[2022), pair-wise (Chen
& Batmanghelich, |2020), sequence (Bai et al., 2021} |Li et al., 2022b; Miyato et al.,|2022) and graph-
based (Ma et al., [2019; Mercatali et al., | 2022; (Wang et al.| 2022c) information, to weakly supervise
disentanglement learning. However, acquiring annotations or structured data for these methods can
pose challenges, potentially limiting their generalizability within real-world scenarios.
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Motivated by this, we present Vocabulary Dis- work. The colgr intepsity reflects the higher val-
entangled Retrieval (VDR), a simple yet effec- Ues along the dimension.

tive retrieval-based approach to drive disentan-

gled representation learning. In essence, VDR represents both data and their linguistic counterparts
within a |V|-dimensional lexical representation space, where each dimension corresponds to a token
from the vocabulary V. The value along each dimension quantifies the semantic relevance between
the input data and the corresponding tokens. By aligning the sparse representations of the data to
those of their linguistic counterparts, VDR encourages the dimension-wise disentanglement on the
lexical representations. Our methodology is thoroughly evaluated across 15 datasets, covering both
text-to-text and cross-modal retrieval, as well as human evaluations. Experimental results demon-
strate the consistent superiority of VDR over existing retrieval baselines with similar complexity,
in terms of both model size and training configurations. Furthermore, VDR achieves competitive
results when compared to more sophisticated retrieval methods that employ intricate techniques to
reach state-of-the-art performance.

In summary, our work technically improves the current lexical retriever and extends its functionality
to handle multi-modal data. We utilize this progress to drive disentangled representation learning
in the context of multi-modal data, with a primary focus on contributing to the broader field of
explainable machine learning research. Our contributions can be categorized into two aspects. From
disentangled representation learning aspects:

1. We showcase the feasibility of harnessing natural language as a source of supervision for
disentangled representation learning. Our methodology considers a task-agnostic vocabu-
lary as explanatory variables, highlighting its wide-ranging applicability and adaptability.

2. Through both human evaluations and retrieval benchmarks, we establish that the repre-
sentations learned by our methodology exhibit rational dimensional values to capture the
intrinsic characteristics of input data.

From sparse lexical retrieval aspects:

1. We pioneer the viability of embedding non-textual data into lexical representations, ex-
panding the scope of lexical retrievers to encompass multi-modal data from diverse datasets
and tasks. This extension presents distinctive challenges, which we have identified and ad-
dressed through innovative solutions.

2. Our approach demonstrates notable improvements in both text-to-text retrieval and cross-
modal retrieval. It significantly surpasses existing dense and sparse retrievers with com-
parable training cost while maintaining competitiveness with more sophisticated and ad-
vanced retrieval baselines.

3. Notably, our retriever supports nonparametric inference, eliminating the need of neural
network forwarding during inference. This enhancement results in over a 10x improvement
in efficiency while maintaining strong effectiveness, making it particularly valuable for
low-resource applications.
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2 BACKGROUND

2.1 INFORMATION RETRIEVAL

Information retrieval (Manning, [2009; |[Mitra et al., 2018 [Zhao et al., [2022) aims to find specific
targets p that fulfill certain information needs from a vast corpus based on a given query (. This is
typically achieved by utilizing the bi-encoder framework, which employs two independent encoders
to encode the query and target into vectors and measures their relevance as the inner product of their
representations:

sim(g; p) = Eq(q) - Ep(p)”™

where sim(q; p) € R is the similarity between g and p, and Eq(-), Ep(-) are query encoder and
target encoder, respectively.

Notation We use ( to indicate the textual query, while p indicates the target, which could be either
text or an image. The variable X encompasses both query and target data. Whenever we refer to
input data X, we imply that both the query and target sides undergo the same processing pipeline.

Dense Retrieval Dense retrieval (Karpukhin et al., |2020) stands as a prominent technique in re-
trieval applications, wherein the encoder embed the input X into a d-dimensional latent representa-
tion, i.e., Edense(x) S Rd.

Lexical Retrieval Lexical retrievers (Bai et al., [2020; Formal et al.| [2021b) encode the data into
a sparse lexical representation denoted as Ejexijcai(X) = V (X) ® G(X) where © is element-wise
multiplication. Here, V : x — RV is a weighting function that encodes input data X into a |V/|-
dimensional vector with positive values. These values signify the semantic relevance between tokens

in the vocabulary and the input X. On the other hand, G : x — {0; l}jvj is a gating function that
generates binary vector for sparsification.

2.2 DIMENSION-WISE SUPERVISION ON SPARSE REPRESENTATION

The primary goal of lexical retriever is to learn a weighted distribution on vocabulary to represent
the input data. While there is no ground truth for such distributions in nature, the dimension-wise
supervision is indirectly derived from a combination of contrastive learning and the gating function.

