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ABSTRACT

Graph neural networks (GNNs) are a valuable tool for extracting meaningful rep-
resentations from graph-structured data. Graphs, like relational databases, rep-
resent relationships between entities. Recent research has explored the poten-
tial of using GNNs for downstream tasks on relational data, such as entity res-
olution and missing value imputation. However, applying GNNs to relational
databases presents two challenges. The first challenge is data conversion: rela-
tional databases, organized as tables connected by key / foreign key constraints,
must be transformed into graphs without losing essential information. The sec-
ond challenge is ensuring that the embedding technique can adapt to the dynamic
nature of databases. When a database is updated, the embeddings of the result-
ing database should be recomputable efficiently. This requires that previously
computed embeddings remain stable despite changes to the data. Motivated by
using GNNs for relational databases, we study stability, i.e., how much the em-
beddings generated by a GNN change when the input graph undergoes modifica-
tions. Building upon the work of Gama et al. (2020), which established a limit for
the distance between embeddings of similar graphs, we focus on node-level sta-
bility for GNN embeddings, particularly when the graphs originate from relations.
We propose several techniques for transforming relational databases into graphs.
To assess the effectiveness of these methods, we conduct experiments using the
TPC-E database benchmark and analyze their stability.

1 INTRODUCTION AND MOTIVATION

Graphs offer a powerful representation of real-world data, capturing intricate relationships and de-
pendencies. However, many modern databases still adhere to the relational data model, popularized
by Codd decades ago; according to one source,1 a whopping 72% of the world’s database manage-
ment systems are relational as of June 2022, while by contrast, a mere 1.8% are graph DBMS. Given
the predominance of enterprise and other operational data in the form of relational databases, many
predictive tasks must operate directly on this relational data.

Recent advances in deep learning, particularly Graph Neural Networks (GNNs), have demonstrated
their effectiveness in learning from tabular, relational data. Our research focuses on “in-database”
learning, where GNNs are applied directly to relational data within operational databases, after
transforming the relational data into a graph representation. This approach is motivated by the
ubiquity of relational databases and by the dynamic nature of operational data, which raises unique
challenges compared to static data like images or text.

Several recent studies have explored graph representations of relational databases. By transforming
relational data into graphs, these studies have successfully applied GNNs to address downstream
tasks like entity resolution and missing value imputation within the original relational data. How-
ever, the existing studies often overlook the stability of graph representations of relational data and
of the corresponding GNN models. In general, small changes in the underlying data can lead to
significant shifts in the GNN-learned representations, potentially resulting in drastically different
predictions and thus different outcomes in downstream tasks. Therefore, techniques to understand
and mitigate or bound these effects are essential.

Inspired by the successful application of GNNs to relational databases, we investigate GNN stability.
This involves understanding how changes to the graph representation of a relational database affect

1https://tinyurl.com/popularDBMS
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the generated embeddings. Building upon the work of Gama et al. (2020), we revisit the influence
of graph topology on GNN outcomes and establish a boundary for the distance between embeddings
of similar graphs. Gama et al. (2020)’s study primarily focuses on small graph perturbations, over-
looking the potential impact of more significant changes often seen in relational databases, such as
modifying attribute values or adding /removing tuples. To address this issue, we modify the specific
type of GNN considered in Gama et al. (2020) and derive a global stability theorem based on their
local stability results.

Our first contribution is hence to extend the stability results to take into account more significant
graph perturbations, and to provide bounds that do not directly depend on the size of the input graph
(Section 4); both of these properties are desirable in the context of relational databases.

Our second contribution is a comprehensive analysis of existing heterogeneous (having different
types of nodes) database-to-graph constructions. We identify one major drawback, their tendency
to be overly heterophilic (with dissimilar nodes grouped together), a characteristic that can hinder
the effectiveness of GNNs Zhu et al. (2021),He et al. (2022), Wang et al. (2022b). To address
it, we propose an alternative construction method (detailed in Section 5). Our experiments on the
Cora and TPC-E datasets demonstrate that our approach is up to 10 times more stable than existing
state-of-the-art methods (Section 6).

2 RELATED WORK

Graph Neural Networks GNNs are a robust and versatile tool for prediction tasks related to
graph-structured data. Inspired by Convolutional Neural Networks (CNNs), GNNs compute infor-
mation for each node by aggregating data from neighboring nodes. Many GNN architectures have
been proposed; these include GNNs with attention mechanisms Veličković et al. (2017), simple
convolution Kipf & Welling (2016), spectral convolution Defferrard et al. (2016), inductive learning
Hamilton et al. (2017), or message passing approaches Gilmer et al. (2020), Battaglia et al. (2016).

Stability of GNNs When working with GNNs, it is essential to consider how their output is in-
fluenced by the structure of the input graph. A desirable property is isomorphism invariance: when
two graphs are identical in structure (isomorphic), a GNN should produce the same embeddings.

The concepts of invariant and equivariant GNNs have been investigated by Maron et al. (2018), fo-
cusing on ensuring that the network’s output remains unchanged when nodes are permuted. Keriven
& Peyré (2019) proposed universal GNNs, which achieve permutation invariance by using message-
passing frameworks, guaranteeing that the network’s behavior is not affected by the order of nodes.

While permutation equivariance is a valuable property for GNNs, it does not fully explain how em-
beddings change when nodes or edges are added or removed. Diffusion-based GNNs, introduced
by Gama et al. (2018), focus on ensuring stability under local graph perturbations in diffusion pro-
cesses. Subsequent work by Gama et al. (2020) derived stability guarantees for GNNs, focusing
on how small perturbations in graph structure affect GNN performance, ensuring robust feature ex-
traction from locally perturbed graphs. The work of Wang et al. (2022a) has further explored GNN
stability, including the use of positional encoding. Zou & Lerman (2020) introduced graph wavelet
filter banks to achieve robustness against structural changes; they ensure stability by filtering graph
signals and capturing multi-scale information without the need for supervised learning. Finally,
Böker et al. (2024) extended the Weisfeiler-Lehman test to graphons, giving a more general frame-
work for analyzing stability in large graphs. Another point of view of stability, when the graphs are
unchanged, but instead the features applied to the GNN vary, is studied in Jia & Zhang (2023).

Another line of research focuses on GNN robustness against adversarial attacks. Such attacks in-
volve making subtle changes to the input data with the intention of misleading the GNN into making
incorrect predictions or classifications. To defend against such attacks, Zügner et al. (2018) proposed
robust training techniques that enhance the resilience of GNNs. Ennadir et al. (2024) explored the
use of noise injection to mitigate the impact of adversarial perturbations. Nikolentzos et al. (2024)
discussed the vulnerability of GNNs to attacks targeting both the graph structure and node attributes,
highlighting the need for robust defenses.

Generating embeddings for relational databases Several approaches have been developed to
create embeddings for relational databases using language models. Fey et al. (2023) introduced a
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modular neural message-passing system that can operate directly on relational databases, aligning
with the formal relational model and enabling deep learning directly in database systems, without
the need for costly data pre-processing stages.

Other methods focus on constructing heterogeneous or n-partite graphs to generate relevant embed-
dings. Zahradnı́k et al. (2023) proposed Relational Deep Learning (RDL), which treats relational
databases as heterogeneous graphs and employs Message Passing Graph Neural Networks (MPNNs)
to learn from interconnected data. Similarly, Cappuzzo et al. (2024) proposes an approach for miss-
ing value imputation using GNNs on heterogeneous graphs, based on techniques designed for het-
erogenous graphs such as those in Schlichtkrull et al. (2018).

Some methods utilize homogeneous graphs. Toenshoff et al. (2023) generated a bipartite graph and
employed random walk methods to create embeddings, verifying their stability by the accuracy of
downstream tasks. Cappuzzo et al. (2020) proposed a tripartite graph representation of relational
databases, while Niepert (2016) used a Gaifman graph for generating embeddings.

Many existing homogeneous graph representations of databases exhibit a heterophilic property,
where nodes of different types are more likely to be connected, which can hinder the generation
of meaningful embeddings Abu-El-Haija et al. (2019), Zhu et al. (2020), Zhu et al. (2021), Chien
et al. (2020). We present in this paper graph constructions that alleviate this problem.

3 GRAPH NEURAL NETWORKS

3.1 PRELIMINARIES

Graphs In this section we consider graphs, G = (V,E) consisting of a finite set V of N nodes
and set of edges E ⊆ V × V . On this graph, we can define graph shift operators (GSO), matrices
S ∈ RN×N with the property that Sij = 0 if (i, j) /∈ E and i ̸= j. The adjacency matrix A and the
Laplacian matrix L are two examples of GSOs.

