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ABSTRACT

Recent work has shown that scale is important for improved brain decoding,
with more data leading to greater decoding accuracy. However, large-scale de-
coding across many different datasets is challenging because neural circuits are
heterogeneous—each brain region contains a unique mix of cellular sub-types,
and the responses to different stimuli are diverse across regions and sub-types. It
is unknown whether it is possible to pre-train and transfer brain decoding mod-
els between distinct tasks, cellular sub-types, and brain regions. To address these
questions, we developed a multi-task transformer architecture and trained it on the
entirety of the Allen Institute’s Brain Observatory dataset. This dataset contains
responses from over 100,000 neurons in 6 areas of the brains of mice, observed
with two-photon calcium imaging, recorded while the mice observed different
types of visual stimuli. Our results demonstrate that transfer is indeed possible—
combining data from different sources is beneficial for a number of downstream
decoding tasks. As well, we can transfer the model between regions and sub-
types, demonstrating that there is in fact common information in diverse circuits
that can be extracted by an appropriately designed model. Interestingly, we found
that the model’s latent representations showed clear distinctions between different
brain regions and cellular sub-types, even though it was never given any informa-
tion about these distinctions. Altogether, our work demonstrates that training a
large-scale neural decoding model on diverse data is possible, and this provides a
means of studying the differences and similarities between heterogeneous neural
circuits.

1 INTRODUCTION

All behaviors, perceptions, and thoughts arise from the activity of neural circuits in the brain. In
principle, decoding this neural activity could allow us to infer what someone is doing, perceiving,
or thinking. Effective decoding of neural activity holds the potential to unlock transformative ap-
plications, such as brain-computer interfaces for thought-controlled systems and advanced clinical
interventions like targeted deep brain stimulation (Saha et al., 2021; Merk et al., 2022).

Recent advancements in transformer architectures (Radford et al., 2018) have introduced a new
paradigm in brain decoding (Azabou et al., 2024; Ye et al., 2024; Zhang et al., 2024). These mod-
els demonstrate that increasing the scale of neural data, by training on many recording sessions and
across multiple animals, leads to significant improvements in decoding performance. This trend mir-
rors the success of large-language models, where pretraining on large corpora has resulted in models
capable of generalizing across a wide range of tasks. In the case of brain decoding, larger datasets
allow models to capture more nuanced patterns of neural activity, enabling better generalization to
new behaviors (Azabou et al., 2024; Jiang et al., 2024). This scaling effect is especially evident
when small, previously uninformative datasets are paired with pretrained models, unlocking new
decoding abilities and overcoming limitations imposed by insufficient data (Azabou et al., 2024).

However, large-scale training for brain decoding is challenging due to the diversity of neural record-
ings. Though there is a lot of neural data available in aggregate, it is mostly small, highly hetero-
geneous individual datasets (Ferguson et al., 2014). Each individual dataset can contain recordings
that involve distinct cellular sub-types and brain regions - as well as different stimuli or behaviors
(Esfahany et al., 2018; Dipoppa et al., 2018; Scala et al., 2021). This diversity in data complicates
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efforts to train large-scale models on large corpora. Prior work has demonstrated that scaling data
within neural populations that are relatively similar across sessions can improve decoding accuracy
(Azabou et al., 2024; Ye et al., 2024; Zhang et al., 2024), but it is unknown whether similar improve-
ments can be achieved when training models on heterogeneous datasets involving different cellular
sub-types, brain regions, and tasks. Can neural decoding models be trained on multiple decoding
tasks at once? Can neural decoding models trained on one cellular sub-type or brain region trans-
fer to another? Can pretraining on diverse data yield models that generalize across distinct neural
circuits, or does this diversity introduce too much noise for effective learning?

To address these open questions, we developed a multi-task, multi-modal transformer architecture
and trained it on the Allen Institute for Brain Science Observatory dataset. This dataset includes
recordings from over 110,000 units recorded from mice using two-photon calcium imaging while
they observed various types of visual stimuli (de Vries et al., 2020). These recordings span 256
animals, 6 brain regions, and 13 genetically defined cellular sub-types, making it one of the most
diverse neural data archives available. By leveraging this large and heterogeneous corpus of data,
we aimed to test whether transfer is possible across distinct brain regions and cellular sub-types, and
whether pretraining on diverse data can improve decoding performance for a variety of tasks and
behaviors.

Our results demonstrate that training across brain regions and cellular sub-types—-despite their
functional differences—-is not only feasible but also beneficial. We show that combining data from
heterogeneous recordings leads to improved performance on downstream decoding tasks, indicating
that there is shared information across diverse neural circuits that can be captured by an appropri-
ately designed model. Notably, even in cases where single-session baselines fail to decode stimulus
information, pretraining on diverse datasets significantly enhances decoding capabilities. This find-
ing suggests that neural circuits, despite their heterogeneity, share common computational principles
that can be harnessed by a large-scale model for decoding.

We then examined our model’s latent embeddings and discovered that they revealed meaningful
structure. Even though the model was not trained to differentiate brain regions or cellular sub-
types (and received no information about this), its latent space naturally organized neurons based
on their anatomical and physiological similarities. When we clustered the latent representations, we
observed that cellular sub-types and brain regions with more similar anatomy and physiology were
more closely aligned in the latent space. This emergent organization provides new insights into
the relationships between different neural circuits and suggests that large-scale models can capture
higher-order patterns of neural activity that reflect the underlying the functional architecture of the
brain.

In summary, the main contributions of this work include:

• Multi-Task and Multi-Modal Decoder for Flexible Querying: We introduce a novel
multi-task decoder that can query the learned latent space to engage in a wide range of
decoding tasks with high fidelity. This decoder is capable of handling both continuous and
discrete decoding tasks, demonstrating versatility across different neural recordings and
experimental setups.

• Cross-Region and Cross-Cell-Type Transfer: Our model shows successful transfer learn-
ing across brain regions and genetically distinct cellular sub-types. This cross-area and
cell line transfer demonstrates that the model can generalize neural representations beyond
specific regions and sub-types, capturing shared computational principles across diverse
circuits.

• Across-Region Scaling: We provide evidence that increasing the diversity of brain regions
in the training data leads to improved decoding performance. As more regions are included
in training, the model’s ability to decode and generalize across previously unseen regions
significantly improves.

• Meaningful Latent Representations: We show that the model’s latent representations of
the data carry meaningful information that reflect the anatomy and physiology of different
regions and sub-types. This illustrates that it is possible for large-scale decoding models to
identify biologically meaningful distinctions from neural activity alone.
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Figure 1: Our approach to diverse multi-region, multi-task neural decoding. Our approach leverages a
task embedding to query the neural data latents to decode different contextual or behavioral information from
the neural activity.

