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ABSTRACT

In their seminal work, Nayyar et al. (2013) showed that imperfect information
can be abstracted away from common-payoff games by having players publicly
announce their policies as they play. This insight underpins sound solvers and
decision-time planning algorithms for common-payoff games. Unfortunately, a
naive application of the same insight to two-player zero-sum games fails be-
cause Nash equilibria of the game with public policy announcements may not
correspond to Nash equilibria of the original game. As a consequence, existing
sound decision-time planning algorithms require complicated additional mech-
anisms that have unappealing properties. The main contribution of this work
is showing that certain regularized equilibria do not possess the aforementioned
non-correspondence problem—thus, computing them can be treated as perfect in-
formation problems. This result yields a simplified framework for decision-time
planning in two-player zero-sum games, void of the unappealing properties that
plague existing decision-time planning algorithms.

1 INTRODUCTION

In single-agent settings, dynamic programming (Bertsekas, 2000) serves as a bedrock for reinforce-
ment learning (Sutton & Barto, 2018), justifying approximating optimal policies by backward induc-
tion and facilitating a simple framework for decision-time planning. One might hope that dynamic
programming could also provide similar grounding in multi-agent settings for well-defined notions
of optimality, like optimal joint policies in common-payoff games, Nash equilibria in two-player
zero-sum (2p0s) games, and team correlated equilibria in two-team zero-sum (2t0s) games. Unfor-
tunately, this is not straightforwardly the case when there is imperfect information—i.e., one player
has knowledge that another does not or two players act simultaneously. This difficulty arises from
two causes, which we call the backward dependence problem and the non-correspondence problem.
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Figure 1: Our contribution in the context of related work, at an abstract level.

The backward dependence problem is that computing the expected return starting from a decision
point generally requires knowledge about policies that were played up until now, in addition to the
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policies that will be played going forward. This is in stark contrast to perfect information settings, in
which the expected return starting from a decision point is independent of the policy played before
arriving at the decision point. As a result of this bidirectional temporal dependence, backward
induction arguments that work in perfect information settings fail in imperfect information settings.

In their seminal work, Nayyar et al. (2013) showed that the backward dependence problem can
be resolved by having players publicly announce their policies as they play. Using this insight,
a common-payoff game can be transformed into a public belief Markov decision processes (PuB-
MDP). Importantly, deterministic optimal policies in the PuB-MDP can be mapped back to optimal
joint policies of the original common-payoff game.

Having players publicly announce their policies can also be used to transform 2p0s games into
alternating Markov games (AMGs) with public belief states, which we call public belief alternating
Markov games (PuB-AMGs). AMGs are fully observable turn-based games (like Go and chess) and,
therefore, are amenable to dynamic programming-based approaches (Littman, 1996). Unfortunately,
computing Nash equilibria of PuB-AMGs carries little value because these Nash equilibria may not
correspond with Nash equilibria in the original game (Ganzfried & Sandholm, 2015; Brown et al.,
2020). Indeed, as we will show, they may correspond with arbitrarily exploitable policies. We call
this problem the non-correspondence problem.

The main contribution of this work is showing that regularized minimax objectives that guarantee
unique equilibria in subgames do not suffer from the non-correspondence problem. In other words,
computing these uniqueness guaranteeing equilibria can be reduced to computing the associated
equilibria in the PuB-AMG. Because guaranteeing uniqueness is as simple as adding entropy regu-
larization (Perolat et al., 2021), our result is straightforward to apply in practice.

We view the primary importance of this reduction from imperfect information 2p0s games to perfect
information games as three fold.

1. It is the first known reduction of its kind; specifically, it is the first regularized equilibrium
preserving transformation from imperfect information 2p0s games to perfect information 2p0s
games that is meaningful in the sense that regularized equilibria can be made arbitrarily close to
Nash equilibria.

2. It yields a simple framework for decision-time planning in 2p0s games. The simplicity of this
framework is in stark contrast to existing approaches (Brown & Sandholm, 2017a;b; Moravčı́k
et al., 2017; Brown et al., 2020; Schmid et al., 2021), which are hampered by complications that
involve undesirable facets, such as discontinuous functions.

3. It can be applied across the whole class of 2t0s games (as depicted in Figure 1) because of the
recent results of Carminati et al. (2022a); Zhang et al. (2022); Carminati et al. (2022b), who
showed that 2t0s games can be cast as 2p0s games.

2 NOTATION

2.1 FINITE-HORIZON SEQUENTIAL GAMES

We use the terminology finite-horizon sequential game to describe settings in which players act one-
at-a-time and in which the game terminates after a fixed number of steps. This setting can express
any (simultaneous-move) timeable perfect-recall finite-horizon game. See, for example, Kovarı́k
et al. (2019) for more details.

Symbolically, we say a setting is a finite-horizon sequential game if it can be described by a tuple

⟨A, [Oi],Opub, [Hi],Hpub,H, µ, [Oi],Opub, [Ri], T , T ⟩,
where

• i ranges from 0 to N − 1 and ι ∈ {0, . . . , N − 1} denotes the acting player.1
• A is the set of actions.
• Oi is the set of private observations for player i.
• Opub is the set of public observations (common knowledge to all players).

1Our usage of ι is informal but unambiguous in context.

2



Under review as a conference paper at ICLR 2023

• Hi = ∪T−1
t=0 (Opub ×Oi)

t ×Opub ×Oi is player i’s action-observation histories (AOHs).
• Hpub = ∪T−1

t=0 Ot
pub is the set of public histories.

• H ⊂ H0 × · · · ×HN−1 is the set of histories.
• µ ∈ ∆(H0(h

0
pub)× · · · ×HN−1(h

0
pub)) is the initial history distribution.

• Oi : H→ Oi is player i’s observation function.2
• Opub : H→ Opub is the public observation function.
• Ri : H× A→ R is the player i’s reward function.
• T : H× A→ ∆(H) is the transition function.
• T is the time horizon at which the game terminates.

For a given hpub ∈ Hpub, we use Hi(hpub) to denote the set of AOHs for player i that are consistent
with hpub and H(hpub) to denote the set of histories that are consistent with hpub. Also, for a history
h, we use hι to denote the AOH for the acting player at history h. We use capitals of the same letters
to denote random variables of the same types.

Special Cases This work will make use of the following special cases.

• Two team zero sum: Games in which {0, . . . , N − 1} is a disjoint union of two blocks, where
∀i, j,Ri = Rj if i, j belong to the same block andRi = −Rj if i, j belong to opposite blocks.

• Common payoff: Games in which ∀i, j,Ri = Rj .
• Two player zero sum: Games in which N = 2 andR0 = −R1.

In these special cases, the reward of all players is uniquely determined by the reward of any individ-
ual player. Thus, we will drop the player index i on the reward function and useR = R0.

Subgames For a given finite-horizon sequential game, we use the term subgame to refer to a game
that begins with initial history distribution µ ∈ ∆(H0(hpub)×· · ·×HN−1(hpub)) for some particular
hpub and is otherwise the same as the original game.

