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ABSTRACT

Massive samples of event sequences occur in various domains, including e-
commerce, healthcare, and finance. There are two main challenges regarding
modeling such data: methodological and computational. The methodological pe-
culiarity for event sequences is their non-uniformity and sparsity. These require-
ments make time series models unsuitable. The computational challenge arises
from a large amount of available data and the significant length of each sequence.
Thus, the problem requires complex and efficient models. Existing solutions in-
clude large recurrent and transformer neural network architectures. On top of
existing blocks, their authors introduce specific intensity functions defined at each
moment. However, due to their parametric nature, these continuous-time-aware
intensities represent only a limited class of event sequences.
We propose the COTIC method based on an efficient continuous convolution neu-
ral network suitable for the non-uniform occurrence of events in time. In COTIC,
dilations and multi-layer architecture efficiently handle long-term dependencies
between events. Furthermore, the model provides intensity dynamics in continu-
ous time — including self-excitement encountered in practice. Being the first to
introduce multiple continuous convolution layers that can handle arbitrary com-
plex dependencies via MLP-modeled convolutions, we obtain these properties.
When benchmarked against existing models, the COTIC consistently outper-
forms them, especially in predicting the next event time and type: it has the
average rank of 2.125 vs. 3.688 of the primal competitor. Additionally, its
ability to produce effective embeddings showcases its potential for a range of
downstream tasks, as produced embeddings are sufficient to solve various down-
stream tasks, e.g., 0.459 vs. 0.452 baseline accuracy on a 4-label age bin pre-
diction for transactions dataset. The code of the proposed method is available at
https://anonymous.4open.science/r/COTIC-F47D/README.md

Table 1: Ranks for methods averaged over eight datasets for the problem of next event time and
type predictions. A lower rank means that the method is closer to the top-1 method (with the rank
one) for a problem. The best results are highlighted with bold font, and the second-best results are
underlined.

Method Next event time
MAE, rank

Next event type
Accuracy, rank

Mean
rank

RMTPP Du et al. (2016) 3.625 6.500 5.063
Neural Hawkes Mei & Eisner (2017b) 4.125 3.250 3.688
ODETPP Chen et al. (2021) 7.000 6.000 6.500
THP Zuo et al. (2020) 7.125 5.250 6.188
THP2SAHP Zhang et al. (2020) 6.750 5.000 5.875
Attentive NHP Yang et al. (2022) 3.625 4.750 4.188
WaveNet van den Oord et al. (2016) 4.875 3.000 3.938
CCNN Shi et al. (2021) 5.750 8.625 7.188
COTIC (ours) 2.125 2.625 2.375
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1 INTRODUCTION

A lot of real-world processes are event sequences: bank transactions Wei et al. (2013), purchases at a
store Lysenko et al. (2019), network traffic Saha et al. (2019), series of messages, social media posts,
views of TV programs, flows of customers, etc. Consequently, there is a growing need to model
such data, e.g., one may be interested in predicting the banking activity of a particular customer or
estimating the timing of the next purchase made at an online marketplace. This knowledge provides
new perspectives for a business: for instance, a churn prediction Berger & Kompan (2019). Timely
churn prediction straightforwardly leads to more precise and effective marketing campaigns.

For all domains and problems, we can say that the next event occurs at a random time after a previous
event. So, a whole sequence is non-uniform and discrete, as we have event occurrence information
only at a finite number of time points. Moreover, the label of an event is another random variable
that can depend on the past. These non-uniformity and discreetness require specific formalism to
make modeling possible. Specifically, event sequences are realizations of temporal point processes
(TPP). The key concept for TPPs is the intensity, the expectation of the number of events of each
type observed during a small period of time. For textbook examples of TPP, the homogeneous and
non-homogeneous Poisson processes Lawless (1987); Kingman (1992), the intensity of the process
is independent of past events. It is not the case for the spread of a pandemic or a history of orders.
A more realistic model is a self-exciting TPP or the Hawkes process Hawkes (1971). For them,
previous events influence the future intensity of the event flow.

The diversity of available data makes the event sequence modeling complex and requires models
to be general, as different cases have their peculiarities. Constant advances in deep learning make
researchers look for neural network architectures to model event sequences. LSTM-like architec-
tures were the first to be proposed in Mei & Eisner (2017b); Du et al. (2016). Different approach,
that combined Neural Jump ODEs with Continuous Normalizing Flows, was proposed in Chen
et al. (2021). These methods were accompanied by later Transformer-based architecture in Zuo
et al. (2020); Yang et al. (2022). The study Shi et al. (2021) utilized convolutional neural networks
(CNNs) for non-uniform time series, while showing sub-optimal performance to model event se-
quences due to usage of a single continuous convolution layer and manual grid allocation for further
convolutional layers. While making decent progress, all these models have an important limitation:
they recover the intensity function within a fixed exponential or semi-linear parametric family and
utilize it to derive the following event type or the next event time prediction.

In this work, we advance the idea of exploring a class of modeled event sequences by proposing
a COntinuous-TIme Convolutional neural network model (COTIC). It constructs representations
of a temporal point process, predicts its intensity, and solves other downstream problems. Our
contributions are the following:

• Our novel COTIC, a deep one-dimensional continuous CNN, processes event sequences,
that has non-uniform in time structure. Due to modeling of a convolution with a MLP
of time and similar innovation of the output layer, the model abstains from the usage of
a closed-form parametric assumption for intensity. Thus, we are able to model a large
variety of possible dependencies between events. See Figure 2 for the constructed intensity
function example.