2 METHODS

In this section, we describe POYO+ , our multi-task, multi-modal model for neural decoding (illus-
trated in Figure 1). The main innovation of our approach is the development of a multi-task decoder
that allows for flexible training with different stimuli and behavioral measures as decoded outputs,
across varying contexts, all through a set of learned task embeddings.

2.1 TOKENIZATION

The calcium recordings we trained on consist of multiple time-series, one for each neuron that was
identified in the calcium imaging session. The values in the time-series correspond to the change
in fluorescence over a baseline value (i.e. ∆F/F ), which reflects the in action potential firing of a
neuron. Let fij , denote the scalar value of the original fluorescence signal, ∆F/F , at time-step i for
neuron j.

To tokenize the activity of a population of P neurons, we adapt the POYO tokenizer (Azabou et al.,
2024) to regular timeseries data by creating a token for each timestep and for each neuron, i.e.
over T time-steps we create a sequence of P × T tokens (xij , tij), where i ∈ [1, . . . , T ], j ∈
[1, . . . , P ]. These tokens carry information about the neuron’s activity dynamics, which in turn
can be used to learn about it other properties—e.g., cell-type, cortical layer, and the brain-region
to which it belongs. Specifically, each token, is a tuple with two components: (xij , tij), where
xij = [uj ,Wf fij ] is an embedding consisting of information about the unit and signal amplitude
determined by learnable parameters Wf ∈ RN . uj is a N -dimensional, neuron-level learned,
embedding that is constant across time-steps. Each neuron receives its own learned embedding,
which is accessed via a look-up table. Importantly, uj does not contain any information about the
brain region the recording was done in, nor the cellular sub-type of the neuron, prior to learning.
tij is a 2N -dimensional sinusoidal time-embedding, which encodes the timing of the token relative
to the start of the context window. In this way, the activity of any population of neurons can be
represented flexibly through a single sequence of tokens, which is passed as input to the transformer
model.

2.2 POYO ENCODER

To build rich representations of neural activity, we use the POYO encoder (Azabou et al.,
2024) which employs a cross-attention layer to compress neuron-level spike tokens into a lower-
dimensional latent space. In our case, we will learn a set of M ×N latent token tuples ((z0mn, τmn),
m ∈ [1, . . . ,M ], n ∈ [1, . . . , N ]) that will be used to generate queries for the neural time-series
data. Here, each z0mn is a learned latent vector, and τm,n is sinusoidal rotary embedding. The index
m is used to indicate different latent tokens, and the index n is used to indicate the different time-
steps across the context window, which are evenly spaced. The cross-attention operation is given
by:

z1mn = z0mn +

T∑
i=1

P∑
j=1

softmax
(
(R(τmn)qmn)

T
(R(tij)kij)

)
vij , (1)

where the values vij = W 0
V xij and keys kij = W 0

Kxij are computed from the neural activity
tokens, and the queries qmn = W 0

Qz
0
mn are computed from the learned latent tokens, and R(t) is a
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predefined rotation matrix whose values are determined by the time-step given (see Appendix C.1).
Rotating keys and queries (Su et al., 2021) allows us to incorporate information about the relative
timing between two tokens into the attention mechanism. As mentioned above, our latent tokens are
positioned uniformly across the context window to provide “virtual timesteps” for each query.

After cross-attention, we then apply L rounds of self-attention to compute a sequence of final latents
zLmn. Throughout, we use rotary time encoding with standard transformer blocks, pre-normalization
layers and feed-forward nets.

2.3 MULTI-TASK, MULTI-MODAL DECODER

Neural datasets often have multiple sources of behavioral information that are simultaneously ac-
quired along with brain activity (i.e., pupil diameter, running speed) while different stimuli are
presented to the animal. This diversity in potential decoding targets must be harnessed as we scale
and build models that can generalize to diverse datasets.

To accommodate this type of diversity, we developed a model that can be trained jointly on different
measures of behavior as well as information about the stimuli presented or context of the recording
(Figure 1). In order to have a generalist model that can work with these different types of labels or
sources of information, we built a flexible decoder that uses a shared cross-attention layer to query
from the latent space using different task-specific tokens. This allows us to train on heterogeneous
neural datasets and decode any number of different variables without assuming the same behaviors
or stimuli are present in the recordings. Indeed, we can combine both dense, continuous regression
decoding tasks (like pupil diameter prediction or running speed prediction), sequence-level clas-
sification tasks (like drifting gratings orientation classification or static gratings spatial frequency
classification), and segmentation tasks (like movie frame prediction or locally sparse noise pattern
prediction).

Our multi-modal decoder uses a shared cross-attention layer to query the latent space for labels
relevant to the different downstream tasks. An output query token for decoding task k, in recording
session ℓ, at time-step ti, is a tuple (oℓk, ti). The component oℓk = ϕk + sℓ is defined by two
quantities: (i) Task embedding: ϕk ∈ RD is a learned embedding corresponding to the decoding
task of interest (e.g. running speed regression or drifting grating orientation classification, etc.). As
with neurons, each task receives its own learned embedding that is accessed via a look-up table;
(ii) Session embedding: sℓ ∈ RD is a learned embedding corresponding to the recording session.
Again, each recording session receives its own learned embedding accessed via a look-up table.
Session embeddings are used to capture variability across sessions in the datasets.

We calculate the final output tokens for the ith time-step, yℓki, using a cross-attention mechanism:

yℓki = oℓk +

N∑
n=1

M∑
m=1

softmax
(
(R(ti)qℓk)

T
(R(τmn)kmn)

)
vmn, (2)

where we have queries qℓk = Wooℓk, values vmn = WL
V zLmn, and keys kij = WL

KzLmn, calculated
from our final set of tokens produced by self attention. As before, R(t) is a matrix determined by a
rotary positional embedding.

After cross-attention, we apply a task-specific linear layer Wk : RD → RDk where D is the dimen-
sion of each output tokens yℓki, and Dk is the dimension of the target for task k. For regression
tasks, Dk is the dimensionality of the variable being decoded, for example, Dk = 1 for running
speed and Dk = 2 for pupil location. For classification and segmentation tasks, Dk will be the
number of classes.

The entire network is trained end-to-end on all tasks simultaneously. We use mean-squared error loss
for regression tasks, and cross-entropy loss for classification and segmentation tasks. The losses are
summed and weighted based on the number of predictions for each task (i.e. the more predictions
requested the lower the weight for any specific token).

