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Abstract

The ability to continuously acquire new knowledge and skills is crucial for
autonomous agents. However, existing methods are typically based on either
fixed-size models that cannot capture many diverse behaviors, or growing-size
models that scale poorly with the number of tasks. In this paper, we introduce
Continual Subspace of Policies (CSP), a method that iteratively learns a subspace
of policies in the continual reinforcement learning setting where tasks are presented
sequentially. The subspace’s high expressivity allows our method to strike a good
balance between stability (i.e. not forgetting prior tasks) and plasticity (i.e. learning
new tasks), while the number of parameters grows sublinearly with the number of
tasks. In addition, CSP displays good transfer, being able to quickly adapt to new
tasks including combinations of previously seen ones without additional training.
Finally, CSP outperforms state-of-the-art methods on a wide range of scenarios in
two different domains. An interactive visualization of the subspace can be found
at https://continual-subspace-policies-streamlit-app-gofujp.
streamlitapp.com/.

1 Introduction

Developing autonomous agents that can continuously acquire new knowledge and skills is a key open
challenge in AI. This problem is referred to as continual reinforcement learning (CRL) and solving it
is crucial for large-scale deployment of autonomous agents in non-stationary domains such as robotics
or dialogue systems. In recent years, there has been a growing interest in this problem [38, 22, 40, 36].
As suggested in [40], the balance between stability (i.e. no forgetting of prior tasks), plasticity
(i.e. positive transfer to new tasks including combinations of previously seen ones and the ability to
express many diverse behaviors), and scalability (i.e. memory increases sublinearly with the number
of tasks) is crucial for designing effective CRL methods.

While current methods perform well along some of these dimensions, they tend to suffer along
others [32, 49]. One class of methods aims to alleviate forgetting by storing previously trained
models [38, 9, 48] or maintaining replay buffers with trajectories from prior tasks [24, 18, 34, 36].
However, these methods scale poorly with memory and compute, especially as the number and
complexity of the tasks increase, rendering them unfeasible for real-world applications. Another
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Figure 1: Continual Subspace of Policies (CSP) iteratively learns a subspace of policies in the
continual RL setting. At every stage during training, the subspace is a simplex defined by a set
of anchors (i.e. vertices). Any policy (i.e. point) in this simplex can be represented as a convex
combination α of the anchor parameters. αi defines the best policy in the subspace for task i. When
the agent encounters a new task, CSP tentatively grows the subspace by adding a new anchor. If the
new task i is very different from previously seen ones, a better policy αnew

i can usually be learned in
the new subspace. In this case, CSP extends the subspace by keeping the new anchor. If the new task
bear some similarities to previously seen ones, a good policy αold

i can typically be found in the old
subspace. In this case, CSP prunes the subspace by removing the new anchor.

body of work focuses on improving transfer to new tasks [17, 37, 23, 5, 20, 46], but these methods
tend to forget previously learned skills. A few approaches attempt to find a better balance between
transfer and forgetting [22, 40]. However, because they train a single model, these methods struggle
to express a wide range of diverse behaviors.

In this paper, we take inspiration from the mode connectivity literature [13] to develop a novel CRL
method by iteratively learning a subspace of policies [14]. Our method, Continual Subspace of
Policies or CSP for short, aims to strike a good balance between stability, plasticity, and scalability.
Instead of learning a single policy, CSP maintains an entire subspace of policies defined as a convex
hull in parameter space. The vertices of this convex hull are called anchors, with each anchor
representing the parameters of a policy. This subspace captures a large number of diverse behaviors
which enables efficient training on a wide range of tasks. At every stage of the CRL process, the
best found policy for a previously seen task is represented as a single point in the current subspace
(i.e. unique convex combination of the anchors). This enables cheap storage and retrieval of prior
solutions. If a new task is a combination of previously seen ones, a good policy can be found in the
current subspace without increasing the number of parameters. On the other hand, if a new task is
very different from previously seen ones, CSP extends the current subspace by adding another anchor,
and learns a new policy in the extended subspace. In this case, the expressivity of the subspace will
increase allowing our model to deal with more diverse tasks in the future, and thus ensuring good
plasticity. See Figure 1 for an overview of our method.

To summarize, in this paper we make the following contributions: (i) we introduce CSP, a new
CRL method based on adaptively building a subspace of policies which allows to cheaply store and
retrieve solutions to prior tasks, provides positive transfer and grows sublinearly w.r.t the number of
tasks, (ii) we design a number of continuous control environments to evaluate specific abilities of
CRL agents, (iii) we illustrate our method’s ability to learn diverse task sequences and transfer to
compositional tasks, (iv) and we show that CSP outperforms state-of-the-art CRL methods on a suite
of continuous control scenarios in both Brax [12] and Continual World [49].

2 Problem Setting

A continual learning problem is defined by a sequence of N tasks denoted t1, ..., tN . The task i is
defined by a Markov Decision Process (MDP)Mi = ⟨Si,Ai,Ti, ri, γ⟩ with a set of states Si, a set of
actions Ai, a transition function Ti ∶ Si ×Ai → P(Si), and a reward function ri ∶ Si ×Ai → R. For
the sake of simplicity, we consider here that all the tasks have the same state space denoted S and
action space A. We also define a global policy Π ∶ [1..N] ×Z → (S → P(A)) which takes as input
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a task id i and a sequence of tasks Z , and outputs the policy which should be used when interacting
with task i. P(A) is a probability distribution over the action space.

Budgeted Constraints and Training. We consider that each task i is associated with a training
budget denoted bi. It means that, when facing task i, the learning algorithm can only execute bi
actions. Then the system will switch to task ti+1 and will no longer have access to transitions from
the MDPMi. We do not assume access to a replay buffer of trajectories from past MDPs since this
would lead to a significant increase in memory cost.

3 Continual Subspace of Policies (CSP)

3.1 Subspace of Policies

Our work builds on top of [14] by leveraging a subspace of policies. However, instead of using the
subspace to train on a single environment and adapt to new ones at test time, we use it to efficiently
learn tasks sequentially in the continual RL setting. This requires designing a new approach for
learning the subspace, as detailed below.

Let θ ∈ Rd represent the parameters of a policy, which we denote by π(a∣s, θ). A subspace of policies
is a simplex in Rd defined by a set of anchors Θ = {θ1, ..., θk}, where any policy in this simplex can
be represented as a convex combination of the anchor parameters. Let the weight vector α ∈ Rk+ with
∥α∥1 = 1 denote the coefficients of the convex combination. Therefore, each value of α uniquely
defines a policy with π(a∣s, [α,Θ]) = π(a∣s,∑αiθi). Throughout the paper, we sometimes refer to
the weight vector α and its corresponding policy π(a∣s, [α,Θ]) interchangeably (since a one-to-one
mapping is defined at each point in training).

3.2 Learning Algorithm

We propose to adaptively construct a subspace of policies for the continual RL setting in which an
agent learns tasks sequentially. We call our method Continual Subspace of Policies or CSP for
short.

Our model builds a sequence Θ1, ...,ΘN of subspaces, one new subspace after each training task,
with each subspace extending the previous one. Note that ∣Θj ∣ ≤ j, ∀ j ∈ 1...N since the subspace
grows sublinearly with the number of tasks (as explained below). Hence, the number of anchors m of
a subspace Θj is not the same as the number of tasks j used to create Θj . The learned policies are
represented as single points in these subspaces. At each stage, CSP maintains both a set of anchors
defining the current subspace, as well as the weights α corresponding to the best policies found
for all prior tasks. The (best found) policy for task i after training on the first j tasks is denoted as
πji (a∣s) and can be represented as a point in the subspace Θj with a weight vector denoted αji such
that πji (a∣s) = π(a∣s, [α

j
i ,Θj]).

Given a set of anchors Θj and a set of previously learned policies {αj1, ... , α
j
j}, updating our model

on the new task tj+1 produces a new subspace Θj+1 and a new set of weights {αj+11 , ... , αj+1j+1}. There
are two possible cases. One possibility is that the current subspace already contains a good policy for
the new task, so we just need to find the weight vector corresponding to a policy which performs well
on the new task. The other possibility is that the current subspace does not contain a good policy
for the new task. In this case, the algorithm produces a new subspace by adding one anchor to the
previous one (see next section), and converts the previous policies to be compatible with this new
subspace.

To achieve this, CSP operates in two phases:

1. Grow the current subspace by adding a new anchor and learning the best possible policy for
task j + 1 in this subspace.

2. Compare the quality of this policy with the best possible policy expressed in the previous
subspace. Based on this comparison, decide whether to extend the subspace to match the
new one or prune it back to the previous one.
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See Algorithm 17 for the pseudo-code of our method. We now describe in detail the two phases of
the learning process, namely how we grow the subspace and how we decide whether to extend or
prune the subspace.

