
Neural Algorithmic Reasoning with Multiple Correct Solutions
Zeno Kujawa

∗

Northeastern University

Boston, Massachusetts, USA

kujawa.z@northeastern.edu

John Poole
∗

University of Cambridge

Cambridge, United Kingdom

jmp251@cam.ac.uk

Dobrik Georgiev

University of Cambridge

Cambridge, United Kingdom

dgg30@cam.ac.uk

Danilo Numeroso

Università di Pisa

Pisa, Italy

danilo.numeroso@phd.unipi.it

Henry Fleischmann

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

hfleisch@andrew.cmu.edu

Pietro Liò

University of Cambridge

Cambridge, United Kingdom

Pietro.Lio@cam.ac.uk

Abstract
Neural Algorithmic Reasoning (NAR) extends classical algorithms

to higher-dimensional data. However, canonical implementations

of NAR train neural networks to return only a single solution, even

when there are multiple correct solutions to a problem, as is the

case with finding single-source shortest paths in a graph. For some

applications, it is desirable to recover more than one correct solu-

tion. To that end, we give the first method for NAR with multiple

solutions. We demonstrate our method on two classical algorithms:

Bellman-Ford (BF) and Depth-First Search (DFS), favouring deeper

insight into two algorithms over a broader survey of algorithms.

This method involves generating appropriate training data as well

as sampling and validating solutions from model output. Each step

of our method, which can serve as a framework for neural algorith-

mic reasoning beyond the tasks presented in this paper, might be

of independent interest to the field and our results represent the

first attempt at this task in the NAR literature.

CCS Concepts
• Computing methodologies→Machine learning.

Keywords
Neural Algorithmic Reasoning, Graph Neural Networks

ACM Reference Format:
Zeno Kujawa, John Poole, Dobrik Georgiev, Danilo Numeroso, Henry Fleis-

chmann, and Pietro Liò. 2025. Neural Algorithmic Reasoning with Multiple

Correct Solutions. InWorkshop on Machine Learning on Graphs in the Era of
Generative Artificial Intelligence at KDD ’25 (MLoG-GenAI Workshop at KDD
’25). ACM, New York, NY, USA, 14 pages.

1 Introduction
1.0.1 The problem with algorithms. Classical algorithms likeMerge

Sort guarantee correctness and generalize perfectly on abstract

∗
Equal contribution

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MLoG-GenAI Workshop at KDD ’25, Toronto, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

inputs. Unfortunately, real problems rarely have abstract inputs.

Consider pathfinding: to give traffic directions via a shortest paths

algorithm, one must compress physical distance and congestion

data for each street into single-number edge labels, thereby losing

information. Bad edge labels lead to bad directions, even despite a

good algorithm.

1.0.2 Why NAR?. Neural Networks (NNs) avoid information loss

by directly operating on high-dimensional data. Instead of com-

pressing distance and congestion data to a single path-length edge

label, an NN can operate directly on distance and congestion data.

However, the chief hurdle to NN performance is failure to general-

ize: common architectures are fragile to changes in input size and

structure — exactly where algorithms succeed. Thus, it is natural to

wonder whether an NNmight learn to generalize from an algorithm.

To that end, Neural Algorithmic Reasoning is the field that aims to

train NNs to mimic the running of classical algorithms [9]. A benefit

of this approach is staying high-dimensional: no information is lost

when projecting high-dimensional real data into a single abstract

output for a classical algorithm [9].

1.0.3 Multiple Solutions. Thus far, NNs have been trained to mimic

algorithms which recover one solution from the space of possible

correct solutions [1–3, 5, 8, 10, 11]. When recovering one solution,
an NN trained to performDFS produces an array, considered a distri-

bution of probabilities of different solutions fromwhich the likeliest

solution is returned as the model output. To recover multiple so-
lutions, we adapt the NN training so the NN output distribution

better reflects multiple correct solutions, and present methods of

retrieving multiple solutions from the NN output distribution.
1

1.0.4 Why multiple solutions? For applications like cyberphysical

systems, the flexibility of multiple solutions is essential. A single

solution, for reasons of cost, safety, or compliance, may not be

amenable to a final task. Furthermore, using only one solution in

NAR may be vulnerable to local minima in the model training.

By diversifying the space of solutions returned by NAR, we may

decrease the risk of solutions originating from a local minimum.

1.1 Contributions
We give the first analysis of Neural Algorithmic Reasoners which

return more than one solution. For training examples, we create

distributions of solutions from multiple runs of classical algorithms

with randomized tiebreaking.We train NNs to predict the generated

1
The code used for the experimenets in this paper can be found here.

https://github.com/ZenoMK/NAR_Multiple_Solutions

MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada Kujawa et al.

distribution of solutions; and we leverage randomness in algorithm-

specific ways to extract distinct solutions from the NN-predicted

distributions. We also discuss methods of evaluating the solutions

our methods yield. Thus, we contribute methods that might each

be of independent interest, methods to:

(1) train a neural network on a distribution of correct solutions

(2) extract multiple solutions from the NN output distribution

(3) evaluate the diversity and correctness of many NN solutions

Together, these contributions can serve as a framework for further

research into Neural Algorithmic Reasoning with multiple solutions

for a single problem instance.

2 Methodology
2.0.1 Generate distribution, train, extract many solutions. To pro-

duce multiple solutions for a single graph, we train a NN to predict

a distribution of solutions for each individual graph (solutions being

individual DFS trees or BF paths, their distribution represented as

distributions over child-parent pairs, as discussed in Appendices

A.1.1 and A.2.1). Ordinarily, the CLRS benchmark [10] generates

training data by running classical algorithms with deterministic

tiebreaking. For example, the input graph in Figure 1 has two valid

orders of depth-first traversal, but classical DFS will only return

one traversal based on which edge it explores first. To create our

training examples, we run a classical algorithm (e.g. DFS) multi-

ple times with randomized tiebreaking, and average the outputs

(e.g. individual DFS trees) into a distribution of solutions. As we

want the NN to predict a distribution, we train to minimize a dis-

tribution divergence (Kullback-Leibler: KL) [6] between the input

distribution of solution and that given by the NN. Finally, our goal

is to recover multiple solutions for an input graph; so we develop

algorithm-specific stochastic sampling methods.

2.0.2 Stochasticity gives multiple solutions. There are two sources

of randomness in our process: changing training labels from a

deterministic algorithm result to a probability distribution over

predecessor-successor relationships, and extracting solutions from

predecessor arrays that encode themodel output distribution. Stochas-

ticity of sampling methods means samples are likely to have multi-

ple different solutions. For DFS, we sample the immediate parents

of vertices until we reach the root vertex (which can be seen as ex-

ecuting DFS in reverse on a graph); our two DFS extractors, which

we call Upwards and AltUpwards, differ in the manner in which they

discard potential solutions (Appendix A.1.2). For BF, Beam samples

a number of parents for non-source vertices according to parent-

probabilities and chooses the lowest cost path arising (Appendix

A.2.2). Also for BF, Greedy samples parents for each non-source

vertex and chooses the parent with the lowest-cost outgoing edge

for each non-source vertex (Appendix A.2.2).

2.1 DFS
2.1.1 Problem setting. We consider a generalization of the deter-

ministic DFS setting implemented in the CLRS benchmark [10].

In our setting, edge-exploration is random: from a given vertex,

any of the outgoing edges may be explored first. To decrease the

computational burden of verifying solutions, we require that once

DFS backtracks past the root of a connected component, it restarts

Figure 1: Blueprint for NAR with multiple correct solutions.
For Step 2 see Figure 3. For Step 4 see Figure 4 and Appendices
A.1.2 A.2.2. Best viewed on a screen.

Figure 2: Parent Tree encoding of a single DFS solution. The
start node, 0, is its own parent, represented by the value 0 at
index 0. The value 2 at index 1 indicates that vertex 2 is the
parent of vertex 1. Similarly, the value 0 at index 2 indicates
that vertex 0 is the parent of vertex 2.