With this set-up, we are able to decode multiple labels simultaneously during both training and
inference. For example, in a context window of one second where the stimulus presentation is
drifting gratings, we can decode on four different tasks: running speed regression, pupil location
regression, orientation classification, and temporal frequency classification. Because running speed
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and pupil diameter are monitored at a frequency of 30 Hz we will have 30 outputs for each of these
tasks over a 1 s context window. For the other two tasks, we will have only one output, since these
values are constant throughout the context for drifting gratings. Thus, we will have a total of 62
query tokens and outputs. But, notably, our multi-modal decoder is able to handle any number of
query tokens, from different tasks due to its flexible design.

3 RESULTS

3.1 TRAINING A MODEL ON DIVERSE MIXTURES OF NEURAL RECORDINGS

Figure 2: Data diversity in the Allen Brain Observa-
tory. A breakdown of the number of neurons for each
Cre-line by brain region. The Cre-lines are organized by
Excitatory and Inhibitory lines from left to right, and the
visual areas are depicted with different colors.

Datasets. To train our model, we leverage
the Allen Brain Observatory (BO) calcium
dataset (de Vries et al., 2020). The Allen
BO is the largest collection of in vivo two-
photon calcium imaging data, acquired from
the visual cortex of awake mice. It con-
tains neuronal activity in six different corti-
cal areas: Primary Visual Area (VISp), Pos-
teromedial visual area (VISpm), Anterome-
dial visual area (VISam), Rostrolateral vi-
sual area (VISrl), Anteromedial visual area
(VISal), Lateral visual area (VISl), in re-
sponse to various visual stimuli, including
both simple drifting gratings (eight different
orientations), static gratings, natural scenes,
and naturalistic movies (Appendix B). Each
experiment consists of three one-hour long
imaging sessions, one for each mouse, imag-
ing depth, and visual area, recorded at various depths, ranging from 150 to 600 µm from the surface
of the brain, each of which can be classified into different layers (L2/3, L4, L5, or L6).

The mice expressed a genetically encoded calcium sensor (GCaMP6f) in specific genetic sub-types
of neurons using Cre driver lines. There were two pan-excitatory lines where the calcium sensor
was expressed in almost all excitatory neurons (Emx1, Slc17a7), eight lines where it was expressed
only in specific sub-types of excitatory neurons (Cux2, Rorb, Scnn1a, Nr5a1, Rbp4, Fezf2, Tlx3,
Ntsr1) and three lines where it was expressed only in specific sub-types of inhibitory neurons (Vip,
SST, PV). Each of these cellular sub-types show distinct response properties (de Vries et al., 2020),
and very different densities of neurons in different brain regions (Figure 2). Our challenge here was
to see if we could incorporate data from these diverse sub-types to improve decoding.

Experimental setup. Each recording session is divided into training, validation and test splits with
a 60/10/30 ratio. Given the unstructured nature of the recording, we tried to maintain these ratios
across each stimulus epoch. When reporting accuracies, we perform evaluation on the test split of
each session, and report the average across sessions. Note that there is high variability in the per-
session decoding accuracy, likely because we are working with heterogeneous data, with half of the
sessions having less than 62 neurons and some as few as 5. We note that in total we use 1335 3-hour
sessions for training our model. During training, we leverage neuron dropout where a random subset
of the population is removed from the context window.

For the purposes of transfer, we holdout sessions from 30 animals that are never seen during training.
We use the training split of each heldout session to finetune POYO+ , then report the test accuracy.
We use gradual unfreezing where we first unfreeze the unit and session embeddings then the multi-
modal decoder then the encoder. We find that in practice, the model already converges with just the
unit and session embeddings unfrozen. More details about the experimental setup can be found in
Appendix C.2.

The benefits of multi-session training. Given the inherent diversity of our dataset, we first inves-
tigated the scaling properties of the model when trained on a specific context. For this experiment,
we used the drifting gratings stimulus condition and trained a variant of POYO that we designed
to work with our new tokenization strategy for regular time series data as input. The model was
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Figure 3: The benefits of a multi-session, multi-task neural decoder. A. POYO (DG) compared to an MLP
on in-distribution datasets. B. POYO+ and POYO (DG) compared to CEBRA, MLP and TCN baselines on the
drifting gratings orientation prediction task. C. Comparing task-wise variants of POYO to POYO+ . POYO+ is
a single model trained on 12 tasks simultaneously, while we have 12 variants of POYO.

trained on all sessions that include drifting gratings, we call this model POYO (DG) (DG for Drift-
ing Gratings). For comparison, we trained two groups of single-session baseline models—(i) MLP
and (ii) TCN—on each of the 403 sessions collected under the DG condition. Each model was ex-
tensively tuned using a validation set, we compared a total of more than 80,000 models that were
trained during hyperparameter tuning. When compared to these single-session baselines, we ob-
served significant improvements on test trials, with the multi-session model providing nearly a 10%
performance gain on average relative to the MLP baseline (Figure 3A).

We also compared POYO to CEBRA (Schneider et al., 2023b), which is a state-of-the-art neural
latent model that supports multi-session training. CEBRA is a self-supervised method that uses aux-
iliary context variables to form representations that are guided by the behavior or stimulus labels.
We found that, on this dataset, decoding drifting grating orientation using a linear decoder from pre-
trained CEBRA representations performs poorly, despite the model having access to a large amount
of data. In another attempt to compare against CEBRA, we replicated an experiment reported in
the original work (Schneider et al., 2023b), and found that POYO surpasses CEBRA on the natural
movie frame decoding task (a more extended analysis can be found in Appendix D.2). In conclu-
sion, we find that our single-task variant of the POYO model consistently beats different baselines
(Figure 3B). This highlights the advantages of aggregating information across multiple sessions for
this decoding task.

Incorporating multi-task learning across diverse contexts. After confirming the benefits of multi-
session training in the drifting gratings condition, we extended our model to include additional
stimulus contexts as well as behavioral decoding tasks, such as pupil diameter and running speed.
In Figure 3C, we compare POYO+ to the single-task POYO variants each trained on one of the 12
behavioral and contextual decoding tasks. We find that incorporating multiple tasks into the output
space of the decoder improves performance on a number of tasks, especially the behavioral decoding
tasks. We hypothesize that multi-task training provides two key benefits. First, the inclusion of
dense prediction tasks (e.g., running speed and pupil location) provides auxiliary information to the
decoder, improving overall predictions. Second, it engages a broader population of neurons in the
model, as some neurons responded more strongly to behavioral changes than to specific stimulus
contexts. This suggests that multi-task learning not only enhances decoding performance but also
better captures the rich, context-dependent modulation of neural activity.