• In benchmark tests on eight datasets, our method outperforms existing approaches — in-
cluding Transformers, RNNs, Neural ODEs, and baseline CNNs — in classic problems of
predicting time and type of next event. Table 1 demonstrates the superiority of COTIC for
both problems. Moreover, COTIC’s training time is better than that of the nearest pursuers
with comparable performance.

• Thanks to COTIC’s generative nature, it offers self-supervised representation learning ca-
pabilities. We compared the embedding quality on other event sequence methods as well
as a standard time series classification approach MiniRocket Dempster et al. (2021) on the
transactions dataset for the age bin prediction. The accuracy for a logistic regression model
based on COTIC’s embeddings is superior to alternatives.
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2 RELATED WORK

We refer an interested reader for the overview of the current state of the neural network models
for modeling TPPs to the review Shchur et al. (2021). Here, we provide more details of the most
relevant papers to put our work in context.

Temporal point processes (TPPs). For a temporal point process, each point lies on a temporal
R1 axis. Consequently, there is a timestamp associated with each point. For a marked temporal
point process, we have an additional mark or a vector of features associated with each point. We
can say that the vector of features belongs to Rd Yan (2019). So, event sequences are a particular
case of realizations of marked temporal point processes. Self-exciting point processes are of specific
interest, as they assume that the future intensity of events depends on history. Typically, past events
increase intensity in the future — for example, it is the case for retweets in social networks Rizoiu
et al. (2017) or the spread of a virus Chiang et al. (2022).

Deep learning for TPPs. While classic machine learning succeeds in modeling complex dynamics
of event sequences Zhou et al. (2013), the introduction of deep learning leads to more adaptability
and, consequently, better results Mei & Eisner (2017a). On the contrary, the main downside of deep
learning is higher computational costs to train such models Zhuzhel et al. (2021).

A variety of deep learning architectures results in a multitude of ways to model temporal point
processes. Historically, the first papers considered different recurrent architectures like Continuous
LSTM Mei & Eisner (2017a) or RMTPP Du et al. (2016). Adaptation of transformer architectures
followed via e.g. Zuo et al. (2020); Zhang et al. (2020). The convolutional neural network has been
considered indirectly in Shi et al. (2021). Their architecture had only two layers, with only the first
one being responsible for time transformation from non-uniform to uniform, so they didn’t receive
SOTA results for TPP modeling. The papers on state-space layers Gu et al. (2022) also mention
the non-uniformity of time as one of the challenges while not providing a recipe for an efficient
non-uniform time state-space layer.

We also note that TPP-based learning happens in a self-supervised way without additional label
information, as we can get event types and event occurrence times from the data itself. However,
direct approaches for treating sequential data in a self-supervised way for time series and event
sequences based on contrastive Yue et al. (2022); Babaev et al. (2022), non-contrastive Marusov &
Zaytsev (2023) and generative strategies Kenton & Toutanova (2019) are complementary to TPPs.

Deep learning for sequential data. Within the community engaged in sequential data modeling, a
lively discussion persists regarding the most effective architecture among Transformers, Recurrent
Neural Networks, and Convolutional Neural Networks.

Transformers often dominate the discourse surrounding sequential data, given their remarkable per-
formance in Natural Language Processing. Nonetheless, it remains an open question whether Trans-
formers are optimal for, e.g., time-series modeling. Supporting their use, certain transformer-based
architectures have been designed to incorporate time-series specific characteristics, such as trend
and seasonality, as demonstrated in Wu et al. (2021). However, Transformer remains a relatively
inefficient approach with a squared complexity on the sequence length. Other counterarguments
exist, with some researchers contending that, despite the use of positional encoding, Transform-
ers’ inherent permutational-invariance could lead to a loss of crucial information, as per Zeng et al.
(2023).

Furthermore, certain studies have suggested the superiority of Convolutional Neural Networks
(CNNs) in addressing specific problems. For instance, the issue of a constrained CNN horizon
can be circumvented by implementing continuous convolutions, thereby enabling the processing of
non-uniform data as proposed by Romero et al. (2022).

Research gap. Careful examination of the domain of event sequence data can help with identifi-
cation of the best approach with respect to quality and efficiency. The main challenge for apply-
ing convolutional neural networks as models for TPPs is the non-uniformity and discreteness of
corresponding sequences. Instead of learning values at discrete points of a convolutional kernel,
we should learn the kernel as a whole. Recent results demonstrate that this scenario is admissi-
ble Romero et al. (2021) for multivariate time series and non-uniform observations for time se-
ries Shi et al. (2021). However, due to these models’ constraints discussed above they don’t suit for
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Figure 1: Scheme of the forward pass for the
continuous-time convolutional layer used in the
COTIC model. We present output at a single point in
time t3.
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Figure 2: The intensity function recon-
structed by the COTIC model for a se-
quence from the MIMIC dataset. We
present the sum of intensities correspond-
ing to all of the 85 event types.

high quality TPP modeling. We aim to produce a model based on a convolutional architecture that
would be accurate and fast both in training and inference, handling long-term dependencies, and
solving various downstream tasks via produced embeddings.