Figure 3: Parent Probability Distribution encoding of multi-
ple DFS solutions. The value 0.5 in row 1 column 2 indicates
that vertex 2 is a parent of vertex 1 in 50% of correct parent
trees. We call the parent probabilities obtained by repeatedly
running an algorithm the true parent distribution P. The
model outputs, which we aim to be as close as possible to P,
are denoted as ˜P.

its search at the lowest-indexed unvisited vertex. We believe this

generalization is natural, modelling a setting where one conducts

DFS according to a chosen sequence of starting points, without

assumptions about which edges to pursue first.

2.1.2 Randomness in training. We generate an empirical parent

distribution P for each graph in the test set (Figure 3) by running

our randomized version of DFS 20 times (we conclude from our

results in Appendix B that 20 runs provide a good approximation

Neural Algorithmic Reasoning with Multiple Correct Solutions MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada

Figure 4: DFS tree extraction from a parent probability ma-
trix: ˜P or P. The parent tree [0,2,2] is incorrect because there
is no solution in which 2 is its own parent. [0,0,0] is incorrect,
despite there being solutions in which 0 is the parent of each
vertex, because there is no solution in which 0 is the parent
of every vertex: if 0 is the parent of 1, 1 must be the parent
of 2. Best viewed on a screen.

Figure 5: A graph with multiple correct DFS solutions. Graph
edges are drawn in black. The red tree explores vertices in
increasing order, while the blue tree begins with vertex 0
discovering vertex 2. Note also how the DFS-tree is encoded
as a predecessor array 𝜋 (where the entry at position 𝑖 is the
predecessor of the 𝑖𝑡ℎ vertex).

of the target distribution for each graph). We then train the model

to minimize the KL-divergence between its predicted distribution

˜P and P (Appendix A.1.1).

2.1.3 Randomness in sampling. We compare 4 methods, which we

refer to as Upwards altUpwards, Argmax, and Random, for extracting

DFS solutions from a parent distribution,
˜P. Our two main methods

sample a parent for each vertex in a way that strives to emulate

the structure of a DFS traversal while taking into account the given

probability distribution. We provide detailed descriptions of our

methods in Appendix A.1.2.

2.2 Bellman-Ford
The Bellman-Ford algorithm computes the minimum-cost paths

from a single source vertex 𝑠 to each other vertex 𝑣 in the graph. As

is the case for DFS, the solutions are represented as a predecessor

array 𝜋 .

2.2.1 Randomness in training. Similarly to randomising DFS, our

implementation of a randomised Bellman-Ford algorithm relies

on randomising the order in which paths are considered by ran-

domising the tiebreaking between minimum-length paths. As with

DFS, we obtain a distribution of parent nodes by re-running the

algorithm 20 times and computing the frequency of each parent for

each node (Appendix A.2.1).

Figure 6: A graph with multiple possible minimum-cost
(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑣)-paths. As previously, the black arrows represent
the edges, with the red and blue edges showing different
minimum-cost paths corresponding to their respective pre-
decessor arrays.

2.2.2 Randomness in sampling. We use a sampling algorithm we

call BF Beamsearch to sample predecessor arrays 𝜋 representing

the minimum-cost (𝑠, 𝑣)-paths for each vertex in the graph. This

algorithm closely resembles standard Beam Search, but it differs as

it samples according to the distribution given by the model (A.2.2).

To sample predecessor arrays more easily from P and
˜P, we also

use a greedy randomised algorithm (A.2.2).

2.3 Permuting Inputs
We compare our method for generating multiple solutions by pre-

dicting solution distributions and stochastically extracting solu-

tions, with another method: permuting the inputs to the standard

CLRS benchmark model [10]. Each input graph may be encoded

many times isomorphically by permuting node labels. We test

whether permuting node labels will lead to a neural network ex-

tracting a new solution.

3 Experiments
3.0.1 Parameters. We run our experiments using the CLRS bench-

mark [10], which handles data generation, model training, and

model evaluation in a unified way. The CLRS benchmark gener-

ates graphs of size 4, 7, 11, 13, and 16 to train our models on. In

keeping with established methodology [5, 10], we test our mod-

els on graphs within and outside the range of our training sizes.

For within-sample testing, we choose 𝑛 = |𝑉 (𝐺) | = 5 and 𝑛 = 16

in order to cover the range of our training data graph sizes. For

out-of-distribution evaluation, we use the default CLRS benchmark

testing size 𝑛 = 64. For each graph size, we test 32 Erdős-Rényi ran-

dom graphs constructed with edge probability 1/2. The models are

trained with default CLRS benchmark model parameters (Appendix

D) [10].

3.0.2 Metrics. Addressing the lack of evaluation methods for NAR

with multiple solutions, we propose metrics to evaluate the validity

and diversity of solutions. We regard a solution graph 𝐺 ′ to be

valid for a randomized algorithm 𝐴 and a graph𝐺 if𝐺 ′ is in the set

of possible outputs of 𝐴(𝐺). We assess the diversity of solutions

by considering the degree to which repeatedly sampling from the

same distribution produces different solutions. For a collection of

graphs and corresponding solutions, we call the fraction of cor-

rect solutions produced by a given method the accuracy of the

method (referred to as graph accuracy in [7]). For a single graph,

MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada Kujawa et al.

our NN predicts one solution distribution. From this distribution,

we sample 5 solutions and count the number of distinct and valid

solutions. For Bellman-Ford, a solution is valid if and only if it gives

all shortest paths from the source vertex. For DFS, no straightfor-

ward evaluation method is known and we thus present a novel

verification algorithm in Appendix A.1.3. Figures 3 and 4 illustrate

data generation and solution extraction on a graph. We investigate

our coverage of the solution space in Appendix C.

4 Results
Note validity in Table 1 and accuracy in Tables 2 and 3 report graph

accuracy, which is much stricter than the typically reported node

accuracy [5, 10] (Appendix E). On an 𝑛 = 64 graph, a method with

node accuracy of 92% would be expected to score only 1% graph

accuracy.

4.1 Results for Bellman-Ford
4.1.1 Small graphs are easy for BF. On small graphs, (𝑛 = 5), our

sampling methods extract a single correct minimum-cost path with

perfect accuracy from the NN-predicted distributions (Table 1, Table

2). To validate sampling methods, we also extract solutions from the

empirical distributions and conclude that our sampling methods

are successful across graph sizes. Similar results for empirical and

predicted distributions suggest the NN predicts a good distribution

for 𝑛 = 5 graphs. The lack of variety in solutions, with sampling

methods always extracting the same solution, is expected for small

graphs as there is likely only one minimum-cost path from the

source to each target. Diversity increases for 𝑛 = 16 (Table 1), with

the sampling methods producing a correct solution in all cases

when sampling from the empirical distributions and in more than

90% of cases when sampling from the model output distributions.

In the case of 𝑛 = 64 graphs sampling a predecessor array five

times gives a new solution in nearly all cases, though not always

correctly (Table 1). In Appendix C.1, we examine the diversity of

the returned solution in comparison to running the randomized

version of Bellman-Ford.

4.1.2 Large Graphs are harder, but doable for BF. For larger graphs,
Table 2 shows that the sampling methods successfully extract cor-

rect minimum-cost paths from the empirical distributions (denoted

asP). However, extraction is often inaccurate from the distributions

of solutions predicted by our models (denoted
˜P). These results per-

mit us to conclude that our models perform well on small graphs,

but have difficulty scaling outside of their training distribution.

Comparing our approach with the deterministic algorithmic frame-

works of [5, 10] is disadvantageous to our method due to its broader

scope. Furthermore in [5, 10], node accuracy is used, meaning that

a given solution for a given graph and algorithm scores 50% if half

of its parent-successor relationships are the same as in the (single)

correct solution for the graph. There is no such optimal solution

that we could compare a given solution against in our case and we

thus use graph accuracy (see [7] and Appendix E for further dis-

cussion of the metrics). It is important to note that graph accuracy

is much stricter than node accuracy: a method with node accuracy

of 92% would be expected to score only 1% graph accuracy on a

𝑛 = 64 graph. Therefore, it is difficult to compare our results to

previous work in NAR. However, our results are encouraging for

future work, as we have demonstrated the feasibility of training

neural networks to emulate a version of Bellman-Ford that is more

powerful than its deterministic variant.