Consider a batch B = (q;; p;"; p; ):\121 comprising N instances. Each instance consists of a query Q,
a positive target pT, and a negative target p . The retriever training objective is based on contrastive
learning (Jaiswal et al. [2020), which aims to maximize the similarity of positive pairs, denoted
as sim(qi; p;) for all instances i in the batch, while minimize the similarity of all negative pairs,
denoted as sim(qgj; p) for all other target p in the batch except the positive one pi+. The similarity
between sparse representations can be elaborated as follows:
VI
sim(q,p) = Va(q) © Ga(q) - (Vo(p) © Gp(0)™ = Va(@)li] - Vi (p)li] - cvs(g, p) "
=1
ai(q,p) = NGo(9)li] = 1,Gp(p)[i] = 1]

where V (X)[i] and G(X)[i] refers to the i-th dimensional value within V (X) and G(X), respectively.
The notation (q; p) indicates whether both Gq4(q) and Gp(p) have activated the i-th dimensions.
In the rest of thr paper, we refer to j(q; p) = 1 as the “co-activation” on dimension i.

In essence, the co-activation (q; p) determines which dimensions should contribute to increasing
sim(q; p) whereas the contrastive objective governs whether the similarity sSim(q; p) should be max-
imized or minimized. When (q; p) = 1, the i-th dimension adds a positive term Vq(q)[i] - Vp (p)[i]
to sim(q; p). Depending on the objective, the retriever may either increase or decrease the values of
Vq(@)[i] and Vy(p)[i] accordingly for optimization. When (q; p) = 0, the mechanism fails to pro-
vide direct supervision on the i-th dimension as the sparsification prevents the dimensional values
from contributing to the contrastive objective. To summarize, the key to induce valid dimension-
wise supervision hinges on the gating function G. It should activate dimensions that effectively
represent the data, thereby enabling the co-activation (Q; p) to accurately signify the relevance
between  and p.
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3 VOCABULARY DISENTANGLED RETRIEVER

3.1 MODEL ARCHITECTURE

In summary, VDR is a sparse lexical bi-encoder framework that encode the input ibesparse
lexical representations:

E(x)= V(x) G(x) 2
The weighting functionV = Epsse fgst involves a conventional transformer-based encoder to
encode inpux into a sequence of hidden states, denoe@ag : x ! RY -, and a disentanglement
(DST) head to transform these latent states into a lexical representation, denbigd: & - !
RIVi, L indicates the number of patches for images or number of tokens for text.

Vocabulary We adopt the vocabulary from the BERT (Devlin ef [al., 2019) tokenizer and discard
the unused tokens, resulting in a vocabulrwith a size offVj=29522. Upon analysis employing
the PyEncharﬁ]library, we nd that more than 20,000 of these tokens are accurately spelled. This
observation indicates that most of the tokens can serve as interpretable 1-gram concepts.

Base Encoder The base encodeBpase : X | RY L transform input data into sequencesdef
dimensional hidden states. For text input, we employ a pre-trained BERT based model as the base
encoder. For image input, we use ViT-B/32 architecture (Dosovitskiy et al., 2020) and train from
scratch.

Disentanglement (DST) Head The disentanglement head procdss, : RY - | RIVi| involves

several steps. To begin, a layer normalization is applied to the output hidden states. Then, these hid-
den states are projected if¥j-dimensional representations using a linear projection layer denoted
asW : RY! RV, Subsequently, aglulp activation is employed to transform the representation
into positive values. Thelulp activation is de ned as:

x+1 ifx>=0

elulp(x) = « otherwise

(3)

Last, following/Formal et al.[ (2021a), a max pooling is employed to aggregate the ne-grained
(token or patch) representations into a global representation, transforming the representation from
RIVi L toRIVI,

Gating Function Our gating functiorG activates the dimensions corresponding to the tokens that
exist inx along with the topgk dimensions ofV (x). These topk dimensions encompass tokens
that not present irx, which can be viewed as an expansiorxobased on the learned weighting

distribution.
1 if topx(V(x))[i] =1 orbow(x)[i]=1
0 else

G(x)[i] = (4)

Here,top, (V (x)) is a binary vector that indicates dimensions possessing lgngest values within
V (x), and bow(x) is a bag-of-words representation »f Speci cally for non-textual data,
bow(x)[i]=0 foralli.

3.2 MODEL TRAINING

The main component of our loss function is a symmetric cross-entropy (SCE) loss, de ned as fol-

lows:
L= | exp(sim (gi;p; )= ) exp(sim (p; ;0i)= )
= 0g P - + - log P N - +
=1 exp(sim (gi;p; )= )+exp( sim (gi;p; )= ) =1 exp(sim (p; ;qgj)=) (5)
|- L ¢ L [ — {z }

q:to-p p-to-q
where is a temperature parameter.

The nal loss comprises two term. The rst term applies SCE los¥§td) Gq(a) andV,y(p).

The second term involves the SCE loss between the nonparametric query represbotgipand

Vp(p). The nal loss is computed as the sum of these two terms. Further information can be found
in Figure[2. The upcoming section will delve into the rationale behind this loss design.

2https://pyenchant.github.io/pyenchant/
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Figure 2: Left: training and inference pipeline of VDR. Right: pseudo code for training VDR.