3.2 TRANSFER ACROSS BRAIN REGIONS AND CRE-LINES

Across-region transfer. The visual cortex exhibits distinct activity patterns across its regions, rais-
ing the question of whether models trained in one area can transfer effectively to others. Our re-
sults show that many regions provide a solid basis for transfer, with VISal and VISl delivering the
strongest overall performance. Specifically, the POYO+ model trained on VISal achieved the high-
est accuracy in VISal itself (73.84%) and demonstrated good transfer to VISam (52.19%), VISl
(59.78%), and VISp (52.14%). Similarly, the POYO+ model trained on VISl also performed well,
achieving high transfer accuracy in VISal (72.22%) and VISpm (35.34%). Interestingly, VISp, a
primary visual area, exhibited strong transfer to VISal (74.01%) and VISl (58.74%), suggesting its
foundational role in cross-region transfer.
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Table 1: Transfer across held-out brain areas. The results from training on one region and finetuning on
new held-out sessions in another region, are compared with POYO+ trained on all brain areas. All of the across-
line results that perform better than the base within-line model (purple) are highlighted in green. The best
performing model for each testing condition are in boldface and the number of sessions in each test condition
are in parentheses.

Training sessions Average VISal VISam VISl VISp VISpm
Model - (30) (4) (2) (8) (13) (3)
MLP 43.36% 56.39% 35.68% 45.65% 42.17% 30.13%
POYO+ (VISal) 119 54.12% 73.84% 52.19% 59.78% 52.14% 36.37%
POYO+ (VISam) 112 47.00% 63.20% 47.54% 49.58% 45.67% 28.15%
POYO+ (VISl) 310 53.98% 72.22% 51.17% 58.01% 52.52% 35.34%
POYO+ (VISp) 419 53.67% 74.01% 48.89% 58.74% 52.15% 31.73%
POYO+ (VISpm) 258 51.94% 69.10% 51.83% 56.88% 50.72% 30.41%
POYO+ (All) 1335 55.96% 73.96% 49.39% 61.46% 54.84% 36.01%

These results highlight that training on higher-order areas like VISal and VISl facilitates superior
transfer to other regions, likely due to their integrative roles in visual processing. Furthermore,
the model trained on all regions, POYO+ (All), achieved the highest overall performance (55.96%),
demonstrating that exposure to data from multiple brain areas improves generalization across unseen
regions. The finding that transfer performance improves with more diverse training data emphasizes
the importance of using data from different brain areas and animals, which enables the model to
capture a wider range of neural dynamics and improves its adaptability across regions.

Table 2: Transfer across held-out Cre-lines. The decoding
accuracy for the drifting gratings task for held-out animals for
models trained on Excitatory lines only, Inhibitory lines only, and
All lines. The performance is measured on (16) Excitatory ses-
sions and (8) Inhibitory sessions spanning different lines. All of
the across-region results that perform better than the base within-
region model (purple) are highlighted in green. The best perform-
ing model for each testing condition is in boldface.

Training Average Excitatory Inhibitory
Model sessions (30) (16) (8)
MLP (Base) - 43.36% 48.47% 26.61%
POYO+ (Exc) 987 54.74% 55.40% 30.01%
POYO+ (Inh) 348 55.85% 62.89% 31.96%
POYO+ (All) 1335 55.96% 62.93% 31.80%

Across-Cre-line transfer. Next,
we evaluated whether our mod-
els could transfer effectively across
excitatory and inhibitory Cre-lines.
While our model trained on all
lines surpasses the other Cre-line
specific models, we find that the
model trained on inhibitory Cre-
lines does surprisingly well on the
drifting gratings task. Specifi-
cally, the model trained on in-
hibitory data, POYO+ (Inh), achieved
the best performance on both in-
hibitory (31.96%) and also surpasses
the model trained on excitatory data
alone.

3.3 ANALYSIS OF LATENT EMBEDDINGS

Although our model has been trained to decode the stimulus information or behavior, we wanted
to understand the extent to which the model has learned session-level differences that capture bio-
logically meaningful information about the Cre-line and brain regions for each session. To test this,
we examined the latents at the output of the encoder in POYO+ . To obtain the session-level latent
embeddings, we average the latents across randomly sampled 1 s context windows in the recording.
See Appendix E for further details on this analysis.

Latent representations of distinct brain regions. First, we examined the latent embeddings
for sessions from different brain regions. Using a linear decoder trained on the latent embeddings
for different sessions, we were able to decode the brain region of the recording session with high
accuracy (Figure 4A), much higher than using standard POYO latents or a baseline using hand-
crafted features used for cell-type analysis (see Appendix E.2 for more details). Examination of the
confusion matrix for decoding from the POYO+ latents showed that some regions were more likely
to be confused with each other by the decoder, for example VISal was likely to be confused for VISl
(Figure 4B). This suggests that the underlying latents were more or less similar for different groups
of brain regions. To examine this, we conducted hierarchical clustering on the latents for sessions
from different brain regions. Interestingly, we found that the hierarchical clustering distinguished
medial regions clearly from lateral ones, and the lateral region which was most closely clustered
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Figure 4: Examining the organization of the latent embeddings by Cre-line and brain region. A.
Balanced accuracy for brain area classifcation based on hand-crafted features versus session-averaged latents
from POYO+ B. Confusion matrix for brain area classification C. Dendrogram of average latents by brain area
D. t-SNE projection of POYO+ embeddings. E. Balanced accuracy for Cre-line classification based on hand-
crafted features versus session-averaged latents from POYO+ F. Confusion matrix for Cre-line classification G.
Dendrogram of average latents by Cre-line.

to the medial regions (VISrl) is in fact the most medial of the lateral regions (Figure 4C). This
demonstrates that the learned latent embeddings reflect the actual anatomy of visual cortex, despite
the model having received no information about this anatomy.

Latent representations of cellular sub-types. We then conducted similar analyses on the ses-
sions for different cellular sub-types. First, we examined the projection of the latents to a lower-
dimensional space, using t-SNE. Interestingly, we observed clear separability for session latents
from inhibitory and excitatory sub-types (Figure 4D), suggesting that the latents had learned to cap-
ture cellular sub-type distinctions. Next, to quantify the separability of different Cre-lines we again
trained a linear decoder on top of the extracted latents, this time to decode the Cre-lines. We find
that the organization of Cre-line is quite impressive, with a overall 67.93% accuracy in decoding,
compared to 56% and 39.57% for a transcriptomic baseline (Schneider et al., 2023a) and standard
POYO, respectively (Figure 4E). These results suggest that to really understand the neural activity
across different cellular sub-types it is crucial to consider a multi-task view.