Table 1: Mean proportions of unique and valid solutions
when sampling 5 solutions from empirical (P) and model
output (˜P) distributions for each graph in 5 training runs.
Rounded figures.

Bellman-Ford

Uniques (P) Valids (P) U (
˜P) V (

˜P)
Greedy (n=5) 0.20 ± 0.0 1.00 ± 0.0 0.20 ± 0.0 1.00 ± 0.0
Beam (n=5) 0.20 ± 0.0 1.00 ± 0.0 0.20 ± 0.0 1.00 ± 0.0
Greedy (n=16) 0.35 ± 0.0 1.00 ± 0.0 0.40 ± 0.1 0.92 ± 0.0
Beam (n=16) 0.34 ± 0.0 1.00 ± 0.0 0.39 ± 0.0 0.90 ± 0.0
Greedy (n=64) 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 0.40 ± 0.2
Beam (n=64) 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 0.54 ± 0.2

Depth-First Search

Uniques (P) Valids (P) U (
˜P) V (

˜P)
Upwards (n=5) 0.73 ± 0.0 0.36 ± 0.0 0.45 ± 0.0 0.19 ± 0.0
AltUpwards (n=5) 0.60 ± 0.0 0.80 ± 0.0 0.66 ± 0.0 0.77 ± 0.0
Upwards (n=16) 1.00 ± 0.0 0.10 ± 0.0 1.00 ± 0.0 0.01 ± 0.0
AltUpwards (n=16) 1.00 ± 0.0 0.18 ± 0.0 1.00 ± 0.0 0.14 ± 0.0
Upwards (n=64) 1.00 ± 0.0 0.02 ± 0.0 1.00 ± 0.0 0.01 ± 0.0
AltUpwards (n=64) 1.00 ± 0.0 0.05 ± 0.0 1.00 ± 0.0 0.03 ± 0.0

4.2 Results for Depth-First Search
4.2.1 DFS is hard, consistent with literature. Our results indicate
that even on small graphs, our methods do not achieve a good accu-

racy (Table 2). Without modifications such as hint pointer reversal

[1], DFS is a difficult NAR problem [5, 10], and our results point

towards the additional difficulty of learning to execute DFS when

considering multiple solutions. As in the discussion of our results

for Bellman-Ford, we point out that no graph accuracy compari-

son exists with previous work. In [5], it is indicated the node-level

micro-F1 score for DFS does not exceed 60% for 𝑛 = 64without hint

pointer reversal [1] (these values being an improvement over the

previous state of the art), making graph-level accuracies above 0%

unlikely. Thus, while our reported accuracies are low, they are likely

to be in line with previous work in NAR, despite the additional

difficulty of retrieving multiple solutions.

4.2.2 Many incorrect solutions make DFS harder. Considering the
accuracy results and the fact that even on the solution distributions,

our sampling methods do not produce correct solutions, we hy-

pothesize that the encoding of multiple solutions into a probability

distribution, as presented above, leads to a lack of differentiation be-

tween different correct solutions and thus to difficulties retrieving

correct solutions. Further evidence for this hypothesis is the obser-

vation that there are fewer correct solutions to the single-source

shortest path problem on one of the random weighted graphs we

sample than there are valid depth-first traversals of that same graph.

This is the case because for a given unweighted graph 𝐺 , every

Neural Algorithmic Reasoning with Multiple Correct Solutions MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada

path from the root could be included in a depth-first traversal, but

only the shortest paths from the root to the vertices can be part of

the output of the randomized Bellman-Ford algorithm on a given

weighted version of 𝐺 .

Table 2: Mean accuracies (0 to 1) for all sampling methods,
with standard deviations over 5 runs. Rounded figures.

Bellman-Ford

Argmax Beam Greedy Random

True (n=5) 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 0.00 ± 0.0
Model (n=5) 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 0.00 ± 0.0
True (n=16) 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 0.00 ± 0.0
Model (n=16) 0.98 ± 0.0 0.91 ± 0.0 0.92 ± 0.0 0.00 ± 0.0
True (n=64) 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0 0.00 ± 0.0
Model (n=64) 0.50 ± 0.3 0.56 ± 0.2 0.38 ± 0.2 0.00 ± 0.0

Depth-First Search

Argmax AltUpwards Upwards Random

True (n=5) 0.80 ± 0.1 0.90 ± 0.1 0.34 ± 0.2 0.00 ± 0.0
Model (n=5) 0.61 ± 0.1 0.50 ± 0.1 0.16 ± 0.0 0.00 ± 0.0
True (n=16) 0.00 ± 0.0 0.00 ± 0.0 0.08 ± 0.0 0.00 ± 0.0
Model (n=16) 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0
True (n=64) 0.00 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.00 ± 0.0
Model (n=64) 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0

4.3 Results for Permuting Inputs
Permuting node indices either fails to produce new solutions, or else

incurs significant accuracy penalties (Table 3). When permuting

indices produces a correct solution, we observe it to be isomorphic

to the original correct solution. When permuting indices produces

a new solution, it is incorrect. For DFS with ordered restarts, some

failure is explained because a correct solutionmay become incorrect

after a permutation. For example, the ordered restarts requirement

means any tree becomes incorrect if its start node is relabeled from

0 to anything else. However, for the Bellman-Ford algorithm, a

correct solution ought to remain correct after permuting the vertex

indices: shortest paths remain shortest paths, despite relabeling. Yet

even for BF, the NN does not appear to be capable of generating any

solutions that are correct and not isomorphic to a single solution.

5 Conclusion
We outline a two-part approach to NAR with multiple solutions: we

train models to predict distributions of solutions and stochastically

extract solutions from those distributions. In the case of using aNAR

to find multiple single-source shortest path solutions in a weighted

graph we demonstrate that this is feasible, particularly on graphs

with sizes that lie within the range of sizes we train our models

on. For DFS, we see that this task is significantly more challenging,

as indicated by prior NAR research. We attribute this result to a

number of factors. First, previous work indicates that emulating

DFS with NAR is a difficult task. Second, training a model to fit

a distribution of solutions does not directly optimize for correct

Table 3: Mean accuracies and proportions of distinct solu-
tions (0 to 1) when permuting inputs 5 times, with standard
deviations over 5 runs.

Accuracy

DFS Bellman-Ford

(n=5) 0.10 ± 0.03 0.30 ± 0.07
(n=16) 0.01 ± 0.02 0.00 ± 0.00
(n=64) 0.00 ± 0.00 0.00 ± 0.00

Variety

DFS BF

(n=5) 0.90 ± 0.09 0.62 ± 0.08
(n=16) 1.00 ± 0.00 0.99 ± 0.01
(n=64) 1.00 ± 0.00 1.00 ± 0.00

solutions. Solutions must still be extracted from the distribution

via stochastic methods, to which the loss metric does not extend

(Figure 10). Improving methods for extracting solutions remains

an important algorithmic task. Still, with the promise of sampling

multiple solutions from a distribution demonstrated, we believe our

modifications of the CLRS benchmark act as proof-of-concept for

further work. Such work could immediately apply our method to

other CLRS benchmark algorithms (e.g. Minimum Spanning Tree,

Bipartite Matching, and Task Scheduling). Beyond CLRS, we hope

developing NARwith multiple solutions will add essential flexibility

to applications such as cyberphysical systems, giving safety and

explainability.