3.3 EXTENDING TO CROSSMODAL SCENARIOS

Lexical retrievers largely rely on pre-trained masked language models (MLM) (Devlin et al., 2019;
Sanh et al., 2019) which undergo pre-training tasks to output probability distributions over vocabu-
lary to predict masked tokens within a given context. This process establishes a robust basis for the
initial weighting and gating distributions of a lexical retriever. As a result, the co-activati@n p)

can effectively capture the relevance betwgemdp, and the learning process will gradually shape
more rational distributions. However, challenges arise in cross-modal scenarios, where the image
encoder and its projection layer need to be trained from scratch. In such cases, random weighting
and gating distributions are introduced on the image side, leading to biased co-activation. Unfor-
tunately, this bias tends to persist and even amplify during the training process, as weighting and
gating distributions are often mutually dependent.

In Appendix C, we empirically measure the dependency of lexical retriever on MLM by initializ-
ing its projection layer within the DST head. The results demonstrate that once this is done, our
model struggles to converge and becomes non-functional. Below we delve into a comprehensive
exploration of these challenges and propose effective solutions to address them.

(a) Activation amount. Previous lexical retrievers utilizReLU activation onV (x) to introduce
sparsity. While theV (x) on image side is randomly initialized, thiReLU based gating produce
uncontrollable amount of activation which will bias the learning. Speci cally, an excessive nhumber
of activations could lead to co-activation on irrelevant dimensions while inadequate activation results
in less effective learning, ultimately leading to suboptimal learning outcomes.

elulp activation with top-k sparsi cation. Instead ofReLU, we adopt a combination @flulp
activation with topk sparsi cation to ensure a deterministic number of activations. Moreover, dur-
ing training, we fully activaté/,(p) while sparsifyV,(0), establishing a lower bound on the amount
of co-activations for effective learning. This design also allows for a exible trade-off between
effectiveness and ef ciency downstream by adjusting the activation amount.

(b) Bias from co-activated dimensions. Lexical retrievers have the capability to expand their se-
mantic understanding by activating dimensions beyond the tokens presented in the input. However,
this expansion can occasionally lead to unintended co-activations occurring in irrelevant dimensions,
potentially introducing bias into the learning process. We refer to this situation(gsp = 1

while thei-th token inV fails to re ect the relevance betweenandp. This issue becomes more
pronounced when combined with the inherent randomness introduc®g(py. Once this phe-
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nomenon takes place, recti cation becomes challenging, and the bias often ampli es as weighting
and gating distributions are often mutually dependent.

Nonparametric entry.  To mitigate challenge (b), we introduce a nonparametric entry in loss com-
putation. This entry uses bag-of-word vectors for queries, denotgidds; p) = bow(q) V,(p) =

27 (9) Vp(p)[i], whereT (g) is the set of tokens within. This loss term compelg,(p) to con-
centrate on the tokens mpwithout expansion, thereby preventing the irrelevant dimensions from
possessing excessively large values.

(c) Bias from inactive dimensions. Another challenge arises from dimensions that remain inac-
tive throughout the training process. This situation commonly arises with infrequent tokens and
cross-lingual tokens. On the image side, these dimensions might exhibit substantial values during
random initialization, and persist due to the lack of direct supervision.TI(Bt) denote the di-
mensions activated b§,(q) for all g in batchB, the supervision only cover dimensions within
T(B) V while the remaining dimensions MnT (B) lack direct supervision as they do not ex-
plicitly contribute to the contrastive objective. Although some level of control is exerted through the
normalization orV (x), empirical evidence suggests that this is not suf ciently effective.

Contrastive (CTS) mask. We propose the design of contrastive mask to alleviate issue (c). Specif-
ically, the contrastive mask distributes those neglected dimensions to the in-batch instances. For each

g from the batclB, we enforceG (g ) to activaté% dimensions from the s&tnT (B), while
concurrently deactivating them @, (p; ). This will involve these dimensions into the computation
of similarity of negative pairsim (¢ ; p) for all p 6 pj+ while cancel their contribution to the posi-

tive pairssim (g ; pj* ). Through this approach, VDR introduces dimension-wise supervision across
the entireV space, thereby facilitating a stable and reliable disentanglement learning process.

4 EXPERIMENTAL SETUP

We conduct two groups of experiments for text-to-text and cross-modal retrieval scenarios, referred
to as VDR, and VDR, respectively.

4,1 DATASETS

Text-to-text. we train VDR,; on MS MARCO passage ranking dataset (Bajaj et al., 2016) which
comprises approximately 8.8 million passages and around 500 thousand queries. We conduct zero-
shot evaluations on 12 datasets from the BEIR benchmark (Thakur et al., 2021), which are widely
used across previous papers.

Cross-modal.we utilize the mid-scale YFCC15M dataset introduced by DeCLIP (Cui et al., 2022),
containing 15 million image-caption pairs for training. Our evaluation spans ImageNet, COCO
Captions (Chen et al., 2015), and Flickr30k (Plummer et al., 2015) datasets.

4.2 IMPLEMENTATION DETAILS

Our experimental settings and training con guration follow DPR under text-to-text scenarios and
CLIP under cross-modal scenarios. We use AdamW optimizer (Loshchilov & Hutter, 2018) with a
learning rate that linearly increases in the rst epoch and then gradually decays. All of our models
are trained on NVIDIA V100 GPUs with 32GB memory.

Text-to-text. We train VDRy; for 20 epochs with a batch size of 256 and a learning rate of 2e-5.
Each query is paired with one negative passage provided by the MS MARCO dataset during the
training. We use tied embedding and do not incorporate contrastive masking in textual retrieval.

