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ABSTRACT

Federated Learning with Model Heterogeneity has emerged as an important do-
main, especially with the increasing number of devices that possess diverse re-
sources. However, many clients with valuable data are unable to contribute to
training the global model due to the limitations of their resource-constrained de-
vices. One method to overcome this challenge is to extract sub-models from the
global model specifically for these resource-limited clients. Unfortunately, ex-
isting methods for sub-model extraction rely on predetermined rules, which fail
to consider the relationship between the update gradients of the global and client
models. In this paper, we propose a novel method called FedGSE, which se-
lects neurons within each layer that exhibit large gradients generated by training
the global model on public dataset on the server side, and the selected neurons are
used to form sub-models for training on the client side using local dataset. This en-
sure the gradient updates produced by the sub-model closely resemble the gradient
updates that would be produced when training the client data on the global model.
As a result, the performance of the sub-model becomes more aligned with that
of the global model. Experimental results demonstrate that our method achieves
state-of-the-art performance on multiple datasets when compared to other baseline
methods.

1 INTRODUCTION

Huge data are generated by edge devices such as IoT and sensors(Lim et al., 2020), which can be
utilized for training machine learning models. some of this data contains private information and
users do not hope to send them to central cloud. To protect data privacy, this data need to be trained
locally. Federated Learning (FL)(McMahan et al., 2017; Karimireddy et al., 2020) is a distributed
machine learning paradigm, which enables clients collaboratively train global model locally without
leaking data information. In recent years, the emergence of Larger Models(Chang et al., 2023) has
demonstrated their powerful utility. Machine learning models tend to become larger. As machine
learning models become increasingly larger, many edge devices are unable to handle the resource
requirements, such as memory and computing capacity, needed to train the entire model(Cai et al.,
2020; Lee et al., 2019; Gobieski et al., 2019).

To address these challenges, the concept of extracting a sub-model from the entire model is proposed
to address aforementioned issues. Neuron pruning is an efficient method to extract sub-model, which
selects neurons layer by layer from entire model base on the edge device capacity. Various methods
have been proposed to design strategies for selecting neurons.

The neuron pruning can be divided static distribution and dynamic distribution. The static utilize
predetermined rules such as HeteroFL(Diao et al., 2020), which allocate fixed pruning neurons to
edge device according to their capacity. However, this method cannot be applied when the size of
the global model exceeds the capacity of any individual client’s model. The dynamic method ad-
dresses this shortcoming by selecting neurons in a continuously changing manner. One approach is
Federated Dropout(Caldas et al., 2018), which randomly drops out neurons. But, this method leads
to uneven training of neurons. Then FedRolex(Alam et al., 2022) were proposed to overcome this
problem, which selects neurons in a rolling way for each client, ensuring every neurons are trained
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Figure 1: (a) The scatter plot and regression curve of parameter difference. (b) The cumulative
errors of parameter difference from different communication rounds using different methods. (c)
The accuracy of different methods. Data generated under EMNIST.

evenly. These methods primarily focus on designing allocation strategies to ensure training work.
However, no one has designed a strategy that starts from the optimization direction of approaching
the effectiveness of the global model when extracting sub-model. For this purpose, we conduct the
following experiments. In Figure1 we can observe that the parameters of difference between the
global model(Simulating training local datasets of clients using the global model from the current
communication round to obtain parameters) and sub-model has a significant impact on the model
accuracy (as show in Figure1(c)). The smaller the difference, the better the sub-model approxi-
mates the effectiveness of the global model. Specifically, in Figure1(b) we can get the Accumulated
Differences (Ad) {AdFederated Dropout > AdFedRolex > AdHeteroFL > AdFedGSE} in commu-
nication round {20, 40, 60, 80, 100}. And in Figure1(c), we can obtain the corresponding accuracy
rates that are generally {AccFederated Dropout < AccFedRolex < AccHeteroFL < AccFedGSE}
every above communication round.