MPNNs Combination-Aggregation GNNs, a.k.a. Message Passing Neural Networks (MPNN)
Gilmer et al. (2017), operate by iteratively aggregating information from a node’s neighbors and
updating the node’s representation through a combination of this aggregated information and the
previous node information. The two main steps are message passing and update, represented as:

η(l)v = UPDATE(l)

η(l−1)
v ,

∑
u∈N (v)

MESSAGE(l)
(
η(k−1)
v , η(l−1)

u , euv

) , (1)

where η(l)v is the representation of node v at layer l, N (v) is the set of neighbors of v, and euv is the
edge feature between nodes u and v. MESSAGE(l) and UPDATE(l) are learnable functions.

From this general formulation of GNNs, different variants were proposed. In GATs Veličković et al.
(2017) attention mechanisms are applied to learn the importance of neighboring nodes. GCNs Kipf
& Welling (2016) simplify the message-passing framework by using normalized adjacency matrices
for aggregation. The key aim is to smooth the node features based on their neighbors. Another
variant are GINs Xu et al. (2018) designed to output embeddings as powerful as the Weisfeiler-
Lehman graph isomorphism test, and where the aggregation function uses a multi-layer perceptron
(MLP) to update node embeddings.

3.2 SIGNAL PROCESSING GNNS (SPGNNS)

We detail the variant of GNNs that we study, namely Signal Processing GNNs (SPGNNs), inspired
by signal processing techniques. The following definitions are adapted from Gama et al. (2020).

Features With each layer l, we associate F (l) vectors, called features or graph signals, denoted
(x

(l)
f )f∈{1,...Fl} ∈ (RN )Fl and X(l) ∈ RN×Fl the feature map composed by all the F (l)-th graph

signals. The features are computed from the ones from the previous layer l − 1.

3
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Construction To compute X(l+1) from X(l), we define a sequence of matrices (H(l,k))k∈N ∈
RF (l)×F (l+1)

that is finite, i.e. H(l,k) = 0 for k > K. The matrices contain the learnable parameters
(H

(l,k)
g,f )(g,f)∈F (l)×F (l+1) of the network. From these parameters, a family (z

(l+1)
f )f∈×{1,...,F (l+1)}

of intermediate vectors is then computed: z(l+1)
f =

K∑
k=0

F (l)∑
g=1

Skx
(l)
g H

(l,k)
g,f where x

(l)
g is X(l)

:,g . If we

denote by H
(l)
f,g the polynomial

K∑
k=0

H
(l,k)
f,g Xk, the formula can be written z

(l+1)
f =

F (l)∑
g=1

H
(l)
g,f (S)x

(l)
g .

The polynomials H(l)
f,g are called filters. The matrix X(l+1) is then defined by its columns X(l+1)

:,f =

σ(z
(l+1)
f ) where σ is a pointwise non-linearity (e.g., ReLU). This can be written in a matrix form:

X(l+1) = σ(

K∑
k=0

SkX(l)H(l,k)).

We denote by an L-layer SPGNN Φ a function composed by the L layers defined above, taking as
input a Graph Shift operator (GSO) S and a graph signal x ∈ RN . The X(0) matrix is initialised as
the single-column matrix containing the vector x, while the output is the only vector stored in the
last layer, X(L)

: , 1. In particular, F0 = FL = 1.

Node embeddings Strictly speaking, the L-layer SPGNN Φ as defined above does not output
embeddings: when applied to a vector, it returns one coordinate of the final embedding for each
node. To return a d-dimensional representation of each node, we use the SPGNN on d vectors in
RN and concatenate the results, which is equivalent to applying the SPGNN on a N × d matrix.

We henceforth denote as X ∈ RN×d the initial feature matrix of the graph, where each row corre-
sponds to the initial embedding of a node, and X ′ ∈ RN×d as the final feature map of the graph,
where its i-th column (i ≤ d) is the i-th column of X after transformation via Φ.

Computational issues Computing the final feature map as shown previously requires recomputing
the H matrices of all the graph filters. This poses a significant memory problem if we want to
carry out learning with high-dimensional embeddings, as all the matrices computed in this way
will have to be saved during the process. This is why we have restricted the SPGNN method to
low dimensional representations. Despite this apparent shortcoming, our experiments, in Section 6,
show that SPGNN remains competitive compared to the state-of-the-art GNNs.

4 STABILITY OF SPGNNS

In this section, we discuss the main technical results of this paper. We first present a refined bound
on the stability of SPGNNs, then we discuss the stability of node embeddings in the average case,
and finally we provide a refined bound for the stability of node embeddings in the worst case.

4.1 EXISTING RESULTS

We use the norm operator of a matrix S, denoted ||S||op and defined as ||S||op := max
||x||=1

||Sx||.

The final theorem in Gama et al. (2020), particularly the first point of their Property 3, can be
simplified as follows:

Theorem 1 (Theorem 4 & Property 3 in Gama et al. (2020)). Let S and Ŝ be two GSOs and Φ
be a SPGNN. We assume that, for all filters H appearing in Φ and all eigenvalues λ of S and
Ŝ, |H(λ)| ≤ 1. We also assume that the pointwise non-linearities in Φ are 1-Lipschitz. Define
ε := ||S− Ŝ||op and δ = (||U −V ||2 +1)2 − 1 where U and V are orthogonal matrices s.t. UTSU

and V T (S − Ŝ)V are diagonal. Then, the following inequality holds for all x ∈ RN s.t. ||x|| = 1:

||Φ(S,x)− Φ(Ŝ,x)|| ≤ (1 + δ
√
N)LFL−1ε+O(ε2).

4
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While this result is interesting and has been a model for our theoretical work, we face several limita-
tions when trying to apply it. Firstly, the result is local, i.e., only relevant when the amplitude of the
perturbation ε = ||S − Ŝ|| goes to 0. Yet the perturbations we are interested in – in the context of
relational databases – can produce modification of graphs that cannot be considered as infinitesimal.
For example, a tuple being removed would result in the deletion of several edges in the graph rep-
resentation of the database; the perturbation, measured as ||S − Ŝ||op, would typically be roughly
equal to the number of deleted edges. Moreover, the assumption on the filters (|H(λ)| ≤ 1) may not
always hold, since the parameters of the filters are the result of the SPGNN training and therefore
are hard to control. Finally, a key limitation of Gama et al. (2020) is the dependence on the graph
size (N ), making it difficult to establish results on asymptotic stability, particularly when dealing
with large graphs and ensuring that embeddings remain reasonably stable as the data grows.

In the next section, we establish a result (Theorem 2) that addresses these issues by using a degree 1
assumption on the polynomial defining the filters. We also show that this assumption can generalize.

4.2 REFINED BOUNDS ON THE STABILITY OF SPGNNS

Our main theorem provides a refinement of the upper bound in Gama et al. (2020) on the distance
between the embeddings of two graphs. The main improvement is that our bound is global and does
not depend on N , the size of the graph, although the bound involves N -dimensional norms:
Theorem 2. Let Φ(·, ·) be a GNN with L layers, with fewer than F features per layer, that
only uses filters of the form H(X) = aX + b. We assume that the non-linearities σ in Φ

are 1-Lipschitz and satisfy σ(0) = 0. Let S, Ŝ ∈ RN×N be two symmetric matrices. Let
||H||∞ := max

H∈Φ, λ∈σ(S)∪σ(Ŝ)
|H(λ)|, the maximum of the value |H(λ)| over all filters H that appear

in Φ and all eigenvalues λ of S or Ŝ. Let A := max
H(X)=aX+b∈Φ

|a|.

Then, for all x ∈ RN , we have:

||Φ(S,x)− Φ(Ŝ,x)|| ≤ LA(F ||H||∞)L−1||S − Ŝ||op||x||. (2)

The proof can be found in Appendix A.1.

Remark 1 The bound given in Theorem 1 is useful to understand how the stability evolves de-
pending on the parameters of the SPGNN. However, our proof reveals an even tighter bound, albeit
less readable and less intuitive.

Remark 2 Note that, in Eq. 2, the value of ||H||∞ depends on S and Ŝ. Therefore, this equation
does not show that SPGNNs are Lipschitz. However, if we restrict the domain of S, Ŝ to a bounded
subset of RN×N , then Eq. 2 indeed states that SPGNNs are Lipschitz. For instance, if S, Ŝ are
adjacency matrices, then their Frobenius norm (defined as ||S||F :=

√
tr(ATA)) is less than N , so

their eigenvalues are less than N . Therefore, ||H||∞ can be bounded by max
λ∈[−N,N ],H

(l)
i,j∈Φ

|H(l)
i,j (λ)|

and then Theorem 2 does imply that, for a given x ∈ RN , Φ(·, x) is a Lipschitz function.

Remark 3 The result in Theorem 2 can be instantiated in the distance modulo permutation frame-
work used in Gama et al. (2020). For the sake of clarity and due to lack of space, we defer this to
the supplementary material, Appendix A.3.

Remark 4 We chose to state Theorem 2 for SPGNNs that only contain filters that are order 1
polynomials because a SPGNN that uses polynomials of higher order can be reduced to a SPGNN
that only uses filters of order 1. This is detailed in Appendix A.4.1 and illustrated in Figure 4.