3 METHODS

In this section, we describe our Continuous-time Convolutions (COTIC) model and highlight its
differences from other neural models for the processing of event sequence data.

3.1 PRELIMINARIES

Notation Suppose we observe n sequences in a sample D = {Si}ni=1. Each sequence consists of
tuples Si = {(tij ,mij)}Ti

j=1, where tij ∈ [0, Ti] are event times, such that for k > j tik ≥ tjk,
and mij ∈ Rd denote event type marks for the i-th sequence in a dataset. If we have a discrete set
of possible marks mij ∈ {1, . . . ,M}, we further work with an embedding of each mark instead.
We use the notation S = {(tj ,mj)}Tj=1 when an arbitrary sequence from the dataset is meant. For
the current event number k, we denote the observation’s history as S1:k = {(tj ,mj)}kj=1 for k first
events and S<t for all events with ti < t.

Intensity function and likelihood When dealing with event sequences, there is a question: how
to process the non-uniform nature of time lags between events? One of the approaches is to use the
intensity function.

One can consider return time τi = ti − ti−1 and event type m as random variables. Then, one can
introduce its conditional probability density function (PDF) f(t,m), which shows the probability
of the event of type m happening in an infinitely small time interval, and the conditional Survival
Function S(t), equal to the probability that the event of arbitrary type has not happened till the
moment of time t:

f(t = ti,m = mi|S1:i−1) = lim
∆t→+0

P (t < ti ≤ t+∆t, m = mi|S1:i−1)

∆t
, (1)

S(t) = P (τi ≥ t|S1:i−1) =

∫ ∞

t

f(z)dz. (2)

We denote the conditional intensity function of the sequence:

λm(t) = E
[
dNm(t)

dt

]
=

f(t,m|S<t)

S(t)
, (3)

where Nm(t) = #{tj : tj < t|mj = m} is the number of events of type m occurred before time t.
The main benefit of using the intensity function instead of the PDF is that it has fewer restrictions.
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The intensity has to be non-negative and should lay in the space of L1 functions. There is no need
to check that it integrates to 1 as it would be if we were to work with a PDF.

At the same time, it is easy to express the likelihood in terms of the intensity function. For a vector
parametric intensity function λ(t|θ) = {λm(t|θ)}Mm=1 with the vector of parameters θ, the negative
log-likelihood for an event sequence S1:k with no event in the interval (tk, T ] is:

Lλ(θ) =

∫ T

0

∑
m

λm(t|θ)dt−
k∑

j=1

log λmj
(tj |θ). (4)

Once the intensity λ(t|θ) is defined, it is possible to optimize this model via likelihood maximiza-
tion. As the considered one-dimensional integral doesn’t have an analytical form, its Monte-Carlo
estimator is used instead.

3.2 PROBLEM STATEMENTS

For an event sequence, we consider intensity function reconstruction as the main problem. To check
the quality of it, we consider two tasks on top of it: return time and event type prediction.

Return time prediction The goal is to predict the time difference ∆tk+1 = tk+1 − tk from the
current event k to the next one tk+1 using S1:k.

Event type prediction In our set-up, events belong to M distinct types. Thus, we aim to predict the
type of the next event mk+1 using S1:k.

3.3 CONTINUOUS CONVOLUTION OF EVENT SEQUENCES

As the time intervals [tj , tj+1] are not necessarily equal to each other, the considered time series are
non-uniform. Standard 1-dimensional CNNs are designed for equally lagged data. However, we can
extend this idea to a non-uniform case. The considered event sequence S can be rewritten in the
functional form:

m(t) =

k∑
j=1

mjδ(t− tj), (5)

where δ(·) is the Dirac delta function.

Let κ(t) : R → Rdout×d be a kernel function. In order to make the model causal and prevent peeking
into the future, let’s state κ(t) = 0, t < 0. The continuous convolution is:

y(t) = (κ ∗m)(t) =

∫ ∞

0

κ(t− τ)m(τ)dτ =

k∑
j=1

κ(t− tj)mj . (6)

The last equality holds due to the specific form of m(t) given in equation 5.

In our neural network layer, we can use the vector function of time y(t) in two ways. The first way
corresponds to our need to get y(t) at some specific point. In this case, we query y(t) at this moment
of time to have a representation. The second way corresponds to the usage of y(t) as an input to the
next convolutional layer. In this case, we limit y(t) to the set {t1, . . . , tk} obtaining a sequence of
vectors {y1, . . . ,yk} with yi = y(ti). Now we use the functional form equation 5 to have an input
to the next layer. The scheme of this continuous convolutional layer is presented in Figure 1. This
approach allows us not to lose the temporal structure for all the layers of the model and query the
embedding at any point in time.

3.4 COTIC MODEL ARCHITECTURE

Continuous one-dimensional convolution introduced by equation 6 allows us to get a new continuous
representation of an input event sequence. We parameterize the convolution kernel κ by a fully-
connected neural network and stack several such convolutions to obtain embeddings of a considered
sequence.
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The model receives embeddings at the final layer. It applies L convolution layers to the input m(t)
with non-linearities σ being the LeakyReLU activation:

hi,1:k = σ (κθL ∗ σ (. . . ∗ σ (κθ2 ∗ σ (κθ1 ∗m(t))) . . .)) .