Cross-modal.We train VDR, for 20 epochs with a batch size of 4096 and a learning rate of 2e-4.
The input resolution of the image encoder is 224 x 224, and the max sequence length of the text
encoder is 77. We initialize the learnable temperature parameter to 0.07, adopt the same prompt
engineering and ensembling techniques as CLIP for ImageNet.

4.3 BEVALUATION

Our model offers two inference modes based on how the quisryepresented?arametric infer-

ence denoted as VDR, follows the conventional lexical retrieval pipelinEfg) = Vy(aq) Ggq(0).

The optimal level of sparsity is determined through grid search, involving the variation of activation
amount across diverse taskdonparametric inference, referred to as VDR, employs a normal-

ized bag-of-words vector for query representation, Eg(g) = bow(q). For both inference modes,
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we adhere to the conventional pipeline to empathereE,(p) = Vp(p) Gp(p). For fair compar-

ison, we sek = din all of our gating function, wherd = 768 for text-to-text andd = 512 for
cross-modal scenarios, which is the dimensions of the latent representation from the dense retriever
baselines. We evaluate the disentanglement quality from two aspect:

External aspect whether the disentangled representation of the natural language counterpart can
identify and retrieve the corresponding data among the vast pool of candidates. We adhere conven-
tional retrieval benchmark (85) to assess this aspect.

Internal aspect whether the dimensional values can effectively explain the input data. Given the
absence of a de nitive ground truth for this evaluation, we devise an indirect assessment method. In
the retrieval benchmark, we gauge the retrieval accuracy of V.ORor cross-modal retrieval, we
additionally supplement our evaluation with case studies (86.2) and human assessments (§6.2).

4.4 BASELINES

Text-to-text. We compare VDR; to several primary and advanced baselines. The primary base-
lines include BM25, SPLADE-max (Formal et al., 2021a), and DPR (Karpukhin et al., 2020). No-
tably, DPR and SPLADE have similar model sizes and training settings compared to our methods.
The advanced retrieval baselines, include ANCE (Xiong et al., 2020), Uni eR (Shen et al., 2022b),
Contriever (Izacard et al., 2021), SimLM (Wang et al., 2022a), MASTER (Zhou et al., 2022), Retro-
MAE (Liu & Shao, 2022), LexMAE (Shen et al., 2022a), and E5 (Wang et al., 2022b). These
advanced baselines incorporate sophisticated techniques such as retrieval-oriented pre-training, spe-
cialized negative sampling, knowledge distillation, and access Wikipedia data during training. These
additional techniques, while promising, often introduce considerable computational overhead and
manual tuning efforts. More details can be found in Appendix J. Due to resource constraints, we
will leave them for future work.

Cross-modal.We compare VDR, primarily against CLIP (Radford et al., 2021), CLIP-BERT, and
with advanced baselines SLIP (Mu et al., 2022), FILIP (Yao et al., 2021), DeCLIP (Li et al., 2021),
and ProtoCLIP (Chen et al., 2022). Speci cally, SLIP, DeCLIP, and ProtoCLIP incorporate within-
modal supervision, which is known to be bene cial but computationally expensive (Andonian et al.,
2022; Geng et al., 2023). FILIP leverages the ner-grained alignment between image patches and
textual tokens. CLIP-BERT is a variant of CLIP that uses BERT as the text encoder, with a similar
model size and training setting to us.

5 EXPERIMENTS
5.1 TEXT-TO-TEXT RETRIEVAL

Model BM25 SPLADE YDPR YVDRy, YVDRp: | ANCE UnieR Contriever SimLM MASTER RetroMAE LexMAE Efse
Retrieval Pre-training 8 4 4 4 4

Special Negatives 8 4 4 4 4 4 4
Distillation 8 4 4 4 4
Wikipedia Access 8 4 4 4 4 4

ArguAna 315 43.9 40.8 488 48.6 415 39.0 44.6 421 39.5 43.3 50.0 51.4
Climate-FEVER 21.3 19.9 16.2 18.1 17.6 19.8 175 237 16.3 215 23.2 21.9 15.4
DBPedia 313 36.6 30.4 37.6 39.0 28.1 40.6 41.3 34.5 39.9 39.0 42.4 41.0
FEVER 75.3 73.0 63.8 74.8 74.0 66.9 69.6 75.8 65.7 69.2 77.4 80.0 58.2
FiQA 23.6 28.7 237 293 28.8 29.5 31.1 32.9 29.2 32.8 31.6 35.2 36.4
HotpotQA 60.3 63.6 452 68.4 65.5 45.6 66.1 63.8 58.1 58.9 63.5 71.6 62.2
NFCorpus 325 313 26.1 327 330 23.7 32.9 32.8 32.3 33.0 30.8 34.7 36.6
NQ 32.9 46.9 43.2 45.8 47.2 44.6 51.4 49.8 47.7 51.6 51.8 56.2 60.0
SCIDOCS 15.8 145 10.9 15.4 153 12.2 15.0 16.5 14.5 14.1 15.0 15.9 19.0
SciFact 66.5 62.8 474 67.6 67.3 50.7 68.6 67.7 58.8 63.7 65.3 717 73.1
TREC-COVID 65.6 67.3 60.1 69.0 67.8 65.4 715 59.6 63.7 62.0 77.2 76.3 79.6
Touche-2020 36.7 20.1 22.1 27.7 29.8 28.4 30.2 23.0 29.2 32.0 23.7 29.0 28.3
Avg. 411 424 358 44.6 445 38.0 445 443 44.4 431 451 48.7 46.8
Avg. (w/o NQ) - - - 44.5 44.3 - - 43.8 40.4 42.4 44.5 - 45.6

Table 1: Text-to-text retrieval results on BEIR benchmark (NDCG@ 30)our implementation.
Bold: the best among primary baselines.