References
[1] Beatrice Bevilacqua, Kyriacos Nikiforou, Borja Ibarz, Ioana Bica, Michela Pa-

ganini, Charles Blundell, Jovana Mitrovic, and Petar Veličković. 2023. Neural

Algorithmic Reasoning with Causal Regularisation. In Proceedings of the 40th
International Conference on Machine Learning (Proceedings of Machine Learn-
ing Research, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun Cho, Bar-

bara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 2272–2288.

https://proceedings.mlr.press/v202/bevilacqua23a.html

[2] Montgomery Bohde, Meng Liu, Alexandra Saxton, and Shuiwang Ji. 2024. On

the Markov Property of Neural Algorithmic Reasoning: Analyses and Methods.

In The Twelfth International Conference on Learning Representations. https:

//openreview.net/forum?id=Kn7tWhuetn

[3] Dobrik Georgiev, Danilo Numeroso, Davide Bacciu, and Pietro Liò. 2024. Neural

Algorithmic Reasoning for Combinatorial Optimisation. arXiv:2306.06064 [cs.NE]

[4] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings of
the 34th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 1263–

1272. https://proceedings.mlr.press/v70/gilmer17a.html

[5] Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Ben-

nani, Róbert Csordás, Andrew Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia

Rubanova, Andreea Deac, Beatrice Bevilacqua, Yaroslav Ganin, Charles Blun-

dell, and Petar Veličković. 2022. A Generalist Neural Algorithmic Learner.

arXiv:2209.11142 [cs.LG]

[6] S. Kullback and R. A. Leibler. 1951. On Information and Sufficiency. The Annals of
Mathematical Statistics 22, 1 (1951), 79–86. http://www.jstor.org/stable/2236703

[7] Julian Minder, Florian Grötschla, Joël Mathys, and Roger Wattenhofer. 2023.

SALSA-CLRS: A Sparse and Scalable Benchmark for Algorithmic Reasoning.

arXiv:2309.12253 [cs.LG] https://arxiv.org/abs/2309.12253

[8] Gleb Rodionov and Liudmila Prokhorenkova. 2024. Neural algorithmic reasoning

without intermediate supervision. Advances in Neural Information Processing
Systems 36 (2024).

[9] Petar Veličković and Charles Blundell. 2021. Neural algorithmic reasoning. Pat-
terns 2, 7 (2021).

https://proceedings.mlr.press/v202/bevilacqua23a.html
https://openreview.net/forum?id=Kn7tWhuetn
https://openreview.net/forum?id=Kn7tWhuetn
https://arxiv.org/abs/2306.06064
https://proceedings.mlr.press/v70/gilmer17a.html
https://arxiv.org/abs/2209.11142
http://www.jstor.org/stable/2236703
https://arxiv.org/abs/2309.12253
https://arxiv.org/abs/2309.12253

MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada Kujawa et al.

[10] Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu,

Andrea Banino, Misha Dashevskiy, Raia Hadsell, and Charles Blundell. 2022. The

CLRS Algorithmic Reasoning Benchmark. arXiv preprint arXiv:2205.15659 (2022).
[11] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell.

2020. Neural Execution of Graph Algorithms. arXiv:1910.10593 [stat.ML] https:

//arxiv.org/abs/1910.10593

A Methodology
Sections A.1.1, A.2.1 discuss our methods for randomising the deter-

ministic (canonical) versions of Depth-First Search and the Bellman-

Ford algorithm in order to use the resulting distributions over solu-

tions as inputs to the CLRS baseline. Sections A.1.2 A.2.2 present

our methods of extracting candidate solutions from model outputs.

Sections A.1.3 A.2.3 give approaches verifying whether candidate

solutions are correct solutions. Figures 7, 8, and 9 repeat from the

main body for a comprehensive overview, illustrate the steps taken

from encoding graphs as distributions to obtaining solutions from

NN output.

Figure 7: Parent Tree encoding of a single DFS solution. The
start node, 0, is its own parent, represented by the value 0 at
index 0. The value 2 at index 1 indicates that vertex 2 is the
parent of vertex 1. Similarly, the value 0 at index 2 indicates
that vertex 0 is the parent of vertex 2.

Figure 8: Parent Probability Distribution encoding of multi-
ple DFS solutions. The value 0.5 in row 1 column 2 indicates
that vertex 2 is a parent of vertex 1 in 50% of correct parent
trees.

Figure 9: DFS tree extraction from a parent probability ma-
trix: ˜P or P. The parent tree [0,2,2] is incorrect because there
is no solution in which 2 is its own parent. [0,0,0] is incorrect,
despite there being solutions in which 0 is the parent of each
vertex, because there is no solution in which 0 is the parent
of every vertex: if 0 is the parent of 1, 1 must be the parent
of 2.

https://arxiv.org/abs/1910.10593
https://arxiv.org/abs/1910.10593
https://arxiv.org/abs/1910.10593

Neural Algorithmic Reasoning with Multiple Correct Solutions MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada

A.1 DFS
We provide a more in-depth discussion of our methodology for DFS

described in the main body of the paper.

A.1.1 Randomness in training. Algorithm 1 gives detailed descrip-

tion of the adapted randomized DFS algorithm used in this paper,

with the line that randomizes edge-exploration highlighted in red.

After running Algorithm 1 20 times, we compute the fraction of

solutions in which node 𝑠 is the parent of node 𝑡 , which we say is

the parent probability, as shown in Figure 3.

Algorithm 1 Randomised Depth-First Search

1: Input: Adjacency Matrix 𝐴, vertices 𝑉 in linear order

2: Output: Parent Tree 𝜋 , encoded as list: 𝜋 [𝑖] := parent of 𝑖

3: Initialize color← [0] ∗ |𝑉 |
4: Initialize startNode← 𝑉 [0]
5: rootOrdering← 𝑉 ⊲ ordered restarts

6: tiebreakOrder← shuffle(𝑉 \𝑉 [0]) ⊲ random edge-exploration

7: for root in rootOrder do
8: if color[root] == 0 then ⊲ vertex not yet explored

9: color[root]← 1

10: 𝜋[root]← root

11: current← root ⊲ pointer to node being explored

12: 𝑠𝑙𝑎𝑠𝑡 ← root ⊲ pointer to node most-recently found

13: 𝑠𝑝𝑟𝑒𝑣 [𝑠𝑙𝑎𝑠𝑡] ← root ⊲ pointer to node before the node

most-recently found

14: while True do
15: for potentialChild in tiebreakOrder do
16: if A[root][potentialChild] != 0 then
17: if color[potentialChild == 0] then
18: color[potentialChild]← 1

19: 𝜋[potentialChild]← current

20: 𝑠𝑙𝑎𝑠𝑡 ← 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐶ℎ𝑖𝑙𝑑

21: break ⊲ child found, exit for-loop,

continue while

22: end if
23: end if
24: end for
25: if current == 𝑠𝑙𝑎𝑠𝑡 then ⊲ No outgoing edge found

26: if 𝑠𝑝𝑟𝑒𝑣 [𝑠𝑙𝑎𝑠𝑡] == 𝑠𝑙𝑎𝑠𝑡 then ⊲ Done:

backtracked source and no new edges

27: break ⊲ Exit while loop, try further with

next root in rootOrder

28: end if
29: 𝑠𝑙𝑎𝑠𝑡 ← 𝑠𝑝𝑟𝑒𝑣 [𝑐𝑢𝑟𝑟𝑒𝑛𝑡] ⊲ Prepare to Backtrack

30: end if
31: current← 𝑠𝑙𝑎𝑠𝑡 ⊲ go-deeper if new node found,

else backtrack

32: end while
33: end if
34: end for

A.1.2 Randomness in sampling. We compare 4 methods for extract-

ing valid DFS solutions from a parent distribution,
˜P. First, argmax

sampling assumes the parent of each node 𝑥 to be the node 𝑢 such

that

𝑢 = max

𝑣∈𝑉 (𝐺)
˜P𝑣,𝑢 , (1)

where
˜P𝑣,𝑢 is the probability of an edge (𝑣,𝑢) according to

˜P.
Argmax sampling is deterministic and can return only one solution.

We include it in our discussion as a good baseline which corre-

sponds to the internal mechanism of the CLRS-30 benchmark [10].