2.2 FINITE-HORIZON FULLY OBSERVABLE SEQUENTIAL GAMES

We also introduce specialized notation for fully observable settings. We use the terminology finite-
horizon fully observable sequential game to describe tuples

⟨A,S, s0, [Ri], T , T ⟩,

where

• S is the set of states.
• s0 ∈ S is the initial state.
• Ri : S× A→ R is the player i’s reward function.
• T : S× A→ ∆(S) is the transition function.
• i, ι, A, and T are defined as they were in the finite-horizon sequential game formalism.

Special Cases In the fully observable context, we are interested in the following settings.

• Markov decision processes (MDPs): Games in which N = 1.
• Alternating Markov games (AMGs): Games that are two player zero sum.

As before, because the reward of one player uniquely determines the others in these settings, we will
useR = R0.

Subgames For a given finite-horizon fully observable sequential game, we use the term subgame to
refer to a game that begins with initial state s0 = s for some particular s and otherwise proceeds by
the same rules of the original game.

3 BACKGROUND

The Backward Dependence Problem To illustrate the presence of the backward dependence prob-
lem in even very simple settings, we show a cooperative matching pennies game in Figure 2. The
goal of the game is for the blue player and the red player to select the same side of a coin. The

2We assume that, if i acts a time t, i’s action is included in its private observation at time t+ 1

3



Under review as a conference paper at ICLR 2023

blue player moves first; then, without observing the blue player’s choice, the red player moves sec-
ond. Because the red player does not observe the blue player’s choice (as denoted by the dotted line
between the two nodes), it must make the same decision at both nodes.

Now, let us consider the value for the red player. In perfect-information settings, because the red
player is at a penultimate decision point, such a value would be equal to the expected return for
the best action, independent of any prior events. However, here, with imperfect information, the
expected return for the best action is equal to max(p, 1− p) where p is the probability that the blue
player selects heads. If the blue player’s policy is unknown, there is no way to compute this value,
illustrating that the backward induction approach to learning in perfect information settings fails in
imperfect information settings.

1, 1 0, 0

Tails Heads

Tails Heads

0, 0 1, 1

Tails Heads

Figure 2: The best action for the red player de-
pends on the blue player’s policy.

The Public Belief Markov Decision Process
We now describe Nayyar et al. (2013)’s trans-
formation for turning common-payoff games
into a public belief MDPs (called PuB-MDPs)
in such a way that circumvents the backward
dependence problem. Let
⟨A, [Oi],Opub, [Hi],Hpub,H, µ, [Oi],Opub,R, T , T ⟩,
be a finite-horizon common-payoff game. Then
we define the associated PuB-MDP as the fol-
lowing finite-horizon fully observable sequen-
tial game

⟨Ã, S̃, s̃0, R̃, T̃ , T̃ ⟩,
where

• i = ι = 0.
• Ã = {ã | ã : Hι(hpub)→ A, hpub ∈ Hpub} is the set of prescriptions.

• S̃ = ∪hpub∆(H(hpub)) is the set of public belief states (PBSs).

• s̃0 = µ is the initial PBS.

• R̃ : s̃, ã 7→ r, where r = EH∼s̃R(H, ã(Hι)).

• T̃ (s̃ot+1
pub
| s̃t, ã) = P(ot+1

pub | s̃t, ã) = EHt∼s̃tEAt∼ã(Hι)P(o
t+1
pub | Ht, At) where the PBS s̃ot+1

pub
is

defined by s̃ot+1
pub

(ht+1) = P(ht+1 | s̃t, ã, ot+1
pub ) = EHt∼s̃tEAt∼ã(Hι)P(ht+1 | Ht, At, ot+1

pub )

• T̃ = T .

Nayyar et al. (2013) showed that optimal deterministic policies in the PuB-MDP correspond with
optimal joint policies for the common payoff game. Indeed, for the matching pennies game de-
scribed in Figure 2, we can see that the PuB-MDP perspective resolves the backward dependence
problem because the red player observes the blue player’s decision rule. If the blue player plays
heads with probability p, the red player can achieve a value of max(p, 1 − p) by best responding.
By backward induction, the blue player can then determine that it is optimal to use p = 0 or p = 1.
Thus, the players can arrive at an optimal joint policy of the original game. For a more detailed
discussion on the PuB-MDP, see, e.g., (Sokota, 2020; Sokota et al., 2021).

4 THE PUBLIC BELIEF ALTERNATING MARKOV GAME

Here, we introduce a construction analogous to the PuB-MDP that we call the PuB-AMG. Note that,
while the name PuB-AMG is novel to this work, the idea already exists in literature (Brown et al.,
2020; Buffet et al., 2020; Delage et al., 2021). Let

⟨A, [Oi],Opub, [Hi],Hpub,H, µ, [Oi],Opub, [Ri], T , T ⟩,
be a finite-horizon 2p0s sequential game. Then we define the associated PuB-AMG as the following
finite-horizon fully observable sequential game

⟨Ã, S̃, s̃0, R̃, T̃ , T̃ ⟩,
where
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• i ranges from 0 to 1 and ι ∈ {0, 1} is the acting player.

• Ã = {ã | ã : Hι(hpub) → ∆(A), hpub ∈ Hpub} is the set of public decision rules (or decision
rules, for short). Note that public decision rules differ from prescriptions in that they map to a
distribution over actions, rather than an action.

• S̃, s̃0, R̃, T̃ , and T̃ are defined in the same fashion as in the PuB-MDP.

The Correspondence Mapping As alluded to earlier, a Nash equilibrium in the PuB-AMG may be
undesirable because it does not necessarily correspond to a Nash equilibrium in the original game.
Here, we make precise the notion of what we mean by correspond by defining a correspondence
function Π↓ that maps public belief (joint) policies to joint policies of the original game. Given
a PuB-AMG policy π̃, Π↓(π̃) is the joint policy that, for each AOH hι, plays actions with the
probability that π̃ would at hι, assuming that hι was reached using π̃. (See Section A for a more
rigorous definition.) Importantly, Π↓(π̃)i can be implemented in practice by running π̃i under the
assumption that the opponent is playing according to π̃−i.

1, -1 0, 0

R P

-2, 2

S

P

-2, 2 2, -2

R P

0, 0

S

S

0, 0 -1, 1

R P

2, -2

S

R

Figure 3: A perturbed variant of rock-paper-scissors.

The Non-Correspondence Prob-
lem We can now make the non-
correspondence problem precise. To
illustrate, we show the perturbed vari-
ant of rock-paper-scissors described
in (Brown et al., 2020) in Figure 3.
In the game, the payouts are doubled
if either player plays scissors. The
unique Nash equilibrium of the game
is (R,P, S) 7→ (0.4, 0.4, 0.2).