Based on this finding, our paper propose gradient-based strategy to select the neurons. As show in
Figure2, the first step is to obtain a sub-public dataset that is similar to the client, then global model
computes the gradients of every layer’s neurons using sub-public dataset. Next, our method selects
some neurons within each layer that have relatively large gradient values to form a sub-model, which
is then given to client for training. This ensures the gradient updates of this sub-model are closest
to the gradient updates of the global model. The core idea of FedGSE is extract neurons from
the entire model based on their gradients, where neurons with relatively large values are selected
layer by layer. Figure1(b) demonstrates that this method effectively reduces the parameters gap
between the global and sub-model, resulting in the highest accuracy, as shown in Figure1(c). Our
contributions can be summarized as:

• Our method is the first to propose improving Federated Learning training by approximating the
update gradients between the global model and sub-models.

• We have mathematically proven that the algorithm we designed in this way can make the update
gradients between the global model and sub-models closest.

• To validate the efficiency of the proposed method, we compare state-of-the-art methods. Evalua-
tion results show that FedGSE outperforms other comparison methods.

2 RELATED WORKS

Many pruning strategies have been proposed to optimize sub-mode extraction progression. These
methods train the global model by updating the weights of the extracted sub-model base the predeter-
mined rules. The predetermined rule method can be categorized into two main types in accordance
with whether the pruning is dynamic. We named static methods and dynamic methods. In principle,
the latter resolved the shortcomings of the former.

Static Allocation Strategy. This allocation strategy is based on predetermined rules. The clients
can get different fixed pruning neurons sub-model from entire model according to the capacity of
clients. They have developed different templates for each resource-constrained client, which are
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Figure 2: Overview of FedGSE framework. ① The server randomly selects communication client
such as client i and picks out DP

i , which is a sub-dataset comes from DP and have a similar distri-
bution with Di, i.e. PDP

i
≈ PDi

. Server utilizes the most recently stored model M
′

i to predict DP
i .

Sub-dataset can also be picked out by Client Send Local Labels to Server(CSL). ② servers employs
global model Mglobal to select neurons, these are then used to generated Mi for client i under the
Dp

i . This process involves backward propagation and the selection of topk gradients layer by layer;
③ the clients train their models using their respective local datasets and send updates to the server.
The server, in turn, updates the historic models M

′

i and the global model Mglobal.

allocated based on specified rules, such as by order of neuron in layer. As a result, some neurons
which unique to high-resource clients, may be trained significantly less frequently, which inevitably
leads to a poorer performance of the model. For example, Fjord (Horvath et al., 2021) and Hetero
employ a similar approach. The template of these two strategies is a neuron-order, which means
that the neurons of each layer are allocated according to the capacity size from beginning to end.
Clearly, the tail-end neurons only be trained in high-resource clients. Therefore, the uneven training
of model neurons leads to a decrease in performance.

Dynamic Allocation Strategy. The dynamic allocation strategy differs from the static strategy in
that it allocates neurons based on the current communication round rather than predetermined rules.
But there have a unique method Federated Dropout, which prunes neurons randomly every commu-
nication round without considering the current situation. As mentioned earlier, the issue of uneven
training of model neurons was observed with the Fjord and Hetero methods. The method FedRolex
solve this problem using a rolling way for each neurons can be trained equally. It selectively chooses
neurons for each layer in a rolling manner based on the number of communication rounds.

3 PRELIMINARIES

Mathematical Representation. We design the deep neural network have L layers, and each layer
have I neurons. The weight parameters of the whole model are denoted by w and we denote the wl

as the weights of i-th, where wl = [wl,0, · · · ,wl,I−1]. And wl,i = [wl,i, bl,i], wl,i and bl,i respec-
tively represent weight and bias for i-th neuron of the l-th layer. Then its activate value output can be
computed as hl,i = σ(wl,ihl−1+ bl,i), where σ(·) is the nonlinear activation functions (e.g., ReLU)
and the hl−1 are the all activation output of the upper layer, i.e., hl−1 = [hl−1,0, ..., hl−1,I−1]. It
follows naturally, we user the w to represent all weights of the network (e.g., w = [w0, . . . ,wL−1]).

Problem formulation. We assume N clients devices and each client have private non-IID(non-
identically and independently distributed) local data D = {D0,D1, . . . ,DN−1}. The local dataset
Dn = {xn,yn}, where xn and yn represent the data and label of the local dataset. We use xi

n to
denote i-th input data sample and yin ∈ C{0, 1, . . . , C} to denote the corresponding label of xi

n.
Then Dn = |xn|, i.e., Dn is the number of n-th client loacl dataset, and D =

∑N−1
n=0 |xn|. Finding
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w to minimize the total empirical loss of the global model over the entire dataset D is our final goal:

min
w

F (w) :=

N−1∑
n=0

Dn

D
Fn(w), where Fn(w) =

1

Dn
f(w;xn,yn)

where f(·) is the cross-entropy loss function that computes the difference between the predicted
labels of xn and ground-truth label yn, which is used to evaluate the fitting performance of the
parameters w. It is obvious Fn(w) denotes the average local loss function of n-th client.