Overall performance. Table 1 presents a effectiveness comparison of different approaches on the
BEIR benchmark in a zero-shot scenario. Notably, \ifpRutperforms both DPR and SPLADE

by a signi cant margin, while maintaining nearly identical model sizes and training con gurations.
When compared to advanced baseline methods, ¥ Débnsistently outperforms the majority of

them, without relying on sophisticated and computationally expensive techniques. It's worth noting
that these techniques are orthogonal to the retrieval design and can be seamlessly integrated with
our model to further enhance its effectiveness. This underscores the effectiveness of our proposed
architectural design in text-to-text retrieval scenarios, even though it was initially designed to ad-
dress challenges in cross-modal situations. The robust zero-shot performance exhibited by VDR
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highlights its resilience and versatility, making it a strong foundation with the potential to bene t a
wide range of applications.

Remarkable effectiveness and ef ciency of nonparametric inference.lt is worth noting that

VDR, , which use binary bag-of-words query representations, surpasses the majority of baselines.
This observation provides two essential insights. Firstly, our model excels in disentangling textual
data, allowing the binary query representation to match the representation of its target from a vast
pool of candidates, thereby delivering promising retriever accuracy. Secondly, its success under-
scores the nature of the current retrieval tasks, where term-based expansion and overlap play pivotal
roles. Itis worth highlighting that VDR, does not need any neural network forwarding at inference
time, thus signi cantly improving retrieval speed. In §6.3, we show that \(jpRRan achieve over

10x ef ciency compared to dense retrieval, making it an optimal choice under low-resource settings.

5.2 CROSSMODAL RETRIEVAL

MSCOCO Flickr30k

Model ImageNet image-to-text text-to-image image-to-text text-to-image

Topl Top5| R@1 R@5 R@I0 R@1 R@5 R@I0 R-m¢gan R@I R@5 R@10 R@I R@5 @10 R-mean
CLIP 328 574 | 208 439 55.7 13.0 317 42.1 32.6 349 639 75.9 234 472 58.9 50.7
YCLIP-BERT | 324 56.1| 239 478 60.3 13.6 338 45(1 374 441  71.2 80.7 278 547 65.9 57.4
YVDRem 387 636| 309 545 654 174 381 497 42.7 51.0 793 867 324 601 [f0.7 63.4
YVDREh - - - - - 11.8 28.6 38.6 - - - - 211 423 52.8 -
SLIP 33.86 586 | 27.7 526 639 182 392 510 42.1 478 765 859 323 587 688 61.7
YFILIP 39.1 644 216 467 59.0 137 317 416 357 463 744 832 307 582 B86 60.2
ProtoCLIP 32.0 - 30.2 55.1 66.5 16.9 379 49,4 427 - - - - - -
YDeCLIP 432 694| 253 512 634 166 352 454 395 513 807 885 355 63.0 |7366.3

Table 2: Cross-modal results on ImageNet, MS COCO, and Flicksd@kur implementations.

Overall performance. Table 2 presents the performance of cross-modal retrievers on the Ima-
geNet, MS COCO, and Flickr30k datasets. The results demonstrate the effectiveness of our approach
VDRm across various benchmarks. Notably, VR@Rconsistently surpasses the primary baseline
models, CLIP and CLIP-BERT, following the same training conditions. Moreover, MPd&xhibits
superior performance compared to most advanced baselines. Itis important to highlight that many of
these advanced baselines rely on multi-vector representations or intra-modal objectives, which come
at the expense of considerable computational demands during both training and inference stages.

In cross-modal scenarios, the performance of nonparametric inference,Vi® Bomewhat limited.

We attribute this to the inherent nature of images, which often contain a wealth of information not
explicitly presented in their captions. As a result, relying solely on the tokens present in queries for
matching proves to be challenging, and the incorporation of expansion becomes essential.

6 ANALYSIS

6.1 ABLATION STUDIES
We have conducted extensive ablation studies

MS COCO  Flickr30k

within cross-modal scenarios to gain a deeper ImageNet -0 " 157 TR IR

understanding of the individual components of <br,, 293 254 137 432 269

our model. In order to mitigate computational —CTS mask 252 211 119 370 224
— NP entry 26.4 244 141 426 26.2

expenses, we opted to train models for 5epochs  _ o pooling 278 222 122 374 237
using a learning rate of 5e-4. We then eval, o 3. Aplation studies of different compo-
uated the effects of removing speci c compo- ents of VDR

nents from the model. The results in Table 3 m:

show that the removal of any of these components lead to a decline in performance across all three
datasets. This highlights the positive impact of contrastive mask, nonparametric (NP) entry, and
max pooling to VDR,