Similarly to before, the red player can
compute the associated value for each
of the blue player’s decision rules.
Thus, the blue player can determine
that the Nash equilibrium policy maximizes its value. It is at this point that the non-correspondence
problem becomes apparent. Because the red player is conditioning on the blue player’s decision
rule, it achieves the the optimal value by playing any best response to the red player. In the per-
turbed rock-paper-scissors game, all policies are best responses to the Nash equilibrium. Thus, there
is nothing constraining the red player to the Nash equilibrium policy of the original game.

A similar argument, detailed in Section B.1, leads to the following disappointing result.
Proposition 1. A PuB-AMG Nash equilibrium π̃ may correspond with a joint policy Π↓(π̃) that is
maximally exploitable.

At an intuitive level, the non-correspondence problem arises because there is an important distinction
between the public belief game and the original game. Specifically, in the public belief game, players
acting earlier are forced to reveal their decision rules to players acting later. As a result, later acting
players are able to “slack off” without losing any value because the earlier acting players cannot
deviate to exploit them. In common-payoff games, this is a non-issue because the interests of every
player are aligned. However, in 2p0s games, where there are adversarial interests, this distinction
changes the strategic nature of the game in a more fundamental sense.

5 CORRESPONDENCE OF UNIQUENESS-GUARANTEEING EQUILIBRIA

We will now show that the non-correspondence problem does not exist for minimax objectives that
guarantee unique equilibria in subgames of the original game. The class of minimax objectives we
consider generalizes the expected return minimax objective in that it includes objectives that may
have dependence on policies beyond the actions they select.
Definition 5.1. We use the term regularized minimax objective (or objective for short) to refer to
mappings of the form

J : π0, π1 7→ E

[
T−1∑
t=0

R(Ht, At, π(Ht
ι )) | π0, π1

]
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where R is a real-valued function.

Definition 5.2. Given an objective J induced by R for some game, we can construct an objective J̃
for the associated public belief state game that is equivalent to J in the sense that J̃(π̃) = J(Π↓(π̃))
by defining

J̃ : π̃0, π̃1 7→ E

[
T−1∑
t=0

R̃(S̃t, Ãt) | π̃0, π̃1

]
,

where
R̃ : (s̃, ã) 7→ EH∼s̃EA∼ã(Hι)R(H,A, ã(Hι)).

Next we formalize what we mean by uniqueness guaranteeing.
Definition 5.3. For a particular game, we say a minimax objective J is uniqueness guaranteeing if,
for any subgame,

max
π0

min
π1

J(π0, π1)

is guaranteed to have a unique solution (π∗
0 , π

∗
1).

We can now state our main result.
Theorem 1. If π̃ is an equilibrium of a PuB-AMG under a uniqueness-guaranteeing objective,
then its corresponding joint policy Π↓(π̃) is the equilibrium in the original game under the same
uniqueness-guaranteeing objective.

Proof. (Sketch) The first decision rule of any PuB-AMG equilibrium must correspond to the first
decision rule of an equilibrium of the original game. Furthermore, if the objective is uniqueness-
guaranteeing, subgame equilibria must be restrictions of the equilibrium of the whole game. Thus,
by forward induction, PuB-AMG equilibria must correspond to the equilibrium of the original game.

We detail the proof for Theorem 1 in Section B.2. Due to recent work, Theorem 1 can be generalized
to the entire class of 2t0s games.
Corollary 1. Computing team-correlated equilibria of 2t0s games under a uniqueness guaranteeing
objectives can be reduced to computing an equilibrium of a PuB-AMG under the same uniqueness
guaranteeing objectives.

Proof. This follows immediately from chaining the results of Carminati et al. (2022a); Zhang et al.
(2022); Carminati et al. (2022b), who provide a reduction from 2t0s games to 2p0s games via intra-
team public policy announcements, with Theorem 1.

6 SUFFICIENT CONDITIONS FOR UNIQUENESS GUARANTEEING

Theorem 1 tells us that uniqueness guaranteeing is a sufficient condition to ameliorate the non-
correspondence problem. We now discuss objectives that are uniqueness guaranteeing and general
sufficient conditions for guaranteeing uniqueness.
Definition 6.1. We call the objective J induced by

R : (h, a, δ) 7→
{
R(h, a)− αKL(δ, ρ(hι)) ι = 0

R(h, a) + αKL(δ, ρ(hι)) ι = 1,

for some reference policy ρ, a MiniMaxKL objective.

Definition 6.2. We call the objective J induced by

R : (h, a, δ) 7→
{
R(h, a) + αH(δ) ι = 0

R(h, a)− αH(δ) ι = 1,

for some reference policy ρ, a MiniMaxEnt objective.

Remark 1. MiniMaxEnt is the special case of MiniMaxKL in which ρ is uniform.
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To our knowledge, MiniMaxKL objectives were first introduced by Perolat et al. (2021), who
showed the following result using Lyapunov techniques.
Theorem 2. (Perolat et al., 2021) MiniMaxKL objectives are uniqueness guaranteeing for inte-
rior ρ.

While the MiniMaxKL equilibrium is likely the most useful uniqueness-guaranteeing equilibrium
concept, it is conceivable that other uniqueness-guaranteeing concepts may be useful. Thus, we
provide a generalization below.
Theorem 3. Consider an objective J induced by

R : (h, a, δ) 7→
{
R(h, a)− ψ(δ, hι) ι = 0

R(h, a) + ψ(δ, hι) ι = 1

and define a policy greedification function
g : [−M,M]|A| ×Hι → ∆(A)

where M ∈ R is the maximum of the absolute values of the expected returns of J and where
g : q, hι 7→ arg maxδ∈∆(A)⟨δ, q⟩ − ψ(δ, hι).

For each AOH at which a player acts hι, g maps possible regularized action values q to the policy
that is greedy with respect to the regularized objective under those regularized action values.

If, for all hι, ψ(·, hι) is continuous and g(·, hι) is i) well defined, ii) continuous, and iii) has an
interior image, then the objective J is uniqueness guaranteeing.

Proof. (Sketch) Consider the following facts:

• Because of our assumptions on ψ and g, an equilibrium must exist.
• Because g has an interior image, the best response to an equilibrium must be unique.
• Because the game is two player zero sum, there cannot exist incompatible equilibria.

These facts can only be simultaneously satisfied if there is a unique equilibrium.

We detail the proof for Theorem 3 in Section B.3.
Remark 2. The premises of Theorem 3 are satisfied if ψ(·, hι) is bounded and is strictly convex and
differentiable on its interior with limδ→δ′ ||∇δψ(δ, hι)|| = +∞ for δ′ on the boundary of ∆(A).
Remark 3. One example of an objective covered by Theorem 3, but not by Theorem 2, is that which
is induced by setting ψ(·, hι) to a sum of a reverse KL divergence to an interior point and a bounded
differentiable convex function.