We also then examined the confusion matrix for the Cre-lines. As with brain regions, we observed
that some cellular sub-types are more or less likely to be confused with each other, e.g. excitatory
neurons are far more likely to be confused with other excitatory neurons than inhibitory neurons
(Figure 4F). To understand the structure in the latents better, we again conducted hierarchical cluser-
ing for the latents from different sessions based on the Cre-lines (Figure 4G). We observed several
interesting results. First, as expected given the low-dimensional embeddings, the inhibitory neurons
were more closely grouped together, and the clusters within the inhibitory types reflected true bi-
ological distinctions (e.g. the different types of Pvalb sessions were clustered together). Second,
the clustering had some relationship to the laminar position of the cellular sub-types, such that cells
in the supragranular layers (L2/3) tended to cluster with each other or sub-types from L4. Finally,
we observed that the clusters appeared to respect the axonal projections of the different cellular
sub-types. For example, intratelencephalic (IT) neurons tended to be closer to each other in the
hierarchy than to pyramidal tract (PT) neurons. The fact that the latent embeddings for the different
sessions reflected these real biological differences in physiology and anatomy was surprising but
encouraging, and suggests that our model can be used to reveal meaningful biological relationships.
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Figure 5: Deviation of Cre-line averaged embeddings from baseline when considering one visual stim-
ulus type at a time. We use 1-dimensional PCA projection and plot the average latent embeddings for the
Spontaneous (Sp), Natural Movies (NM), Static Gratings (SG), and Drifting Gratings (DG) for each Cre-line
separated by layer (L2/3, L4, L5, L6).

Visualization of task-dependent modulation of embeddings. Finally, in examining the latent
embeddings for the different sessions we wanted to see whether they reflected stimulus-specific dis-
tinctions between cellular sub-types. In Figure 5, we aggregate the latent embeddings within each
stimulus context, and examine them across Cre-lines. We compute the first principal component
(PC) and project the latents from each task onto the PC, and report the multi-task aggregated em-
bedding as the dotted baseline. We are able to see the main source of variation in the latents and
how it maps onto the different stimulus contexts and Cre-lines.

First, we note interesting outliers like Sst, an interneuron sub-type that behaves similarly to other in-
terneurons (Vip, Pvalb) during all contexts except for the drifting gratings context, where it deviates
from the baselines in the opposite direction from other interneurons. This makes sense based upon
prior work which shows that VIP are suppressed during drifting gratings (de Vries et al., 2020).
We also observe subtle differences across different layers in the same Cre-line, like Pvalb neurons
in layer 5 maintaining their baseline dynamics during drifting gratings, while we observe a shift in
Pvalb neurons in L 2/3 and 4. In excitatory neurons, we see overall similar modulation across stim-
ulus context, but an interesting stability in Nr5a1 neurons which appear to be consistent regardless
of the stimuli studied here. These data demonstrate another advantage of a multi-task model trained
on heterogeneous data: it allows us to compare distinct cellular sub-types in a stimulus/context
dependent manner.

3.4 TRANSFER TO OPENSCOPE DATASET

Table 3: Transfer from POYO+ to a new Openscope
dataset. Here, we compare the decoding performance
on a 3-class task for a MLP baseline, the single task
POYO (DG) baseline finetuned for the new task, and
POYO+ finetuned.

Avg (5) Dend (3) Soma (2)
MLP 72.94% 73.51% 72.10%
POYO (DG) 79.70% 81.74% 76.76%
POYO+ 81.91% 84.19% 78.49%

In a final experiment, we tested whether we
could transfer from our pretrained model to an-
other open dataset with different recording con-
ditions and stimuli, collected as part of The
Allen Institute Mindscope’s OpenScope pro-
gram (Gillon et al., 2023) (Table 3). This
dataset consists of responses of neurons in VisP
from two Cre driver lines targeting the soma
and dendrites of distinct excitatory populations
(Cux2, somatic; Rbp4, dendritic).

When we finetune our pretrained multi-task model on sessions from this new dataset, we find a
near 9% improvement with POYO+ over the MLP baseline, and a 2% improvement over the DG-
only pretrained model. If we break these numbers down by the type of recording, we find that the
improvements on Dendritic sessions benefit the most, with a 10% improvement with POYO+ despite
the fact that we did not pretrain on dendritic data which varies considerably from somatic data (see
Appendix D.1).

4 RELATED WORK

Multi-session training for neural recordings. Neural decoding has been extremely challenging,
especially when trying to transfer to recordings from different days or animals. This is due to a
number of issues, one of the most basic being the fact that each recording session has a different set

9
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of neurons associated with it Dabagia et al. (2022). Recently, there has been progress in demonstrat-
ing that large transformer architectures can be trained on multiple recording sessions to successfully
decode and transfer to new brains and tasks (Azabou et al., 2024; Schneider et al., 2023b; Ye et al.,
2024). In particular, the POYO architecture and tokenization scheme introduced by (Azabou et al.,
2024) provided a scalable solution to this problem by using a latent embedding scheme for encod-
ing individual neural dynamics, along with a PerceiverIO encoder-decoder architecture to efficiently
decode high-resolution behavioral outputs from brain signals. However, existing approaches for
multi-session training (Ye et al., 2024; Azabou et al., 2024) have still only been applied to sessions
containing the same brain regions and neural cell types, and for the same decoding tasks. Here, we
investigate whether it is possible to train this type of transformer architecture on increasingly hetero-
geneous datasets from different areas of the brain and genetically distinct cell types. Additionally,
previous methods have been applied to tens to a hundred sessions, POYO+ moves to the next order
of magnitude with 1,335 sessions.

Deep learning methods for analysis of neural population activity in calcium data. As calcium
imaging datasets are improving, there have been a number of works that have focused on building
neural population models for calcium data analysis (Schneider et al., 2023b; Prince et al., 2021;
Zhu et al., 2022; de Oliveira Fonseca et al., 2023; Park et al., 2023). Many of these methods are
designed for dynamical systems analysis and forecasting and thus the decoding accuracy is not the
focus. Most similar to ours is CEBRA (Schneider et al., 2023b) as the method provides a way to
incorporate supervised data for training a decoder. CEBRA uses behavioral labels to define positive
views to align labeled examples. This method requires either trial-aligned data to concatenate many
animals into a pseudopopulation or multi-data stitching approaches where you need to train a differ-
ent encoder head for each dataset. In contrast to these methods, we demonstrate flexible decoding
of multiple behavior modalities and contexts. Additionally, due to the rich encoder and tokenization
method, we also show that our method can be used to decipher different cell types and regions from
the embeddings of population-level neural activity.