To reduce the computational complexity on each layer, we use a limited kernel size that restricts
the number of previous points taken into account. Also, we use dilated convolution to increase the
receptive field. So, the result of the application of L convolutions layers to the sequence of events
Si,1:k is the matrix Hi,1:k that consists of embeddings for each event hij ∈ Rd. The embeddings
induce the function h(t) from equation 5.

Now we are ready to produce the intensity function λ̂(t) , expected event type m̂i,k+1, and expected
return time ∆t̂i,k+1 correspondingly via the following formulas:

λ̂(t) = softplus (Linear (σ (κθλ ∗ h(t)))) , (7)

m̂i,k+1 = MLP2 (hi,k) ,∆t̂i,k+1 = MLP1 (hi,k) , (8)

here MLPi are multi-layer perceptron prediction head networks, the estimated vector intensity λ̂(t)
has the output dimensional equal to the number of possible event types.

To sum up, once the embeddings hi of a sequence are obtained by a L-layer Continuous CNN, they
are fed into MLPs to produce the final predictions. We use one additional continuous convolution
followed by a linear layer to estimate the intensity function of the process at an arbitrary time step.

3.5 LOSS FUNCTIONS AND TRAINING PIPELINE

The proposed model is trained with a combined loss function consisting of several terms. In order
to train the convolutional part of the model, we use the negative log-likelihood Lλ(θ) equation 4
as the loss function. The prediction heads equation 8 are trained with the standard LogCosh and
CrossEntropy losses, respectively:

Ltime

(
∆t̂k+1,∆tk+1

)
= LogCosh

(
∆t̂k+1 −∆tk+1

)
=

=
(
∆t̂k+1 −∆tk+1

)
+ log

(
1 + e−2(∆t̂k+1−∆tk+1)

)
,

Ltype (m̂k+1,mk+1) = CrossEntropy (m̂k+1,mk+1) = −
K∑
l=1

m
(l)
k+1 log

exp
(
m̂

(l)
k+1

)
∑K

c=1 exp
(
m̂

(c)
k+1

) ,
where m

(l)
k+1 are the labels for the true event type and m̂

(l)
k+1 are the predicted event type scores for

the (k + 1)-th event in a sequence. Note that the loss functions above are calculated for a single
sequence. Given a batch of sequences, the losses are averaged. The resulting loss function for the
prediction head training is a weighted sum: Lheads = αLtime + βLtype.

The training pipeline for the model is the following. We first train its convolutional part with the
log-likelihood loss for N0 epochs while the prediction heads are frozen. Afterward, we continue
training the whole model jointly with the combined loss L = Lλ + Lheads, the gradient for Lheads

doesn’t go the main body of the model.

4 EXPERIMENTS

4.1 DATASETS

We employ a variety of event sequence datasets to benchmark our method against the others. Com-
prehensive statistics for these eight datasets are demonstrated in Table 2. In Appendix’s section A,
we delve deeper to obtain additional insights about each of them.

4.2 DETAILS OF COMPARISON

For all the experiments, we split the datasets into three parts (train set, test set, and validation set) in
the ratio 8 : 1 : 1. We train the models via Adam Kingma & Ba (2015) optimizer for the maximum

6



Under review as a conference paper at ICLR 2024

Table 2: Statistics of the used datasets

Dataset # of event types Mean sequence length # of sequences
Retweet 3 108.8 29000
Amazon 8 56.5 7523
IPTV 16 3225.2 302
SO 22 72.4 33165
Transactions 60 862.4 30000
Mimic 65 8.6 285
LinkedIn 82 3.1 2439
MemeTrack 4977 10.8 29696

Table 3: Return time prediction MAE ↓ results. The best result for each dataset is in bold; the
second-best model result is underlined.

Dataset RMTPP Neural Hawkes ODETPP THP THP2SAHP AttNHP WaveNet CCNN COTIC
Retweet 0.030± 0.000 0.029± 0.001 144.707± 140.205 0.043± 0.014 0.060± 0.019 0.029± 0.000 0.224± 0.021 0.138± 0.027 0.034± 0.002
Amazon − 89.320± 3.320 62381± 3338 113.470± 4.180 98.750± 8.400 347.344± 0.047 41.950± 0.600 58.900± 0.010 37.810± 2.510

IPTV 0.098± 0.001 0.099± 0.001 78003± 24645 0.402± 0.029 0.687± 0.077 0.098± 0.001 1.280± 0.680 0.111± 0.007 0.123± 0.001
SO 0.839± 0.001 0.841± 0.001 0.843± 0.001 13.480± 0.840 11.980± 0.270 0.857± 0.020 0.676± 0.008 1.000± 0.070 0.641± 0.001

Transactions 0.842± 0.001 2.072± 0.709 35.147± 59.416 1.480± 0.350 1.240± 0.060 0.839± 0.001 0.688± 0.010 0.821± 0.004 0.595± 0.006
Mimic 0.354± 0.001 0.415± 0.041 0.367± 0.007 0.584± 0.013 0.518± 0.026 0.365± 0.018 3.280± 1.140 0.555± 0.022 0.339± 0.004

LinkedIn 2.521± 0.001 2.483± 0.015 6.057± 4.371 9.890± 0.290 9.520± 0.220 2.469± 0.002 1.490± 0.020 2.560± 0.350 1.380± 0.010
MemeTrack − 46.803± 0.009 59.759± 12.409 97.770± 0.650 99.690± 8.690 46.359± 0.154 63.080± 1.460 138.470± 9.180 46.710± 0.020

# of wins 1 1 0 0 0 3 0 0 5

Table 4: Event type prediction accuracy ↑ results. The best result for each dataset is in bold; the
second-best model result is underlined.