7 DISCUSSION

In the previous section, we showed that computing certain regularized equilibria in 2p0s games can
be reduced to perfect information problems. This may give the impression that it is now possible to
apply perfect information algorithms out-of-the-box to solve imperfect information problems. While
this is technically true, it is not a good way to view the value of our reduction. Indeed, because the
PuB-AMG has an action space of dimensionality on the order of |A||Hι(hpub)|, naively pursuing such
an approach would quickly become intractable as the size of the game increases.3

Instead, we see two main ways to approach solving regularized PuB-AMGs. The first is to adapt
heuristic search value iteration (Smith & Simmons, 2004) into a tabular regularized PuB-AMG
solver. Encouragingly, this has already been done for PuB-MDPs (Dibangoye et al., 2013b) and for
unregularized Pub-AMGs (Horák & Bošanský, 2019; Buffet et al., 2020; Delage et al., 2021). The
second is to use the regularized PuB-AMG as a building block for expert iteration with function
approximation (Anthony et al., 2017). This approach would look almost identical to ReBeL (Brown
et al., 2020) but have a few key differences: i) It would use a regularized objective, rather than
an unregularized one as ReBeL does; ii) It would use the beliefs induced by its own policy at test
time, rather than the fictitious beliefs that ReBeL uses; iii) It would (optionally) be able to perform
re-planning (e.g., wherein a multi-ply search is only used to make the immediate decision), whereas
ReBeL must play its search policy until the end of the subgame that was searched over.

3Although an attempt has been made to scale up such approaches for the PuB-MDP (Foerster et al., 2019).
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8 EXPERIMENTS

We perform two experiments in which we naively tabularly solve small PuB-AMGs using magnetic
mirror descent (Sokota et al., 2022a) to offer further evidence for our results. We show the results
for perturbed rock-paper-scissors Figure 4 and include results for Kuhn poker, as well as the details
of our solving procedures, in Section C.

Iterations

Regularized ExploitabilityExploitability
PuB-AMG 

Regularized Exploitability
PuB-AMG 

Exploitability

Figure 4: Results for perturbed rock-paper-scissors.

On the far left, we show exploitability in the PuB-AMG. The iterates from the unregularized ob-
jective (blue) trend and the objective with annealed regularization (orange) trend toward zero. The
iterates from the objective with constant regularization converge to a constant positive exploitability.

On the middle left, we show the regularized exploitability (i.e., exploitability under the regularized
objective) in the PuB-AMG of the objective associated for the iterate. We observe that all objectives
induce iterates that converge to zero.

On the middle right, we show the exploitability in the original game. Because the non-
correspondence exists for the second moving player, the exploitabilities of the iterates from the
unregularized objective (blue) remain high, despite that exploitability is going to zero in the PuB-
AMG. The objectives with fixed regularization (green, red) induce iterates that converge to lower,
but non-zero, exploitability values. The objective with annealed regularization (orange) induces
iterates that converge to zero in exploitability.

On the far right, we show the regularized exploitability in the original game. We observe that, in ac-
cordance Theorem 1, the approaches with non-zero regularization that converge to zero regularized
exploitability in the PuB-AMG also converge to zero regularized exploitability in the original game.
In contrast, the unregularized approach does not converge, despite converging in the PuB-AMG.

9 RELATED WORK

Public Belief States in Common-Payoff Games In the sense of providing reductions for multi-
agent problems using PBSs, our work is similar to those of Nayyar et al. (2013), Dibangoye et al.
(2013b), and Oliehoek (2013). As discussed in the background, Nayyar et al. (2013) provided a
reduction from solving common-payoff games to solving belief MDPs; independently, Dibangoye
et al. (2013b) and Oliehoek (2013) discovered similar reductions. These ideas have been leveraged
in a large body of work in decentralized control literature (Lessard & Nayyar, 2013; Nayyar et al.,
2014; Arabneydi & Mahajan, 2014; Ouyang et al., 2015; Vasconcelos & Martins, 2016; Tavafoghi
et al., 2016; Afshari & Mahajan, 2018; Gagrani & Nayyar, 2018; Tavafoghi et al., 2018; Zhang et al.,
2019; Gupta, 2021) and machine learning literature (Dibangoye et al., 2013a; MacDermed & Isbell,
2013; Dibangoye et al., 2014a;b; Dibangoye & Buffet, 2018; Foerster et al., 2019; Lerer et al., 2020;
Sokota et al., 2021; Fickinger et al., 2021; Sokota et al., 2022b; Kao et al., 2022). Use cases include
game solving (Dibangoye et al., 2013b), expert iteration (Sokota et al., 2021), and decision-time
planning (Lerer et al., 2020; Fickinger et al., 2021; Sokota et al., 2022b).

Public Belief States in Two-Player Zero-Sum Games PBSs have also been used in many works
in the context of 2p0s games. For our purposes, we taxonomize these into those concerned with
solving the PuB-AMG (Wiggers et al., 2016; Horák & Bošanský, 2019; Buffet et al., 2020; Delage
et al., 2021) and those concerned with sound decision-time planning and expert iteration (Burch
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et al., 2014; Moravcik et al., 2016; Brown & Sandholm, 2017a;b; Moravčı́k et al., 2017; Brown
et al., 2018; Serrino et al., 2019; Brown et al., 2020; Schmid et al., 2021).

The former group is concerned with analyzing the structure of the PuB-AMG and using HSVI (Smith
& Simmons, 2004) to solve the PuB-AMG. Our work is complementary in the sense that it shows
that using an approach such as HSVI to solve a regularized PuB-AMG would yield a regularized
equilibrium in the original game.

The latter group can be broken down into two subgroups, those that use opt-out values to circumvent
the non-correspondence problem (Brown & Sandholm, 2017a;b; Moravčı́k et al., 2017; Schmid
et al., 2021) and those that use no-regret learning to circumvent the non-correspondence problem
(Brown et al., 2020). Both possess substantial downsides. For the opt-out value approach: i) the
policy and value are discontinuous functions of the opt-out values4, and ii) the opt-values must be
approximated separately from self play. For the no-regret learning approach: i) the search policy
must be played for the entire subgame that was searched over (i.e., re-planning is not allowed), ii)
the search algorithm must be no regret, and iii) the policy is a discontinuous function of the PBS. In
contrast, decision-time planning using a regularized objective in the PuB-AMG involves no opt-out
values, involves no value discontinuities (as is shown in Section D), allows for re-planning, and is
search algorithm agnostic.

MiniMaxKL Objectives in Two-Player Zero-Sum Games As discussed, prior to this work, Perolat
et al. (2021) made use of MiniMaxEnt and MiniMaxKL objectives; they have also been used in more
recent works (Cen et al., 2021; Zeng et al., 2022; Sokota et al., 2022a; Perolat et al., 2022). Our use
case for MiniMaxKL objectives (eliminating the non-correspondence problem) differs substantially
from that of these works (inducing the last iterate convergence of model-free algorithms).