However, to apply our results directly to a SPGNN Ψ with L layers, fewer than F features by layer,
and using higher order polynomials, the following holds, in the same vein as Theorem 2:

||Ψ(S,x)−Ψ(Ŝ,x)|| ≤ L∆(H)∞(F ||H||∞)L−1||S − Ŝ||op||x||

5
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where ∆(H)∞ = max
H∈Ψ

∆(H) and if H(X) =
d∑

i=0

hiX
i, ∆(H) :=

d∑
i=1

i|hi|Λi−1 for Λ =

max
λ∈σ(S)∪σ(Ŝ)

|λ|. The proof is given in Appendix A.4.1.

As a consequence, our framework can be applied to a wide variety of architectures, such as graph
convolutional neural networks (see also Remark 3 in Gama et al. (2020)).

Remark 5 While this is not our focus in this work, we mention that Theorem 2 extends to non-
symmetric matrices, i.e. to directed graphs. This is further detailed in Appendix A.4.2.

4.3 NODE EMBEDDING STABILITY

The result of Theorem 2 holds for the embeddings of all the nodes of the graph, but it may be too
loose for some node pairs. For instance, for a graph G and Ĝ obtained from G by removing an edge,
the bound on the distance between two node embeddings is the same for a node that “lost” that edge
and for a node that is far from the deleted edge. However, intuitively we would expect that for nodes
that are far from the perturbation the effect on their embeddings should be less pronounced.

Therefore, in this section, we discuss two corollaries of Theorem 2 that translate the original result
in stability properties at the node embedding level and deal with the refinement of the bound for
nodes that are less impacted by the perturbation.

Notice that being given a graph shift operator (GSO) on a graph amounts to being given integers
corresponding to an arbitrary but fixed ordering of the nodes: each node v of G is represented by
an integer i that corresponds to the row/column of S that represents this node. If we are given two
graphs G, Ĝ with two associated GSOs S, Ŝ, then we can define the identification of two nodes by
stating that a pair of nodes in (G, Ĝ) are identified if they are represented by the same integer i. When
discussing the node embedding stability, we always compare the distance between the embeddings
of a pair of identified nodes, and, in the following, we use the notation (vi, v̂i) to refer to the couple
of nodes in G × Ĝ that are identified by the integer i.

The purpose of the first corollary is to instantiate Theorem 2 to bound the distance between node
embeddings. The bound is given on the sum of these distances, which provides both a worst case
bound and an average bound:

Corollary 2.1. Consider a GNN Φ satisfying the hypotheses of Theorem 2, and a pair of graphs
G, Ĝ with their associated shift operators S, Ŝ. Assume that all the columns of the initialisation
matrix X(0) are normalized. Then the total squared distances between the embeddings satisfies:

N∑
i=1

||Φ(S,X(0))vi − Φ(Ŝ,X(0))v̂i ||2 ≤ dM2, (3)

where M is the bound of Theorem 2, i.e. M = B(L)||S − Ŝ||op.

The proof can be found in appendix A.2.

Remarks On the one hand, Corollary 2.1 implies that, given a pair of identified nodes (vi, v̂i),
we can bound the distance of their embeddings by ||Φ(S,X(0))vi − Φ(Ŝ,X(0))v̂i || ≤

√
dM . On

the other hand, the result ensures that, for at least N/2 pairs of nodes (vi, v̂i), ||Φ(S,X(0))vi −
Φ(Ŝ,X(0))v̂i || ≤

√
2dM√
N

. This last inequality ensures that, if we consider GSOs whose eigenvalues
tend not to increase with the number of nodes N , the bound on the distance between the embeddings
approaches 0, which ensures an asymptotic stability for SPGNNs. The fact that the bound no longer
depends on

√
N , following our improvement, is crucial for this result to hold.

While Corollary 2.1 states that the majority of the node embeddings are stable, it does not give a
method to identify which pairs of nodes will be more stable. The goal of the next result is to analyze
pairs of nodes that are more stable than what is stated by Theorem 2. We start by defining the notion
of k-hop equality, which is crucial to identify these pairs:

6
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Definition 4.1 (k-hop equality). We consider two graphs G, Ĝ with two associated GSOs S, Ŝ. We
define the k-hop equality relative to S, Ŝ inductively:

• Every pair of identified nodes in G, Ĝ have equal 0-hops.

• Let k ≥ 1. If u and û are a pair of identified nodes both represented by the same integer i,
they have equal k-hop if Si,: = Ŝi,: and all their neighbors can be identified pairwise with
each pair having equal (k − 1)-hops.

In other words, the fact that two nodes u, û have equal k-hop means that the sub-graph induced in
G by all the edges and vertices that can be reached in a k-walk starting from u is exactly the same
as the sub-graph induced in Ĝ by all the edges and vertices that can be reached in a k-walk starting
from û, i.e., the perturbation in G is at least at distance k from u.

Building upon this notion, we can refine the worst-case result of Corollary 2.1 for pairs of nodes that
have equal k-hops:
Corollary 2.2. Consider an SPGNN Φ satisfying the hypotheses of Theorem 2, and a pair of graphs
G, Ĝ with associated shift operators S, Ŝ. Assume that all the columns of the initialisation matrices
X(0) are normalized. Consider the i-th nodes of G and Ĝ, denoted vi and v′i and assume that their
have equal k-hops, then we have the following property:

||Φ(S,X(0))vi − Φ(Ŝ,X(0))v′
i
|| ≤

√
d(L− k)+A(F ||H||∞)L−1||S − Ŝ||op (4)

where (L− k)+ = max(0, L− k).

The proof can be found in Appendix A.2.

In particular, note that when k ≥ L we have Φ(S,X(0))vi = Φ(Ŝ,X(0))v′
i
. Similar to the findings

in Theorem 2, the proof reveals a tighter bound. While this refined bound provides greater accuracy,
it may be less intuitive to understand.

5 APPLICATION: STABILITY OF EMBEDDINGS FOR RELATIONAL DATABASES

One application scenario where stability is important are databases. This is because databases have
frequent updates and even may contain missing values. To ensure that embeddings results from
graph constructions from databases can be used even under perturbation, they must be stable.

Transforming Relational Databases to Graphs Consider a database D = (∆,R) with a set of
tuples ∆, a set of relations R, and the set of its attribute names Ω. The active domain of the database
is denoted adom(D), to which we add the NULL value, denoted ⊥.

There are multiple ways to encode relational databases as graphs. One approach from the state-of-
the-art is EmBDi Cappuzzo et al. (2020), which constructs a tripartite graph having three types of
nodes corresponding to tuples in ∆, values in the database, and attributes in Ω respectively. Edges
exist between values and tuples, and between values and attributes As this graph has three types of
node and is tripartite, EmBDi constructs a heterogeneous and heterophilic graph. Another recent
construction is FoRWaRD Toenshoff et al. (2023), a bipartite graph linking attribute value nodes to
the corresponding tuple nodes of the same relation. A value node from a relation is be linked to a
tuple node of another relation only if there are foreign key constraints between the two relations. For
multiple relations, an edge is present if there are foreign key constraints between them. FoRWard
is a heterogeneous and heterophilic graph, containing two types of nodes (hence a bipartite graph).
A limitation of these two graph constructions is their heterophilic nature and their inability to fully
capture the underlying structure of the database.

To address these limitations, we propose 5-DB, a novel graph encoding approach for relational
databases, designed to more comprehensively capture the underlying database structure.
Definition 5.1 (5-DBconstruction). Let D = (∆,R) be a database, and Ω its set of attributes. We
create a graph as follows.

(Nodes). For each relation R ∈ R, we create a node vR with label R. For each non-null element
a ∈ adom(D) \ {⊥}, we create a node va with label a. For each tuple t in a relation R ∈ R, we

7
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create a node vt with label t. For each attribute name A ∈ Ω, we create a node vA with label A. For
each relation R ∈ R, each attribute A ∈ Ω(R), and each tuple t ∈ R, we create a node vA,t with
label (A, t).

(Edges). For each relation R ∈ R and each tuple t ∈ R, we create an edge (vR, vt). For each tuple
t in a relation R ∈ R and attribute name A of the relation R, we create (vt, vA,t). For each relation
R ∈ R, each tuple t ∈ R, and each attribute A ∈ Ω(R), we create (vA,t, vA). For each non-null
value a of attribute A in tuple t, we create (vA,t, va). If the value is ⊥, no edge is created.

5-DB has five types of nodes which are never connected to other nodes of the same type. This
graph is hence both heterophilic and heterogeneous. We also distinguish a variant of 5-DB, one
in which attribute nodes are removed, denoted 5-DB-Att. Additionally, we define another variant,
5-DB Gaif, which is similar to 5-DB-Att but with an added constraint: values belonging to the
same tuple form a clique. 5-DB Gaif’s rationale is to increase the homophily of the graph. Finally,
Tuple+Clique is similar to FoRWaRD, where the tuples of the same relation form a clique. The
goal of this construction is to investigate whether imposing density can enhance the stability of the
generated embeddings. All the above graphs are heterogeneous.