Dataset RMTPP Neural Hawkes ODETPP THP THP2SAHP AttNHP WaveNet CCNN COTIC
Retweet 0.555± 0.010 0.605± 0.003 0.525± 0.025 0.499± 0.031 0.518± 0.022 0.578± 0.004 0.606± 0.001 0.349± 0.043 0.608± 0.002
Amazon − 0.872± 0.009 0.041± 0.008 0.331± 0.005 0.331± 0.006 0.189± 0.082 0.564± 0.005 0.095± 0.021 0.550± 0.050

IPTV 0.224± 0.016 0.774± 0.006 0.198± 0.046 0.779± 0.001 0.784± 0.000 0.430± 0.009 0.776± 0.001 0.061± 0.022 0.734± 0.026
SO 0.366± 0.117 0.431± 0.017 0.444± 0.005 0.432± 0.001 0.432± 0.001 0.327± 0.063 0.470± 0.000 0.056± 0.010 0.463± 0.001

Transactions 0.252± 0.109 0.293± 0.026 0.305± 0.018 0.315± 0.000 0.315± 0.000 0.189± 0.082 0.369± 0.011 0.017± 0.003 0.346± 0.015
Mimic 0.874± 0.034 0.930± 0.012 0.855± 0.029 0.699± 0.176 0.788± 0.067 0.893± 0.007 0.300± 0.250 0.013± 0.008 0.862± 0.029

LinkedIn 0.148± 0.002 0.255± 0.004 0.210± 0.010 0.132± 0.009 0.147± 0.008 0.278± 0.008 0.262± 0.011 0.007± 0.001 0.270± 0.020
MemeTrack − 0.117± 0.037 0.010± 0.008 0.013± 0.002 0.014± 0.001 0.051± 0.009 0.050± 0.004 0.005± 0.001 0.072± 0.008

# of wins 0 3 0 0 1 1 2 0 1

100 epochs. Among existing approaches, to compare it with COTIC, we consider top-performers
from various architectures using TPP-based RNNs (RMTPP, Neural Hawkes, ODETPP), TPP-based
transformers (THP, THP2SAHP, AttNHP) and adoption of existing CNN to the processing of non-
uniform event sequences (WaveNet, CCNN). The details of these methods are given in Appendix C
accompanied by technical details on used implementations in Appendix C.1.

4.3 MAIN EXPERIMENTS

Return time and event type prediction. We have compared the COTIC model with the baselines
on two problems commonly used to evaluate the quality of event sequences models: return time and
event type prediction. It is worth noting that likelihood computation could vary between methods,
and these values cannot be used to compare different models. For all the experiments, we average
results and estimate standard deviations using five independent runs.

Return time prediction. Table 3 presents obtained results. Our method is either the best or close
to the second-best model regarding the return time estimation. Moreover, it is winning five times
out of eight, and there is no obvious competitor because three models tie for second place, thus not
performing well consistently.

Event type prediction. Our findings regarding the event type prediction experiment are presented
in Table 4. The COTIC model exhibits high performance, being competitive against the other con-
tenders. The critical aspect to note is the superior mean rank of our model, presented in Table 1. This
reflects its enhanced predictive abilities and consistency across various presented samples. While the
Neural Hawkes model recorded the highest accuracy in 3 datasets out of 8, its high computational
cost can render it less suitable for event sequences processing tasks.
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Figure 3: Sensitivity study results. We vary the number of layers, the kernel size, and the activation
function (from left to right) to obtain MAE values for the return time prediction on the Retweet
dataset.

Additional experiments in Appendix D suggest that these conclusions hold for various available
event types and sequence lengths. These experiments also demonstrate our model’s and transform-
ers’ stability, while the RNN-based method shows less stable results.

Downstream problem Neural TPPs are generative models, thus, we expect them to have decent
representation capabilities. Consequently, we can reuse the obtained representation for other down-
stream problems. To check this, we conduct an additional experiment. For the Transactions dataset,
we predict one of four age bins using embeddings obtained from a model. For each model, we train
Logistic Regression on top of the embeddings, performing linear probing with a frozen model Li
et al. (2021). We compared COTIC with 64 embedding size to other intensity-based models and
the MiniRocket model with 256 kernels Dempster et al. (2021) designed for uniform time series
classification. For the MiniRocket, time as a feature and one-hot encoded event types are inputs for
this model.

The results are in Table 5. Our model showed the best results among TPP-based embeddings, and
MiniRocket is slightly inferior to the COTIC. We hypothesize that other TPP-based approaches
provide very local representation of an event sequence at each points, while our convolutional layers
lead to larger representative power.

Discussion. On average, regarding the obtained ranks in Table 1, the COTIC model shows the
best performance followed by Neural Hawkes, WaveNet and Attentive Neural Hawkes. Return time
results indicate that convolutions are very powerful in processing event sequences, while recurrent
models, like Neural Hawkes, are useful for event-type prediction. In addition, training time of
Neural Hawkes and Attentive Neural Hawkes is prohibitive for many datasets. CCNN Shi et al.
(2021), the closest solution to ours, underperforms both for the event type and return time prediction
problems, because it was designed for different problems. Thus, a careful introduction of multiple
non-uniform convolutional layers is essential to model event sequences via CNN.