Public Belief States in Two-Team Zero-Sum Games In the sense of providing reductions for
multi-agent problems using PBSs, our work is similar to a recent body of literature (Carminati et al.,
2022a; Zhang et al., 2022; Carminati et al., 2022b) showing that solving 2t0s games can be reduced
to solving a 2p0s game by using intra-team policy announcements. As articulated by Corollary 1,
combining our results with these yields a reduction from computing regularized team correlated
equilibria in 2t0s games to computing regularized equilibria in PuB-AMGs.

Stackelberg Games Public belief games with two-time steps are closely related to Stackelberg
games (von Stackelberg, 1934; Schelling, 1960; Gibbons, 1992). A Stackelberg game is one in
which a distinguished leader publicly commits to a strategy and a follower best responds to it,
resulting in a bilevel optimization problem. As with a public belief game, when a Stackelberg game
is two player zero sum, Stackelberg equilibrium coincides with Nash equilibrium for the leader, but
the follower’s best response is generally highly exploitable in the game without public commitments.
While there exist tie-breaking procedures in Stackelberg literature (e.g., strong or weak Stackelberg
equilibrium), they do not resolve the non-correspondence issue.

10 CONCLUSION AND FUTURE WORK

In this work, we provided a reduction from computing regularized equilibria of 2p0s games to com-
puting regularized equilibria of PuB-AMGs. We see this contribution as resolving an important gap
in literature between common-payoff games and 2p0s games.

We see three impactful directions for future work. The first involves comparing a high performance
implementation of a regularized-objective-in-the-PuB-AMG approach to expert iteration (Anthony
et al., 2017) to those of existing approaches (Brown et al., 2020; Schmid et al., 2021); while we have
shown here that a a regularized-objective-in-the-PuB-AMG approach possesses favorable properties
in comparison to ReBeL (Brown et al., 2020) and Player of Games (Schmid et al., 2021), verifying
that these advantages manifest in practice would be a valuable contribution. Second, by providing
a simpler approach to working with PBSs in 2p0s games, our work provides further motivation for
developing new approaches for approximating PBSs at scale; while Sokota et al. (2022b) recently
made progress in this direction by showing that fine-tuning can effectively approximate PBSs, amor-
tized approximation of PBSs remains an open problem. Finally, third, we believe it may be possible
to extend some weaker form of the results from our work to general sum settings.

4Though Schmid et al. (2021) show that certain approximate value functions can be made continuous.
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models of partially observable multiagent decision making. CoRR, abs/1906.11110, 2019. URL
http://arxiv.org/abs/1906.11110.

11

https://doi.org/10.1007/978-3-662-44848-9_22
https://doi.org/10.1007/978-3-662-44848-9_22
https://openreview.net/forum?id=D0xGh031I9m
https://proceedings.mlr.press/v97/foerster19a.html
https://proceedings.mlr.press/v97/foerster19a.html
https://doi.org/10.1609/aaai.v33i01.33012029
https://par.nsf.gov/biblio/10332971
https://par.nsf.gov/biblio/10332971
http://arxiv.org/abs/1906.11110


Under review as a conference paper at ICLR 2023

Adam Lerer, Hengyuan Hu, Jakob N. Foerster, and Noam Brown. Improving policies via search in
cooperative partially observable games. In AAAI, 2020.

Laurent Lessard and Ashutosh Nayyar. Structural results and explicit solution for two-player lqg
systems on a finite time horizon. In 52nd IEEE Conference on Decision and Control, pp. 6542–
6549, 2013. doi: 10.1109/CDC.2013.6760924.

Michael Lederman Littman. Algorithms for sequential decision making, 1996.

Liam MacDermed and Charles L. Isbell. Point based value iteration with optimal belief compres-
sion for dec-pomdps. In Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’13, pp. 100–108, Red Hook, NY, USA, 2013. Curran As-
sociates Inc.

Matej Moravcik, Martin Schmid, Karel Ha, Milan Hladik, and Stephen Gaukrodger. Refining sub-
games in large imperfect information games. Proceedings of the AAAI Conference on Artificial
Intelligence, 30(1), Feb. 2016. doi: 10.1609/aaai.v30i1.10033. URL https://ojs.aaai.
org/index.php/AAAI/article/view/10033.
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markov perfect equilibria for stochastic games with asymmetric information: Finite games. IEEE
Transactions on Automatic Control, 59(3):555–570, 2014. doi: 10.1109/TAC.2013.2283743.

Frans A. Oliehoek. Sufficient plan-time statistics for decentralized pomdps. In IJCAI, 2013.

Yi Ouyang, Hamidreza Tavafoghi, and Demosthenis Teneketzis. Dynamic oligopoly games with
private markovian dynamics. In 2015 54th IEEE Conference on Decision and Control (CDC), pp.
5851–5858, 2015. doi: 10.1109/CDC.2015.7403139.

Julien Perolat, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark Rowland, Pe-
dro Ortega, Neil Burch, Thomas Anthony, David Balduzzi, Bart De Vylder, Georgios Pil-
iouras, Marc Lanctot, and Karl Tuyls. From poincaré recurrence to convergence in imperfect
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A DEFINITIONS

First, we formalize our definition of the correspondence mapping Π↓ in Algorithm 1 below.

Algorithm 1 Correspondence Mapping
procedure Π↓(π̃)

queue← [s̃0]
π ← {}
while len(queue) > 0 do

s̃← queue.pop()
ã← π̃(s̃) ▷ Assume π̃ is deterministic for reachable s̃.5
for h ∈ supp(s̃) do

π(hι) = ã(hι)
end for
for s̃′ ∈ supp(T̃ (s̃, ã)) do ▷ Continue along states reachable by π̃.

queue.append(s̃′)
end for

end while
for untouched hι do

Set π(hι) arbitrarily. ▷ These information states are unreachable.
end for
return π

end procedure

Next, we define a canonical choice function Π↑, which maps each joint policy to a corresponding
PuB-AMG policy.

Algorithm 2 Canonical Choice Mapping
1: procedure Π↑(π)
2: π̃ ← {}
3: for all s̃ do
4: ã← {}
5: for h ∈ supp(s̃) do
6: ã(hι) = π(hι) ▷ Do what π does.
7: end for
8: π̃(s̃) = ã
9: end for

10: return π̃
11: end procedure

In short, Algorithm 2 yields a PuB-AMG policy in which the agents play according to π irrespective
of the public belief. Therefore, we have that R(π) = R̃(Π↑(π)). Note that, in contrast to the
correspondence mapping, the canonical choice mapping is invariant to opponent policy. Thus, we
also allow Π↑ to be applied directly to individual player policies.

We also introduce some additional definitions.

Definition A.1. For a minimax objective J, the value of the game under J is
maxπ′

0
minπ′

1
J(π′

0, π
′
1) = minπ′

1
maxπ′

0
J(π′

0, π
′
1).

Remark 4. Uniqueness-guaranteeing objectives guarantee a well-defined value. This follows im-
mediately from the fact that both players can guarantee the unique equilibrium value.