Algorithm 1: Continual Subspace of Policies (CSP)
Input: θ1,. . . ,θj (previous anchors), B (budget), ϵ (threshold)
Initialize: Wϕ (subspace critic), Buf (replay buffer)

1 Define θj+1 ← 1
j ∑

j
i=1 θi (new anchor) ; // Grow the Subspace

2 for i = 1, ...,B do
3 Sample α ∼Dir (j + 1)
4 Set policy parameters θα ← ∑j+1i=1 αiθi
5 for l = 1, ...,K do
6 Collect and store (s, a, r, s′, α) in Buf by sampling a ∼ πθα (⋅∣s)
7 end
8 if time to update then
9 Update πθj+1 and Wϕ using the SAC algorithm and the replay buffer Buf

10 end
11 end
12 Use Buf and Wϕ to estimate: ; // Extend or Prune the Subspace13

αold ← argmax
(α,0) with α∈Rm

+
,∥α∥1=1

Wϕ(α)

αnew ← argmax
α∈Rm+1

+
,∥α∥1=1

Wϕ(α)

if Wϕ(⋅, αnew) > (1 + ϵ) ⋅Wϕ(⋅, αold) then
14 Return: θ1, . . . , θj , θj+1, αnew; // Extend
15 else
16 Return: θ1, . . . , θj , αold; // Prune
17 end

3.3 Grow the Subspace

Given the current subspace Θj composed of m ≤ j anchors (with j being the number of tasks seen so
far), a new subspace Θ̃j+1 is built as follows. First a new anchor denoted θj+1 is added to the set of
anchors such that Θ̃j+1 = Θj ⋃{θj+1}. With all previous anchors frozen, we train the new anchor by
sampling α values from a Dirichlet distribution and derive updates from a similar objective as the one
proposed in [14]:

θj+1 = argmax
θ

Eα∼Dir, τ∼π(a∣s,[α,Θj ⋃{θ}])[Rj+1(τ)], (1)

where Rj+1(τ) is the return obtained on task j +1 throughout trajectory τ which was generated using
policy π(a∣s, [α, Θ̃j+1)]. Note that the anchor is trained such that not only one but all possible values
of α tend to produce a good policy. The resulting subspace thus aims at containing as many good
policies as possible for task j + 1.

3.4 Extend or Prune the Subspace

To decide if the new anchor is kept, we propose to simply compare the best possible policy (for task
j + 1) in the new subspace with the best possible policy for the same task in the previous subspace
(i.e. without using the new anchor). Each policy could be evaluated via Monte-Carlo (MC) estimates
by doing additional rollouts in the environment and recording the average performance. However,
this typically requires a large number (e.g. millions) of interactions which may be impossible with a
limited budget. Thus, we propose an alternative procedure to make this evaluation sample efficient.

For each task j and corresponding subspace Θj , our algorithm also learns a Q-function Q(s, a,α)
which is trained to predict the expected return on task j for all possible states, actions, and all possible
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α’s in the corresponding subspace. Our algorithm is based on SAC [15], so for each task, we collect
a replay buffer of interactions Buf which contains all states and actions seen by the agent during
training. Thus, the Q-function Q(s, a,α) can help us directly estimate the quality W (α) of the
policy represented by the weights α in the new subspace which can be computed as the average over
all states and actions in the replay buffer:

W (α) = Es,a∼BufQ(s, a,α) (2)

It is thus possible to compute the value of α corresponding to the best policy in the extended subspace
(denoted αnew ∈ Rm+1+ , ∣αnew∥1 = 1):

αnew = argmax
α∈Rm+1

+
,∥α∥1=1

W (α), (3)

as well as the value of α corresponding to the best policy in the previous subspace (denoted αold ∈
Rm+ , ∥αold∥1 = 1):

αold = argmax
(α,0) with α∈Rm

+
,∥α∥1=1

W (α). (4)

In practice, αnew and αold are estimated by uniformly sampling a number of α’s in the corresponding
subspace as well as a number of states and actions from the buffer.

The quality of the new subspace and the previous one can thus be evaluated by comparing W (αnew)
and W (αold). If W (αnew) > (1 + ϵ) ⋅W (αold), the subspace is extended to the new subspace (i.e.
the one after the grow phase): Θj+1 = Θ̃j+1. Otherwise, the subspace is pruned back to the old
subspace (i.e. the one before the grow phase): Θj+1 = Θj . Note that, if the subspace is extended,
the previously learned policies have to be mapped in the new subspace such that αj+1i ∈ Rj+1+ i.e.
∀ i ≤ j, αj+1i ∶= (αji ,0) and αj+1j+1 ∶= αnew. If the subspace is not extended, then old values can be
kept i.e. ∀ i ≤ j, αj+1i ∶= αji and αj+1j+1 ∶= αold.

The policy πθj+1 and value function Wϕ are updated using SAC [15]. See Appendix A for more
details about the algorithm and our implementation of CSP.

3.5 Scalability of CSP

By having access to an infinite number of policies, the subspace is highly expressive so it can capture
a wide range of diverse behaviors. This enables positive transfer to many new tasks without the need
for additional parameters. As a consequence, the number of parameters scales sublinearly with the
number of tasks. The final size of the subspace depends on the sequence of tasks, with longer and
more diverse sequences requiring more anchors. The speed of growth is controlled by the threshold ϵ
which trades-off performance gains for memory efficiency (i.e. the higher the ϵ the more performance
losses are tolerated to reduce memory costs). See Appendix A for more intuition about CSP.

4 Experiments

4.1 Environments

We evaluate CSP on a number of CRL scenarios focused on both locomotion using Brax [12] as well
as robotic manipulation using Continual World [49]. For Continual World, we ran experiments on all
8 triplet sequences proposed in the paper. These tasks were specifically designed to challenge both
transfer and forgetting (see Appendix C for more details).

For Brax, we perform an in-depth study by designing a number of continuous control scenarios to
separately evaluate capabilities specific to CRL agents such as forgetting, transfer, or scalability. For
each capability, we create two scenarios: one based on HalfCheetah and one based on Ant. First, we
generate a large number of environments by changing the dynamics of the standard environment. We
aimed to ground our environment variations in realistic situations such as increased or decreased
gravity, friction, or limb lengths. Then, we design task sequences based on the transfer matrices for
these environments, following [49]. Unless mentioned otherwise, each CRL scenario has 8 tasks in
the sequence. See Appendix C for more details about our designed scenarios.
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Forgetting and Transfer are evaluated by selecting sequences of tasks with significant negative and
positive backward transfer according to the matrix. Robustness probes whether the method can
deal with adversarial perturbations in the environment such as the actions being inverted for each
task, which poses a significant challenge for both forgetting and transfer. Compositionality tests the
agent’s ability of combining two previously seen skills to solve a new task. Scalability is tested by
looking at how performance and memory change with the number of tasks. Learning Efficiency is
tested by using smaller budgets (see Section 2).

4.2 Baselines

We compare CSP with a number of state-of-the-art CRL methods such as PNN [38], EWC [22],
as well as with FT-1 which finetunes a single model on the entire sequence of tasks, FT-L2 which
is like FT-1 with an additional L2 regularization applied during finetuning. We also compare CSP
with SAC-N which trains one model for each task from scratch. While SAC-N avoids forgetting, it
cannot transfer knowledge across tasks. Finally, we compare CSP with a method called FT-N which
combines the best of both SAC-N and FT-1. Like SAC-N, it stores one model per task after training
on it and like FT-1, it finetunes the previous model to promote transfer. However, FT-N and SAC-N
scale poorly (i.e. linearly with the number of tasks) with both memory and compute, which makes
them unfeasible for real-world applications. Note that our method is not directly comparable with
CLEAR [36] since we assume no access to data from prior tasks. Storing data from all prior tasks as
CLEAR does, is impractical for long task sequences due to prohibitive memory costs. All methods
use SAC [15] as a base algorithm and have been equally well-tuned on our tasks. Full experimental
details can be found in Appendix B.

4.3 Ablations

We also perform a number of ablations to understand how the different components of CSP influence
performance. First, we want to understand how good the critic is at finding the best policy in the
subspace. To do this, we implement CSP-MID which uses the subspace’s midpoint a proxy for the
best policy in the subspace for task j ∀ j ∈ 1...N rather than using the critic to select the best policy.
The midpoint is defined as θmid ∶= 1

m ∑
m
i=1 θi where m = ∣Θj ∣. The midpoint is a natural choice as it

uniformly combines all prior anchors so it contains knowledge of all prior tasks.

At the other end of the spectrum, we have CSP-ORACLE which selects the best policy by sampling
a large number (i.e. thousands) of policies in the subspace and computing Monte-Carlo estimates of
their returns. These estimates are expected to be more accurate than the critic’s, so CSP-ORACLE
can be considered an upper bound to CSP. However, CSP-ORACLE is less efficient than CSP since
it requires singificantly more interactions with the environment (i.e. millions).