4.4 SENSITIVITY STUDY

Our previous claims highlighted that a high number of convolutional layers for COTIC is vital for
high performance. We also want to verify what kernel size and activation function we need. These
experiments were run on the Retweet dataset; the results are shown in Figure 3.

There is a tangible trade-off on the number of layers: if the number of layers is too low, then the
model’s complexity and the receptive field size are not enough to catch data intricacies; if we make
the model too deep, it becomes harder to train it, ending up with a slightly underperforming model.
However, there is little dependence on the kernel size and the activation function. The first result
means that, given enough layers, the model already has a large enough receptive field and complexity

Table 5: Age bin prediction accuracy for Transactions dataset

Method Base Neural Hawkes THP ODETPP ATTNHP MiniRocket COTIC (ours)
Accuracy 0.25 0.254 0.290 0.265 0.258 0.452 0.459
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Figure 4: Dependence of training time complexity for different approaches on the sequence length
(on IPTV dataset) and the number of sequences (on SO dataset). Sequence length results are pre-
sented in two plots, the first one is for time, and the second is for the time logarithm.

to catch all the temporal dependencies within the dataset, and there is no need to make the model
even more complex by increasing the kernel size. Despite that, one should be careful in interpolating
this fact to all the other datasets as soon it can be the property of particular retweet sequences. The
latter experiment was to substitute the ReLU in the kernel with a new Sine activation Sitzmann et al.
(2020). As one can notice, there was almost no influence on the performance.

4.5 TIME COMPLEXITY

Analyzing time complexity, i.e., the dependence of the algorithm training time concerning some
dataset properties, is essential to understanding the scalability of the methods. Thus, we conducted
additional experiments and measured training time per epoch based on the maximal sequence length
and the number of sequences in a dataset. We used NVIDIA GeForce GTX 1080 Ti graphics cards to
run all the experiments in this section. For some additional experiments we used NVIDIA GeForce
A10 graphics cards to run all the experiments.

The outcomes of this experiment are depicted in Figure 4. Theoretically, the time complexity is an-
ticipated to be linear with respect to the number of sequences, which is, indeed, proved in practice.
However, the dynamic relating time complexity to sequence length is more intricate. This complex-
ity arises due to our method of truncating sequences only when they surpass a specific length, as the
distribution of sequence lengths is non-uniform.

Additional results for other models on their time complexity and the number of parameters are given
in Appendix E. They provide additional insight into our claim that COTIC has superior training time
compared to models with similar performance.

5 CONCLUSION

Modeling temporal point processes is a long-standing challenge, and our research sought to address
this using a novel approach. We leverage a CNN to model temporal point processes, resulting in the
development of our COntinuous-TIme Convolutional (COTIC) model of event sequences.

By introducing a continuous convolution function for non-uniform sequences, we propose an ap-
proach that holds several inherent advantages. These include the utilization of dilation for long-term
memory, separate convolutions for various event types, and a variable depth allowing for smooth
time transformations, which is required to process non-uniform event sequences.

The experimental results highlight the quality and efficiency of the COTIC model. It outperforms
both recurrent and transformer-based methods on datasets routinely employed to benchmark tempo-
ral point process models. Additionally, the COTIC offers greater efficiency concerning training time
in comparison to methods with similar performance. Given its robust performance and efficiency,
the COTIC model has the potential to set a new benchmark in temporal point process modeling, with
numerous possible applications that utilize event sequences.
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A DETAILS ON DATASETS

Retweets Zhao et al. (2015): The dataset presents sequences of tweets containing an origin tweet
and some follow-up tweets. We record the time and the user tag of each tweet. Further, users
are grouped into three categories based on the number of their followers: ”small”, ”medium”, and
”large”. These groups correspond to the three types of events.

Amazon ama (2018): This dataset consists of around 7.5k user sequences with product reviews
and product categories. All products are divided into 8 distinct groups.

IPTV Luo et al. (2014): The dataset contains 7.1k IPTV users viewing records from Shanghai
Telecomm Inc, categorizing TV programs into 16 types. In addition, the dataset includes viewing
patterns for sessions longer than 20 minutes.

StackOverflow Leskovec & Krevl (2014): StackOverflow (SO) is a question-answering website.
It rewards users with badges to promote engagement in the community, and the same badge can be
given multiple times to the same user. We collect data for a two-year period and treat each user’s
reward history as a sequence. Each event in the sequence signifies a receipt of a particular medal.

Transactions Fursov et al. (2021): The dataset contains sequences of transaction records stem-
ming from clients of financial institutions. For each client, we have a sequence of transactions. We
describe each transaction with a discrete code, identifying the type of transaction, and the Merchant
Category Code, such as a ”bookstore”, ”ATM”, ”drugstore”, etc.

MIMIC-II (Electrical Medical Records) Johnson et al. (2016): MIMIC collects patients’ visits
to a hospital’s ICU in a seven-year period. We treat the visits of each patient as a separate sequence
where each element in the sequence contains a time stamp and a diagnosis.