Perturbations Our primary motivation for studying GNN embeddings is their application to rela-
tional databases, which are often subject to frequent updates (perturbations). Two common types of
perturbations in databases are:

• Tuple Removal: Some tuples present in the original database may be deleted in the up-
dated version. In the corresponding graph representation, this translates to removing nodes
associated with these tuples.

• Value Removal: Tuples in the updated database might have missing values. This can be
represented in the graph by removing edges between attribute nodes and value nodes.

• Tuple/Value Addition Since adding tuples/values to a database D to obtain a database D is
the exact opposite of removing tuples/values in D̂ to obtain D, and given that our bounds
are symmetric in the matrices S and Ŝ derived from the databases, the case of tuple/value
addition is exactly the same as the case of tuple/value removal. Therefore, in the following,
we only consider the case of removal.

From the perspective of this study, adding tuples is essentially the opposite of removing tuples, and
adding values is the reverse of removing values. Therefore, to analyze the impact of these operations,
we can simply switch the corresponding Graph Shift Operators (GSOs) in our stability formulas.

When a database is modified, its size changes. If we consider directly the corresponding graphs, their
GSOs have different sizes, making them incomparable. To circumvent the size mismatch problem,
in the case of deletion, we do not truly delete the nodes targeted by the deletion, but we remove
all their edges instead. This yields a graph Ĝ′ with exactly the same node set as G, but with fewer
edges. We can therefore directly compute ||S − Ŝ′||op. In the case of a tuple addition, we add a row
/ column of 0s in the matrix S in the place of the row / column that represents the tuple in the matrix
Ŝ. This is one illustration the removal / addition symmetry mentioned before.

Putting it all together, by transforming a relational database into a graph using one of the methods
discussed earlier and applying the dimension matching procedure above, we can directly leverage
the results of Corollary 2.1 to analyze the stability of tuple embeddings within a database.

6 EXPERIMENTAL RESULTS

For our experimental evaluation, we implemented in Python the GNNs that we evaluated
along with the graph construction, using the NetworkX and PyTorch Geometric
packages. The experiments were run on a 32 GB machine equipped with a 8GB
NVIDIA A2000 GPU. The code and additional implementation and experimental
details are available at https://github.com/ForAnonymousSubmission/
STABLE-GNN-EMBEDDINGS-FOR-RELATIONAL-DATA.git. For space limitations,
we present here only the most relevant results, and additional results can be found in Appendix B.
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Figure 1: Subfigures (a) and (b): Classification accuracy for the SPGNN having order-one filters
and other state-of-the-art GNNs, on the Cora dataset, when removing a proportion of nodes ranging
from 0% to 90%. Subfigure (c): Distance between SPGNN embedding for different node degrees.

Table 1: Size of graphs encoding the relational database.

FoRWaRD EmBDi 5-DB 5-DB Gaif 5-DB-Att Tuple+Clique
nodes 10,089 10,225 26,377 26,241 26,241 10,089
edges 15,131 24,571 50,748 96,246 34,305 205,168

6.1 COMPARING SPGNNS WITH OTHER GNN VARIANTS (CORA GRAPH DATASET)

First, to demonstrate the effectiveness of order-one SPGNNs, we compare them with other GNN
architectures. Our results indicate that despite their apparent simplicity, order-one SPGNNs can
achieve performance comparable to more complex GNN models. For simplicity and computational
efficiency, we use the order-one filter H(S) = H1S +H0. We compare SPGNNs with GCNs Kipf
& Welling (2016) and GATs Veličković et al. (2017) on the Cora dataset Yang et al. (2016), a graph
having 2,708 nodes, 10,556 edges, and 7 node classes. We use the same architecture for all models:
a 4-layer GNN followed by a 2-layer MLP for node classification. Each layer of the GNN contains
10-dimensional features. We remove a proportion of nodes from the graph, ranging from 0 to 90%
and we report the classification accuracy of the models on the reduced graphs. All GNNs are trained
once and then remain fixed; this is because our main objective is to evaluate the stability of the
embeddings with respect to perturbations.

The results are shown in Figure 1. Fig. 1(a) shows the accuracy when the classification MLP is
re-trained on each incomplete graph. Interestingly, it shows that the accuracy of the SPGNN is more
stable than the one of the GCN and GAT. This suggests that the SPGNN embeddings are more robust
to perturbations. On the other hand, when the MLP is not re-trained, the three variants are indistin-
guishable in terms of accuracy, as shown in Fig. 1(b). This suggests that the SPGNN embeddings
are not necessarily more informative, in a geometric sense, than those generated by GCN and GAT.
The results in Figure 1(c) indicate that the stability of SPGNN embeddings is influenced to some
extent by the degree of nodes in the graph. However, this influence is relatively minor, suggesting
that SPGNNs can be applied effectively to graphs with varying node degree distributions.

6.2 STABILITY FOR GRAPHS ENCODING RELATIONAL DATABASES (TPC-E DATASET)

Having established the stability of SPGNN embeddings, we now evaluate the stability of the dif-
ferent graph constructions introduced in Section 5. To achieve this, we leverage a subset of tables
from the well-known TPC-E database benchmark (https://www.tpc.org/) and we construct
corresponding graphs for stability analysis. The details of the resulting graphs are given in Table 1,
while the statistics on the TPC-E data we used are in Appendix B.

For generating embeddings, we used an 5-layer SPGNN with a polynomial filter of degree one,
having the following feature dimensions F = [3, 4, 6, 3, 1], with the last layer of dimension 1 in
order to return a graph filter. We initialize a random matrix X0 = RN×d as the initial feature map.
The generated embeddings represent different elements from the original database, including tuples,
attributes, and values. Our experimental comparison focuses on tuple embeddings since they are
present in all graph constructions. Furthermore, stability of tuple embeddings is of fundamental
importance since tuples are the core information content in a relational database.
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Figure 2: Stability against tuple removal. Left: the average distance between embeddings of the
tuples in the original database vs. the perturbed one. Right: the theoretical stability upper bounds.
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Figure 3: Stability against missing values, by removing up to 90% of the values from the database.
We show results for removal of values for various frequency bins.

Figure 2 shows the stability of the embeddings when tuples are removed from the database. We can
observe that the SPGNNs used on all the graphs are able to generate stable embeddings. However,
graphs that encode explicitly the various relations, using a relation node connected to its tuples (5-
DB, 5-DB Gaif, 5-DB-Att) have lower absolute embedding distances than the other constructions.
This suggests that the structure of the graph is important for the stability of the embeddings.

Two relevant results can be observed in Figure 2. First, embeddings generated using FoRWaRD
and Tuple+Clique showed poor resilience to tuple removal. This can be explained by the absence
of anchor nodes which are less impacted by tuple deletion (for example attribute nodes or relation
nodes). Moreover among the graphs generating embeddings showing better resilience to tuple re-
moval, 5-DB Gaif showed the best results which is not surprising. Indeed, 5-DB Gaif has an higher
density in its subgraphs corresponding to attribute value nodes, which are less likely to be deleted
by the process than tuple nodes.

When analyzing the impact of value removal (Figure 3), we observed a similar trend to that of tuple
removal. However, Tuple+Clique demonstrated more resilience to value removal. This can be
attributed to the cliques introduced between tuples of the same relation, resulting in a denser graph
structure. Indeed, subgraphs of Tuple+Clique only composed of tuples are very dense and none of
the nodes constituting these subgraphs are deleted by the perturbation. The counterpart to this high
density graph is a much less efficient learning processing. In comparison 5-DB Gaif although it too
has cliques is twice sparser (as shown in Table 1).

7 CONCLUSION

Motivated by the dynamic nature of databases, this research investigates the stability properties
of embeddings generated by an important class of GNNs, Signal Processing GNNs (SPGNNs). We
refine existing global stability bounds by eliminating the dependence on graph size. Additionally, we
extend our analysis to the node level. When applied to graphs generated from relational databases,
we demonstrate that considering the heterogeneous and heterophilic nature of these graphs can lead
to more stable embeddings. To achieve this, we propose improved database-to-graph constructions
that outperform existing methods in terms of embedding stability.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. arXiv preprint arXiv:2203.00199, 2022a.

Tao Wang, Di Jin, Rui Wang, Dongxiao He, and Yuxiao Huang. Powerful graph convolutional
networks with adaptive propagation mechanism for homophily and heterophily. In Proceedings
of the AAAI conference on artificial intelligence, volume 36, pp. 4210–4218, 2022b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.
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A STABILITY

A.1 PROOF OF THEOREM 2

We follow a method that is similar to what is done in Gama et al. (2020).

We define ||H(l)
f,g||∞ := max

λ∈σ(S)
|H(l)

f,g(λ)| and ||Ĥ(l)
f,g||∞ := max

λ∈σ(Ŝ)
|H(l)

f,g(λ)|.