We also want to understand how much performance we lose, if any, by not adding one anchor for
each task. To do this, we run CSP-LINEAR which always extends the subspace. In addition, we
vary the threshold ϵ used to decide whether to extend the subspace based on how much performance
is gained by doing so. This analysis can shed more light on the trade-off between performance gain
and memory cost as the threshold varies.

The paper includes a total of 4116 experiments, over 25 different CRL scenarios with 36 different RL
environments. Each experiment takes on average 15 hours on 1 GPU (NVIDIA V100). The means
and standard deviations are computed over 3 runs.

4.4 Metrics

Agents are evaluated across a range of commonly used CRL metrics [49, 32]. For brevity, following
the notation in Section 2, we will use πji ∶= Π(i, [t1, . . . , tj]) to denote the policy selected by Π for
task i obtained after training on the sequence of tasks t1, ..., tj (in this order with j included). Note
that Π can also be defined for a single task i.e. πtii ∶= Π(i, [ti]) is the policy for task i after training
the system only on task ti (for the corresponding budget bi).

Average Performance is the average performance of the model across all tasks, after training on the
entire sequence of tasks. Let Pi(π) be the performance of the system on task i using policy π defined
as Pi(π) ∶= Eπ,Ti [∑ ri (s, a)] where ri(s, a) is the reward received on task i when taking action a in
state s. Then, the final average performance across all tasks can be computed as P ∶= 1

N ∑
N
i=1 Pi(πNi ).
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Table 1: Aggregated results across 4 of our CRL scenarios based on HalfCheetah, each consisting of a
sequence of 8 tasks. These scenarios were designed to test forgetting, transfer, compositionality, and
robustness. CSP outperforms all baselines, while scaling sublinearly with the number of tasks. CSP’s
performance is also not too far from that of CSP-ORACLE which uses millions of interactions to
find the best policy whereas CSP uses none.

Method Performance Transfer Forgetting Growing Factor

FT-1 0.75 ± 0.16 0.20 ± 0.14 −0.45 ± 0.07 1.01.01.0
FT-L2 0.81 ± 0.09 0.09 ± 0.14 −0.28 ± 0.10 2.0
EWC 0.98 ± 0.14 0.14 ± 0.11 −0.28 ± 0.10 3.0
PNN 1.06 ± 0.17 0.06 ± 0.18 0.00 ± 0.00 47.3
SAC-N 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 8.0
FT-N 1.22 ± 0.10 0.22 ± 0.10 0.00 ± 0.00 8.0

CSP-MID 0.64 ± 0.17. −0.22 ± 0.17 −0.15 ± 0.09 4.0 ± 0.7
CSP-ORACLE 1.53 ± 0.09 0.48 ± 0.1 0.05 ± 0.07 4.0 ± 0.7
CSP (ours) 1.32 ± 0.071.32 ± 0.071.32 ± 0.07 0.31 ± 0.070.31 ± 0.070.31 ± 0.07 0.00 ± 0.030.00 ± 0.030.00 ± 0.03 4.0 ± 0.7

Forward Transfer measures how much a CRL system is able to transfer knowledge from task to
task. At task i, it compares the performance of the of the system trained on all previous tasks t1, ..., ti
to the same model trained solely on task ti. This measure is defined as FTi ∶= Pi(πi

i)−Pi(π
ti
i )

1−Pi(π
ti
i )

, and

thus the forward transfer for all tasks is FT ∶= 1
N ∑

N
i=1 FTi.

Forgetting evaluates how much a system has forgotten about task i after training on the full sequence
of tasks. It thus compares the performance of policy πii with the performance of policy πNi and is
defined as Fi ∶= Pi(πNi ) − Pi(πii). Similarly to the average transfer, we report the average forgetting
across all tasks F ∶= 1

N ∑
N
i=1 Fi.

Growing Factor measures how much the size of the model grows during training. Formally, it is
defined as the ratio between the number of parameters of the model at task tN and its size at task t1.
It is defined as GF ∶= ∣ψN ∣

∣ψ1∣ where ψi is the model’s set of parameters after training on task i.

5 Results

5.1 Performance on Brax

Table 1 shows the aggregated results across 4 of our CRL scenarios based on HalfCheetah, namely
the ones that probe forgetting, transfer, robustness, and compositionality. The other scenarios are
studied separately to avoid skewing the results, given that they use different regimes (e.g. budget,
number of tasks). The results are normalized using the performance of the SAC-N agents. See
Appendix D for results on each scenario, including those based on Ant.

CSP outperforms all the baselines along final average performance, forward transfer, and forgetting,
while the memory costs are kept relatively low. Naive methods like FT-1 have low memory costs
and good transfer, but suffer from catastrophic forgetting. In contrast, methods that aim to reduce
forgetting such as FT-L2 or EWC do so at the expense of transfer. The only competitive methods in
terms of performance are the ones where the number of parameters increases at least linearly with
the number of tasks, such as PNN, SAC-N, and FT-N. These methods have no forgetting because
they store the models trained on each task. SAC-N has no transfer since it trains each model from
scratch, while FT-N promotes transfer as it finetunes the previous model. However, these methods
are unfeasible for real-world scenarios with long task sequences due to their poor scalability. To
summarize, CSP outperforms by a wide margin methods with good scalability but poor stability
or plasticity. At the same time, CSP is significantly more memory efficient than methods with
good stability or plasticity but poor scalability. In conclusion, CSP strikes a better balance between
stability, plasticity, and scalability than prior CRL approaches.

Varying the Threshold. Figure 2a shows how performance and memory vary with the threshold ϵ
used to decide whether to extend the subspace. As expected, as ϵ increases, performance decreases,
but so do memory costs. Note that performance is still above 80% even as the memory costs are cut
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Figure 2: (a) shows how performance and memory vary with the threshold, (b) shows how these scale
with the number of tasks, and (c) shows performance for different budgets.

(a) Smoothness and Critic Accuracy (b) Diversity and Compositionality

Figure 3: (a) shows the value of each policy in the subspace estimated using both Monte-Carlo
simulations (left) and our critic’s predictions (right), demonstrating both that the subspace is smooth
and that our critic learns accurate estimates of the reward and can thus find the best policy in
the subspace; (b) shows the subspace for three different tasks, the third being a combination of
the first two, demonstrating that the subspace already contains a policy with high reward on the
compositional task before being trained on it. The star represents the best policy in the subspace
for the corresponding task. The subspace contains policies covering the whole spectrum of rewards,
suggesting that it captures diverse behaviors.

by more than 60%, relative to CSP-LINEAR which trains an anchor (i.e. new set of parameters) for
each task. Thus, CSP can drastically reduce memory costs without significantly hurting performance.
Practitioners can set the threshold to trade-off performance gains for memory efficiency (i.e. the
higher the ϵ the more performance losses are tolerated in order to reduce memory costs).

Scalability. Figure 2b shows how performance and memory scale with the number of tasks in the
sequence (on the compositionality scenario), for both CSP and FT-N which is our strongest baseline.
CSP maintains both strong performance and low memory cost even as the number of tasks increases.
In contrast, FT-N’s growing factor scales linearly, which makes it impractical for long task sequences.

Learning Efficiency. Figure 2c shows the average performance for three different budgets (i.e.
number of interactions allowed for each task) on the robustness scenario, comparing CSP with the
more scalable baselines FT-1, FT-L2, and EWC. These results demonstrate that CSP can learn
efficiently even with a reduced budget, outperforming the baselines. By keeping track of an infinite
number of policies, CSP enables positive transfer to a wide range of tasks without requiring many
interactions to learn new skills.

5.2 Properties of the Subspace

Evaluating the Subspace. Table 1 shows that as expected, using the middle of the subspace as a
proxy for the best policy is suboptimal (i.e. CSP-MID is worse than CSP). Importantly, CSP’s
performance is not too far from that of CSP-ORACLE, indicating that the learned critic can be
effectively used to find the best policy in the subspace for a given task, despite the fact that it uses no
additional interactions with the environment to do so. In contrast, CSP-ORACLE requires millions
of samples to select the best policy in the subspace using Monte-Carlo rollouts.

Smoothness and Critic Accuracy. Figure 3a shows a snapshot of a trained subspace, along with the
expected reward of all policies in the subspace for a given task. The expected reward is computed
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Table 2: Results on 4 robotic manipulation scenarios from Continual World.