Definition A.2. For a minimax objective J, the best response value to π0 under J is minπ′
1
J(π0, π

′
1);

analogously, the best response value to π1 under J is maxπ′
0
J(π′

0, π1). We denote the best response

5This assumption is not required, but makes for cleaner presentation.
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to πi as BR(πi). A policy is part of a Nash equilibrium if the best response value to it is equal to the
value of the game.
Definition A.3. For a minimax objective J, the exploitability π under J is:

−minπ′
1
J(π0, π

′
1) + maxπ′

0
J(π′

0, π1)

2
.

A joint policy is a Nash equilibrium if it has exploitability zero.
Definition A.4. For a minimax objective J induced by

R : (h, a, δ) 7→
{
R(h, a)− ψ(δ, hι) ι = 0

R(h, a) + ψ(δ, hι) ι = 1,

the action value for action a at AOH htι under joint policy π is

Q(hι, a) = (−1)I[ι=1]E

[
R(Ht, At, a 7→ I[at = a]) +

T∑
t′>t

R(Ht′ , At′ , π(At′)) | π, htι, at
]
.

In words, it is the expected future value to the acting player for taking a at ht
′

ι assuming that both
players have played according to π up until now and will continue to play according to π hereinafter.

B THEORY

We now detail the proofs of our theoretical results.

B.1 PROPOSITION 1

1, -1 -1, 1

Tails Heads

Tails Heads

-1, 1 1, -1

Tails Heads

0, 0

Opt Out

-1, 1

Tails Heads

-1, 1 0, 0

Opt Out

Fair Game Unfair Game

Figure 5: A rigged and adversarial variant of matching pennies.

Proposition 1 A PuB-AMG Nash equilibrium π̃ may correspond with a joint policy Π↓(π̃) that is
maximally exploitable.

Proof. We show that this worst case can be realized in the 2p0s rigged adversarial matching pennies
game depicted in Figure 5. The game starts with two options for the red player: it can either decide
to make the game fair or to rig the game. Then, without having observed the red player’s decision,
the blue player decides whether to opt out of the game altogether, in which case both players receive
a payout of 0, or to play adversarial matching pennies. If the blue player opts in and the game is
rigged, the red player receives a payout of 1 independent of the blue player’s selection. If the blue
player opts in and the game is not rigged, the blue player receives a payout of 1 if the players select
the same side of the coin; otherwise, if the players selected opposite sides of the coin, the red player
receives a payout of 1.

In the game, the blue player’s only Nash equilibrium strategy is to opt out with probability one. The
red player’s Nash equilibria strategies require at least one of i) rigging the game with probability one
and ii) mixing 50-50 between tails and heads.

Now, consider the following PuB-AMG policy, where superscript denotes time step within the game:
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• π̃0(∅) = (Fair,Unfair) 7→ (1, 0).

• π̃1(π̃0) =

{
(Tails,Heads,Out) 7→ (1/2, 1/2, 0) π̃0(Fair) = 1

(Tails,Heads,Out) 7→ (0, 0, 1) otherwise.

• π̃2(π̃0, π̃1) =

{
(Tails,Heads) 7→ (0, 1) π̃1(Tails) ≥ 1/2

(Tails,Heads) 7→ (1, 0) otherwise.

We claim that π̃ is a PuB-AMG Nash equilibrium. To see this, first consider that the expected return
is 0: the red player always opts in, the blue player mixes evenly between heads and tails, and the red
player always selects tails. Next consider that the red player has no incentive to deviate to an unfair
game, because the blue player will opt out, yielding an expected return of zero. Also consider the
blue player has no incentive to place additional mass on opting out, as it yields an expected return of
zero. Furthermore, the blue player has no incentive to select a different mixture of heads and tails,
as doing so will decrease its expected return since the red player best responds at the final time step.
Lastly, consider that the red player is best responding at the final time step and, therefore, has no
incentive to deviate.

Then, consider that the corresponding policy π = Π↓(π̃) is as follows:

• π0 : (Fair,Unfair) 7→ (1, 0).

• π1 : (Tails,Heads,Out) 7→ (1/2, 1/2, 0).

• π2 : (Tails,Heads) 7→ (0, 1).

We claim that this policy is maximally exploitable. To see this, consider that a red player that always
rigs the game achieves an expected return of one against the blue player’s policy, and consider that
a blue player that always selects heads achieves an expected return of one against the red player’s
policy.

B.2 THEOREM 1: CORRESPONDENCE OF UNIQUENESS-GUARANTEEING EQUILIBRIA

To prove Threom 1, we first require some lemmas.

Lemma 1. The best response value to πi in the original game is equal to the best response value of
Π↑(πi) in PuB-AMG.

Proof. This follows because player −i has no mechanism to exploit Π↑(πi) beyond that of the
original game, since Π↑(πi) ignores belief information.

More formally, consider

min
π̃′
1

J̃(Π↑(π0), π̃
′
1) = J̃(Π↑(π0),BR(Π↑(π0)))

= J(Π↓(Π↑(π0),BR(Π↑(π0))))

= J(Π↓(Π↑(π0),BR(Π↑(π0))))0,Π
↓(Π↑(π0),BR(Π↑(π0))))1)

= J(π0,Π
↓(Π↑(π0),BR(Π↑(π0))))1)

≥ J(π0,BR(π0))

= min
π′
1

J(π0, π
′
1).

The first equality follows by definition of the best response function BR. The second equality be-
cause Π↓ preserves expected return. The third equality is notational expansion. The fourth equality
follows because π0 and Π↓(Π↑(π0),BR(Π↑(π0))))0 can only differ at AOHs that are not reached
when playing against Π↓(Π↑(π0),BR(Π↑(π0))))1. The inequality and final equality follow by def-
inition of best response.
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Also, consider

min
π′
1

J(π0, π
′
1) = J(π0,BR(π0))

= J̃(Π↑(π0),Π
↑(BR(π0)))

≥ J̃(Π↑(π0),BR(Π↑(π0)))

= min
π̃′
1

J̃(Π↑(π0), π̃1).

The first equality follows by definition of the best response function BR. The second equality follows
because Π↑ preserves expected return. The inequality and final equality follows by definition of best
response.

These two inequalities can only be true if minπ′
1
J̃(Π↑(π0), π

′
1) = minπ′

1
J(π0, π

′
1). An analogous

argument shows the same result for π1.

Corollary 2. The exploitability of π in the original game is equal to the exploitability of Π↑(π) in
PuB-AMG.

Proof. This follows immediately from Lemma 1 and the fact that exploitability is defined in terms
of best response values.

Corollary 3. The value of the PuB-AMG under a uniqueness-guaranteeing objective is well-defined
and equal to that of the original game.