To extract multiple solutions for DFS, we introduce stochasticity

according to Upwards Sampling, which is described in Algorithm 2.

Algorithm 2 Upwards Sampling

1: Input:
˜P

2: Output: A sampled predecessor array 𝜋

3: Initialize 𝜋

4: leaves← 𝑠𝑜𝑟𝑡 (∑𝑣∈𝑉 ˜P𝑢,𝑣 for all 𝑢 ∈ 𝑉) ⊲ Sort vertices by

their probability of being leafs

5: while 𝑙𝑒𝑎𝑣𝑒𝑠 ≠ ∅ do
6: leaf← 𝑙𝑒𝑎𝑣𝑒𝑠 [0] ⊲ Take the vertex most likely to be a leaf

7: 𝜋 [𝑙𝑒𝑎𝑓] ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 (˜P, 𝑙𝑒𝑎𝑓) ⊲ Sample

𝜋 [𝑙𝑒𝑎𝑓] according to ˜P𝑙𝑒𝑎𝑓
8: leaves← 𝑙𝑒𝑎𝑣𝑒𝑠.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑙𝑒𝑎𝑓) ⊲ Prevent leaf from being

considered as a child again

9: for 𝑣 ∈ 𝑉 do
10:

˜P𝑙𝑒𝑎𝑓 ,𝑣 ← 0 ⊲ Prevent leaf from being sampled as a

parent

11: end for
12: leaf← 𝜋 [𝑙𝑒𝑎𝑓] ⊲ Make predecessor the next leaf

13: while 𝜋 [𝑙𝑒𝑎𝑓] is undefined do ⊲ Sample the predecessor’s

predecessor

14: 𝜋 [𝑙𝑒𝑎𝑓] ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 (˜P, 𝑙𝑒𝑎𝑓)
15: leaves← 𝑙𝑒𝑎𝑣𝑒𝑠.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑙𝑒𝑎𝑓)
16: for 𝑣 ∈ 𝑉 do
17:

˜P𝑙𝑒𝑎𝑓 ,𝑣 ← 0

18: end for
19: leaf← 𝜋 [𝑙𝑒𝑎𝑓]
20: end while
21: end while

In Upwards Sampling (Algorithm 2), we first determine how

likely each node is to be a parent node of any other node. We do

so by summing the probabilities of each vertex 𝑢 ∈ 𝑉 to be the

parent of each vertex 𝑣 ∈ 𝑉 and then sorting this list in ascending

order, as done in Line 4. In each iteration of the outer loop (Line

5), we begin by taking the vertex with the lowest probability of

being a parent and sampling its parent according to
˜P𝑙𝑒𝑎𝑓 (Line 7).

After having done so, we remove the leaf from future consideration

as a leaf and as a parent (as a leaf by definition will not be the

parent of another node). Next, we sample the parent of 𝜋 [𝑙𝑒𝑎𝑓]
until we encounter a node that already has a parent (Line 5). This

ensures we do not overwrite previously sampled parents. We have

chosen this sampling method as it works similarly to DFS while

respecting the inherent stochasticity resulting from returning
˜P

rather than one unambigous solution, as has been done in [10] and

[5]. During testing, we encountered the situation that the removal

of leaves from consideration as parents leads to no potential parents

being available for a node due to having been removed. To address

MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada Kujawa et al.

this problem, we give a node a random parent in this case. We

further implement a method without this removal, which we call

AltUpwards Sampling. While less faithful to graph properties, it

addresses the limitations caused by the difficulty of computing the

likelihood of being a leaf for each node while operating closer to

DFS. It can be seen in Section 4.2 that this method outperforms

Algorithm 2.

A.1.3 Checking Validity. We verify whether a given forest 𝐹 is

the result of some depth-first traversal of the graph with ordered

restarts (RDFSO). By RDFSO,wemeanDFSwith randomised tiebreak-

ing and ordered restarts. Randomised tiebreaking means that given

two successors 𝑣1, 𝑣2 of a node 𝑣 ∈ 𝐺 , the algorithm chooses ran-

domly from which node to continue the depth-first traversal. Or-

dered restarts means that when all descendants of a given root have

been visited by the search, the algorithm continues DFS from the

lowest-indexed unvisited node. Since we are not aware of a solution

to this problem in the literature, we define it as the randomised DFS

recognition problem (RDFSR) and present an algorithm to solve it.

Theorem A.1. Algorithm 3 accepts if and only if a forest 𝐹 is the
output of some run of randomised DFS with ordered restarts (RDFSO)
on 𝐺 .

Idea. The algorithm attempts to build a valid DFS traversal of 𝐺 ,

using 𝐹 to inform the traversal order. We derive the traversal order

by comparing the descendants of each node in the graph 𝐺 and

forest 𝐹 . The key fact is that any depth-first traversal from node 𝑣

visits all unvisited nodes reachable from 𝑣 before backtracking to 𝑣 .

As a result, all unvisited nodes reachable from 𝑣 in graph 𝐺

are still reachable from 𝑣 in DFS-forest 𝐹 . We use this to rebuild

a DFS traversal for 𝐹 one vertex at a time, visiting next whichever

vertex has the same unvisited descendants in 𝐺 that it does in 𝐹 .

We present Algorithm 3, which solves DFS verification by re-

building 𝐹 by traversing 𝐺 . Algorithm 3 rebuilds 𝐹 one vertex at a

time, removing each vertex after considering it. Algorithm 3 dis-

covers the next vertex in traversal by calling Algorithm 4.

Algorithm 4, the subroutine called by our main algorithm, finds

the next vertex after 𝑣 in the traversal order by looking for the

adjacent vertex to 𝑣 in 𝐹 that discovers all its descendants in 𝐺 .

If our most recently visited node 𝑚 has two children 𝑣1, 𝑣2 in 𝐹 ,

Algorithm 4 determines whether traversal can continue first to 𝑣1
or 𝑣2 and still produce 𝐹 .

Line 2 checks whether the vertex 𝑣 is indeed a valid next vertex

for the traversal. We write 𝐷𝐺 (𝑣) to mean the descendants of node

𝑣 in graph 𝐺 . Line 2 checks whether 𝐷𝐺 (𝑣) = 𝐷𝐹 (𝑣).
The loop in Lines 7-18 of Algorithm 4 finds the first vertex 𝑣1

adjacent to 𝑣 for which 𝐷𝐺 (𝑣1) = 𝐷𝐹 (𝑣1) and recursively repeats

this procedure to retrace the run of RDFSO until it reaches the

maximum depth in 𝐺 , removing the vertices discovered during the

recursive calls in 𝐺 and 𝐹 , thus rendering them unreachable in 𝐺

from other vertices. It then continues the loop in Lines 7-18 with

the remaining descendants of 𝑣 .

Say there is a vertex 𝑣2 adjacent to 𝑣 in 𝐹 from which the depth-

first traversal has continued after having terminated its traversal

from 𝑣1. After the vertices discovered by 𝑣1 have been removed

from 𝐺 , the sets of vertices reachable from 𝑣2 in 𝐹 and 𝐺 must

now be the same. This is the case because if 𝐷𝐺 (𝑣1) ∩ 𝐷𝐺 (𝑣2) ≠ ∅

before the traversal, then all vertices in 𝐷𝐺 (𝑣1) ∩ 𝐷𝐺 (𝑣2) have
been removed during the call from 𝑣1 (or during an earlier call) and

are now unreachable from 𝑣2 in 𝐺 . Our algorithm now picks 𝑣2 as

the next vertex from which to continue the traversal. Therefore,

if Algorithm 4 has not rejected previously, then the set of vertices

reachable from 𝑣2 in 𝐹 and𝐺 at a given point could have only been

discovered in a traversal from 𝑣2. We thus continue the recursive

traversal from 𝑣2, et cetera.