4 FEDGSE ALGORITHM DESIGN

4.1 THE GRADIENT OF NEURON

In chapter3, we set hl,i to represent the i-th neuron of l-th layer. Specifically, hl,i is a feature map
with two dimensions. The gradient of hl,i can be represented:

gl,i =
K−1∑
k=0

V−1∑
v=0

∣∣∣∂f(w;x,y)

∂hl,i(k, v)

∣∣∣
where f(w;x,y) means the cross-entropy loss of deep neural network for the input (x,y). And the
dimension length of feature map is K and V , i.e., hl,i ∈ RK×V .

4.2 OBTAINING SIMILAR DATASET FROM PUBLIC DATASET

We construct public dataset(Zhu et al., 2021; Lin et al., 2020) in server side (See AppendixC for
details). Public dataset encompasses all C classes. However, using the entire public dataset as
similar data to calculate gradients has two drawbacks. Firstly, computing gradients for the entire
public dataset is time-consuming. Secondly, there may not be a strong correlation between the
public dataset and the non-iid data distribution of the client Based on the aforementioned reasons,
we select the portion of data from the public dataset that exhibits the highest correlation with the
client’s data distribution as the similar data. We use DP to represent public dataset, and DP

i to
represent the sub-dataset of the public dataset, which have the similar data distribution of client i
local dataset Di, then we obtain the formula:

PDP
i
≈ PDi

(1)

We use two solutions to solve this problem.

Client Send Local Labels to Server(CSL). When server need to train a specific client, it sends a
request to that client. The client then returns the most significant labels from its local dataset to
server (Here we define s as the number of significant labels). Finally, server select data that haves
the same labels with client from public dataset as the similar data. Obviously, this method has
disadvantages. Firstly, frequent communication leads to decreased efficiency. Secondly, there is a
risk of privacy leakage when the client uploads the labels.

Server Predicts Labels through historical Models(SPL). This method is entirely executed on the
server-side without requiring client participation. The server stores the latest trained sub-models
from the clients. When the server needs to obtain client backward data, it loads the corresponding
client sub-model. Then, it calculates the accuracy of each category of data in the public dataset
using the client model. We consider the labels with top S accuracy as the client local dataset labels
to generate similar data. This method solve the disadvantages of method CSL.

4.3 PROGRESS OF SELECTING NEURONS

In server side, we utilize global model to get the neuron gradients g using the similar data (specifics
in 4.2) from public dataset. How to get sub-model neurons from global model is the core of our
method. Overall, the progress of our selecting is layer by layer like Figure2. In each layer, the
gradient of neuron by the loss is the rule to select. The larger the gradient value of neuron we
selected, the closer updating parameters are to global model. Furthermore, large gradient means
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Algorithm 1 FedGSE
Input: global model w, learning rate η, total communication rounds T , all clients capacity β =
{r0, · · · , rN−1}, public dataset Dp = {xp,yp}

Output: Trained global model wT

1: Initialize the model parameters w0

2: procedure SERVER-SIDE OPTIMIZATION
3: for each communication round t ∈ {0, 1, · · · , T − 1} do
4: Randomly select a subset of clients Nt

5: for each selected client n in parallel do
6: Dp

n ← GetSimilarDataCSL (Dp,wn) or Dp
n ← GetSimilarDataSPL (Dp) ▷

In here Dp
n = { xp

n,y
p
n } . If Clients can Send local dataset Labels to server using function

GetSimilarDataCSL3, else if Server Predicts Labels using GetSimilarDataSPL2
7: Mn,t ← GetMask4(rn, Dp

n, wt)
8: wn

t ← wt ⊙Mn,t

9: wn
t+1 ← ClientLocalUpdata(n, wn

t )
10: end for
11: updata the global model wt+1 =

∑
n∈Nt

Pn
t ⊙wn

t+1
12: end for
13: end procedure
14: procedure CLIENTLOCALUPDATE(n, wn

t )
15: Receive wn

t from the server
16: for each local iterations e from 1 to E do
17: Updata sub-model parameters on private data wn

t,e+1 = wn
t,e − η∇wn

t,e
fn(w

n
t,e)