We will use regularly the fact that ||H(l)
f,g||∞ = ||H(l)

f,g(S)||op and ||Ĥ(l)
f,g||∞ = ||H(l)

f,g(Ŝ)||op, which
follows from the definition.

We begin with a lemma:
Lemma 3. We consider a SPGNN Φ satisfying the hypotheses of Theorem 2, Ŝ a symmetric matrix
and x a vector. Then we have:

||Φ(Ŝ,x)|| ≤

 ∑
f∈Lay(L)

L−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞

 ||x||

where Lay(L) := {1, . . . , F (0)} × {1, . . . , F (1)} × · · · × {1, . . . , F (L)}.

Proof. Indeed, we show this lemma by induction on the number of layers of Φ. For a SPGNN Φ with
only one layer, since F (0) = F (1) = 1 by definition, then Φ is of the form Φ(Ŝ,x) = σ(H

(0)
1,1 (Ŝ)x).

Consequently,

||Φ(Ŝ,x)|| ≤ ||H(0)
1,1 (Ŝ)x||

≤ ||Ĥ(0)
1,1 ||∞||x||.

This proves that the lemma holds for the initial case.

We now consider L ∈ N∗ and we assume that the lemma is true for all SPGNNs with L layers
satisfying the hypotheses.

Let Φ(·, ·) be a SPGNN with L + 1 layers satisfying the hypotheses, let Ŝ be a symmetric ma-
trix and let x be a vector. By definition of the SPGNNs, Φ(Ŝ,x) has the form Φ(Ŝ,x) =

σ(
F (L)∑

f(L)=1

H
(L)

f(L),1
(Ŝ)Φ

(L)

f(L)(Ŝ,x)) where (Φ(L)
f ) are SPGNNs themselves, with only L layers. When

applying the induction hypothesis to SPGNNs with L layers, we use the notation Lay(L,f(L)) to
define the set of vectors f ∈ Lay(L) whose last coordinate is fL = f (L) rather than fL = 1. (The
last coordinate of vectors in Lay(L) is always 1 since F (L) = 1 in a L-layer SPGNN.)

We can then write:

||Φ(Ŝ,x)|| ≤
F (L)∑

f(L)=1

||Ĥ(L)

f(L),1
||∞||Φ(L)

f(L)(Ŝ,x)||

≤
F (L)∑

f(L)=1

∑
f∈Lay(L,f(L))

||Ĥ(L)

f(L),1
||∞

(
L−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞

)
||x||,
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hence ||Φ(Ŝ,x)|| ≤
∑

f∈Lay(L+1)

L∏
l=0

||Ĥ(l)
fl+1,fl

||∞||x||.

This proves the lemma.

Proof. We now prove Theorem 2 by induction on the number of layers L. We prove a more precise
bound:

||Φ(S,x)− Φ(Ŝ,x)|| ≤ B(L)||S − Ŝ||op||x||

where B(L) :=
∑

f∈Lay(L)

L∑
k=1

[
(

L−1∏
l=L−k+1

||H(l)
fl,fl+1

||∞) ·A(L−k)
fL−k,fL−k+1

· (
L−k−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞)

]
.

We remind that Lay(L) = {1, . . . , F (0)} × · · · × {1, . . . , F (L)}, ||H(l)
f,g||∞ := max

λ∈σ(S)
|H(l)(λ)| and

A(l)f,g is defined as A(l)f,g = |a| where a is the coefficient such that H(l)
f,g(X) = aX + b. This

bound is much less readable, but it is more accurate, because it does not assume that the different
parameters are uniform in the SPGNN.

To motivate the technical proof below, we begin by showing that the result shown (||Φ(S,x) −
Φ(Ŝ,x)|| ≤ B(L)||S − Ŝ||op||x||) implies Theorem 2, which means that B(L) is indeed a tighter
bound.

To achieve this objective, it suffices to show that B(L) ≤ LA(F ||H||∞)L−1. This can be seen by
replacing all the terms that appears in B(L) by their global counterpart:

B(L) =
∑

f∈Lay(L)

L∑
k=1

[
(

L−1∏
l=L−k+1

||H(l)
fl,fl+1

||∞) ·A(L−k)
fL−k,fL−k+1

· (
L−k−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞)

]

≤
∑

f∈Lay(L)

L∑
k=1

[
(

L−1∏
l=L−k+1

||H||∞) ·A · (
L−k−1∏
l=0

||H||∞)

]

= A(||H||∞)L−1
∑

f∈Lay(L)

L∑
k=1

1

= A(||H||∞)L−1L|Lay(L)|

= A(||H||∞)L−1L

L∏
l=0

F (l)

≤ A(||H||∞)L−1LFL−1.

We remind that F (0) = F (L) = 1, which is explains why FL−1 appears in the last inequality rather
than FL+1.

We now prove the base case of the induction. We consider a GNN with 1 layer Φ(S,x) =

σ(H(S)x) with H(S) = aS+ bIN . Given two symmetric matrices S and Ŝ and a vector x ∈ RN ,
the theorem is written: ||σ(H(S)x)−σ(H(Ŝ)x)|| ≤ B(1)||S− Ŝ||op||x|| with B(1) = A

(1)
1,1 = |a|.

This holds since:
||σ(H(S)x)− σ(H(Ŝ)x)|| ≤ ||H(S)x−H(Ŝ)x||

= ||a(S − Ŝ)x||
≤ |a|||S − Ŝ||op||x||.

We now consider L ∈ N∗ and we assume that the theorem holds for SPGNNs with L layers.

We consider a SPGNN Φ with L + 1 layers and we use the exact same notations as in the proof of

Lemma 3, i.e. Φ(S,x) = σ

(
F (L)∑
f(L)

H
(L)

f(L),1
(S)Φ

(L)

f(L)(S,x)

)
.
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We begin by bounding Φ(S,x)− Φ(Ŝ,x) with the Φ
(L)
i :

||Φ(S,x)− Φ(Ŝ,x)|| = ||σ

 F (L)∑
f(L)=1

H
(L)

f(L),1
(S)Φ

(L)

f(L)(S,x)

− σ

 F (L)∑
f(L)=1

H
(L)

f(L),1
(Ŝ)Φ

(L)

f(L)(Ŝ,x)

 ||

≤
F (L)∑

f(L)=1

||H(L)

f(L),1
(S)Φ

(L)

f(L)(S,x)−H
(L)

f(L),1
(Ŝ)Φ

(L)

f(L)(Ŝ,x) ||

≤
F (L)∑

f(L)=1

||H(L)

f(L),1
(S)

(
Φ

(L)

f(L)(S,x)− Φ
(L)

f(L)(Ŝ,x)
)
||

+

F (L)∑
f(L)=1

||
(
H

(L)

f(L),1
(S)−H

(L)

f(L),1
(Ŝ)
)
Φ

(L)

f(L)(Ŝ,x) || (5)

We should now bound both terms in inequality 5 separately. We begin with
||H(L)

f(L),1
(S)

(
Φ

(L)

f(L)(S,x)− Φ
(L)

f(L)(Ŝ,x)
)
||:

||H(L)

f(L),1
(S)

(
Φ

(L)

f(L)(S,x)− Φ
(L)

f(L)(Ŝ,x)
)
||

≤ ||H(L)

f(L),1
||∞||Φ(L)

f(L)(S,x)− Φ
(L)

f(L)(Ŝ,x)||

≤ ||H(L)

f(L),1
||∞B

(L)

f(L) ||S − Ŝ||op||x|| (6)

where B
(L)

f(L) is the bound of the theorem applied to the L-layer SPGNN ΦL
f(L) .

For the second term, using the definition of A(L) and Lemma 3, we get:

|| (H(L)

f(L),1
(S)−H

(L)

f(L),1
(Ŝ))Φ

(L)

f(L)(Ŝ,x) ||

≤ A
(L)

f(L),1
||S − Ŝ||op||Φ(L)

f(L)(Ŝ,x)||

≤ A
(L)

f(L),1
||S − Ŝ||op

 ∑
f∈Lay(L)

L−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞

 ||x||. (7)

Combining the bounds given by inequalities 6 and 7 in the inequality 5 yields

||Φ(S,x)− Φ(Ŝ,x)|| (8)

≤
F (L)∑

f(L)=1

||H(L)

f(L),1
||∞B

(L)

f(L) ||S − Ŝ||op||x||

+

F (L)∑
f(L)=1

A
(L)

f(L),1

 ∑
f∈Lay(L)

L−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞

 ||S − Ŝ||op||x|| (9)

=

F (L)∑
f(L)=1

||H(L)

f(L),1
||∞B

(L)

f(L) +A
(L)

f(L),1

 ∑
f∈Lay(L)

L−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞

 ||S − Ŝ||op||x||.