Method T1 T2 T3 T4

CSP (ours) 0.76 ± 0.20 0.79 ± 0.03 0.82 ± 0.080.82 ± 0.080.82 ± 0.08 0.58 ± 0.090.58 ± 0.090.58 ± 0.09
FT-N 0.77 ± 0.080.77 ± 0.080.77 ± 0.08 0.86 ± 0.100.86 ± 0.100.86 ± 0.10 0.78 ± 0.15 0.49 ± 0.14

using both Monte-Carlo rollouts, as well as our critic’s predictions using Equation 2. As illustrated,
the subspace is smooth, and the critic’s estimates are highly accurate.

Diversity and Compositionality. Figure 3b illustrates that the subspace contains behaviors composed
of previously learned skills. This allows CSP to efficiently find good policies for many different
combinations of prior tasks without the need of training additional parameters. The figure also
shows that for a given task, the policies in the subspace cover the whole spectrum of rewards,
thus emphasizing the diversity of behaviors expressed by the subspace. See Appendix E for more
quantitative and qualitative analyses of the subspace.

5.3 Performance on Continual World

Table 2 shows results for 4 challenging robotic manipulation scenarios from Continual World, each
of them containing 3 tasks. These scenarios have been designed such that the second task reduces
transfer from the first to the third task. CSP achieves comparable performance with FT-N, which
is state-of-the-art on these scenarios [49]. However, in contrast with CSP, FT-N cannot be used
for long task sequences due to prohibitive memory and computational costs. See Appendix D for
additional results on Continual World.

6 Related Work

Continual Reinforcement Learning. CRL methods aim to avoid catastrophic forgetting, as well as
enable transfer to new tasks, while remaining scalable to a large number of tasks. In the past few years,
multiple approaches have been proposed to address one or more of these challenges [29, 21, 32, 49].

One class of methods focuses on preventing catastrophic forgetting. Some algorithms achieve this by
storing the parameters of models trained on prior tasks [38, 9, 48]. However, these methods scale
poorly with the number of tasks (i.e. at least linearly) in both compute and memory, which makes
them unfeasible for more realistic scenarios. Other methods maintain a buffer of experience from
prior tasks to alleviate forgetting [24, 18, 34, 36, 7]. However, this is also not scalable as the memory
cost increases significantly with the number and complexity of the tasks. In addition, many real-world
applications in domains like healthcare or insurance prevent data storage due to privacy or ethical
concerns. Another class of methods focuses on improving transfer to new tasks. Naive approaches
like finetuning that train a single model on each new task provide good scalability and plasticity, but
suffer from catastrophic forgetting of previously learned tasks. To overcome this effect, methods
like elastic weight consolidation (EWC) [22] alleviate catastrophic forgetting by constraining how
much the network’s weights change, but this can in turn reduce plasticity. Another class of methods
employs knowledge distillation to improve transfer in CRL [17, 37, 23, 40, 5, 20, 46]. However, since
these methods train a single network, they struggle to capture a large number of diverse behaviors.

There is also a large body of work which leverages the shared structure of the tasks [50, 30, 25, 27,
1, 43], meta-learning [19, 44, 4, 8, 33, 52, 39], or generative models [35, 42, 41, 2] to improve CRL
agents, but these are less related to CSP and not very competitive.

Mode Connectivity and Neural Network Subspaces. Based on prior studies of mode connectiv-
ity [13, 11, 28], [47, 6] proposed the neural network subspaces to connect the solutions of different
models. More similar to our work, [10] leverages subspace properties to mitigate forgetting on a
sequence of supervised learning tasks, but doesn’t focus on other aspects of the continual learning
problem. Our work was also inspired by [14] which learns a subspace of policies for a single task for
fast adaptation to new environment. In contrast to [14], we consider the continual RL setting and
adaptively grow the subspace as the agent encounters new tasks. Our work is first to demonstrate the
effectiveness of mode connectivity for the continual RL setting.
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7 Discussion

In this paper, we propose CSP, a new CRL method which adaptively builds a subspace of policies.
Learning about a large number of diverse behaviors allows CSP to strike a good balance between
stability, plasticity, and scalability. We demonstrate our method’s superior capabilities relative to
state-of-the-art CRL approaches on a wide range of continuous control scenarios. Our paper is first to
use a subspace of models for CRL, and thus opens up many interesting directions for future work.
For example, one can assume a fixed size for the subspace and update the anchors whenever the agent
encounters a new task. Another promising direction is to leverage the structure of the subspace to
meta-learn or search for good policies on a given task. Finally, active learning techniques could be
employed to more efficiently evaluate the subspace.
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A Algorithm Details

A.1 Scalability of CSP

By having access to an infinite number of policies, the subspace is highly expressive so it can capture
a wide range of diverse behaviors. This enables positive transfer to many new tasks without the need
for training additional parameters. As a consequence, the number of parameters scales sublinearly
with the number of tasks. The speed of growth is controlled by the threshold ϵ which defines how
much performance we are willing to give up for decreasing the number of parameters (by the size of
one policy network). Practitioners can set the threshold to trade-off performance gains for memory
efficiency (i.e. the higher the ϵ the more performance losses are tolerated to reduce memory costs). In
practice, we noticed that setting ϵ = 0.1 allows good performance and a limited growth of parameters.

As the agent learns to solve more and more tasks, we expect the subspace to grow more slowly (or
stop growing entirely) since it already contains many useful behaviors which transfer to new tasks.
On the other hand, if the agent encounters a task that is significantly different than previous ones
and all other behaviors in the subspace, the subspace still has the flexibility to grow and incorporate
entirely new skills. The number of anchors in the final subspace is adaptive and depends on the
sequence of tasks. The longer and more diverse the task sequence, the more anchors are needed. This
property is important for real-world applications with open-ended interactions where it’s unlikely to
know a priori how much capacity is required to express all useful skills.

A.2 Using the critic as a discriminator

The subspace critic Wϕ plays a central role in our method. Compared to the vanilla SAC critic, we
only add the convex combination α as an input (concatenated with the states and actions). In this
way, it is optimized not only to evaluate the future averaged return on (s, a) pairs of a single policy,
but an infinity of policies, characterized by the convex combination α.

At the end of each task, the subspace critic has the difficult task to estimate by how much the new
anchor policy θj+1 improves the performance of the current subspace Θj . To do so, one has to find
the best combination of policies in the last subspace Θj , calling it αold and the one in the current
subspace Θj+1, calling it αnew. In practice, we found that sampling 1024 random (s, a) pairs from
the replay buffer at the end of the task allows to have an accurate estimation of the best policies.

A.3 Sampling combinations in the subspace

Yet, it is important to allow the critic to estimate αold. During training, we noticed that sampling with
a simple flat Dirichlet distribution (i.e. a uniform distribution over the simplex induced by the current
subspace) is not enough to make the critic able to accurately estimate the performance of the last
subspace (indeed, the chances of sampling a policy in the last subspace are almost surely 0.). This is
why we decided to sample in both the current and the last subspace. The distribution we use is then a
mixture of two Dirichlet (equal chances of sampling in the last subspace and in the current subspace).
We did not perform an ablation to see if balancing the mixture would increase performances.

We also tried to sample with a peaked distribution (concentration of the Dirichlet equal to the inverse
of the number of the anchors) to see if it increased performances. In some cases the new subspace
is able to find good policies faster with this distribution. It can be a good trade off between always
choosing the last anchor and sampling uniformly.
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B Experimental Details

All the experiments were implemented with SaLinA [26], a flexible and simple python library for
learning sequential agents. We used Soft Actor Critic [15] as the routine algorithm for each method.
It is a popular and efficient off-policy algorithm for continuous domains. We use a version where
the entropy parameter is learned, as proposed in [16]. For each task and each methods, the twin
critic networks are reset as well as the replay buffer (which has a maximum size of 1M interactions,
corresponding to the maximum budget of each task).

B.1 Architecture Details

Brax scenarios:
For the twin critics and policy, We use a network with 4 linear layers, each consisting of 256 neurons.
We use leaky ReLU activations (with α = 0.2) after every layer.

Continual World triplets:
We use the same architectures as for Brax scenarios, but following [49], we add Layer Normalization
[3] after the first layer, followed by a tanh activation. For the subspace method, we did not add this
layer.

Specific architecture of CSP:
Our Pytorch implementation of CSP uses the nn.ModuleList object to store anchor networks. The
additional computational cost compared to a single network is negligible during both training and
inference as it is mentioned in [47].

B.2 Experimental Protocol

Brax scenarios:
Considering FT-N as the upper bound with which we want to compare, we decided to apply the
following protocol for each short scenario. First, we run a gridsearch on SAC hyper-parameters
(see Table 3) on FT-N and select the best set in terms of final average performance (see Section 4
for the details about this metric). Then, we freeze these hyper-parameters and performed a specific
gridsearch for CSP and each baseline (see Table 4). Each hyper-parameter set is evaluated over 3
seeds. We believe this ensures fair comparisons, and even gives a slight advantage to FT-N compared
to our method. Note that we set the number of parallel environments to 128 and the number of update
per step to 0.5. They can be seen as tasks constraints. These values are reasonable, and FineTuning
them would have increased the number of experiments by a lot.