18: end for
19: return wn

t,E+1
20: end procedure

that changing these neurons have a greater impact on the loss compared to other neurons(Selvaraju
et al., 2017). We set client model capacity ratio r(0 < r ≤ 1), which means the maximum ratio of
clients that can train a global model. More precisely, given a layer l and a client n, we only retain the
top ratio r of neurons (i.e., maxr·Ii=1gl,0, gl,1, . . . , gl,I−1) with the highest gradient values gl,i, while
pruning the other neurons (show in Figure2). This operation results in a sub-model wn, which is
obtained by element-wise multiplying the original weights w with a mask Mn, where Mn (generate
by the algorithm4) is the binary mask corresponding to the different neurons. If the l-th layer i-th
neuron is pruned, Mn

l,i = 0, and Mn
l,i = 1 otherwise. For single neuron, wn

l,i = wl,i ⊙Mn
l,i. For

sub-model, wn = w ⊙M.

4.4 TRAIN AND AGGREGATE

Clients receives the parameters of sub-models from server. Then use whole local dataset to train
model locally. The client updates the sub-model wn = wn − η∇wnfn(w

n), where wn is the
parameters of sub-model, η is the learning rate and fn(·) is the loss. Finally, the clients send their
updated parameters of sub-model back to server. Server aggregates these parameters to update the
global model: w =

∑
n∈N Pn

t ⊙ wn, where N is a subset of clients which participate training

sub-model, and pn
l,i =

Dn∑
i∈N Di

. i.e. The aggregation coefficient of client n, which represents the

proportion of the number of client n data in clients N .

5 THEORETICAL ANALYSIS

Lemma 1 The gradients of the parameters are proportional to the gradients of their corresponding
activation values. k is a proportionality coefficient.

∂f

∂wl,i
= k · gl,i, (2)
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The proofs are deferred to Appendix B. Lemma 1 indicates that there is a linear relationship between
∂f

∂wl,i
and gl,i. This means that choosing a relatively large gl,i is equivalent to choose a relatively

large ∂f
∂wl,i

.

Theorem 1 According to Algorithm4, we can get the sub-model parameters wn
∗ . Base Lemma 1,

we can manifestly acquire that under Dp
n, the gradient of wn

∗ is closest to the global parameters w.
Because equation1, we get:

∥∇f(w;Dn)−∇f(wn;Dn)∥ ≥ ∥∇f(w;Dn)−∇f(wn
∗ ;Dn)∥, (3)

where wn is the parameters of sub-model, and Dn is the client n’s local dataset.

The specific proof is placed in the AppendixB. Theorem 1 proves that using the sub-model selected
by our algorithm 1 to update model on local dataset is closest to directly update model using origin
global model to train the local dataset.

6 EXPERIMENTS

Datasets and Model. In this study, we assess the effectiveness of the proposed FedGSE by conduct-
ing experiments on two different models and three widely-used datasets. The two distinct models
is CNN to train EMNIST (LeCun, 1998) and pre-activated ResNet18 Shafiq & Gu (2022) to train
CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009). We use the Static Batch Normalization method
instead of Batch Normalization Diao et al. (2020); Andreux et al. (2020) and introduce a Scalar mod-
ule after each convolution layer. Specially, the CNN model is simply composed by four convolution
layers, which channels are {64, 128, 256, 512} respectively.

Client Local Data Distribution. We adopted the approach proposed by HeteroFL to represent non-
IID data distributions Li et al. (2020); Diao et al. (2020)in all datasets, which limited each client to s
labels. According to the value of s, we define High Data Heterogeneity and Low Data Heterogeneity.
The smaller the value of s, the greater the data heterogeneity. The special definitions show in Table
1. In the following experiments, we will also compare the impact of different other s values on the
overall global accuracy.

Table 1: Corresponding table of s and data heterogeneity.
Dataset EMNIST CIFAR-10 CIFAR-100

High Data Heterogeneity 2 2 8
Low Data Heterogeneity 4 4 16

Model heterogeneity. Without loss of generality, we set five different client capacities βn ∈
{1, 1/2, 1/4, 1/8, 1/16}, which means clients can obtain how much of the global model. To pro-
duce client models, we experiment by adjusting the number of kernels in the convolution layers
while maintaining a consistent number of nodes in the output layers.