Proof. Note that it suffices to show that PuB-AMGs are guaranteed to have an equilibrium with the
same expected return as the equilibrium of the original game. Then consider π̃ = Π↑(π), where π
is an equilibrium. Then, since π is an equilibrium and, per Corollary 2, Π↑ preserves exploitability,
π̃ is an equilibrium. Additionally, since Π↑ preserves expected return, the original game and the
PuB-AMG possess equilibria π and π̃, respectively, that yield the same expected return.

We are now ready to prove our two main lemmas.

Lemma 2. Let π be the equilibrium of a uniqueness-guaranteeing objective. Let s̃ define a subgame
of the original game induced by playing π for some number of steps. Then the unique equilibrium
of the subgame πs̃, considered as an independent game, is the restriction π|s̃ of π to the subgame.

Proof. If π|s̃ is not an equilibrium of the subgame, then it must be exploitable in the subgame. This
means that either

min
π′
1

Js̃(π
|s̃
0 , π

′
1) < Js̃(π

|s̃
0 , π

|s̃
1 ) or Js̃(π

|s̃
0 , π

|s̃
1 ) < max

π′
0

Js̃(π′
0, π

|s̃
1 )

Without loss of generality, assume the former. Let πbr
1 = argminπ′

1
Js̃(π|s̃, π′

1); let Pπ(s̃) represent
the probability of reaching s̃ using policy π; let t be the time step corresponding to s̃ and let J<t

denote the expected return prior to time t. Further, let s̃′ ̸= s̃ range over the possible subgames
entered at time t if s̃ is not entered. Then

J(π0, π1) = J<t(π0, π1) + Pπ(s̃)Js̃(π
|s̃
0 , π

|s̃
1 ) +

∑
s̃′ ̸=s̃

Pπ(s̃′)Js̃
′
(π

|s̃′
0 , π

|s̃′
1 )

> J<t(π0, π1) + Pπ(s̃)Js̃(π
|s̃
0 , π

br
1 ) +

∑
s̃′ ̸=s̃

Pπ(s̃′)Js̃
′
(π

|s̃′
0 , π

|s̃′
1 )

= J(π0, [π
br
1 , π

|−s̃
1 ]).

Here, the first line decomposes the expected return into 1) that which is accrued prior to time t, 2)
that which is accrued in subgame s̃, and 3) that which is accrued after time t outside of subgame s̃.
The second line invokes our assumption that π|s̃

1 does not achieve the best response value against π|s̃
0

and Pπ(s̃) > 0. The third line re-assembles the expected return, where we use [πbr
1 , π

|−s̃
1 ] to denote

a policy that plays π1 outside s̃ and πbr
1 inside s̃.
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In total, we have shown that if π|s̃ is not an equilibrium in the subgame induced by s̃, then π is not
an equilibrium because π1 is not a best response. Thus, π|s̃ must be an equilibrium of the subgame.
Therefore, because J is uniqueness guaranteeing, we must have πs̃ = π|s̃.

Lemma 3. If π̃ is an equilibrium of the PuB-AMG, then the decision rule for the first time step
Π↓(π̃)0 must be part of an equilibrium policy in the original game.

Proof. Without loss of generality, assume that ι = 0 at the first time step. Also, use π−0
0 to denote

the part of π0 that is relevant after the first time step. Also, let [π′0, π′−0
0 ] denote a policy for i = 0

that plays according to π′0 at the first time step and π′−0
0 otherwise. Let π̃ be an equilibrium of the

PuB-AMG. Then observe

max
π′
0

min
π′
1

J(π′
0, π

′
1) = max

π̃′
0

min
π̃′
1

J̃(π̃′
0, π̃

′
1) (1)

= max
π̃′−0
0

min
π̃′
1

J̃([π̃0, π̃′−0
0 ], π̃1) (2)

= max
π̃′−0
0

min
π̃′
1

J(Π↓([π̃0, π̃′−0
0 ], π̃′

1)) (3)

= max
π̃′−0
0

min
π̃′
1

J([Π↓(π̃)0,Π↓([π̃0, π̃′−0
0 ], π̃′

1)
−0
0 ],Π↓([π̃0, π̃′−0

0 ], π̃′
1)1) (4)

= max
π′−0
0

min
π′
1

J([Π↓(π̃)0, π′−0
0 ], π′

1) (5)

= min
π′
1

J([Π↓(π̃)0, arg maxπ′−0
0

min
π′′
1

J([Π↓(π̃)0, π′−0
0 ], π′′

1 )], π
′
1). (6)

Here, the first equality follows by Corollary 3; the second equality follows because π̃0 is part of an
equilibrium; the third equality follows because J̃(π̃′) = J(Π↓(π̃′)); the fourth line equality follows
because the image of the correspondence mapping for the first time step is invariant to the PuB-
AMG policy at later time steps; the fifth line follows because each player can express any policy in
the original game through Π↓, up to reachability, and because changes over unreachable AOHs do
not change the expected return; the sixth line follows because the evaluation of an argmax is equal
to the max.

This chain of equalities shows that the best response value to

[Π↓(π̃)0, arg maxπ′−0
0

min
π′′
1

J([Π↓(π̃)0, π′−0
0 ], π′′

1 )]

is equal to the value of the game. Thus, Π↓(π̃)0 is part of an equilibrium.

Theorem 1 If π̃ is an equilibrium of the PuB-AMG induced by a uniqueness-guaranteeing objective,
then its projection Π↓(π̃) is an equilibrium in the original game.

Proof. Lemma 3 shows this to be true for the first time step. Now assume this is true up to time
step t and consider time step t + 1. Then, for a particular reachable s̃t+1, the PuB-AMG subgame
starting at this point is the PuB-AMG of the subgame of the original game starting from s̃t+1. Thus,
the PuB-AMG strategy for s̃t+1 must correspond to an equilibrium of the subgame of the original
game, as per Lemma 3. Furthermore, because the minimax objective is uniqueness guaranteeing,
the equilibrium strategy of the subgame of the original game must the unique restriction of the
equilibrium of the original game to that subgame, as per Lemma 2.

B.3 THEOREM 3: SUFFICIENT CONDITIONS FOR UNIQUENESS GUARANTEEING

Theorem 3 Consider an objective induced by

R : h, a, δ 7→
{
R(h, a)− ψ(δ, hι) ι = 0

R(h, a) + ψ(δ, hι) ι = 1

and define a policy greedification function

g : q, hι 7→ arg maxδ∈∆(A)⟨δ, q⟩ − ψ(δ, hι) where g : [−M,M]|A| ×Hι → ∆(A)
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and where M is the maximum of the absolute values of the returns of the objective. Then, if, for all
hι, ψ(·, hι) is continuous and g(·, hι) is i) well defined, ii) continuous, and iii) has an interior image,
the objective J is uniqueness guaranteeing.