Continual World triplets:
We bypassed the preliminary SAC gridsearch and use the set of hyper-parameters proposed in [49].
We performed a specific gridsearch for CSP and each baseline (see Table 4).

B.3 Baselines

EWC:
This regularization based method aims to protect parameters that are important for the previous tasks.
After each task, it uses the Fisher information matrix to approximate the importance of each weight.
We followed [49] to compute the Fisher matrix and use an analytical derivation of it.

FT-L2:
This baseline is proposed by [49]. It can be seen as a simplified version of EWC where the regulariza-
tion coefficients for each parameters are equal to 1.

PNN:
This method proposed by [38] creates a new network at the beginning of each task, as well as lateral
networks that will take as inputs - for each hidden layer - the output of the networks trained on
former tasks. In this method, the number of parameters, training and inference times are growing
exponentially with respect to the number of tasks. We used a simple linear layer for each lateral
connection.
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B.4 Ablations

Ablations on the threshold parameter (see Figure 2) of CSP have been performed on the long
version of the Distraction scenario of HalfCheetah. Concerning the scalability ablation, we used the
Compositional scenario of HalfCheetah and duplicated it in 3 versions (4 tasks, 8 tasks, 12 tasks).
Concerning the learning efficiency, we used the Distraction Scenario (short version) and ran it with a
budget of 250k,500k and 1M interactions. Results were averaged over 3 seeds.

Table 3: Hyper-parameters search for SAC over Brax scenarios. Red text indicates that the hyper-
parameter is seen as a constraint of the environment, as explained in B.2.

Hyper-parameter Values tested
lr policy {0.0003,0.001}
lr critic {0.0003,0.001}
reward scaling {1.,10.}
target output std {0.05,0.1}
policy update delay {2,4}
target update delay {2,4}
lr entropy 0.0003
update target network coeff 0.005
batch size 256
n parallel environments 128
gradient update per step 0.5
discount factor 0.99
replay buffer size 1M
warming steps (random uniform policy) 12,800

Table 4: Specific hyper-parameter search for regularization based baselines and our model.
Hyper-parameter Value

FT-L2, EWC
regularization coefficient {10−2,100,102,104,106}

CSP
threshold {0.1,0.25}
combination rollout length {20,100}
distribution type {flat,peaked}
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C Environment Details

C.1 Designing the Tasks

We used the flexibility of Brax physics engine [12], and two of its continuous control environments
Halfcheetah (obs dim: 23, action dim: 6) and Ant (obs dim: 27, action dim: 8) to derive multiple
tasks from them. To do so, we tweaked multiple environment parameters (Table 5)) and tried to
learn a policy on these new tasks. From that pool of trials, we kept tasks (see Table 6) that were both
challenging and diversified.

Table 5: Environment parameters tweaked to create interesting tasks for our scenarios. The Range
column indicates the range of the multiplying factor applied to the environment parameter in question.

Environment Parameter Range Description

mass [0.5,1.5] mass of a particular part of the agent’s body (torso, legs, feet,...)

radius [0.5,1.5] radius of a particular part of the agent’s body (torso, legs, feet,...)

gravity [0.15,1.5] gravity of the environment

friction [0.4,1.5] friction of the environment

actions {1,−1} invert action values if set to −1. Used for distraction tasks.

observations (mask) [0.1,0.8] proportion of masked observations to simulate defective sensors

actions (mask) [0.25,0.75] proportion of masked actions to simulate defective modules

Table 6: List of the 21 tasks used to create our scenarios and the parameter changes associated.

Task Name Parameter changes

H
al

fC
he

et
ah

normal {}
carrystuff {torso_mass: 4, torso_radius: 4}

carrystuff_hugegravity {torso_mass: 4, torso_radius: 4, gravity: 1.5}
defectivesensor {masked_obs: 0.5}

hugefeet {feet_mass: 1.5, feet_radius: 1.5}
hugefeet_rainfall {feet_mass: 1.5, feet_radius: 1.5, friction: 0.4}
inverted_actions {action_coefficient: -1.}

moon {gravity: 0.15}
tinyfeet {feet_mass: 0.5, feet_radius: 0.5}

tinyfeet_moon {feet_mass: 0.5, feet_radius: 0.5, gravity: 0.15}
rainfall {friction: 0.4}

A
nt

normal {}
disabled3feet_1 {action_mask: 0.75 (only 1st leg available)}
disabled3feet_2 {action_mask: 0.75 (only 2nd leg available)}

disableddiagonalfeet_1 {action_mask: 0.5 (1st diagonal)}
disableddiagonalfeet_2 {action_mask: 0.5 (2nd diagonal)}

disabledforefeet {action_mask: 0.5 (forefeet)}
disabledhindfeet {action_mask: 0.5 (hindfeet)}
inverted_actions {action_coefficient: -1.}

moon {gravity: 0.7}
rainfall {friction: 0.4}
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C.2 Designing the Scenarios

Inspired by [49], we studied the relationship between these changes with a simple protocol: we learn
a new task with a policy that has been pre-trained on a former task. We drew forgetting and transfer
tables for each pair of tasks (see Figure 4). With this information, we designed 2 types of scenarios
representing a particular challenge in continual learning: the Forgetting Scenarios are designed
such that a single policy tends to forget the former task when learning a new one. The Transfer
Scenarios are designed such that a single policy has more difficulties to learn a new task after having
learned the former one, rather than learning it from scratch. In addition we designed Distraction
Scenarios, that alternate between a normal task and a very different distraction task that disturbs
the whole learning process of a single policy (we simply inverted the actions). While this challenge
looks particularly simple from a human perspective (a simple -1 vector applied on the output is fine
to find an optimal policy in a continual setting), we figured out that the Fine-tuning policies struggle
to recover good performances (the final average reward actually decreases). Finally, we created
Compositional Scenarios, that present two first tasks that will be useful to learn the last one, but a
very different distraction task is put at the third place to disturb this forward transfer. In order to give
a complete overview of the performances of our model and baselines, we designed a short version (4
tasks) and a long version (8 tasks, i.e. the short version repeated twice) of all the scenarios. Here is
the detailed sequence for each scenario (short version):

1. Forgetting Scenarios:
∎ HalfCheetah:

hugefeet → moon → carrystuff → rainfall

∎ Ant:
normal → hugefeet → rainfall → moon

2. Transfer Scenarios:
∎ HalfCheetah:

carrystuff_hugegravity → moon → defectivesensor → hugefeet_rainfall

∎ Ant:
disableddiagonalfeet_1 → disableddiagonalfeet_2 → disabledforefeet →
disabledhindfeet

3. Distraction Scenarios:
∎ HalfCheetah:

normal → inverted_actions → normal → inverted_actions

∎ Ant:
normal → inverted_actions → normal → inverted_actions

4. Compositional Scenarios:
∎ HalfCheetah:

tinyfeet → moon → carrystuff_hugegravity → tinyfeet_moon

∎ Ant:
disabled3feet_1 → disabled3feet_2 → disabledforefeet → disabledhindfeet
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C.3 Continual World Tasks

We also tested our model and our baselines on the 8 triplets (3-tasks scenarios) proposed by [49].
The tasks originally come from Metaworld [51], and have a budget of 1M interactions each. The
scenarios were specially designed such that there is a positive forward transfer from task 1 to task
3, but task 2 is used as a distraction that interferes with these learning dynamics. These tasks are
designed with the 2.0 version of the open-source MuJoCo physics engine [45]. Here is the detailed
sequence of the triplets:

1. push-v1 → window-close-v1 → hammer-v1

2. hammer-v1 → window-close-v1 → faucet-close-v1

3. window-close-v1 → handle-press-side-v1 → peg-unplug-side-v1

4. faucet-close-v1 → shelf-place-v1 → peg-unplug-side-v1

5. faucet-close-v1 → shelf-place-v1 → push-back-v1

6. stick-pull-v1 → peg-unplug-side-v1 → stick-pull-v1

7. stick-pull-v1 → push-back-v1 → push-wall-v1

8. push-wall-v1 → shelf-place-v1 → push-back-v1
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Figure 4: Forgetting (a) and Transfer (b) tables of our HalfCheetah tasks. The pairs selected to create
our scenario are highlighted in blue. Results are averaged over 3 seeds using a classical RL algorithm.
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D Detailed Results

D.1 HalfCheetah

For each of the 4 scenarios, we ran two versions: A short one (4 tasks) and a long one (8 tasks, the
short one repeated twice). The normalized results are respectively presented in Table 9 and Table 10.
For a complete transparency, we also provide in Table 7 the raw rewards that were used to normalize
the results. See Section B for more details about the computation of the normalized results. The best
hyper-parameter sets for each scenario are provided in Table 8

Table 7: Raw cumulative rewards obtained on each task of the 4 scenarios. These are obtained with a
single policy learned from scratch (SAC-N) and the set of hyperparameters selected by the gridsearch
of the FT-N method (see B). This explains why similar tasks have different averaged returns across
scenarios. Results are averaged over 3 seeds.