Baselines. We compare three predetermined rule methods, HeteroFL, Federated Dropout and Fe-
dRolex. To ensure a fair comparison, we adopt identical parameters for all experiments, including
the learning rate, local epochs, and number of communication rounds. Especially, the number of
similar data in FedGSE is far less than the number of client local dataset. In order to focus on
the method itself, we used a constant learning rate and did not use the existing multi-step learning
rate decay schedule. Additional information regarding each method and dataset can be found in
AppendixE.

Configurations and platform. To augment the images in EMNIST, CIFAR-10, and CIFAR-100,
we apply bounding box crop Lambeta et al. (2021). During each communication round, 10% of
the 100 clients are randomly chosen for training, with a fraction (frc) of 10%. At the start of each
communication round, the selected clients’ capabilities are dynamically selected from a uniform
distribution. The experiments were conducted using the PyTorch framework(Paszke et al., 2019),
and the specifications of the hyperparameters can be found in the AppendixE. The computations
were performed on machines equipped with Nvidia RTX 4090 and K80 GPUs.
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Evaluation metric. Image classification tasks were evaluated using global accuracy, which is de-
fined as the accuracy of the server model over the entire test set.

6.1 PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS.

Table 2: The comparison of global test accuracy on different datasets. FedGSE public dataset come
from clients local dataset using Clients Upload partial Data in AppendixC. FedGSE (1) represent
CSL in 4.2, FedGSE (2) represent SPL in 4.2. The number of similar data in FedGSE is 128.

Method High Data Heterogeneity(%) Low Data Heterogeneity(%)

EMNIST CIFAR-10 CIFAR-100 EMNIST CIFAR-10 CIFAR-100

HeteroFL 96.11 56.08 25.95 98.65 73.42 32.13
Federated Dropout 88.76 52.57 15.79 97.53 65.28 19.81
FedRolex 93.94 57.28 21.53 98.56 71.68 27.60

FedGSE (1) 98.06 65.89 31.46 98.74 73.51 32.65
FedGSE (2) 97.44 65.82 28.87 98.77 74.66 32.40

The table 2 show the result of our experiments those are executed in the same setting to ensure fair-
ness. And the results demonstrate that our method FedGSE performs better than others, especially
in high data heterogeneity region, which exceeds performance by 1.33%, 8.54% and 2.92% compar-
ing to the best performance of Hetero, Federated Dropout and FedRolex corresponding to EMNIST,
CIFAR10 and CIFAR100. Beside, our method results also outperforms in low data heterogeneity
region, have 0.12%, 1.24% and 0.27% advantage than best of the other three method in EMNIST,
CIFAR10 and CIFAR100. The above phenomena indicate our method have a good advantage in high
data heterogeneity region, which validated our theory that the more heterogeneous the data, the bet-
ter our method could select neurons important for modeling those data. As we can see, the Federated
Drop generally performers relatively worse in most scenarios than others. The dynamic selecting
neurons rule account for such result. For the simple dataset EMNIST, the accuracy’s difference of
our method and other method are small whether the high or low data heterogeneity, that because it is
easy for CNN model to train EMNIST so that all method can get relatively better results. However
in middle dataset CIFAR10, FedGSE demonstrated its superiority in algorithm design, and have
8.54% and 2.98% than FedRolex. As the heterogeneity of data decreased, the advantage narrowed,
but still maintained its leading position. Although on difficult dataset CIFAR-100, the performances
of all methods were not as good as on other datasets, our method still remained ahead of other
methods. Overall, FedGSE consistently outperforms HeteroFL, Federated Dropout and FedRolex
under both low and more challenging high data heterogeneity scenarios, especially under high. The
above analysis is based on FedGSE (2). The comparing of FedGSE (1) and FedGSE (2) will be
introduced in next section.