6.2 INTERNAL INSPECTION OFDISENTANGLED REPRESENTATIONS

Image disentanglement. In Figure 4 (a,b), we conduct analysis of internal dimensional values
within disentangled representations. The font size within the wordcloud indicates the dimensional
values of this token in the weighting distributidt(x). From the left, we observe that the vocabulary
distribution remarkably aligns with the visual features of the image itself. On the right, red bounding
boxes highlight speci ¢ patch groups for disentanglement. In this process, we apply max pooling
only to the representations of these selected patches within the DST head. VDR effectively achieves
disentanglement among different patch groups within the same image. This is particularly evident
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Figure 4: Different approaches for internal inspection on disentangled representations.

in its ability to precisely associate separate visual concepts, such as “train” and “bay” with the
respective patches in the image. Overall, these results vividly demonstrate that the disentangled
representation generated by VDR exhibits rational dimensional values that ef ciently explain the
input data.

Retrieval reasoning. Figure 4 (c) shows the disentangled representation of the ifBg(®), cap-

tion Eq4(q), and the element-wise product of bdii(d) E,(p), which provide insight into the
retrieval process. In the example on the left, the dimensional values within the image representation
prominently capture objects present in the image, such as “book” and “cat”. On the other hand, the
text representation emphasizes contextually relevant concepts like “reading” and “sleeping”. By an-
alyzing onEq(0) Ep(p), VDR is able to quantify the individual contributions of each token to the
retrieval process. This highlights a notable achievement of VDR in enhancing the interpretability of
the retriever, enabling a clearer understanding of why certain objects are retrieved.

Human evaluation. We conducted human evaluations to compare VPR the SOTA captioning

model BLIP Li et al. (2022a) in terms of explainability. Details can be found in Appendix H. The
results indicate that VDR, achieves a satisfactory interpretation rate of 92%, outperforming BLIP,
which achieves 85%. Notably, participants express a preference for our approach over BLIP in
48% of the cases, underscoring that our method effectively elucidates input data and matches the
explainability of the leading captioning model.

6.3 RETRIEVAL EFFICIENCY

We perform retrieval using 1k queries with a cor-

pus consisting of 100k data points. We employed

inverted indexes for sparse retrieval. The detailed

experimental setup is provided in Appendix G.

We show retrieval effectiveness-ef ciency of VDR

with different inference modes in Figure G. The x-

axis is retrieval latency per query, and the y-axis

is the performance. Among the methods evalu-

ated, the nonparametric inference VDRroved to

be the most ef cient, signi cantly outperforming

parametric inference VDR. For VDR, fewer acti-

vationsk results in more sparse representations, . )
which can enhance retrieval ef ciency. Wheris Figure 5: Effectlve_ness-ef ciency compar-
less than 128, the ef ciency of VDR is comparablésons of different retrievers.

to that of dense model.

7 CONCLUSIONS

In this work, we propose VDR, a simple but effective retrieval-based disentanglement framework
that leverages natural language as a form of supervision. Our approach demonstrates that naturally
occurring linguistic counterparts of data can effectively encourage the disentanglement on a vocabu-
lary space. Extensive experiments and analysis show that VDR not only yields rational disentangled
representations but also enhances the effectiveness, ef ciency, and robustness of the retrieval system.
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A HYPERPARAMETERS

Our hyperparameter selection follows DPR for the text-to-text retrieval while CLIP for the cross-
modal retrieval. Details can be found in Table 3] below.

text-to-text

cross-modal

Batch Size

Epoch

Learning Rate
Warmup Epoch

LR Decay
Normalization
Temperature

Hard Negative

Max Activation Num
Max Seq Length (Q/P)
Transformer Width (Q/P)

256
20
2e-5
1
Linear
None
None
1
768
256/256
768/768

4096
20
2e-4
1
CosineAnnealing
L2-norm
0.07
0
512
77/49
768/768

Table 3: Hyperparameters for training VDR.

B REPRODUCTION COMPARISONS

In Figure [6] and Table {i] we present our repro-
ductions of DPR and CLIP, accompanied by re-
sults from other pertinent research papers. This
facilitates valid reproduction and fair compari-
son. Notably, our study consistently showcases
the highest levels of performance in relation to
these foundational baselines.

Figure [6| showcases our replicated DPR model,
which outperforms the versions reported in
other studies. Therefore, we present our repli-
cated baselines in main paper.

In Table |4} it’s noteworthy that UniCLIP (Lee
et al., [2022)), having undergone pre-training
on YFCCI5M with a similar configuration,
demonstrates superior outcomes. As a result,
we have chosen to adopt their outcomes for the
cross-modal retrieval aspect, with the exception
of ImageNet where we have opted to utilize our
own replicated scores.

[ Model DPR DPRY |
[ MS MARCO 17.7 317 ]
ArguAna 175  40.8
Climate-FEVER  14.8  16.2
DBPedia 263 304
FEVER 562  63.8
FiQA 112 23.7
HotpotQA 39.1 452
NFCorpus 189  26.1
NQ 474 432
SCIDOCS 7.7 10.9
SciFact 31.8 474
TREC-COVID 332 60.1
Touché-2020 13.1 221
Avg. 26.4 358

Best on 1 11

Figure 6: Reproduction of DPR from different
sources. T: ours.