If the algorithm encounters a situation where none of the re-

maining descendants of a given vertex can reach the same set of

reachable vertices in 𝐹 and 𝐺 , the algorithm rejects. This is equiva-

lent to the idea that there is no vertex the traversal can continue

towards and still result in 𝐹 . Therefore, the algorithm rejects if

there is ever no vertex that discovers all its descendants in𝐺 during

the run of RDFSO and accepts only if such a vertex exists at every

depth of the recursion.

Algorithm 3 RDFSO Verifier

1: Input: 𝐺, 𝐹
2: for each vertex 𝑖 in 𝐺 do
3: if not DVC(𝐺 , 𝐹 , 𝑖) then
4: return False

5: end if
6: end for
7: return True

Algorithm 4 Descendant Validity Check (DVC)

1: Input: 𝐺, 𝐹, vertex 𝑣
2: if 𝐷𝐺 (𝑣) ≠ 𝐷𝐹 (𝑣) then
3: return False

4: end if
5: 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 ← descendants of 𝑣 in 𝐹

6: Delete 𝑣 from 𝐺 and 𝐹

7: for each 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡 in 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 do
8: Compute 𝑝𝑑 [𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡] ⊲ compute the possible

descendants in 𝐺

9: Compute 𝑎𝑑 [𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡] ⊲ compute the actual

descendants in 𝐹

10: if 𝑝𝑑 [𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡] = 𝑎𝑑 [𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡] then ⊲ next vertex

in traversal found

11: if not DVC(𝐺 , 𝐹 , 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡) then
12: return False

13: end if
14: restart line 7, with updated 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 ⊲ vertices may

have been deleted

15: else
16: Check next descendant

17: end if
18: end for
19: return True if 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 is empty. Else return False.

A.2 Bellman-Ford
We expand on the presentation of our method as it relates to the

Bellman-Ford algorithm.

Neural Algorithmic Reasoning with Multiple Correct Solutions MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada

A.2.1 Randomness in training. We adapt the Bellman-Ford algo-

rithm by randomising the tiebreaking between paths of equal length

in the graph. Figure 6 illustrates a situation in which multiple valid

Bellman-Ford predecessor arrays are possible. However, the final

output of the canonical Bellman-Ford algorithm will only be in-

fluenced by such a randomisation procedure if there are multi-

ple minimal-weight paths from the source node 𝑠 to at least one

𝑣 ∈ 𝑉 \{𝑠}. As the CLRS-30 benchmark samples Erdős-Rényi graphs

with real-valued edge weights, the probability of two paths (𝑠, 𝑣)
for any 𝑣 ∈ 𝑉 \{𝑠} having the same cost is vanishingly low. To this

end, we use a smaller set of possible weights such that for each

weight 𝑤𝑖 𝑗 ∈ {1, 2, 3}, which we normalise for training purposes.

As for DFS, we obtain a distribution of parent nodes by re-running

the algorithm 20 times and computing the frequency of each parent

for each node.

A.2.2 Randomness in sampling. For each 𝑣 ∈ 𝑉 (𝐺), BF Beamsearch
considers paths from the source to 𝑣 of length at most 𝑛 by first

sampling candidate predecessors of 𝑣 and then recursively sampling

predecessors of predecessors until the path has length 𝑛. At each

stage, only the 3 lowest-cost paths are kept and used for the next

sampling. As soon as the maximum recursion depth is reached,

the predecessor that is at the end of the lowest-cost path from

the source is chosen as 𝜋 [𝑣]. This mimics the operation of the

deterministic Bellman-Ford algorithmwhile respecting randomness

and is thus a suitable, albeit involved, way of sampling 𝜋 . To sample

predecessor arrays more easily from P and
˜P, we use a greedy

randomised algorithm. This algorithm samples a set of parents for

each vertex 𝑣 except the source node (which we assume to be its

own parent) according to
˜P𝑣 . In the next step, it checks whether

any of the sampled parents are plausible (i.e., if there exists an

edge (𝑝, 𝑣) ∈ 𝐸 (𝐺) for the parent 𝑝). It resamples if there are no

plausible parents. If any of the sampled parents are plausible, or

if the maximum number of resamplings is reached, it chooses the

plausible parent 𝑝 with the lowest weight𝑤𝑝,𝑣 as the predecessor

𝜋 [𝑣]. Furthermore, we also use the methods of deterministically

choosing the likeliest parent of 𝑣 according to
˜P𝑣 and randomly

uniformly choosing a parent as was done with DFS in order to

obtain some baseline results.

A.2.3 Checking Validity. In contrast to DFS, the task of deciding

whether a predecessor array sampled from a model output distri-

bution
˜P is a valid output of running the Bellman-Ford algorithm

is straightforward. To this end, we implement a simple algorithm

called Check Valid BF Path, which is given in Algorithm 5.

Algorithm 5 simply constructs a graph from the vertices and

edges that are implicitly given in 𝜋 and checks whether all edges

correspond to edges in the graph 𝐺 and whether the costs of the

paths in 𝜋 are the same of the costs when using the deterministic

Bellman-Ford algorithm on (𝐺, 𝑠).

B Using different numbers of algorithm re-runs
When creating our training data by generating distributions over

parents for DFS and Bellman-Ford, we need to consider how often

we run the randomised versions of the deterministic algorithms on

a graph in order to obtain a good distribution over solutions. To

this end, we consider the graph sizes 𝑛 ∈ {5, . . . , 64} and generate

Algorithm 5 Check Valid BF Path

1: Input: Adjacency Matrix 𝐴, source vertex 𝑠 , sampled predeces-

sor array 𝜋

2: Output: Decide whether 𝜋 is a correct Bellman-Ford solution

3: 𝐺 ′ ← 𝑏𝑢𝑖𝑙𝑑𝐺𝑟𝑎𝑝ℎ(𝜋) ⊲ Construct a graph given by the paths

in 𝜋

4: if 𝐸 (𝐺 ′) ⊈ 𝐸 (𝐺) then ⊲ Check whether 𝐺 ′ contains any
nonexistent edges

5: Return False

6: else
7: 𝑡𝑟𝑢𝑒_𝑐𝑜𝑠𝑡𝑠 ← 𝐵𝑒𝑙𝑙𝑚𝑎𝑛𝐹𝑜𝑟𝑑 (𝐴, 𝑠) ⊲ Compute the costs

using the Bellman-Ford algorithm

8: 𝑚𝑜𝑑𝑒𝑙_𝑐𝑜𝑠𝑡𝑠 = 𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡𝑠 (𝜋)⊲ Compute costs of paths in 𝜋

9: Return𝑚𝑜𝑑𝑒𝑙_𝑐𝑜𝑠𝑡𝑠 == 𝑡𝑟𝑢𝑒_𝑐𝑜𝑠𝑡𝑠

10: end if

100 graphs for each size and run an algorithm (DFS or BF) 20, 50,

and 100 times for each graph. For each graph, we then consider the

KL-Divergence between each pair of distributions generated by a

different number of algorithm re-runs (we compare the distribution

generated from 20 runs to the distribution generated from 50 runs

and to the one generated from 100 runs, et cetera). We plot the

mean KL-Divergence along with its standard deviation for each

pairwise comparison between re-run numbers for all considered

sizes. In Figure 10, we see that while there are differences between

the distributions generated from a varying number of algorithm

re-runs, the distribution differences do not change markedly when

going from 20 to 100 versus from 50 to 100 re-runs. Therefore, by

increasing the number of re-runs, it appears that we do not gain

enough information to justify the added computational cost of an

increased re-run number. Therefore, we settle on 20 as a reasonable

value for the number of algorithm re-runs.

MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada Kujawa et al.

(a) Bellman-Ford

(b) Depth-first search

Figure 10: Pairwise mean distribution differences for DFS
and BF for 20, 50, and 100 reruns for graphs of sizes 5 through
64.