6.2 THE COMPARISON OF FEDGSE (1) AND FEDGSE (2)

Under high data heterogeneity, FedGSE (2), which server predicts labels through previous models,
could not achieve the level of FedGSE (1), which clients send labels to server. In high data hetero-
geneity, client dataset contains a small number of classes(e.g., s is 2 in EMNIST and CIFAR10, and
5 in CIFAR100), so it is difficult for server to predict client data distribution fully accurately. That
incur above result. But in low data heterogeneity, client dataset contains more number of classes
showed in table1. This provided the a method with robustness tolerance, where a small number of
prediction errors did not impact the overall neuron selection. The evaluation results show FedGSE
(1) and FedGSE (2) achieve the same level.

6.3 IMPACT OF CLIENT MODEL HETEROGENEITY DISTRIBUTION.

In previous experiments, clients capacities are set uniformly. To figure out the influence of the client
model heterogeneity distribution, we choose the capacities β = {1, 1/16} and range the distribution
ratio between the two (defined as ρ), where ρ = 1 means represents the case in which all the clients
have the largest capacity model (β = {1}) and ρ = 0 means the case in which all the clients have
the smallest capacity model (β = {1/16}).
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High and low data heterogeneity comparison under FedGSE. Figure3(a)3(d) show the global
model changes when ρ varies from 0 to 1 in EMNIST and CIFAR10 using our method. We can
observe that (1) as ρ varies from 0 to 0.2, global model accuracy experience a notable leap whether
high or low data heterogeneity in both EMNIST and CIFAR10. That indicate model scale is the
most reason incurring above situation. (2) for simple dataset EMNIST, there is a gap in global
accuracy between high and low data heterogeneity for a wide range of ρ (from 0 to 1). This is
because EMNIST is a simple task and CNN model can get 85% global model accuracy easily.
Hence the global model accuracy is bottlenecked by the level of data heterogeneity instead of model
capacity. This results reveal the challenges of data heterogeneity can not be addressed by increasing
the capacities of model. (3) for CIFAR10, there have a large gap in global accuracy between high
and low data heterogeneity. The global model accuracy is bottlenecked by the highest capacity of
the models and the level of data heterogeneity. This lead to the large gap.
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(c) Emnist-Conv in Low Data Heterogeneity.
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(e) Cifar10-Resnet in High Data Heterogeneity.
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(f) Cifar10-Resnet in Low Data Heterogeneity.

Figure 3: Comparison of client model capacity heterogeneity distribution in EMNIST and CIFAR10
under different methods.

Comparison of different methods. As show in figure3(b)3(e), in the scenario of high data hetero-
geneity, our method achieves overwhelming advantages compared with ρ throughout the process of
changing from 0.2 to 1. This shows that increasing the model’s capabilities does not necessarily
improve global accuracy, and in high scenarios, good algorithm design is truly needed to improve
the model’s accuracy. In difficult scenarios, it far exceeded other models, proving that our algo-
rithm has more advantages in such scenarios. While in the scenario of low data heterogeneity as
showed by figure3(c)3(f), our method achieves relatively good performance in most cases. In this
kind of simple scenario, most methods achieved good results, which shows that in this current sce-
nario, limitations on global accuracy come from the model’s capabilities, and improving the model’s
capabilities can improve the effectiveness. Especially in Figure3(e), in difficult datasets with high
data heterogeneity, increasing the model’s capabilities cannot stably improve the model’s accuracy.
In summary, in stringent scenarios targeting high data heterogeneity, our method would be more
applicable than other methods.
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6.4 IMPACT OF CLIENT DATASET DISTRIBUTION.

To investigate the impact of the degree of data heterogeneity on model accuracy, we do the Table3
experiments. We vary s (the number of containing classes in client local dataset) from 2 to 10.
From the experimental results, we can see that when s varied from 2 to 4, the global model accuracy
undergo a dramatic jump, after which the accuracy remain in a stable stage. The experimental
results indicate that there exists a threshold in terms of the degree of data heterogeneity’s impact on
the model, when this threshold is exceeded, the level of influence decreases. Clearly, the threshold
in EMNIST and CIFAR10 are all s = 2.

Table 3: Impact of client dataset distribution in EMNIST and CIFAR10.