Task Cumulative rewards

Forgetting Scenario

hugefoot 2209
moon 2982
carrystuff 6309
rainfall 1001

Transfer Scenario

carrystuff_hugegravity 7233
moon 3599
defectivemodule 5909
hugefoot_rainfall 2942

Distraction Scenario

normal 4932
inverted_actions 5833
normal 4932
inverted_actions 5833

Compositional Scenario

tinyfoot 6311
moon 3932
carrystuff_hugegravity 6319
tinyfoot_moon 1355
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Table 8: Hyper-parameters selected for each HalfCheetah scenario. They have been selected on short
versions. For the long versions, we ran the same set of selected hyperparameters.

Hyper-parameter Scenario
Forgetting Transfer Distraction Compositional

lr policy 0.001 0.0003 0.001 0.0003
lr critic 0.0003 0.0003 0.001 0.0003
reward scaling 1. 1. 1. 10.
target output std 0.1 0.05 0.1 0.1
policy update delay 2 2 4 4
target update delay 2 2 2 4

FT-L2
regularization coefficient 104 100 102 102

EWC
regularization coefficient 10−2 100 10−2 100

CSP
threshold 0.1 0.1 0.1 0.1
combination rollout length 100 20 20 100
distribution type peaked peaked flat flat

D.2 Ant

We only ran the short version of the 4 scenarios. The long version is currently running and will
be displayed in a future version of this paper. The normalized results are respectively presented in
Table 13. For a complete transparency, we also provide in Table 11 the raw rewards that were used to
normalize the results. See Section B for more details about the computation of the normalized results.
The best hyper-parameter sets for each scenario are provided in Table 12
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Table 9: Detailed results of the short version (4 tasks) of our 4 Halfcheetah scenarios. Results presents
mean and standard deviation of our 4 metrics, are split by scenario and method, and are averaged
over 3 seeds.

Method Performance Transfer Forgetting Growing Factor

Fo
rg

et
tin

g
sc

en
ar

io
FT-1 0.99 ± 0.15 0.57 ± 0.4 -0.58 ± 0.27 1.0
FT-L2 0.88 ± 0.26 -0.13 ± 0.27 0.0 ± 0.0 2.0
EWC 1.05 ± 0.09 0.08 ± 0.15 -0.03 ± 0.06 3.0
PNN 1.05 ± 0.45 0.05 ± 0.45 0.0 ± 0.0 12.4
SAC-N 1.0 ± 0.35 0.0 ± 0.35 0.0 ± 0.0 4.0
FT-N 1.89 ± 0.2 0.89 ± 0.21 0.0 ± 0.0 4.0

CSP-MID 0.38 ± 0.4 0.26 ± 0.37 -0.88 ± 0.03 3.0 ± 0.0
CSP-ORACLE 2.03 ± 0.01 1.0 ± 0.02 0.03 ± 0.03 3.0 ± 0.0

CSP (ours) 1.76 ± 0.08 0.76 ± 0.08 0.0 ± 0.0 3.0 ± 0.0

Tr
an

sf
er

sc
en

ar
io

FT-1 0.45 ± 0.03 -0.07 ± 0.08 -0.47 ± 0.05 1.0
FT-L2 0.35 ± 0.09 -0.49 ± 0.18 -0.16 ± 0.09 2.0
EWC 0.21 ± 0.01 -0.79 ± 0.0 0.0 ± 0.0 3.0
PNN 0.84 ± 0.13 -0.17 ± 0.13 0.0 ± 0.0 12.4
SAC-N 1.0 ± 0.02 0.0 ± 0.02 0.0 ± 0.0 4.0
FT-N 0.94 ± 0.05 -0.06 ± 0.05 0.0 ± 0.0 4.0

CSP-MID 0.52 ± 0.08 -0.19 ± 0.07 -0.29 ± 0.11 3.33 ± 0.47
CSP-ORACLE 1.14 ± 0.07 0.14 ± 0.04 0.0 ± 0.03 3.33 ± 0.47

CSP (ours) 0.98 ± 0.06 -0.03 ± 0.06 0.0 ± 0.0 3.33 ± 0.47

D
is

tr
ac

tio
n

sc
en

ar
io

FT-1 0.36 ± 0.06 -0.18 ± 0.06 -0.45 ± 0.12 1.0
FT-L2 0.53 ± 0.05 -0.47 ± 0.05 0.0 ± 0.0 2.0
EWC 0.78 ± 0.41 -0.2 ± 0.39 -0.02 ± 0.08 3.0
PNN 1.09 ± 0.03 0.1 ± 0.03 0.0 ± 0.0 12.4
SAC-N 1.0 ± 0.18 0.0 ± 0.18 0.0 ± 0.0 4.0
FT-N 1.11 ± 0.03 0.11 ± 0.03 0.0 ± 0.0 4.0

CSP-MID 0.43 ± 0.12 -0.07 ± 0.1 -0.5 ± 0.18 3.0 ± 0.82
CSP-ORACLE 1.29 ± 0.08 0.28 ± 0.07 0.01 ± 0.0 3.0 ± 0.82

CSP (ours) 1.13 ± 0.09 0.13 ± 0.09 0.0 ± 0.0 3.0 ± 0.82

C
om

po
si

tio
na

ls
ce

na
ri

o FT-1 1.19 ± 0.09 0.33 ± 0.04 -0.15 ± 0.05 1.0
FT-L2 1.2 ± 0.13 0.28 ± 0.08 -0.08 ± 0.05 2.0
EWC 1.0 ± 0.17 0.07 ± 0.16 -0.07 ± 0.03 3.0
PNN 1.0 ± 0.28 0.0 ± 0.29 0.0 ± 0.0 12.4
SAC-N 1.0 ± 0.2 0.0 ± 0.2 0.0 ± 0.0 4.0
FT-N 1.5 ± 0.18 0.5 ± 0.17 0.0 ± 0.0 4.0

CSP-MID .72 ± 0.12 -0.04 ± 0.22 -0.24 ± 0.11 3.33 ± 0.47
CSP-ORACLE 1.58 ± 0.05 0.59 ± 0.05 -0.01 ± 0.0 3.33 ± 0.47

CSP (ours) 1.39 ± 0.1 0.39 ± 0.1 0.0 ± 0.0 3.33 ± 0.47

A
gg

re
ga

te

FT-1 0.75 ± 0.08 0.16 ± 0.15 -0.41 ± 0.12 1.0
FT-L2 0.74 ± 0.13 -0.2 ± 0.15 -0.06 ± 0.04 2.0
EWC 0.76 ± 0.17 -0.21 ± 0.18 -0.03 ± 0.04 3.0
PNN 1 ± 0.22 -0.01 ± 0.23 0 ± 0 12.4
SAC-N 1 ± 0.19 0 ± 0.19 0 ± 0 4.0
FT-N 1.36 ± 0.12 0.36 ± 0.12 0 ± 0 4.0

CSP-MID 0.51 ± 0.18 -0.01 ± 0.19 -0.48 ± 0.11 3.2 ± 0.4
CSP-ORACLE 1.51 ± 0.05 0.5 ± 0.05 0.01 ± 0.02 3.2 ± 0.4

CSP (ours) 1.32 ± 0.08 0.31 ± 0.08 0 ± 0.0 3.2 ± 0.4

D.3 Continual World

We provide the final average performance of the methods over the 8 triplets proposed in [49]. See
Table 14.
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Table 10: Detailed results of the long version (8 tasks) of our 4 Halfcheetah scenarios. Results
presents mean and standard deviation of our 4 metrics, are split by scenario and method, and are
averaged over 3 seeds.