LinkedIn Xu & Zha (2017): This dataset provides information on users’ sequences of employ-
ment companies. There are 82 different companies comprising different event types with 2439 users
in total.
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MemeTrack Leskovec & Krevl (2014): It collects mentions of 42k different memes spanning ten
months, combining data from over 5000 websites with over 1.5 million documents including blog
posts, web articles, etc. Each sequence in this dataset is the life-cycle of a particular meme where
each event (meme occurrence) is associated with a timestamp and a website ID, serving as the event
type.

B TECHNICAL DETAILS FOR COTIC

In this part, we provide some details of COTIC’s training.

The description of the full architecture is given in section 3. The kernel functions at each layer κθl(t)
were modeled by three-hidden-layer MLPs with hidden sizes equal to 8, 4, and 8, respectively.

Other used hyperparameters can be found in Table 6. For all datasets, we started with a default set
of hyperparameters and slightly tuned them. Note, that we consider two alternative variants of the
number of layers: for some datasets a better option is a deep 9-layers convolutional architecture, for
others 2 layers are sufficient. We have used the Adam optimizer with the initial learning rate of 0.1
and the multi-step scheduler with γ = 0.1 and steps on the 40-th and 75-th epoch.

The MAE for the return time prediction for different configurations of hyperparameters for LinkedIn
and MIMIC datasets are given in Table Figure 5 for configurations obtained during hyperparameter
search via Optuna Akiba et al. (2019). The performance is pretty strong for different variants, while
we can get additional improvement with hyperparameteres tuning.

Hyperparam. Retweet Amazon IPTV SO Trans. Mimic LinkedIn MemeT.
Batch size 20 20 4 20 20 20 20 20
Accum Batch 1 1 5 1 1 1 1 1
Embedding size 32 32 256 32 32 4 256 32
Kernel size 5 5 5 5 5 7 5 5
# of filters 16 16 16 16 16 16 16 16
# of layers 9 9 2 9 9 2 2 9
Sim size 40 40 46 40 40 46 46 40

Table 6: COTIC training hyperparameters for different datasets. Here Accum Batch is Accumulate
grad batches, Embedding size is for event types, the # of filters is the size of inner layers, and Sim
size is the number of points for Monte Carlo integration of intensity.
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Figure 5: Optuna hyperparameters search for LinkedIn (left) and MIMIC (right) datasets

C BASELINE METHODS

RNN-based models. Neural Hawkes Process Mei & Eisner (2017a) is one of the first neural
models that were proposed for event sequences. This model uses LSTM-like architecture with
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additional evolution of the hidden states between events. The main benefit of this model is that
it has almost no assumptions on the parametric structure for the intensity interpolation. However,
Neural Hawkes is very slow in training. Recurrent Marked Temporal Point Processes RMTPP Du
et al. (2016) is another RNN-based model proposed for event sequence forecasting. In contrast to
Neural Hawkes, this model assumes a parametric structure for the intensity interpolation, which
makes it less expressive. Finally, ODE Temporal Point Process provides a simplified version
from Neural Spatio-Temporal Point Processes Chen et al. (2021), which exploited a different class
of parametrization for spatio-temporal point processes. In a nutshell, we model Temporal Point
Process with Neural ODE state evolution via an RNN.

Attention-based models. Attentive Neural Hawkes Process Yang et al. (2022) further develops
the idea from the Neural Hawkes Process paper, but instead of an LSTM, they employed Trans-
former. The generative model, AttNHP, is computationally expensive, as it requires obtaining deep
embedding for a possible event type to calculate its intensity at a given timestamp, and during train-
ing, likelihood calculation requires computing the intensities of many possible events. Transformer
Hawkes Model Transformer is a superior architecture for NLP problems. This fact inspired the au-
thors of Zuo et al. (2020) to use transformers in an event sequence set-up. The main benefit of
Transformer compared to RNN-like models is that it does not struggle from small memory and
vanishing and exploding gradients. However, the solution has some parametric assumptions on the
intensity interpolation.

CNN-based models. WaveNet is a well-known architecture proposed in van den Oord et al.
(2016) designed for audio generation. It is one of the prominent time series processing models
that adopts the ideas of convolutional neural networks. Efficient implementation and dilated convo-
lutions leading to a large receptive field are among the advantages of WaveNet. Due to these nice
properties, we use this convolutional architecture as a baseline. As WaveNet is not directly appli-
cable to event sequence forecasting with non-uniform times between events, we use time lag as an
additional input feature. Continuous CNN for Nonuniform Time Series In a recent work Shi et al.
(2021), it was proposed to use Continuous Convolutional Neural Networks (CCNNs) to model non-
uniform time series. Although this method is the closest to the solution we present, it has notable
differences and drawbacks regarding event sequence modeling. First, the paper’s authors address
several problems, i.e. auto-regressive time series forecasting, speech interpolation, and intensity
estimation for temporal point processes. However, the architecture itself was designed for signal
restoration. In this case, there exists an actual underlying signal that can be defined at any point
in time. For this reason, the authors propose to use only one continuous convolutional layer and
allocate points evenly after that, proceeding with the standard discrete convolutions. Therefore, the
non-uniformity of time exists only in the first layer which does not consider the specifics of the event
sequences modeling task. Second, the intensity function is explicitly defined parametrically, strictly
limiting the model’s expressiveness.