(10)

Given that
F (L)∑

f(L)=1

(
||H(L)

f(L),1
||∞B

(L)

f(L) +A
(L)

f(L),1

( ∑
f∈Lay(L)

L−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞

))
= B(L+1), this

can be rewritten:
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||Φ(S,x)− Φ(Ŝ,x)|| ≤ B(L+1)||S − Ŝ||op||x||, (11)

which shows that the theorem holds for GNN with L+ 1 layers and concludes the proof.

We would like to highlight that the proof only relies on on the fact ||H(l)
i,j (S)||op = ||H(l)

i,j ||∞
(through Lemma 3 and inequality 6) and on the bound ||H(l)

i,j (S)−H
(l)
i,j (Ŝ)||op ≤ A

(l)
i,j ||S − Ŝ||op

(through the base case of the induction and inequality 7). The rest of the proof only involves general
computations that do not require any specific hypothesis, and the complicated expression of B(L)

is simply what appears to be the tightest bound that our method can yield. In particular, if we
have different bounds for ||H(l)

i,j (S)||op and ||H(l)
i,j (S)−H

(l)
i,j (Ŝ)||op in other settings, then Theorem

2 applies if we replace the ||H(l)
i,j ||∞ and A

(l)
i,j in the definition of B(L) by those bounds. This

observation is the ground for two important generalizations of Theorem 2.

The first generalization allows to apply the theorem to polynomials of higher order and is based on
the fact that we can provide a bound for ||(H(L)

f(L),1
(S)−H

(L)

f(L),1
||op even when H

(L)

f(L),1
is not an or-

der one polynomial, while the definition ||H(l)
i,j ||∞ := max

λ∈σ(S)
|H(l)

i,j (λ)| is still equal to ||H(l)
i,j (S)||op

independently of the degree of H . This is detailed in Appendix A.4.1.

The second generalization allows to apply the theorem to non-symmetric GSOs. The main point is
that the symmetry of the GSOs S is only used to efficiently compute the operator norm of H(S)
through ||H||∞ = max

λ∈σ(S)
|H(λ)| (when H is a degree 1 polynomial, it is enough to evaluate this

expression on the smallest and largest eigenvalues of S, which is O(1) operations). However, replac-
ing ||H||∞ by ||H(S)||op is perfectly rigorous. The only issue is the computational cost of repeated
computation of operator norms for non-symmetric matrices, but we can solve this issue by loosening

the bound using the inequality, if H(X) =
d∑

i=0

hiX
i is a filter, ||H(S)||op ≤

d∑
i=0

|hi|||S||iop. This

means that it is enough to compute the operator of a N ×N matrix once, and it is not necessary to
do it for every filters. This is further detailed in Appendix A.4.2.

A.2 PROOFS OF THE COROLLARIES.

We begin by proving Corollary 2.1:

Proof. We consider Φ, S, Ŝ and X(0) as in the statement of the corollary.

By definition of the embedding, ||Φ(S,X(0))vi
−Φ(Ŝ,X(0))v̂i || = ||Li||2 where Li is the i-th line

of the matrix Φ(S,X(0))− Φ(Ŝ,X(0)). Therefore,
N∑
i=1

||Φ(S,X(0))vi
− Φ(Ŝ,X(0))v′

i
||2 =

N∑
i=1

||Li||2

=

d∑
j=1

||Cj ||2

=

d∑
j=1

||Φ(S,X(0)
:,j )− Φ(Ŝ,X

(0)
:,j )||

2

where Cj is the j-th column of the matrix Φ(S,X(0))− Φ(Ŝ,X(0)).

Since Theorem 2 ensures that ||Φ(S, C(0)
j )− Φ(Ŝ, C

(0)
j )|| ≤ M , we deduce:

N∑
i=1

||Φ(S,X(0))vi
− Φ(Ŝ,X(0))v̂i ||2 ≤ dM2.
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We now prove Corollary 2.2. Similarly as what is done for the proof of Theorem 2, we
provide a tighter bound: ||Φ(S,X(0))vi − Φ(Ŝ,X(0))v′

i
|| ≤

√
dB

(L)
k ||S − Ŝ||op where

B
(L)
k :=

∑
f∈Lay(L)

L∑
m=k+1

[
(

L−1∏
l=L−m+1

||H(l)
fl,fl+1

||∞) ·A(L−m)
fL−m,fL−m+1

· (
L−m−1∏

l=0

||Ĥ(l)
fl,fl+1

||∞)

]
.

Proof. For the purpose of this proof, we introduce SPGNNs that are slightly more generals than
the SPGNNs used previously: we allow the SPGNN to have F (0) ≥ 1; i.e. they take F (0) vectors
as input rather than one, and we note Φ(S, (x1,x2, . . . ,xF (0))) such a generalized SPGNN with
initialization vectors (x1,x2, . . . ,xF (0)).

We consider a generalized SPGNN Φ with L layers, and a couple of identified nodes vi, v̂i ∈
G, Ĝ having their k-hop equal. We prove by induction on L that, if k ≥ L, then
Φ(S, (x1,x2, . . . ,xF (0)))i = Φ(Ŝ, (x1,x2, . . . ,xF (0)))i.

If L = 0 then Φ(S, (x1,x2, . . . ,xF (0))) = (x1,x2, . . . ,xF (0)) and the property is true.

We now consider L ∈ N∗ and we assume that the theorem holds for SPGNNs with L layers. We
consider a SPGNN Φ with L + 1 layers and we use the exact same notations as in the previous

proofs, i.e. Φ(S, (x1,x2, . . . ,xF (0))) = σ

(
F (L)∑
f(L)

H
(L)

f(L),1
(S)Φ

(L)

f(L)(S, (x1,x2, . . . ,xF (0)))

)
.

Since σ is point-wise, we have:

Φ(S, (x1,x2, . . . ,xF (0)))i = σ

F (L)∑
f(L)

(
H

(L)

f(L),1
(S)Φ

(L)

f(L)(S, (x1,x2, . . . ,xF (0)))
)
i


= σ

F (L)∑
f(L)

N∑
k=1

(H
(L)

f(L),1
)i,k(S)(Φ

(L)

f(L)(S, (x1,x2, . . . ,xF (0))))k

 .

However, in the last sum (H
(L)

f(L),1
)i,k(S) = 0 if k is not the index of a neighbour of vi in G.

Therefore, we can apply the induction hypothesis on the terms (Φ
(L)

f(L)(S, (x1,x2, . . . ,xF (0))))k

because the neighbour of vi have equal k − 1-hops, and (H
(L)

f(L),1
)i,k(S) = (H

(L)

f(L),1
)i,k(Ŝ) by

definition of the k-hop equality.

This yields:

Φ(S, (x1,x2, . . . ,xF (0)))i = σ

F (L)∑
f(L)

(
H

(L)

f(L),1
(S)Φ

(L)

f(L)(S, (x1,x2, . . . ,xF (0)))
)
i


= σ

F (L)∑
f(L)

(
H

(L)

f(L),1
(Ŝ)Φ

(L)

f(L)(Ŝ, (x1,x2, . . . ,xF (0)))
)
i


= Φ(Ŝ, (x1,x2, . . . ,xF (0)))i.

We now use this result to show the corollary. Firstly, we remark that we can replace the initialisation
matrix X(0) by a vector x (i.e. consider embeddings in dimension d = 1) since going from d = 1 to
a general d ∈ N only involves applying the inequality to each element of the vector Φ(S,X(0)) −
Φ(Ŝ,X(0)), similarly than what is done in the proof of Corollary 2.1. Note that, in this setting,
Φ(S,x)vi is the i-th coordinate of the vector Φ(S,x), noted Φ(S,x)i.

Then, we remark that Φ(S,x) = Φ(L−k),(L)(S, (Φ
(L−K)
1 (S,x),Φ

(L−K)
2 (S,x), . . . ,Φ

(L−K)

F (L−k)(S,x)))

where Φ
(L−K)
f is the sub-SPGNN of Φ that returns the intermediate value of Φ in the f -th com-
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ponents of the (L − k)-th layer, and Φ(L−k),(L) is the generalized SPGNN that transforms the
(L− k)-th layer in the last one.

By the previous result, we have

(Φ(S,X(0))− Φ(Ŝ,X(0)))i =

(Φ(L−k),(L)(S, (Φ
(L−K)
1 (S,x),Φ

(L−K)
2 (S,x), . . . ,Φ

(L−K)

F (L−k)(S,x))))i

− (Φ(L−k),(L)(S, (Φ
(L−K)
1 (Ŝ,x),Φ

(L−K)
2 (Ŝ,x), . . . ,Φ

(L−K)

F (L−k)(Ŝ,x))))i.

Finally, the proof of Theorem 2 shows that this vector can be bounded by B
(L)
k ||S − Ŝ||op||x||.

(Basically because, in the induction step, the term || (H(L)

f(L),1
(S) − H

(L)

f(L),1
(Ŝ))Φ

(L)

f(L)(Ŝ,x) ||,
which is the term studied in 7, is 0 for the last k layers.)