C Validating the model output distributions
Going beyond our analysis of the validity of solutions obtained from

the method presented in this paper, we investigate the coverage

of the space of all solutions (i.e. the space of possible solutions we

can obtain from executing an algorithm on a given graph 𝐺) of

our methods. Using DFS as an example, we compare the average

number of solutions when using DFS on graphs of a given size

to the average number of unique and valid solutions when using

our sampling method on the outputs of our model on the test data

generated from those same graphs. This affords insight into the

proportion of the space of possible solutions our method is capable

of covering, which is particularly relevant to applications of Neural

Algorithmic Reasoning in which using many different solutions is

important, such as in cyberphysical systems.

(a) 5-vertex Graphs.

(b) 64-vertex Graphs.

Figure 11: The number of valid unique solutions found by
our sampling methods on model output distributions and
Bellman-Ford on the original graphs for 10 graphs and 25
samples.

C.1 Validating model output distributions for
Bellman-Ford

Figure 11a shows that our sampling methods simply find the one

valid solutions that exists for graphs of size 5 in all cases, which

validates both our model and the sampling methods. In Figure

11b, we can see that even for out-of-distribution graphs, the model

output distributions are good enough for our sampling methods to

return a high diversity of valid solutions, even within the margin

of error of straightforwardly applying BF to the input graph. This

coverage of the solution space is very encouraging for further

research into NAR with multiple solutions, as it shows the potential

advantage of using NAR to find all possible solutions, which is

relevant to many applications, as discussed in the body of the paper.

Figures 12 and 13 show that for both considered graph sizes, the

proportions of edges in common among sampled solutions is similar

across sampling methods (referred to further as mean edge reuse),

Neural Algorithmic Reasoning with Multiple Correct Solutions MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada

(a) 5-vertex Graphs.

(b) 64-vertex Graphs.

Figure 12: Mean edge reuse for Bellman-Ford sampling.

which is unsurprising given the nature of single-source shortest

paths, where only a certain subset of edges is relevant to finding

the shortest paths.

(a) 5-vertex Graphs.

(b) 64-vertex Graphs.

Figure 13: Evolution of the mean edge reuse for different
Bellman-Ford sampling methods.

C.2 Validating model output distributions for
DFS

Figure 14 shows the marked advantage ofAltUpwards over Upwards,
as AltUpwards finds as many solutions as DFS on small graphs,

where Upwards struggles to return any diversity of solutions. How-

ever, we see in Figure 15 that our methods do not generalise to

larger graph sizes, possibly indicating that the chosen encoding of

the multiple solutions as probability distributions over predecessors

is not suitable for problems with a very diverse set of solutions for

a given graph.

D Training Details
D.1 Model architecture and parameters
To give a good baseline, we use the default CLRS Benchmark NAR

neural network [10]. Our processor network is an MPNN [4] with

a two standard NAR adjustments: namely, gating and triplet rea-

soning [5]. Our encoder is standard: a linear layer initialised with

MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada Kujawa et al.

Figure 14: The number of valid unique solutions found by
our sampling methods on model output distributions and
DFS on the original graphs for 10 graphs and 25 samples.

Figure 15: The number of valid unique solutions found by
our sampling methods on model output distributions and
DFS on the original graphs for 10 graphs and 25 samples.

xavier on scalars. Our decoder is 4 linear layers — three with hidden

dimension (128) and a final layer with dimension one. The network

is recurrent.

D.2 Time characteristics
We run our experiments using a publicly available compute provider

that uses NVIDIA P100 GPUs. Including evaluation of our model

every 50 steps, training the NARs for 10,000 steps is very time-

inexpensive. We summarize the training times in Table 5.

E The Graph Accuracy Metric
With multiple solutions, node level accuracy is poorly defined.

Ordinarily in a single-solution framework, a node is counted as

accurately predicted if its prediction matches the true solution: If

Parameter Value

Processor triplet_gmpnn

Encoder xavier_on_scalars

Decoder 4 linear layers

#Parameters 391225

#Hidden Units 128

Learning Rate 0.001

Batch Size 1

Training Graph Sizes 4, 7, 11, 13, 16

Training Set Size 1000

Testing Graph Sizes 5, 64

Testing Set Size 10

Table 4: Training parameters

𝑛 = 5 𝑛 = 64

BF 240sec. 248sec.

DFS 531sec. 550sec.

Table 5: Training times for the conducted experiments in
seconds

the true solution is [0, 1] and the reasoner predicts [1, 1], its scores
50% on node accuracy. Put another way, node accuracy scores the

fraction of a candidate solution that matches the label solution. In a

multiple solution framework, that metric becomes untenable. First,

when there are multiple true solutions, producing all the solutions

to give partial credit is computationally expensive. Second and

more importantly, if [0, 1] and [1, 0] are both true solutions, node

accuracy scores [1, 1] at 100% even if it is incorrect. As a result,

we use “graph” accuracy, as defined in [7]. If the model predicts

[1, 1], and it is not a correct solution, the solution is scored with

0% graph accuracy, regardless of whether [0, 1] or [1, 0] are true
solutions. Formally, graph accuracy for multiple solutions scores a

solution 𝑆 as correct for a graph 𝐺 and algorithm 𝐴 if and only if

𝑆 ← 𝐴(𝐺) for some run of 𝐴. To give a sense of relative strictness,

we provide node level and graph level accuracies for the CLRS

benchmark trained for 10,000 steps in Table 6. Interpreting node

accuracy as the probability that a NNs prediction is correct for

any node, we would expect 𝑔𝑟𝑎𝑝ℎ𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑛𝑜𝑑𝑒𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)𝑛 . We

can see that the discrepancy between graph accuracy and node

accuracy increases with graph size.

F Permuting Inputs
Permuting inputs to produce multiple solutions is a fundamentally

different approach than predicting solution distributions. A graph

has 𝑛! ways of isomorphically labeling the nodes. One might hope

that feeding a NAR the same graph with two different node la-

bellings would produce distinct solutions. The results are largely

negative. Regardless of what one permutes, NARs rarely predict

Neural Algorithmic Reasoning with Multiple Correct Solutions MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada

Table 6: Node and Graph Accuracy for Bellman-Ford and DFS
with regular CLRS training. Network trained for 10,000 steps.
Predictions on 64 graphs of each size. Rounded averages over
5 runs.

Bellman Ford

Node Graph

(n=4) 1.00 ± 0.00 1.00 ± 0.14
(n=16) 0.99 ± 0.00 0.91 ± 0.05
(n=64) 0.98 ± 0.00 0.21 ± 0.08

DFS

Node Graph

(n=4) 1.00 ± 0.00 1.00 ± 0.00
(n=16) 0.91 ± 0.02 0.41 ± 0.11
(n=64) 0.39 ± 0.01 0.00 ± 0.00

more than one solution, and when they do, the additional solution

is usually incorrect.

F.1 Permuting All Inputs
The following experiments generate a permutation 𝜎 , and permute

each item consistently. So, 𝜎 (𝐴𝑖 𝑗) = 𝐴𝜎 (𝑖),𝜎 (𝑗) for all 𝑖, 𝑗 .

F.1.1 Bellman Ford. For Bellman Ford, CLRS NARs predict on

• A, a weighted adjacency matrix

• s, a one-hot vector encoding the start node

• adj, a copy of 𝐴 without self loops and with all edge weights

set to 1.0

• pos, a vector of floats (useful for other algorithms, fairly

irrelevant here)

We report several metrics of BF validity (Table 7). The variables

‘ogA, ogS, ogP’ stand for the original adjacency matrix, the original

start node, and the NN’s prediction on the original graph. We obtain

‘ogP’ by applying the inverse permutation to P, the NN’s actual

prediction. The variables ‘A, S’ represent the permuted adjacency

matrix and the permuted start node, which are fed to the NN to pro-

duce prediction ‘P’. Put succinctly, we have 𝑃 ← 𝑁𝑁 (𝐴, 𝑆, 𝑎𝑑 𝑗, 𝑝𝑜𝑠).
Table 7 shows that Bellman Ford Prediction validity is the same on

permuted and original graphs, as one might expect since shortest

paths are invariant to node relabeling.