Dataset The containing classes of client dataset

2 4 6 8 10

emnist-conv 97.44 98.77 98.94 98.81 99.01
cifar10-resnet 65.82 74.66 75.04 76.38 74.38

6.5 IMPACT OF THE NUMBER OF COMMUNICATION CLIENTS.

To explore the impact of the number of selecting communication clients per round in train-
ing process, we set frc (means the proportion of communication clients against total clients) in
{0.05, 0.10, 0.15, 0.20}.
Table4 present our result. There have two conclusions. (1) When frc = 0.05, the global model
accuracy perform much lower than frc = {0.10, 0.15, 0.20}. This indicates that when the number
of communication clients is relatively small, it leads to fewer parameters being updated in global
model, thereby decreasing the accuracy. (2) When increasing frc from 0.10, the global model
accuracy remain a relatively same level, sometime, the accuracy decreases. That because when frc
exceed 0.1, there have enough communication clients parameters being updated in global model, so
the accuracy remain in same level. When increasing frc continuously, the competition of parameters
increase, sometimes incur accuracy decreases.

Table 4: Impact of communication clients in EMNIST and CIFAR10.

Dataset Data Heterogeneity The proportion of communication clients per rounds

0.05 0.10 0.15 0.20

emnist-conv High 96.92 97.44 97.66 97.49
Low 98.55 98.77 98.84 98.80

cifar10-resnet High 60.87 65.82 63.36 63.19
Low 69.34 74.66 75.80 76.12

7 CONCLUSION AND DISCUSSIONS

In this paper, we focus on the updates relationship of global and sub-model. Then we design the
algorithm FedGSE which aims to make the sub-model updates approximate to the global. And we
theoretically proved that the parameters updated by our method are closest to the global model. To
validate this idea, we use CNN and Resnet18 to conduct experiments under EMNIST, CIFAR10 and
CIFAR100. Extensive experiments results verify that our method performs optimally in multifarious
extraction neurons sub-model methods. Additionally, we conduct further experiments to compare
the importance of different Hyperparameters such as, model heterogeneity, client data heterogeneity,
similar data scale and number of communication clients on our method.

Nevertheless, there are still some limitations that need further improvement in the future. For in-
stance, our method requires the construction of a public dataset on the server side, which may
be challenging for domains with limited data availability. Furthermore, executing the backward
progress on the server side necessitates matching capabilities, which raises the application thresh-
old. In future work, we will make efforts to address and optimize these issues.
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A GET BACKWAD DATA ALGORITHM

Algorithm 2 GetSimilarDataSPL

Input: public dataset Dp = {xp,yp}, client model wn

Output: client n backward data Dp
n

1: procedure GETSIMILARDATASPL(Dp,wn)
2: if wn not Initialization then
3: Randomly select s classes to compose subset L from C
4: else
5: for each class c ∈ C = {0, 1, · · · , C} do
6: ŷc = fn(w

n;xp,{c})

7: A ← A∪ {|ŷc = yp,{c}|
|yp,{c}|

} ▷ The accuracy of class C on public dataset.

8: get the label indexes L according to
s

maxA ▷ set L contains the top s element’s
index of A

9: end for
10: end if
11: return Dp

n ← {xp,L,yp,L} ▷ In here xp,L = xp
n, yp,L = yp

n
12: end procedure

Algorithm 3 GetSimilarDataCSL

Input: public dataset Dp = {xp,yp}
Output: client n backward data Dp

n
1: procedure GETSIMILARDATACSL(Dp)
2: L ← ClientSendLabel5
3: return Dp

n ← {xp,L,yp,L} ▷ In here xp,L = xp
n, yp,L = yp

n
4: end procedure

Algorithm 4 GetMask

Input: client n capacity rn, public dataset Dp = {xp,yp}, t round global model wt

Output: clent n mask Mn,t in t-th round
1: procedure GETMASK(rn, Dp

n, wt)
2: gn = ∇hf(wt;x

p
n,y

p
n)

3: for each layer l ∈ {0, 1, · · · , L− 1} do
4: M← rn·Il

max
i=0

gnl,0, g
n
l,1, . . . , g

n
l,Il−1

5: if gn
l,i ∈M then

6: Mn,t
l,i = 1

7: else
8: Mn,t

l,i = 0
9: end if

10: end for
11: return Mn,t

12: end procedure

B THEOREM PROVE

hl,i = max {0, wT
l,ihl−1 + bl,i} (4)

∂f

∂wl,i
=

∂f

∂hl,i

∂hl,i

∂wl,i
=

∂f

∂hl,i
hl−1 = gl,ihl−1 (5)
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Algorithm 5 ClientSendLabel

1: procedure CLIENTSENDLABEL
2: return local dataset labels L
3: end procedure

Equation4 represent the full connection with ReLU activation. And the equation5 the SGD backward
process, there is a linear relationship between ∂f

∂wl,i
and gl,i. This means that choosing a relatively

large gl,i is equivalent to choosing a relatively large ∂f
∂wl,i

.