C.1 TECHNICAL DETAILS FOR BASELINE METHODS

In general, we used hyperparameters provided by the authors of the methods while adjusting the
learning rate for some datasets to improve the performance. Further details are given below.

RNN-based models. We use two acknowledged variations of RNN-based models: Neural Hawkes
and RMTPP (Recurrent Marked Temporal Point Process). For the MemeTrack and Amazon datasets,
RMTPP time loss quickly explodes within a single epoch, leading to the absence of results, which
is reflected in our tables. For Neural Hawkes, RMTPP (Recurrent Marked Temporal Point
Process) we used PyTorch implementation from the following GitHub repo.1 For a Neural Spatio-
Temporal Point Processes (ODETPP, which combines RNN and Neural ODE, we have borrowed
code from the same repository.

CNN-based models. We also adopt two variants of one-dimensional convolutional architectures
to process event sequences. For WaveNet, we used the following implementation2. We note that

1https://github.com/ant-research/EasyTemporalPointProcess
2https://github.com/litanli/wavenet-time-series-forecasting
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WaveNet does not take into the non-uniformity of a sequence, but it is a strong baseline that takes
the roots in CNN ideas. For CCNN, following the original architecture3, we use a model consisting
of one continuous convolutional layer followed by standard discrete convolutions and a particular
output layer reconstructing intensity in the exponential form given in Shi et al. (2021). Consequently,
the likelihood function becomes a double exponent, leading to a robust numerical instability caused
by overflows in exponent. To prevent this, we normalize the datasets and use strict early-stopping
conditions while training for CCNN.

Attention-based models. Finally, we use three SOTA variants of attention-based models specifi-
cally tailored to TPP. THP (Transformer Hawkes Process) has the implementation from the repo4.
Subsequently, the model was introduced into the pipeline, in which COTIC training took place.
Moreover, we corrected the intensity function and, consequently the likelihood, by excluding the
current hidden state to make the model consistent. THP2SAHP combines THP Zuo et al. (2020)
and the calculation of the intensity function from Zhang et al. (2020) implemented in the repo5.
Since the intensity (hence, the likelihood) calculation in this approach uses the current hidden state,
it cannot be compared with other architectures w.r.t. the likelihood. Finally, we employed realization
of Attentive Neural Hawkes Process from previously mentioned Ant Research repository.

D RANGE OF VALIDITY

A reasonable hypothesis is that the internal characteristics of a dataset affect the selection of the best
method for modeling. This experiment is designed to understand how variability within a single
dataset affects the quality of the models’ performance. We compute the dependence of the target
metrics on the maximum sequence length and the number of event types on two datasets — IPTV
and LinkedIn. In the first experiment, we limit the length of all sequences by a predefined number
and drop the events occurred after that time horizon. For example, if the sequence length is 3100
and the maximal length is 2000, then the last 1100 events are dropped. For the second experiment,
we drop less frequent event types from the dataset reducing the total number of present event types.

The results can be found in Figure 6. The COTIC’s performance is stable across the considered range
of available event types and sequence lengths. Transformers perform worse for long sequences
because it is harder to learn a strong attention-based model. The Neural Hawkes model shows
unstable results for the return time prediction due to less stable training of LSTM-type architectures.
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Figure 6: Return time and event type metrics for the different maximal sequence lengths and num-
bers of event types. The left picture in each pair corresponds to the results for the IPTV dataset; the
right picture in each pair corresponds to the results for the LinkedIn dataset.

E TRAINING TIME ANALYSIS

Table 7 demonstrates training time per second in similar conditions for considered approaches.
There are two clear outsiders — Attentive Neural Hawkes and its predecessor, Neural Hawkes. For
this RNN type of model, long training time is explained by heavy parametrization. Our model’s re-
sult is comparable to the latency of THP algorithms while lagging behind RMTPP (which has simple

3https://github.com/shihui2010/continuous_cnn
4https://github.com/SimiaoZuo/Transformer-Hawkes-Process
5https://github.com/QiangAIResearcher/sahp_repo
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Dataset RMTPP Neural Hawkes ODETPP THP THP2SAHP AttNHP WaveNet CCNN COTIC (ours)
Retweet 51.49 897.86 887.91 208.14 205.95 3868.63 1.18 86.49 185.65
Amazon − 1183.38 234.13 98.71 86.91 1431.08 0.26 35.87 97.10

IPTV 30.03 170.80 178.01 159.04 165.48 11866 0.77 6.79 20.18
SO 129.085 869.97 934.59 190.25 316.32 4329.38 17.00 99.78 400.50

Transactions 1168.32 5337.73 4396.75 310.76 316.40 38712 82.47 152.43 860.16
Mimic 0.33 0.98 2.64 1.66 1.70 0.55 0.06 0.41 1.66

LinkedIn 1.27 1.53 4.18 10.49 10.67 0.89 2.05 2.44 11.09
MemeTrack − 1610.24 518.15 1659.73 1638.56 348.19 43.38 154.30 546.50

Table 7: Training time (in seconds) per epoch for each baseline model and our approach COTIC for
all eight datasets.

architecture and doesn’t work with complex datasets) and WaveNet (being an established benchmark
for sequences). Given the fact that the COTIC model provided the best results on downstream tasks
and that the closest competitor is Neural Hawkes, in general, our model is shows distinct results if
compared to others with respect to quality and efficiency.
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