Method Performance Transfer Forgetting Growing Factor

Fo
rg

et
tin

g
sc

en
ar

io FT-1 0.95 ± 0.37 0.79 ± 0.34 -0.84 ± 0.08 1.0
FT-L2 1.07 ± 0.12 0.53 ± 0.25 -0.46 ± 0.15 2.0
EWC 1.37 ± 0.33 0.77 ± 0.21 -0.4 ± 0.12 3.0
PNN 1.35 ± 0.45 0.35 ± 0.45 0.0 ± 0.0 47.3
FT-N 1.68 ± 0.15 0.68 ± 0.15 0.0 ± 0.0 8.0

CSP-MID 0.55 ± 0.4 -0.1 ± 0.45 -0.36 ± 0.15 4.33 ± 1.7
CSP-ORACLE 1.98 ± 0.04 0.87 ± 0.13 0.11 ± 0.14 4.33 ± 1.7

CSP (ours) 1.69 ± 0.12 0.69 ± 0.12 0. ± 0.0 4.33 ± 1.7

Tr
an

sf
er

sc
en

ar
io

FT-1 0.42 ± 0.07 -0.16 ± 0.07 -0.42 ± 0.07 1.0
FT-L2 0.37 ± 0.07 -0.22 ± 0.04 -0.42 ± 0.09 2.0
EWC 0.52 ± 0.08 -0.36 ± 0.05 -0.11 ± 0.05 3.0
PNN 0.87 ± 0.08 -0.13 ± 0.08 0.0 ± 0.0 47.3
FT-N 0.89 ± 0.12 -0.11 ± 0.12 0.0 ± 0.0 8.0

CSP-MID 0.62 ± 0.17 -0.29 ± 0.13 -0.09 ± 0.11 4.67 ± 0.47
CSP-ORACLE 1.2 ± 0.06 0.15 ± 0.09 0.05 ± 0.03 4.67 ± 0.47

CSP (ours) 0.97 ± 0.08 -0.04 ± 0.08 0.0 ± 0.0 4.67 ± 0.47

D
is

tr
ac

tio
n

sc
en

ar
io FT-1 0.36 ± 0.18 -0.24 ± 0.13 -0.39 ± 0.09 1.0

FT-L2 0.61 ± 0.08 -0.38 ± 0.06 -0.02 ± 0.02 2.0
EWC 0.66 ± 0.05 -0.3 ± 0.03 -0.04 ± 0.04 3.0
PNN 0.97 ± 0.09 -0.03 ± 0.09 0.0 ± 0.0 47.3
FT-N 0.84 ± 0.03 -0.16 ± 0.03 0.0 ± 0.0 8.0

CSP-MID 0.54 ± 0.03 -0.31 ± 0.04 -0.14 ± 0.04 2.0 ± 0.0
CSP-ORACLE 1.27 ± 0.03 0.26 ± 0.04 0.01 ± 0.0 2.0 ± 0.0

CSP (ours) 1.18 ± 0.03 0.18 ± 0.03 0.0 ± 0.0 2.0 ± 0.0

C
om

po
si

tio
na

ls
ce

na
ri

o FT-1 1.28 ± 0.03 0.42 ± 0.02 -0.13 ± 0.04 1.0
FT-L2 1.19 ± 0.09 0.41 ± 0.21 -0.22 ± 0.13 2.0
EWC 1.38 ± 0.11 0.43 ± 0.15 -0.05 ± 0.13 3.0
PNN 1.04 ± 0.07 0.04 ± 0.08 0.0 ± 0.0 47.3
FT-N 1.48 ± 0.08 0.48 ± 0.08 0.0 ± 0.0 8.0

CSP-MID 0.84 ± 0.09 -0.16 ± 0.06 0.0 ± 0.04 5.0 ± 0.82
CSP-ORACLE 1.68 ± 0.22 0.64 ± 0.12 0.04 ± 0.1 5.0 ± 0.82

CSP (ours) 1.42 ± 0.03 0.42 ± 0.03 0.0 ± 0.0 5.0 ± 0.82

A
gg

re
ga

te

FT-1 0.75 ± 0.16 0.2 ± 0.14 -0.45 ± 0.07 1.0
FT-L2 0.81 ± 0.09 0.09 ± 0.14 -0.28 ± 0.1 2.0
EWC 1.22 ± 0.1 0.22 ± 0.1 0 ± 0 8.0
PNN 0.98 ± 0.14 0.14 ± 0.11 -0.15 ± 0.09 3.0
FT-N 1.06 ± 0.17 0.06 ± 0.18 0 ± 0 47.3

CSP-MID 0.64 ± 0.17 -0.22 ± 0.17 -0.15 ± 0.09 4 ± 0.7
CSP-ORACLE 1.53 ± 0.09 0.48 ± 0.1 0.05 ± 0.07 4 ± 0.7

CSP (ours) 1.32 ± 0.07 0.31 ± 0.07 0 ± 0.0 4 ± 0.7

E Analysis of the Subspace

The he best way to visualize the reward and critic value landscapes of the subspaces is when there are
3 anchors (see Figure 3). To do saw, we draw 8192 evenly spaced points in the 3-dimensional simplex
of R3, and average the return over 10 rollouts for the reward landscape, and 1024 pairs of (s, a) for
the critic landscape. We used the short version of the Compositional Scenario of HalfCheetah to
display the results.

24



Table 11: Raw cumulative rewards obtained on each task of the 4 scenarios. These are obtained with a
single policy learned from scratch (SAC-N) and the set of hyperparameters selected by the gridsearch
of the FT-N method (see B). This explains why similar tasks have different averaged returns across
scenarios. Results are averaged over 3 seeds.

Task Cumulative rewards

Forgetting Scenario

normal 3752
hugefeet 2841
rainfall 1596
moon 1401

Transfer Scenario

disableddiagonalfeet_1 3021
disableddiagonalfeet_2 4119
disabledforefeet 1014
disabledhindfeet 1021

Distraction Scenario

normal 3542
inverted_actions 4199
normal 3542
inverted_actions 4199

Compositional Scenario

disabled3feet_1 770
disabled3feet_2 641
disabledforefeet 201
disabledhindfeet 288

Table 12: Hyper-parameters selected for each Ant scenario. They have been selected on short versions.
For the long versions, we ran the same set of selected hyperparameters.

Hyper-parameter Scenario
Forgetting Transfer Distraction Compositional

lr policy 0.001 0.001 0.001 0.0003
lr critic 0.001 0.001 0.001 0.0003
reward scaling 10. 1. 1. 10.
target output std 0.05 0.05 0.1 0.1
policy update delay 2 2 2 4
target update delay 4 2 4 4

FT-L2
regularization coefficient 104 100 100 102

EWC
regularization coefficient 10−2 104 102 10−2

CSP
threshold 0.1 0.1 0.1 0.1
combination rollout length 100 100 100 20
distribution type peaked peaked peaked peaked

F Limitations of CSP

CSP prevents forgetting of prior tasks, promotes transfer to new tasks, and scales sublinearly with the
number of tasks. Despite all these advantages, our method still has a number of limitations. While
the subspace grows only sublinearly with the number of tasks, this number is highly dependent on
the task sequence. In the worst case scenario, it increases linearly with the number of tasks. On the
other hand, the more similar the tasks are, the lower the size of the subspace needed to learn good
policies for all tasks. Thus, one important direction for future work is to learn a subspace of policies
with a fixed number of anchors. Instead of training an additional anchor for each new task, one could
optimize a policy in the current subspace on the new task while ensuring that the best policies for
prior tasks don’t change too much. This could be formulated as a constrained optimization problem
where all the anchors defining the subspace are updated for each new task, but some regions of the
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Table 13: Detailed results of the short version (4 tasks) of our 4 Ant scenarios. Results presents mean
and standard deviation of our 4 metrics, are split by scenario and method, and are averaged over 3
seeds.

Method Performance Transfer Forgetting Growing Factor

Fo
rg

et
tin

g
sc

en
ar

io
FT-1 1.36 ± 0.29 0.42 ± 0.26 -0.06 ± 0.04 1.0
FT-L2 1.73 ± 0.34 0.61 ± 0.3 0.12 ± 0.14 2.0
EWC 1.83 ± 0.16 0.81 ± 0.09 0.02 ± 0.07 3.0
PNN 0.77 ± 0.09 -0.23 ± 0.09 0.0 ± 0.0 12.3
SAC-N 1.0 ± 0.32 0.0 ± 0.32 0.0 ± 0.0 1.0
FT-N 1.97 ± 0.11 0.97 ± 0.11 0.0 ± 0.0 4.0

CSP-MID 1.09 ± 0.11 0.21 ± 0.16 -0.11 ± 0.27 3.38 ± 0.48
CSP-ORACLE 2.01 ± 0.07 0.96 ± 0.04 0.05 ± 0.03 3.38 ± 0.48

CSP (ours) 1.78 ± 0.06 0.78 ± 0.06 0.0 ± 0.0 3.38 ± 0.48

Tr
an

sf
er

sc
en

ar
io

FT-1 -0.12 ± 0.29 -0.65 ± 0.7 -0.47 ± 0.41 1.0
FT-L2 0.85 ± 0.23 -0.06 ± 0.29 -0.09 ± 0.07 2.0
EWC 0.53 ± 0.02 -0.47 ± 0.02 0.0 ± 0.0 3.0
PNN 0.98 ± 0.02 -0.02 ± 0.01 0.0 ± 0.0 12.3
SAC-N 1.0 ± 0.51 0.0 ± 0.51 0.0 ± 0.0 1.0
FT-N 0.83 ± 0.47 -0.17 ± 0.47 0.0 ± 0.0 4.0