M = GetMask4(r,Dp
n,w) (6)

wn
∗ = M ·w (7)

Equation6 get the mask M of sub-model using our design strategy. Then we use equation7 to get
the sub-model parameters wn

∗ . Evidently, the equation8 is valid.

∥∇f(w;Dp
n)−∇f(wn;Dp

n)∥ ≥ ∥∇f(w;Dp
n)−∇f(wn

∗ ;Dp
n)∥ (8)

According to the equation1, we finally prove the equation9:

∥∇f(w;Dn)−∇f(wn;Dn)∥ ≥ ∥∇f(w;Dn)−∇f(wn
∗ ;Dn)∥ (9)

C PUBLIC DATASET

In 4.1, we define the gradient of neuron. As we all know, the gradients of neurons come from
the backward progress in training model section. Furthermore, it pertains to the global model of
backward. Backward necessitates greater computational capacity and memory compared to forward.
So executing backward progress in client become an important thing. To address this problem, we
put backward process on server. Then there have a question. Federated Learning is a paradigm
that protect the clients private information. This means the server have no data to get gradients.
Therefore, we should establish a Public Dataset on the server side. There are three alternative
approaches to create Public Dataset:

Clients Upload partial Data. The direct method is that, clients upload partial local dataset to server.
Uploading a fraction of the data amounting to one percent of the local data is deemed sufficient. This
data should have label.

Generating Counterfeit Data. client can using local data to generate counterfeit data base gen-
erative model, such as DDPM(Ho et al., 2020), GAN(Creswell et al., 2018), Stable Diffusion-
croitoru2023diffusion and so on. This generative model can learn the local dataset distribution
and then output the similar data. This approach not only prevents privacy breaches but also yields
data that closely resembles the original. But some generative model is to big for some client to play
it.

Employing Analogous Data. We can opt for alternative datasets that encompass similar data types
or incorporate local data labels as a substitute. For example, if the local dataset is CIFAR10, then
ImageNet(Deng et al., 2014) can serve as a viable alternative.

D IMPACT OF THE SIMILAR DATA SCALE.

We set different number of the similar data to address how this affect the global model accuracy.
The result Table5 show that when the number of the similar data vary from 64 to 512, the global
model accuracy do not have a notable improvement. This means that we could appropriately reduce
the amount of the public dataset, and that can not significantly degrades the global model accuracy,
while also improving computational speed and reduce computational resource requirements.

E MORE EXPERIMENTAL DETAILS

All figures and tables related to experiments in the paper adopt the setting of table6.

13



Under review as a conference paper at ICLR 2024

Table 5: Impact of similar data scale in EMNIST and CIFAR10.

Dataset Data Heterogeneity The number of similar data

64 128 256 512

emnist-conv High 96.61 97.44 96.55 96.39
Low 98.75 98.77 98.82 98.83

cifar10-resnet High 64.55 65.82 63.36 63.19
Low 74.44 74.66 74.42 74.65

Table 6: Experimental setup details on EMNIST, CIFAR-10 and CIFAR-100.
EMNIST CIFAR-10 CIFAR-100

Local Epoch 2 2 2
Batch Size 16 16 16
Learning Rate 0.001 0.001 0.001

Decay Schedule High Data Heterogeneity None None None
Low Data Heterogeneity None None None

Communication Rounds High Data Heterogeneity 800 2500 2500
Low Data Heterogeneity 800 2500 2500

Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Weight Decay 5.00E-04 5.00E-04 5.00E-04
Similar data all all all

The figure4 show the sum of global and sub-model parameters, which do experiments in EMNIST
using CNN. As we can see, our method have a low sum of parameters both in global model and
sub-model, which indicates our method optimizes parameters more effectively than other methods.
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(b) The sum of sub-model parameters.
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(c) The cumulative errors of parameter differ-
ence from every communication rounds.
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(d) The scatter plot of parameter difference.

Figure 4: Supplementary data of Figure1.
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