5 CONCLUSION

In this work, we introduced a novel multi-session, multi-task neural decoding approach and applied
it to a large-scale dataset from the Allen Institute for Brain Science. Our results demonstrate that
scaling up to incorporate multiple tasks can effectively extract meaningful insights into neural circuit
diversity, relying solely on neural activity without prior knowledge of neuron sub-types or brain
regions. The latent representations learned by our model revealed clear distinctions between cellular
sub-types and brain regions, underscoring the power of multi-task learning to uncover biological
structures embedded within neural data.

Our approach further highlights the value of integrating diverse neural datasets, offering a powerful
framework for comparing and contrasting activity patterns across different cell populations, brain
regions, experimental conditions, and even across animals. This comparative analysis enables us
to observe how distinct neural populations interact and coordinate their activity, yielding insights
that would be difficult to capture through isolated experiments. By leveraging a large collection
of diverse recordings, we were able to learn patterns of neural population dynamics that generalize
across subjects and conditions.

In developing this approach, we utilized the largest and most diverse dataset publicly available,
covering multiple brain regions, Cre-lines, and experimental sessions. This comprehensive dataset
allowed us to train models that generalize across varying conditions. However, despite the dataset’s
richness, we have only tested our model in visual cortex and the current work does not incorporate
other regions or species, which could further validate the generalizability of our model. Addition-
ally, our model does not yet incorporate neuron activity prediction, which could help to further
improve the model’s ability to understand the dynamics of different cellular sub-types and regions.
Addressing these limitations by expanding to additional brain areas, species, and neuron prediction
tasks will be crucial areas in future research.

Looking forward, our framework has the potential to go beyond traditional limitations in neuro-
science by algorithmically stitching together neural populations from different experiments. Apply-
ing this model to even larger datasets, across species and brain regions, could lead to discoveries in
how neural circuits are organized and how they change over learning and disease.
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Timon Merk, Victoria Peterson, Richard Köhler, Stefan Haufe, R Mark Richardson, and Wolf-Julian
Neumann. Machine learning based brain signal decoding for intelligent adaptive deep brain stim-
ulation. Experimental Neurology, 351:113993, 2022.

Seungbin Park, Megan Lipton, and Maria Dadarlat. Decoding multi-limb movements from low
temporal resolution calcium imaging using deep learning. bioRxiv, pp. 2023–11, 2023.

Luke Y Prince, Shahab Bakhtiari, Colleen J Gillon, and Blake A Richards. Parallel inference of
hierarchical latent dynamics in two-photon calcium imaging of neuronal populations. bioRxiv,
pp. 2021–03, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

11

https://linkinghub.elsevier.com/retrieve/pii/S0960982221010526
https://linkinghub.elsevier.com/retrieve/pii/S0960982221010526
https://www.sciencedirect.com/science/article/pii/S0896627318302435
https://www.sciencedirect.com/science/article/pii/S0896627318302435
https://www.eneuro.org/content/5/4/ENEURO.0414-17.2018
https://openreview.net/forum?id=QzTpTRVtrP


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Simanto Saha, Khondaker A Mamun, Khawza Ahmed, Raqibul Mostafa, Ganesh R Naik, Sam
Darvishi, Ahsan H Khandoker, and Mathias Baumert. Progress in brain computer interface: Chal-
lenges and opportunities. Frontiers in systems neuroscience, 15:578875, 2021.

Federico Scala, Dmitry Kobak, Matteo Bernabucci, Yves Bernaerts, Cathryn René Cadwell, Je-
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APPENDIX

A WHY BUILD A MODEL ACROSS DIVERSE CELL TYPES AND BRAIN
REGIONS?

A.1 CHALLENGES

Sensory processing occurs across multiple interconnected brain areas, which collectively transform
their inputs into diverse, hierarchically organized representations. Consequently, the representation
at the population level in different brain regions exhibit significant variation, particularly as we move
up the hierarchy (Tong et al., 2023; Esfahany et al., 2018). For example, when we examine the rep-
resentations in primary visual cortex (VisP) and compare them to those in a higher-order visual area
like rostro-lateral visual cortex (VisRL), the neurons appear to respond to different pieces of infor-
mation, e.g. VisP neurons show strong orientation tuning while VisRL neurons do not (Esfahany
et al., 2018). This variability highlights the complexity of neural “conversations” in the brain, as
neurons in different areas encode information in unique, complementary ways that are essential for
comprehensive sensory processing.

In addition to understanding the variability across brain regions, understanding the information pro-
cessing properties of different genetically defined cellular sub-types is crucial. Luckily, modern
neuroscience tools allow researchers to target their recordings to distinct cellular sub-types using
Cre-lox technology (Li & Yang, 2023). As a result, it is now known that different cellular sub-types
exhibit unique response patterns to the same stimuli (Zeng & Sanes, 2017). For example, differ-
ent sub-types in visual cortex are distinctly modulated by locomotion differently, and show distinct
response profiles to the same sensorimotor conditions (Dipoppa et al., 2018). As well, some cel-
lular sub-types are more numerous than others, with very high variance in the sparsity/density of
recordings from different Cre-lines (de Vries et al., 2020). Training a decoding model across these
distinct cellular sub-types is challenging due to the heterogeneous and context-dependent nature of
their responses, but it is also critical for the ability to train across highly diverse neural recordings.

A.2 OPPORTUNITIES

What could we achieve with a neural decoding model that combines information across brain re-
gions, cell types, and contexts? First, such a model could serve as a generalist framework—
pretrained for any brain region or Cre-line—allowing for fine-tuning on new datasets regardless
of the regions or sub-types involved. By stitching together data from different experiments, we
could algorithmically link neural populations that are otherwise studied in isolation. For example,
in a single mouse or experiment, we typically record from only one sub-type of cell in a specific
brain region. But by integrating multiple datasets, we could begin to understand how different cel-
lular sub-types work together across regions in a unified system, gaining a broader view of neural
dynamics than would be possible using data from a single experiment.

Combining diverse neural datasets offers a powerful opportunity to compare and contrast activity
patterns across different cell populations, brain regions, experimental conditions, and even across
animals. This comparative approach allows us to observe how distinct neural populations interact
and coordinate their activity in ways that individual experiments cannot capture. By integrating
diverse datasets, we can explore how neural circuits change during learning, identifying patterns of
adaptation that generalize across subjects. Similarly, we can track how neural activity evolves in the
context of disease, revealing key differences between healthy and pathological states. Altogether,
by training generalist models on a wealth of diverse data, we can uncover neural circuit interactions
that remain hidden when analyzing data from a single source.