CSP-MID 0.2 ± 0.04 -0.23 ± 0.11 -0.57 ± 0.08 3.67 ± 0.47
CSP-ORACLE 1.51 ± 0.25 0.49 ± 0.25 0.02 ± 0.03 3.67 ± 0.47

CSP (ours) 1.41 ± 0.27 0.41 ± 0.27 0.0± 0.0 3.67 ± 0.47

D
is

tr
ac

tio
n

sc
en

ar
io

FT-1 0.26 ± 0.09 -0.19 ± 0.16 -0.56 ± 0.12 1.0
FT-L2 0.46 ± 0.08 -0.46 ± 0.03 -0.08 ± 0.08 2.0
EWC 0.42 ± 0.05 -0.5 ± 0.03 -0.07 ± 0.08 3.0
PNN 0.72 ± 0.16 -0.29 ± 0.16 0.0 ± 0.0 12.3
SAC-N 1.00 ± 0.05 0.0 ± 0.05 0.0 ± 0.0 4.0
FT-N 0.89 ± 0.11 -0.11 ± 0.11 0.0 ± 0.0 4.0

CSP-MID 0.21 ± 0.16 -0.46 ± 0.07 -0.32 ± 0.09 3.0 ± 0.0
CSP-ORACLE 1.04 ± 0.04 -0.01 ± 0.03 0.05 ± 0.01 3.0 ± 0.0

CSP (ours) 0.94 ± 0.04 -0.06 ± 0.04 0.0± 0.0 3.0 ± 0.0

C
om

po
si

tio
na

ls
ce

na
ri

o FT-1 -0.84 ± 0.11 -1.06 ± 0.25 -0.78 ± 0.31 1.0
FT-L2 0.12 ± 0.31 -0.8 ± 0.17 -0.08 ± 0.13 2.0
EWC 0.26 ± 0.51 0.06 ± 0.73 -0.81 ± 1.0 3.0
PNN 0.11 ± 0.35 -0.89 ± 0.35 0.0 ± 0.0 12.3
SAC-N 1.00 ± 0.32 0.0 ± 0.32 0.0 ± 0.0 4.0
FT-N 2.52 ± 0.03 1.52 ± 0.03 0.0 ± 0.0 4.0

CSP-MID 2.29 ± 0.21 1.28 ± 0.26 0.0 ± 0.21 3.33 ± 0.47
CSP-ORACLE 3.36 ± 0.71 2.3 ± 0.65 0.06 ± 0.06 3.33 ± 0.47

CSP (ours) 3.06 ± 0.77 2.06 ± 0.77 0.0 ± 0.0 3.33 ± 0.47

A
gg

re
ga

te

FT-1 0.17 ± 0.2 -0.37 ± 0.34 -0.47 ± 0.22 1.0
FT-L2 0.79 ± 0.24 -0.18 ± 0.2 -0.03 ± 0.11 2.0
EWC 0.76 ± 0.19 -0.03 ± 0.22 -0.22 ± 0.29 3.0
PNN 0.65 ± 0.16 -0.36 ± 0.15 0.0 ± 0.0 12.3
SAC-N 1.0 ± 0.30 0.00 ± 0.30 0.0 ± 0.0 2.5
FT-N 1.55 ± 0.18 0.55 ± 0.18 0.0 ± 0.0 4.0

CSP-MID 0.95 ± 0.13 0.2 ± 0.15 -0.25 ± 0.16 3.3 ± 0.4
CSP-ORACLE 1.98 ± 0.27 0.94 ± 0.24 0.05 ± 0.03 3.3 ± 0.4

CSP (ours) 1.8 ± 0.29 0.8 ± 0.29 0.0 ± 0.0 3.3 ± 0.4

subspace are regularized to not change very much. This would result in the subspace having different
regions which are good for different tasks.

While the memory costs increase sublinearly with the number of tasks, the computational costs
increase linearly with the number of tasks, in the current implementation of CSP. This is because we
train an additional anchor for each new task, which can be removed if it doesn’t significantly improve
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Table 14: Detailed results of 8 triplets scenarios from Continual World. Results presents mean
and standard deviation of the final average performance, are split by scenario and method, and are
averaged over 3 seeds.

Method T1 T2 T3 T4 T5 T6 T7 T8 Agregate

FT-1 0.24 ± 0.13 0.25 ± 0.07 0.39 ± 0.16 0.34 ± 0.05 0.30 ± 0.01 0.32 ± 0.25 0.17 ± 0.07 0.34 ± 0.05 0.29 ± 0.1
EWC 0.45 ± 0.12 0.27 ± 0.09 0.38 ± 0.09 0.31 ± 0.12 0.32 ± 0.07 0.33 ± 0.18 0.20 ± 0.10 0.32 ± 0.08 0.32 ± 0.11
PNN 0.84 ± 0.08 0.72 ± 0.17 0.90 ± 0.05 0.43 ± 0.08 0.33 ± 0.23 0.46 ± 0.21 0.44 ± 0.12 0.36 ± 0.2 0.56 ± 0.14
SAC-N 0.69 ± 0.17 0.71 ± 0.13 0.79 ± 0.19 0.47 ± 0.14 0.60 ± 0.13 0.55 ± 0.11 0.54 ± 0.15 0.45 ± 0.12 0.6 ± 0.14
FT-N 0.77 ± 0.08 0.86 ± 0.1 0.78 ± 0.15 0.49 ± 0.14 0.52 ± 0.13 0.61 ± 0.06 0.61 ± 0.13 0.52 ± 0.06 0.65 ± 0.11
CSP (ours) 0.76 ± 0.2 0.79 ± 0.03 0.82 ± 0.08 0.58 ± 0.09 0.58 ± 0.06 0.54 ± 0.06 0.58 ± 0.04 0.53 ± 0.08 0.65 ± 0.08

performance. However, the computational costs can also be reduced if you have access to maximum
reward on a task. This is typically the case for sparse reward tasks where if the agent succeeds, it
receives a reward of 1 and 0 otherwise. In this case, there is no need to train one anchor per task.
Instead, one can simply find the best policy in the current subspace and compare its performance with
the maximum reward to decide whether to train an additional anchor or not. Hence, in this version
of CSP (which is a minor modification of the current implementation) both memory and compute
scale sublinearly with the number of tasks. However, this assumption doesn’t always hold, so here
we decided to implement the more general version of CSP.

In this work, we don’t specifically leverage the structure of the subspace in order to find good policies.
Hence, one promising research direction is to further improve transfer efficiency by leveraging the
structure of the subspace to find good policies for new tasks. For example, this could be done by
finding the convex combination of the anchors which maximizes return on a given task. Regularizing
the geometry of the subspace to impose certain inductive biases could also be a fruitful direction for
future work.

27



G Broader Impact Statement

This work proposes a new method for the continual reinforcement learning setting, which is a
very broad framework. Many real-world applications can be framed as continual RL problems.
For example, household robots need to constantly learn new skills and adapt to their changing
environments. Similarly, online recommendation systems need to adapt to each user and their
changing preferences. Like other continual RL algorithms, our method aims to learn a policy which
maximizes reward on a sequence of tasks (each of them with a corresponding reward function). The
tasks or reward functions are typically specified by the designer. Depending on the goals of the
designer, executing the resulting policy could result in positive or negative consequences.
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H Compute Resources

Each algorithm was trained using two Intel(R) Xeon(R) CPU cores (E5-2698 v4 @ 2.20GHz)
and one NVIDIA GP100 GPU. We used PyTorch [31] for all our experiments. Each run took
between approximately 8 and 30 hours to complete. The total runtime depended on three factors: the
computation time of the algorithm, the length of the scenario, and the behavior of the policy.

29


	Introduction
	Problem Setting
	Continual Subspace of Policies (CSP)
	Subspace of Policies
	Learning Algorithm
	Grow the Subspace
	Extend or Prune the Subspace
	Scalability of CSP

	Experiments
	Environments
	Baselines
	Ablations
	Metrics

	Results
	Performance on Brax
	Properties of the Subspace
	Performance on Continual World

	Related Work
	Discussion
	Algorithm Details
	Scalability of CSP
	Using the critic as a discriminator
	Sampling combinations in the subspace

	Experimental Details
	Architecture Details
	Experimental Protocol
	Baselines
	Ablations

	Environment Details
	Designing the Tasks
	Designing the Scenarios
	Continual World Tasks

	Detailed Results
	HalfCheetah
	Ant
	Continual World

	Analysis of the Subspace
	Limitations of CSP
	Broader Impact Statement
	Compute Resources