We also report several metrics of diversity. Diversity in this con-

text refers to whether different solutions involve different node

labels in each position: two isomorphic solutions may be counted

as different. Second, “Distinctness” tests whether solutions are non-

isomorphic, by comparing “ogP”. Third, “VD” measures the fraction

of valid solutions that are distinct. In Table 7, we see that the net-

work only ever predicts one valid solution on 5 permutations of the

same input data.

F.1.2 DFS. We report several metrics of DFS validity (Table 8). As

with Bellman Ford, variables “ogA, ogS, ogP” stand for the original

adjacency matrix, the original start node, and the NN’s prediction

on the original graph. The variable “A” represents the permuted

Table 7: Bellman Ford mean accuracies and proportions of
distinct solutions (0 to 1) when permuting all inputs; 5 per-
mutations, with standard deviations over 5 runs.

Validity

valid(ogA, ogS, ogP) valid(A,S,P) valid(ogA,S,P)

(n=4) 1.00 ± 0.00 1.00 ± 0.00 0.32 ± 0.06
(n=16) 0.91 ± 0.05 0.91 ± 0.05 0.00 ± 0.00
(n=64) 0.21 ± 0.08 0.21 ± 0.08 0.00 ± 000

Variety

Diversity Distinctness VD

(n=4) 0.61 ± 0.09 0.20 ± 0.00 0.21 ± 0.03
(n=16) 0.99 ± 0.01 0.20 ± 0.00 0.20 ± 0.00
(n=64) 1.00 ± 0.00 0.20 ± 0.00 0.00 ± 0.00

Table 8: DFS mean accuracies and proportions of distinct
solutions (0 to 1) when permuting all inputs; 5 permutations,
with standard deviations over 5 runs.

Validity

H(ogA, ogP) H(A,P) H(ogA,P) J(ogA,P)

(n=4) 1.00 ± 0.00 0.19 ± 0.14 0.08 ± 0.04 0.28 ± 0.05
(n=16) 0.48 ± 0.12 0.05 ± 0.05 0.01 ± 0.01 0.05 ± 0.04
(n=64) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Variety

Variety Distinctness VD

(n=4) 0.93 ± 0.05 0.20 ± 0.00 0.38 ± 0.23
(n=16) 1.00 ± 0.01 0.20 ± 0.00 0.27 ± 0.11
(n=64) 1.00 ± 0.00 0.20 ± 0.00 0.00 ± 0.00

adjacency matrix fed to the NN to predict “P”. We thus have

𝑃 ← 𝑁𝑁 (𝐴, 𝑎𝑑 𝑗, 𝑝𝑜𝑠) .
For DFS, the CLRS benchmark baseline models [10] predict solu-

tions from

• A, a weighted adjacency matrix

• adj, a copy of 𝐴 without self loops and with all edge weights

set to 1.0

• pos, a vector of floats (useful for other algorithms, fairly

irrelevant here)

We have two different algorithms for verification: “H” is algo-

rithm 3, and determines whether P is producible by RDFSO. The

second algorithm “J” is a relaxed version of “H”, determining if P is

producible by RDFS with restarts in any order. Table 8 shows that

RDFSO prediction validity is hurt by permutation, as one might

expect since a correct solution can become incorrect after relabel-

ing (e.g. by starting at any node other than 0). Table 8 distinctness

also shows that the NN predicts the same isomorphic solution each

time, adapting it to the relabeling. Unfortunately, permuting all the

inputs does not yield multiple correct solutions.

MLoG-GenAI Workshop at KDD ’25, August 04, 2025, Toronto, Canada Kujawa et al.

Table 11: Node and Graph Accuracy for Bellman-Ford and
DFS with CLRS training where algorithms tiebreak in 𝑝𝑜𝑠

order. Network trained for ten thousand steps. Predicting on
64 graphs of each size. Standard deviations over 5 runs

Bellman-Ford

Node Graph

(n=4) 1.00 ± 0.00 1.00 ± 0.00
(n=16) 0.99 ± 0.00 0.88 ± 0.03
(n=64) 0.97 ± 0.00 0.14 ± 0.06

Depth-First Search

Node Graph

(n=4) 0.58 ± 0.04 0.06 ± 0.01
(n=16) 0.13 ± 0.01 0.00 ± 0.00
(n=64) 0.03 ± 0.01 0.06 ± 0.00

Table 9: Bellman-Ford mean accuracies and proportions of
distinct solutions (0 to 1) when permuting the 𝑝𝑜𝑠 input; 5
permutations, standard deviations over 5 runs.

Validity

valid(ogA, ogS, ogP) valid(A,S,P) valid(ogA,S,P)

(n=4) 1.00 ± 0.00 1.00 ± 0.00 0.33 ± 0.10
(n=16) 0.86 ± 0.03 0.86 ± 0.03 0.00 ± 0.00
(n=64) 0.19 ± 0.03 0.19 ± 0.03 0.00 ± 000

Variety

Distinctness VD

(n=4) 0.20 ± 0.09 0.20 ± 0.00
(n=16) 0.24 ± 0.01 0.20 ± 0.00
(n=64) 0.75 ± 0.04 0.20 ± 0.00

Table 10: DFS mean accuracies and proportions of distinct
solutions (0 to 1) when permuting the 𝑝𝑜𝑠 input; 5 permuta-
tions, standard deviations over 5 runs.

Validity

H(ogA, ogP) H(A,P) H(ogA,P) J(ogA,P)

(n=4) 0.06 ± 0.01 0.09 ± 0.04 0.01 ± 0.01 0.04 ± 0.01
(n=16) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
(n=64) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Variety

Distinctness VD

(n=4) 0.45 ± 0.05 0.28 ± 0.14
(n=16) 1.00 ± 0.00 0.00 ± 0.00
(n=64) 1.00 ± 0.00 0.00 ± 0.00

F.2 Only Permuting the Pos Array
Both Bellman-Ford and DFS networks take an input 𝑝𝑜𝑠 . One can

think of 𝑝𝑜𝑠 as a proxy for node indices (the floats are randomly-

spaced but always in ascending order: 𝑝𝑜𝑠 [0] < 𝑝𝑜𝑠 [1] < ...𝑝𝑜𝑠 [𝑛].
One might therefore wonder if training a network to tiebreak ac-

cording to 𝑝𝑜𝑠 might produce better results. However, when we

train and predict only permuting 𝑝𝑜𝑠 , the models still do not pro-

duce multiple correct solutions. For the Bellman-Ford algorithm,

the network predicts only one solution (Table 9). For DFS, accu-

racy is too low to see one correct solution for n=16 graphs, let

alone multiple for n=64 (Table 10). A possible reason for this fail-

ure is that situations where tiebreaking is necessary are rare, so

tiebreaking according to 𝑝𝑜𝑠 may be more difficult to learn than

tiebreaking according to index. This hypothesis is supported by the

lower accuracies in Table 11 than Table 6, despite the same training

for the same model architectures: the only difference is Table 11

labels tiebreak according to a permuted 𝑝𝑜𝑠 , whereas Table 6 labels

tiebreak according to node index.

Received 10 May 2025; revised 14 July 2025; accepted 26 June 2025

	Abstract
	1 Introduction
	1.1 Contributions

	2 Methodology
	2.1 DFS
	2.2 Bellman-Ford
	2.3 Permuting Inputs

	3 Experiments
	4 Results
	4.1 Results for Bellman-Ford
	4.2 Results for Depth-First Search
	4.3 Results for Permuting Inputs

	5 Conclusion
	References
	A Methodology
	A.1 DFS
	A.2 Bellman-Ford

	B Using different numbers of algorithm re-runs
	C Validating the model output distributions
	C.1 Validating model output distributions for Bellman-Ford
	C.2 Validating model output distributions for DFS

	D Training Details
	D.1 Model architecture and parameters
	D.2 Time characteristics

	E The Graph Accuracy Metric
	F Permuting Inputs
	F.1 Permuting All Inputs
	F.2 Only Permuting the Pos Array