B DETAILS ON THE ALLEN BRAIN OBSERVATORY DATASET

Below we provide a breakdown of all the experiments in the Allen Brain Observatory (Table A1)
where we see the number of sessions per brain region and the different tasks.
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TASK TARGETED STRUCTURE
All AL AM L P PM RL

Drifting (DG) 456 41 38 106 144 87 40
Static (SG) 456 41 38 106 144 87 40
Scenes (NS) 456 41 38 106 144 87 40
Movies (NM) 1368 123 114 318 432 261 120
Sparse Noise (LSN) 456 41 38 106 144 87 40

Table A1: Session breakdown

C MODEL DETAILS AND EXPERIMENTAL SETUP

C.1 ROTARY POSITION EMBEDDINGS (ROPE)

Position of tokens in our model are determined by their timestamps. Thus, we allow the positions to
be continuous values, which is different from the conventional application of RoPE in domains such
as language and vision. For this, we define a custom rotation matrix R(t) as follows:

R(t) =


R2×2(t, T1) 0 · · · 0

0 R2×2(t, T2) · · · 0
...

...
. . .

...
0 0 · · · R2×2(t, TD/2)


With each 2× 2 sub-matrix being defined as:

R2×2(t, T ) =

[
cos(2πt/T ) − sin(2πt/T )
sin(2πt/T ) cos(2πt/T )

]

Here, T1, T2, . . . , TD/2 denote the ”time-period” of different sinusoids. These decide what resolution
and range the model is capable of resolving. We set these time-periods to be logarithmically spaced
from 0.1ms to 4.0s.

C.2 TRAINING DETAILS

We use the LAMB optimizer You et al. (2019) with weight decay to train POYO+ . The learning rate
is held constant, then decayed towards the end of training (last 25% of epochs), using a cosine decay
schedule. We train POYO+ for 300 epochs using 8 Nvidia H100s with a global batch size of 4800.

POYO+ is trained with 8 transformer blocks: 2 cross-attention blocks at the input and output and 6
self attention blocks. We use 128 latent tokens with a dimension of 128. We use multi-head attention
with cross attention layers using 2 heads, and self-attention layers using 8 heads. We use dropout
when computing attention, and in the feed-forward networks (dropout rate 0.2).

POYO+ is trained on a total of 12 tasks, which are detailed in Table A2. The weight for each
task is determined based on the scale of the loss from an initial model. The regression targets are z-
scored based on the mean and standard deviation computed from the training trials across all training
sessions.

C.3 MULTI-MODAL DECODER IN POYO+

In Figure A1, we detail the architecture of the multi-modal decoder used in POYO+ . All tokens
regardless of the task are processed through the same cross-attention layer, and a custom router
groups together tokens from the same task and feeds them to a task-specific linear decoder.
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Table A2: Summary of tasks, dimensions, loss functions, and reported metrics used in POYO+ .
Task Dim Type Loss Weight Metric
Drifting gratings orientation 8 Classification bce 1.0 Accuracy
Drifting gratings temporal frequency 5 Classification bce 1.0 Accuracy
Natural movie one frame 900 Segmentation bce 0.25 Acc within 1s
Natural movie two frame 900 Segmentation bce 0.2 Acc within 1s
Natural movie three frame 3600 Segmentation bce 0.2 Acc within 1s
Locally sparse noise frame 8000 Segmentation bce 1.0 Accuracy
Static gratings orientation 6 Segmentation bce 1.0 Accuracy
Static gratings spatial frequency 5 Segmentation bce 1.0 Accuracy
Static gratings phase 5 Segmentation bce 1.0 Accuracy
Natural scenes 119 Segmentation bce 0.3 Accuracy
Running speed 1 Regression mse 1.5 r2

Pupil location 2 Regression mse 8.0 r2

D ADDITIONAL EXPERIMENTS

D.1 TRANSFER EXPERIMENTS TO OPENSCOPE DATASET

In another set of experiments, we examined our ability to transfer from our pretrained model to
another open dataset with different recording conditions and stimuli, collected as part of The Allen
Institute Mindscope’s OpenScope program (Gillon et al., 2023). This dataset consists of responses
of neurons in VisP from two Cre driver lines targeting distinct excitatory populations (Cux2 and
Rbp4) recorded at two different depths. The two different depths were used to target either the cell
bodies or distal apical dendrites of the neurons. Thus, these recordings contained responses from
dendritic processes (Figure A2 in the Appendix), not just neural cell-bodies, which allowed us to
examine our ability to transfer to dendrites.

We tested our ability to finetune our pretrained model to decode the orientation of Gabor stimuli,
from either the activity of cell bodies (Soma) or dendrites (Dend) (Table 3). Our results suggest
that there is indeed a benefit in pretraining on another large dataset. When we compare to the MLP
baseline, we find a near 7% improvement in performance with POYO (DG) and 9% improvement
with POYO+ which is pretrained on much more diverse tasks. When we break these numbers down
by the type of recording, we find that the improvements on Dendritic sessions benefit the most, with

Figure A1: Detailed architecture of the decoder in POYO+ . All tokens from all tasks are processed
together throught the same cross-attention layer. A router is used to group together tokens from
the same task, for which a task-specific linear decoder is used to project the token into the target
dimension.
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Figure A2: Visualizations of somatic and dendritic region-of-interests.

over 10% improvement with POYO+ despite the fact that we did not pretrain on dendritic data which
varies considerably from somatic data.

Table A3: Transfer from POYO+ to a new Openscope dataset. Here, we compare the decoding performance
on a 3-class task for a MLP baseline, the single task POYO (DG) baseline finetuned for the new task, and
POYO+ finetuned.

Avg (5) Dend (3) Soma (2)
MLP 72.94% 73.51% 72.10%
POYO (DG) 79.70% 81.74% 76.76%
POYO+ 81.91% 84.19% 78.49%

D.2 COMPARISON OF CEBRA AND POYO+ USING PSEUDOMOUSE METHOD

We include the experiment detail and results of the replicated version of CEBRA pseudomouse
experiment using the same Allen Brain Observatory dataset natural movie subset.

Following CEBRA’s experimental setup, we excluded sessions recorded from mice expressing three
inhibitory Cre-lines and Ntsr1-Cre GN220. Instead of using the traces provided by the Allen In-
stitute, we also used the preprocessed and aligned version of the traces from Deitch et al. (2021)
(https://github.com/zivlab/visual drift/tree/main/data). This dataset provides traces aligned with
movie frames for natural movie one stimulus, facilitating aggregation of neurons across animals.
We note that we only compared CEBRA’s VISp results here because the main findings and CE-
BRA’s best performance were reported from VISp out of the six brain regions.

We used all sessions from VISp available in the dataset . In each session, the natural movie one video
was played 10 times consecutively. We split the training set in the exact same way as CEBRA, using
the first eight repeats as the training set, the ninth as the validation and the tenth as the test set.