Proof. First, we show that such an equilibrium is guaranteed to exist. Let F : [−M,M]|Hι||A| →
[−M,M]|Hι||A| be a function that maps each vector [qhι ]hι to the action-value vector for the joint
policy dictated by the application of g to [(qhι , hι)]hι . Note that F is well defined—i.e., the ensuant
action values are always well defined—because g maps to the interior, so every history is reached
with positive probability. Also note that this function is continuous, by the continuity of g and ψ,
and single valued because g is single valued. Thus, because [−M,M]|Hι||A| is compact and convex,
by Brouwer’s fixed point theorem, a fixed point must exist. The policy corresponding to these fixed-
point action values is an equilibrium. This follows because, by backward induction, each player is
optimally responding to the other, holding the other fixed.

Now we show that there is a unique equilibrium. Note that, for any fixed opponent, the optimal
policy at any decision point reached with positive probability must be full support because g’s image
is within the interior. By forward induction, this means that every equilibrium must be full support
at every decision point. Now, note that, by backward induction, the best responses to full support
policies are unique because g is single valued with an interior image. In aggregate, these two things
show that any equilibrium is strict—i.e., the only best response to one part of the equilibrium is the
other part of the equilibrium. Now, assume there exist two distinct equilibria π and π′. Without loss
of generality, assume that π0 performs at least as well as π′

0 against π1. If π0 performs equally well,
there is a contradiction because π′

0 is not the unique best response. If π0 outperforms π′, there is a
contradiction because π′ is not at equilibrium. Thus, the equilibrium must be unique.

The result follows because this proof also holds for every subgame of the original game.

C EXPERIMENTS

C.1 MAGNETIC MIRROR DESCENT

In our experiments, we use magnetic mirror descent (MMD) (Sokota et al., 2022a) as our game
solver. In the instance of MMD we use, updates are of the form

πt+1 = argmaxπEA∼πqπt
(A) + αH(π)− 1

η
KL(π, πt) (7)

where πt is the current policy and qt is the MiniMaxEnt Q-value vector for time t. This update
possesses the closed form

πt+1 ∝ [πte
ηqπt ]

1
1+αη . (8)

The fixed point of equation (8) is a policy satisfying

π∗ = arg maxπEA∼πq(A) + αH(π) ∝ eq/α. (9)

C.2 TABULAR PUB-AMG POLICIES

In PuB-AMGs, the state space is continuous. Thus, it may not be possible to express a fully specified
PuB-AMG policy in tabular form. We describe how we handle this issue for perturbed rock-paper-
scissors and Kuhn poker, respectively, in subsequent subsections.

In both settings, we solve the games using full feedback, meaning that we compute exact Q-values
and update the policy for every AOH.

C.2.1 PERTURBED ROCK-PAPER-SCISSORS

In perturbed rock-paper-scissors, the first moving player’s state space is trivial; thus, its policy can
be expressed exactly. Also, the (regularized) best response of the second player can be computed
in closed form using equation. Thus, we set the second moving player’s (regularized) PuB-AMG
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Iterations

Exploitability Regularized 
Exploitability

Figure 6: Results for Kuhn poker.

Nash equilibrium policy to induced by equation (9). We update the first moving player’s policy
using equation (8) where qt is the feedback induced by the second moving player’s (regularized)
PuB-AMG Nash equilibium policy.

C.2.2 KUHN POKER

We also investigate MiniMaxEnt objectives in an extensive-form game—Kuhn poker. In Kuhn
poker, there are up to three time steps. For the third time step, we use the (regularized) Pub-AMG
Nash equilibrium policy induced by equation (9). For the first time step, at each iteration, we update
the policy at each information state using MMD on the feedback from the previous time step. For
the second time step, at iteration t, holding fixed the iteration t decision rule for the first time step,
we use the policy induced by performing

√
t iterations of MMD against the (regularized) PuB-AMG

Nash equilibrium policy of the third time step. As
√
t grows large, we expect the decision rules for

the second time step to approximate a PuB-AMG best response.

We show the results for the original game in Figure 6.6 Qualitatively, they are analogous to those
from the perturbed rock-paper-scissors game. The unregularized objective induces high exploitabil-
ity iterates (blue) that do not converge in the original game; the objectives with fixed regularization
(purple, red, greed) converge to constant exploitability and zero regularized exploitability in the
original game; the objective with annealed regularization converges to zero exploitability and zero
regularized exploitability.

D CONTINUITY IN THE PUB-AMG

Lemma 4. Let f1, f2 be real-valued continuous functions with shared compact domain X × Y .
Furthermore, assume their max-min values are attained and the following inequality holds for any
(x, y) ∈ X × Y:

|f1(x, y)− f2(x, y)| < ϵ.

Then it follows that

|[max
x∈X

min
y∈Y

f1(x, y)]− [max
x∈X

min
y∈Y

f2(x, y)]| < ϵ.

6We omit PuB-AMG (regularized) exploitability, as it is difficult to compute exactly in this case.
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Proof. Note that by assumption we have for all (x, y) within the domains of f1, f2 it holds

f1(x, y) ≤ f2(x, y) + ϵ, (10)
f2(x, y) ≤ f1(x, y) + ϵ. (11)

Therefore,

max
x∈X

min
y∈Y

f1(x, y) = min
y∈Y

f1(x∗, y) for x∗ ∈ argmax
x∈X

min
y∈Y

f1(x, y)

≤ min
y∈Y

f2(x∗, y) + ϵ

≤ max
x∈X

min
y∈Y

f2(x, y) + ϵ.

Where the first inequality is due to taking the min of both sides of equation 10. Following the same
steps starting with f2 and using equation 11 gives

max
x∈X

min
y∈Y

f2(x, y) ≤ max
x∈X

min
y∈Y

f1(x, y) + ϵ.

These two inequalities together yield the result.

Theorem 4. The minimax PuB-AMG value function ṽ∗ is continuous for any objective J for which
policy evaluation is continuous.

Proof. Fix ϵ > 0. Let b and b′ differ in total variation distance by less than

δ =
ϵ

2M

. Then observe that, for a joint policy π, we have that

|vπ(b)− vπ(b′)| = |
∑
h

b(h)vπ(h)− b′(h)vπ(h)|

≤
∑
h

|b(h)vπ(h)− b′(h)vπ(h)|

= M
∑
h

|b(h)− b′(h)|

< 2Mδ

= ϵ,

where vπ(b) is the expected return under J to playing π starting from the subgame defined by b.

Then

|ṽ∗(b)− ṽ∗(b′)| = |[max
π̃0

min
π̃1

ṽπ̃(b)]− [max
π̃0

min
π̃1

ṽπ̃(b
′)]|

= |[max
π0

min
π1

vπ(b)]− [max
π0

min
π1

vπ(b
′)]|

< ϵ.

The first equality follows by definition of ṽ∗. The second equality follows from Corollary 3. The
third equality follows from Lemma 4.

Corollary 4. The minimax PuB-AMG value function ṽ∗ is continuous for the standard expected
return objective.

Corollary 5. The minimax PuB-AMG value function ṽ∗ is continuous for any objective satisfying
premises of Theorem 3.
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