TmageNet ] MSCOCO ] ] Flickr30k ]
image-to-text text-to-image image-to-text text-to-image
Topl Top5 | R@I R@5 R@I0 R@I R@5 R@I0 | R@I R@5 RE@I0 R@I R@5 R@I0
Our re-implementation based on DECLIP’s checkpoints
CLIPY | 32.80 57.35 | 1694 39.50 5094 10.75 26.19 3524 | 3470 65.00 74.10 23.60 4690 58.76
SLIPY 3357 58.60 | 17.94 4042 51.82 1122 2648 3536 | 3560 65.60 77.30 2340 4732 57.96
FILIPY | 39.16 64.35 | 21.64 46.66 59.00 13.72 31.72 41.60 | 46.30 7440 83.20 30.66 58.18 68.56
DeCLIPY | 43.24 6940 | 2534 5120 6344 1659 3524 4541 | 5130 80.70 88.50 3550 63.04 73.02
Results reported by UniCLIP

CLIP 31.3 20.8 439 557 13.0 317 427 349 639 759 234 472 58.9
SLIP 383 277 526 639 182 392 510 478 765 859 323 587 68.8
DeCLIP | 41.2 283 532 64.5 184 396 514 514 80.2 889 343 603 70.7

Table 4: Reproduction of cross-modal retrieval on ImageNet, MS COCO, and Flickr30k from dif-

ferent sources.

14



Published as a conference paper at ICLR 2024

C RELIANCE ON MASKED LANGUAGE MODEL

In this section, we empirically validate the reliance of lexical retriever on the pre-trained masked
language models (MLM).

We adhere to the same training pipeline of our approach, while only initializing the linear projection
within the DST head of the p encoder and training it from scratch. This configuration is denoted as
VDR,;0j. Additionally, we incorporate BERT-based models as a lexical retrieval baseline, without
undergoing further fine-tuning, denoted as BERT}.«. We present the training result below.

Model | Epoch | NDCGIO@BEIR MRRIO@MARCO
BERT,., | 0 20.1 289

VDR T 389 284

VDR 2 423 30.8

VDR 3 429 31.7

VDR 4 434 32.4

VDR 5 437 32.8
VDR | 5 02 0

Table 5: Different setup of lexical retrievers trained in the text-to-text retrieval scenarios.

Our experimental findings show that when we employ the pre-trained MLM projection, which inher-
ently offers a rational weighting distribution from the outset, VDR reliably improve the effectiveness
and achieve best results within 5 training epochs. Conversely, when starting from scratch with the
projection layer on p side, even with substantial training efforts, the VDR,,,; setup encounters chal-
lenges in attaining effective convergence. This obstacle compromises the final outcomes and makes
it even fall behind the performance of the untrained baseline, BERT}.,. These findings support and
validate the insights presented in Section[3.3]

Moreover, our observations and experiments in cross-modal retrieval suggest that achieving an ef-
fective transition from a scratch-initialized distribution to a rational one necessitates a substantial
amount of training data, a large batch size, and the inclusion of the contrasting mask.

D IMPACT OF NONPARAMETRIC ENTRY

We emphasize the essential role of incorporat-
ing the nonparametric entry during training to
achieve disentanglement in our model. With- o3
out it, our model tended to assign excessive oo °
values to overly common or rare tokens. We
conjecture this issue arises from the interdepen-

dence between the gating and weighting func- :
tions, which amplifies biases rather than miti- :

gating them.

To validate this hypothesis, we examine the em-
beddings produced by our model with and with-
out the nonparametric entry. In Figure[7} we la- Sl v A v
bel our model in cross-modal setting with non- -

parametric entry as VDR (w/ BoW), without it
as VDR (w/o BoW), and a BERT-based model
as BERT-text. We take these encoders to em-
bed text and images from the MS COCO test set
into lexical representations, calculating average
values for each token within these representa-
tions. We then visualize the top 100 tokens us- .
ing word clouds and the distributions of their Figure 7: Box plot (top) and word cloud (bottom)
values using box plots. Our observations re- of the vocabulary distributions on MS COCO.
veal that image representations from VDR (w/o

BoW) have sharper distributions, characterized

]

t

15



Published as a conference paper at ICLR 2024

by higher upper bounds and mean values in L2 norm space. However, the top 100 tokens in word
cloud of VDR (w/o BoW) lacks meaningfulness and fails to convey distinct information. This
implies that the omission of the nonparametric input in VDR amplifies biases, causing specific
meaningless tokens to be assigned excessive values, thereby consistently dominating the matching
outcome.

We term the above phenomenon as “disentanglement laziness”. Simply put, the learning process
avoids the “hard work” of properly disentangling and instead takes the easy route for optimization,
degrading to a entangled fashion. In bi-encoder architecture, we have noticed that relying solely on
parametric components causes the model to consistently assign high values to tokens that are either
frequently or never encountered, resulting in entangled learning within a subset of the vocabulary
space. In doing so, the model seemingly “escapes” from the rigorous work of disentanglement,
reducing the problem into an optimization within an entangled representation space. Interestingly,
this phenomenon is not exclusive to the research of disentangled representation learning. It is also
observed in other research, like the Mixture of Experts (MoE), where it is referred to as “load im-
balance”. This term alludes to the model’s tendency to consistently favor certain experts, thereby
causing an unequal distribution of learning and optimization channels. In addressing the observed
issue in our experiments, we enhance the disentanglement process by integrating the nonparamet-
ric entry, which provides stable and straightforward supervision of the data, independent of any
influences from the entangled parametric model.