We constructed a “pseudomouse” by first aggregating all neurons from all subjects, only including
the neurons that were tracked across all three types of sessions, ensuring we have the same neuron
pool as CEBRA. Since we could not identify the exact same neurons used in the CEBRA experi-
ments, we employed the same neuron pool and method, using a random sampler to sample different
numbers of neurons. This allowed us to construct pseudomice of ten different population sizes: {10,
30, 50, 100, 200, 400, 600, 800, 900, 1000}. For each size, we sampled randomly with five different
seeds to ensure reproducibility, generating 50 pseudosubjects in total.

We tested the model’s frame decoding performance with a 900-class classification task. Since the
movie frames are very similar within a small time window, we followed CEBRA’s approach: if the
prediction was within a one-second window, we counted it as a correct prediction.

We train the model for 3000 epochs for pseudomice of sizes {10, 30, 50, 100, 200, 400} neu-
rons, 1500 epochs for sizes {600, 800} neurons and 1000 epochs for sizes {900,1000} neurons.
We then computed the averages of decoding accuracy for each size, as well as the standard er-
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Figure A3: Decoding accuracy comparison between POYO+ and CEBRA through neuron concate-
nation. POYO+ consistently outperforms CEBRA across all pseudomouse sizes on a natural movie frame
decoding task.

ror of the mean (s.e.m.). We report CEBRA results from their repository for reproducing figures
(https://github.com/AdaptiveMotorControlLab/cebra-figures).

The results show that POYO+ outperformed CEBRA for pseudosubjects of all sizes (Figure A3).
Notably, POYO+ outperformed CEBRA by a large margin for pseudosubjects containing fewer neu-
rons. For example, POYO+ outperformed pseudosubjects of 30 neurons by more than 10% and 200
neurons by almost 20%. This suggests that POYO+ is able to extract latent information with much
fewer neurons than CEBRA.

E ANALYSIS OF LATENT EMBEDDINGS

We provide details about the process of analysis to obtain Figure 4.

E.1 EXPERIMENT DETAILS

To carry out the analysis in Figure 4, we extracted the latents from a random sample of approximately
500,000 1s windows. For a 1s context window, POYO+ produces 64 latent tokens, each with a 128-
dimensional embedding. We concatenated these latents, resulting in a combined 8192-dimensional
latent representation for each sample. For part of the analyses, we will compute, session-averaged,
and Cre-line averaged latent representations.

Dimensionality Reduction by t-SNE For the purposes of visualizing the latent space, we down-
sample the number of samples to around 110,000. We first used Principal component analysis (PCA)
to reduce the dimensionality from 8,192 to 50. Next, we performed t-SNE (van der Maaten & Hin-
ton, 2008) to further reduce the dimentionality from 50 to 2 for visualization.

Linear Decoding For all linear decoding tasks, we used the scikit-learn implementation of logistic
regression with a train-validation-test split of 60/20/20. We performed hyperparameter search for
regularization parameter C between 0.1 and 500.. We determine the best model based on the per-
formance on the validation set, and report the linear layer’s performance on the test set. To ensure a
fair comparison with the Baseline metrics, we calculated the average latent representation for each
session instead of using all samples individually.
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E.2 CRE-LINE AND BRAIN REGION DECODING

Here, we report the accuracies for cell type and brain region classification, from our model, the single
task (DG) model, and the the Baseline feature-based classifier in Schneider et al. (2022) (Table A4).
It is worth noting that POYO (DG) only contains roughly 400 samples in total, while the Baseline
and POYO+ have over 1000 samples for linear decoding.

Table A4: Performance comparison of Baseline, POYO (DG) , and POYO+ across different region
and cell type classification tasks.

Num of classes Baseline POYO (DG) POYO+
Cre-line 13 56.00% 39.57% 67.93%
Cre-line + Layer 24 38.48% 16.86% 40.88%
Area 6 36.47% 39.01% 59.81%

Baseline Metrics Inspired by Schneider et al. (2023a), we used the calcium event data provided
by the Allen Institute to compute the inter-spike intervals (ISIs) for each neuron in each session.
Using these ISIs, we calculated the following metrics for each neuron:

• Minimum, maximum, and median of ISIs

• Mean firing rate (mean FR)

• Standard deviation (SD)

• Coefficient of variation (CV)

• Local variation (LV)

• Revised local variation (LVR)

• Local alternative to the coefficient of variation (CV2)

• Spectral density power in four bands: delta, theta, alpha, beta, and gamma (PSD)

• Two parameters of the gamma distribution (a and b) used to describe the ISI distribution (α
and β)

After calculating these metrics, we averaged the results across all neurons in each session to obtain
Baseline metrics at the session level.

It is important to note that due to the sparse nature of calcium data, LV, LVR, and CV2 values cannot
be calculated. As a result, these metrics are excluded from the subsequent analyses.

E.3 LEARNED TASK EMBEDDINGS

In Figure A4, we visualize the learned task embeddings in POYO+ . We find that related tasks
typically cluster together. For example the various drifting gratings decoding tasks, or the decoding
tasks corresponding to the three natural movies.

Figure A4: PCA projection of learned task embeddings
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E.4 VISUALIZATION OF MORE FINE-GRAINED CRE-LINE CONFUSION MATRIX

We provide a visualization of the confusion matrix for a more fine-grained classification task with
POYO+ (Figure A5).

Figure A5: Examining the organization of the latent embeddings from POYO+ by Cre-line. Confusion
matrix for Cre-line classification, including the layer for each Cre-line.

E.5 VISUALIZATION OF BASELINE AND POYO (DG)

We provide the confusion matrices for Baseline and POYO (DG) in classification tasks (Figure A6,
Figure A7).

We also provide the dendrograms for detailed cre-lines and brain area for POYO (DG) (Figure A8).

E.6 TASK DEPENDENT MODULATION OF EMBEDDINGS BY CRE-LINE

We provide the extended version of Figure 5 in this subsection (Figure A9).
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Figure A6: Baseline and POYO (DG) confusion matrices for brain area and Cre-line classification. A.
Brain area classification (Baseline). B. Brain area classification (POYO (DG) latents). C. Cre-line classification
(Baseline). D. Cre-line classification (POYO (DG) latents).
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Figure A7: Baseline and POYO (DG) confusion matrices for fine-grained Cre-line + layer classification. A.
Baseline. B. POYO (DG) .
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Figure A8: Visualizations of hierarchical clusterings from POYO (DG) . A. Brain areas. B. Cre-lines.
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Figure A9: Deviation of cre-line averaged embeddings from Baseline.
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