A.3 INSTANTIATION IN THE DISTANCE MODULO PERMUTATION FRAMEWORK

We remind the distance modulo permutation framework, that is commonly used to give stability
results: To measure the distance between two graph shift operators, and consequently the distance
between the graphs they are derived from, we use dP(S, Ŝ), denoted ||S − Ŝ||P in Gama et al.
(2020), defined as dP(S, Ŝ) = min

P∈P
||S −PŜP T || where P is the set of permutation matrices. We

change the notations to highlight the fact that the quantity depends on the two matrices S, Ŝ and
not on the difference S − Ŝ. The definition of dP can be extended to general continuous operators
Ψ, Ψ̂ : RN → RN by dP(Ψ, Ψ̂) = min

P∈P
max
||x||=1

||P TΨ(x)− Ψ̂(P Tx)||.

We can now give a version of Theorem 2 in this framework:
Corollary 3.1. Given a GNN Φ satisfying the hypotheses of Theorem 2, the following equality
holds:

dP(Φ(S, ·),Φ(Ŝ, ·)) ≤ LA(F ||H||∞)L−1dP(S, Ŝ).

Proof. We consider P0 ∈ P such that dP(S, Ŝ) = ||S − P0ŜP
T
0 ||op. The theorem then provides

the inequality, for ||x|| = 1,

||Φ(S,x)− Φ(P0ŜP
T
0 ,x)|| ≤ LA(F ||H||∞)L−1||S − P0ŜP

T
0 ||op

= LA(F ||H||∞)L−1dP(S, Ŝ)

and since

dP(Φ(S, ·),Φ(Ŝ, ·)) = min
P∈P

max
||x||=1

||P TΦ(S,x)− Φ(Ŝ,P Tx)||

= min
P∈P

max
||x||=1

||Φ(S,x)− PΦ(Ŝ,P Tx)||

= min
P∈P

max
||x||=1

||Φ(S,x)− Φ(PŜP T ,x)||

≤ max
||x||=1

||Φ(S,x)− Φ(P0ŜP
T
0 ,x)||,

then we have for the x that reaches the max:

dP(Φ(S, ·),Φ(Ŝ, ·)) ≤ ||Φ(S,x)− Φ(PŜP T ,x)||
≤ LA(F ||H||∞)L−1dP(S, Ŝ).

This proves the corollary.

The same instantiation can be made for Corollaries 2.1 and 2.2.
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SPGNN ΨH :
H(X) = hdX

d + · · ·+ h0

SPGNN ΦH :

hdX + hd−1

X X

X

1

1 1

h0

hd−2 hd−3

Figure 4: Construction of a SPGNN ΦH that only contains one order polynomials from a SPGNN
ΨH that contains a polynomial of order d.

A.4 GENERALIZATION OF THEOREM 2.

As mentioned at the end of the proof of Theorem 2, we can generalize the result to SPGNNs that
use polynomials of any degree and non-symmetric GSOs.

A.4.1 HYPOTHESIS ON THE DEGREE OF THE FILTERS

We begin by showing that if we consider a SPGNN ΨH of the form ΨH(S,x) = H(S)x where H
is a polynomial of any degree, then there exists a SPGNN ΦH that uses only polynomials of order
one and satisfies ΨH(S,x) = ΦH(S,x) for all S and x.

The generalization of the construction described here to transform any SPGNN Ψ into a SPGNN
Φ that only uses order 1 polynomials by replacing every filter H in Ψ by the corresponding ΦH is
straightforward.

Proof. We consider a SPGNN ΨH of the form ΨH(S,x) = H(S)x where H(X) =
d∑

i=0

hiX
i is

a polynomial of degree d ≥ 2. (If d ≤ 1, then the definition ΦH = ΨH satisfies the property.) As
shown in Figure 4, we define ΦH from ΨH as the d layer SPGNN with two features per intermediate
layer and filters:

• H
(0)
1,1 = hdX + hd−1, H(0)

1,2 = 1

• For 1 ≤ l ≤ d− 2, H(l)
1,1 = X , H(l)

1,2 = 0, H(l)
2,1 = hd−(l+1)X , H(l)

2,2 = 1.

• H
(d−1)
1,1 = X , H(d−1)

2,1 = h0.

The equality ΦH(S,x) = H(S)x = ΨH(S,x) is simply a rewriting of the equality hdX
d +

hd−1X
d−1 + · · ·+ h0 = X(. . . X(X(hdX + hd−1) + hd−2) + · · ·+ h1) + h0.

Then, since we have the equality ||ΨH(S,x)−ΨH(Ŝ,x)|| = ||ΦH(S,x)−ΦH(Ŝ,x)|| by defini-
tion of ΦH , and since ΦH now satisfies hypotheses of Theorem 2, we have the inequality:

||ΨH(S,x)−ΨH(Ŝ,x)|| ≤ BH ||S − Ŝ||op||x||

where BH is the bound of Theorem 2 applied to ΦH .

To complete this analysis, we can compute explicitly BH . We fix two GSOs S, Ŝ and we note
Λ := max

λ∈S
|λ| and Λ̂ := max

λ∈Ŝ
|λ| their largest eigenvalues. The proof of Theorem 4 yields the

expression:
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BH =
∑

f∈Lay(d)

d∑
k=1

[
(

d−1∏
l=d−k+1

||H(l)
fl,fl+1

||∞) ·A(d−k)
fd−k,fd−k+1

· (
d−k−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞)

]

where Lay(d) = {1} × {1, 2}d−1 × {1} and

• ||Ĥ(0)
1,1 ||∞ = max

λ∈σ(S)
|hdλ+ hd−1| and A

(0)
1,1 = |hd|,

• ||H(0)
1,2 ||∞ = 1 and A

(0)
1,2 = 0,

• for l ∈ {1, . . . d − 1}, ||H(l)
1,1||∞ = Λ, ||Ĥ(l)

1,1||∞ = Λ̂, ||H(l)
1,2||∞ = ||Ĥ(l)

1,2||∞ = 0,

||H(l)
2,1||∞ = ||Ĥ(l)

2,1||∞ = |hd−(l+1)|, ||H
(l)
2,2||∞ = ||Ĥ(l)

(2,2)||∞ = 1 and

A
(l)
1,1 = 1, A(l)

1,2 = A
(l)
2,1 = A

(l)
2,2 = 0,

• ||H(d−1)
1,1 ||∞ = Λ and A

(d−1)
1,1 = 1,

• ||H(d−1)
2,1 ||∞ = |h0| and A

(d−1)
2,1 = 0.

If we note λd a value such that |hdλd + hd−1| = max
λ∈σ(S)

|hdλ+ hd−1|, we can write:

BH = |hdλd +hd−1|(
d−1∑
l=1

Λ̂l−1 ∗Λd−(l+1))+ |hd|Λ̂d−1 + |hd−2|(
d−1∑
l=2

Λ̂l−2 ∗Λd−(l+1))+ · · ·+ |h1|

.

Using the inequality |hdλd + hd−1| ≤ |hd|Λ + |hd−1| and redefining Λ = max{Λ, Λ̂} for better

readability, we finally obtain: BH ≤
d∑

i=1

i|hi|Λi−1. Note that this bound is a bound to the derivative

of H , which is highly natural for an inequality on ||H(S)−H(Ŝ)||op. To match this intuition with

the notations, we now write ∆(H) =
d∑

i=1

i|hi|Λi−1.

So far, we have shown that ||H(S)x − H(Ŝ)x|| ≤ BH ||S − Ŝ||opx, in particular ||H(S) −
H(Ŝ)||op ≤ BH ||S − Ŝ||op.

Now remind the remark made at the end of the proof of Theorem 2: the whole proof on relies on
bounding ||H(S)||op and ||H(S) − H(Ŝ)||op for a general filter H . The definition of ||H||∞ :=
max

λ∈σ(S)
|H(λ)| still satisfies ||H(S)||op = ||H||∞, and the property we have just shown is a bound

to ||H(S) − H(Ŝ)||op. Therefore, Theorem 2 applies and states, for a SPGNN Ψ that uses filters
that are polynomials of any order, with the same notations as in the original statement:

||Ψ(S,x)−Ψ(Ŝ,x)|| ≤ B(L)||S − Ŝ||op||x||

where B(L) =
∑

f∈Lay(L)

L∑
k=1

[
(

L−1∏
l=L−k+1

||H(l)
fl,fl+1

||∞) ·B
H

(L−k)
fL−k,fL−k+1

· (
L−k−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞)

]
.

This can be written in the simpler form:

||Ψ(S,x)−Ψ(Ŝ,x)|| ≤ L∆(H)∞(F ||H||∞)L−1||S − Ŝ||op||x||

where ∆(H)∞ = max
H∈Ψ

∆(H).
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Figure 5: Average distances between the tuple embeddings of each relation of clean database and
their counterpart from the perturbed database. The perturbed database has been generated from the
clean one where tuples have been removed at a rate from 0 up to 0.5. The neural network is composed
of 12 layers; a minor perturbation in the database can impact the embedding of all elements of the
database.