E SPARSITY V.S. EFFECTIVENESS

E.1 AMOUNTS OF ACTIVATION

We present the effectiveness of VDR with different amounts of activation k in Table[6|and Table

‘Word Length VDR
Model }W‘VDR ‘ 0 32 64 128 256 768‘

[ MS MARCO [ - - [ 338 [33.0 341 344 345 344 343
ArguAna 193 167 | 488 | 486 273 417 470 472 465
Climate-FEVER 20 85 181 | 172 17.1 176 172 172 169
DBPedia 5 50 37.6 | 351 380 386 39.0 388 389
FEVER 8 85 748 | 7377 740 739 739 739 739
FiQA 11 132 | 293 | 281 282 288 288 286 284
HotpotQA 18 46 684 | 644 650 655 655 654 650
NFCorpus 3 232 | 327 | 325 33.0 329 329 328 325
NQ 9 79 458 | 446 458 464 469 470 472
SCIDOCS 9 176 | 154 | 148 148 150 151 152 153
SciFact 12 214 | 67.6 | 673 668 672 67.1 673 66.6
TREC-COVID 11 161 69.0 | 665 673 678 67.6 673 662
Touché-2020 7 292 | 277 | 291 290 294 295 298 294
average - - 44.6 | 435 422 437 442 442 439

Table 6: Effectiveness of VDR with varying activation amounts K. Bold denotes the overall best
result and underline denotes the best query sparsity for VDR.

MSCOCO Flickr30k

VER TmageNet image-to-text text-to-image image-to-text text-to-image
Topl Top5 | R@l R@5 R@I0 R@]I R@5 R@I0 | R@l R@5 R@I0 R@I R@5 R@I0
32 348 567 | 189 389 493 158 357 468 349 592 703 317 58.0 685
64 36.6 59.7 | 233 455 561 17.1 373 486 | 409 679 782 333 598 713
128 | 381 620 | 27.0 49.7 61.1 174 381 494 | 449 739 834 333 600 714
256 | 385 633 | 295 539 644 174 381 494 | 499 772 856 329 600 712
512 | 387 63.6 | 309 545 654 174 381 497 | 51.0 793 867 324 601 70.7

Table 7: Effectiveness of VDR with varying activation amounts K. Bold denotes the best result.

In the text-to-text scenario, the results demonstrate that the effectiveness of VDR increases as k
increases, reaching a peak and then decreasing. This suggests that by properly selecting the number
of activation units, VDR is able to achieve considerable improvement.

In the cross-modal scenario, the results demonstrate that the effectiveness of VDR increases consis-
tently as K increases in the majority of cases. This suggests that a higher number of activation units
can lead to better performance in cross-modal scenarios.
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E.2 AMOUNT OF VOCABULARY SIZE

We explore the effects of expanding the vocabulary size by switching from standard BERT encoders
to multilingual BERT (mBERT) encoders with a vocabulary size of 110k, which is 4 times larger
than that of BERT encoders. Our aim is to evaluate if a larger vocabulary and the consequent increase
in sparsity would adversely affect our representation learning approach.

DPR(mBERT) VDR(mBERT) DPR(BERT) VDR(BERT)
ArguAna 37.2 46.7 40.8 48.6
Climate-FEVER 14.6 14.7 16.2 17.6
DBPedia 313 36.4 30.4 39.0
FEVER 62.7 69.7 63.8 74.0
FiQA 21.6 275 23.7 28.8
HotpotQA 45.6 63.1 452 65.5
NFCorpus 252 333 26.1 33.0
NQ 432 438 432 472
SCIDOCs 10.7 14.3 10.9 153
SciFact 48.2 66.7 474 67.3
TREC-COVID 573 66.7 60.1 67.8
Touché-2020 21.9 277 22.1 29.8
Avg 34.9 42.6 35.8 445

Table 8: Effectiveness of DPR and VDR using BERT-based and multilingual BERT-based encoders.

Table [§] illustrates the results with increased vocabulary size. With the switch to mBERT-based
encoders, the vocabulary size grows from 30k to 110k, consequently increasing the sparsity due to
the activation of the same number of dimensions. Interestingly, there is a minor performance drop
in VDR on the BEIR benchmark, from 44.5 to 42.6, when switching to mBERT encoders. We also
observe that DPR exhibits a similar trend. Notably, VDR outperforms DPR by approximately 23%
in both scenarios, suggesting that the performance drop may not be directly linked to the larger
vocabulary size. Instead, it could arise from a mismatch between the multilingual encoder and the
predominantly English downstream retrieval tasks. This finding aligns with our earlier analysis in
Section[3.3] where we posited that pretrained masked language models provide a solid foundation for
establishing effective gating distributions. This experiment indicates that increasing the vocabulary
size or sparsity does not significantly hinder the learning process.

F CASE STUDY

Figure 8: More case study on VDR disentanglement of image.
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