A.4.2 HYPOTHESIS ON THE SYMMETRY OF THE GSOS

Once again, we use the remark made at the end of the proof to Theorem 2: if we can provide
alternative bounds for ||H(S)||op and ||H(S) −H(Ŝ)||op, we have a new version of the result. If
we assume that the filters are order 1 polynomials, then ||H(S) − H(Ŝ)||op ≤ A||S − Ŝ||op and
therefore Theorem 2 yields, for a SPGNN Φ:

||Φ(S,x)− Φ(Ŝ,x)|| ≤ B(L)||S − Ŝ||op||x||

where B(L) =
∑

f∈Lay(L)

L∑
k=1

[
(

L−1∏
l=L−k+1

||H(l)
fl,fl+1

(S))||op ·A(L−k)
fL−k,fL−k+1

· (
L−k−1∏
l=0

||H(l)
fl,fl+1

(Ŝ)||op)

]
.

This can be written in the simpler form:

||Φ(S,x)− Φ(Ŝ,x)|| ≤ LA(F ||H||op,∞)L−1||S − Ŝ||op||x||

where ||H||op,∞ = max
H∈Φ

||H(S)||op, ||H(Ŝ)||op.

Finally, we can combine both of the generalizations and they yield, for a SPGNN Ψ with filters of
any orders:

||Ψ(S,x)−Ψ(Ŝ,x)|| ≤ B(L)||S − Ŝ||op||x||

where B(L) =
∑

f∈Lay(L)

L∑
k=1

[
(

L−1∏
l=L−k+1

||H(l)
fl,fl+1

(S))||op ·BH
(L−k)
fL−k,fL−k+1

· (
L−k−1∏
l=0

||H(l)
fl,fl+1

(Ŝ)||op)

]
and, in that context, for a filter H , BH = ||hdS + hd−1||op(

d−1∑
l=1

||Ŝ||l−1
op ∗ ||S||d−(l+1)

op ) +

|hd|||Ŝ||d−1
op + |hd−2|(

d−1∑
l=2

||Ŝ||l−2
op ∗ ||S||d−(l+1)

op ) + · · ·+ |h1|.

This can be written in the simpler form:

||Ψ(S,x)−Ψ(Ŝ,x)|| ≤ L∆̃(H)∞(F ||H||op,∞)L−1||S − Ŝ||op||x||

where ∆̃(H)∞ = max
H∈Ψ,M∈{S,Ŝ}

d∑
i=1

i|hi| · ||M ||i−1
op .

B OTHER EXPERIMENTAL DETAILS

Table 2 shows the detail of the TPC-E tables used to generate the database graphs.
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Figure 6: Average distances between the tuple embeddings of each relation of clean database and
their counterpart from the perturbed database. The perturbed database has been generated from
the clean one where values have been removed at a rate from 0 up to 0.5. The neural network
is composed of 12 layers; a minor perturbation in the database can impact the embedding of all
elements of the database.
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Figure 7: Average distances between the tuple embeddings of each relation of clean database and
their counterpart from the perturbed database. The perturbed database has been generated from
the clean one where tuples have been removed at a rate from 0 up to 0.5. The neural network is
composed of 3 layers; a minor perturbation in the database is less likely to impact the embedding of
all elements of the database.
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Figure 8: Average distances between the tuple embeddings of each relation of clean database and
their counterpart from the perturbed database. The perturbed database has been generated from
the clean one where values have been removed at a rate from 0 up to 0.5. The neural network is
composed of 3 layers; a minor perturbation in the database is less likely to impact the embedding of
all elements of the database.
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Table 2: Detail of TPC-E tables used.

Table ISO Prefix Tuples Attributes
Security S 154 16
Broker B 49 5

TaxRate TX 169 3
Company CO 112 9
Industry IN 101 3
Sector SC 11 2

Customer C 145 24
CommissionRate CR 134 6

ZipCode ZC 134 3
Financial FI 142 14

CustomerTaxrate CX 180 2
WatchList WL 117 2

Charge CH 14 3
Exchange EX 3 7

HoldingSummary HS 126 3
WatchItem WI 204 2
TradeType TT 4 4
LastTrade LT 119 5

AccountPermission AP 135 5
NewsXRef NX 164 2

Address AD 107 5
CustomerAccount CA 118 6

CompanyCompetitor CP 199 3
StatusType ST 4 2

Other comparison with GNN variants We also compare the degree one SPGNNs on other
datasets, CitySeer Yang et al. (2016) and PubMed Yang et al. (2016) along with the Cora dataset.
CitySeer is a graph composed of 3,327 nodes and 9,104 edges. Each node belongs to one of the six
classes which compose the corpus and has an initial feature mappings of dimension 3,703. PubMed
is another graph dataset composed of 19,717 node distributed among three different classes. These
nodes are connected by 88,648 edges and have an initial feature map of dimension 500. The exper-
imental conditions remain the same as the ones presented in Section 6 and the results are presented
in Table 3 and reinforce the results presented in the main text. The table presents the accuracy scores
performed by the different GNNs on graphs that keep 100%, 90%, 70%, 50%, 30% of their original
nodes. The annotation (1) identify the experiments where the 2-layer MLP is retrained for each
“dirty” graph while (2) denote the experiments where none of the GNNs nor the MLP are retrained.

Other databases We have used the following other datasets from the relational database domain
to corroborate the results in Section 6:

• genes Cheng et al. (2002) This dataset has been presented for the 2001 KDD competition,
containing genomics and drug design related data.

• hepatitis Neville et al. (2003) a database which presents biological conditions of patients
having contracted either hepatitis A or B.

• mondial May (1999) a dataset which shows whether a country is is predominantly Chris-
tian or not.

• mutagenesis Lodhi & Muggleton (2005) a dataset composed of data concerning muta-
genicity of molecules on Salmonella typhimurium.

• world Toenshoff et al. (2023) a dataset which contains data on countries and their cities.

The smaller versions of these databases, used in this work, are presented in Table 4 and their associ-
ated graphs in Table 5.
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Table 3: SPGNN vs. state of the art

GCN (1) GAT (1) SPGNN (1) GCN (2) GAT (2) SPGNN (2)

Cora (100%) 0.86± 0.02 0.87± 0.01 0.85± 0.05 0.86± 0.02 0.87± 0.01 0.85± 0.05
Cora (90%) 0.74± 0.04 0.76± 0.018 0.81± 0.02 0.65± 0.06 0.67± 0.06 0.65± 0.07
Cora (70%) 0.71± 0.03 0.73± 0.01 0.80± 0.02 0.62± 0.04 0.60± 0.02 0.58± 0.04
Cora (50%) 0.62± 0.05 0.62± 0.05 0.77± 0.02 0.44± 0.09 0.44± 0.07 0.42± 0.06
Cora (30%) 0.49± 0.07 0.52± 0.05 0.71± 0.04 0.24± 0.07 0.27± 0.04 0.28± 0.10

PubMed (100%) 0.84± 0.01 0.84± 0.01 0.86± 0.01 0.84± 0.01 0.84± 0.01 0.86± 0.01
PubMed (90%) 0.79± 0.04 0.78± 0.05 0.84± 0.01 0.78± 0.05 0.79± 0.03 0.76± 0.07
PubMed (70%) 0.77± 0.08 0.76± 0.02 0.83± 0.01 0.75± 0.03 0.74± 0.02 0.73± 0.03
PubMed (50%) 0.68± 0.08 0.67± 0.08 81± 0.01 0.61± 0.12 0.61± 0.12 0.58± 0.13
PubMed (30%) 0.70± 0.02 0.68± 0.02 0.82± 0.01 0.65± 0.01 0.65± 0.02 0.64± 0.02
CiteSeer (100%) 0.75± 0.02 0.75± 0.02 0.71± 0.04 0.75± 0.02 0.75± 0.02 0.71± 0.04
CiteSeer (90%) 0.64± 0.02 0.61± 0.04 0.68± 0.02 0.32± 0.12 0.32± 0.12 0.29± 0.10
CiteSeer (70%) 0.60± 0.03 0.60± 0.02 0.66± 0.01 0.36± 0.15 0.36± 0.15 0.34± 0.18
CiteSeer (50%) 0.61± 0.02 0.58± 0.05 0.65± 0.05 0.23± 0.08 0.25± 0.09 0.23± 0.08
CiteSeer (30%) 0.56± 0.03 0.53± 0.04 0.62± 0.02 0.24± 0.10 0.23± 0.10 0.23± 0.11

Table 4: Properties of extra databases used.

Database Relations Tuples Attributes
genes 3 300 15

mutagenesis 3 300 14
mondial 34 3170 136
hepatitis 7 632 26

world 3 300 24

Figures 9–14 show further results on the stability of the database embeddings for the value removal
perturbation. These results corroborate the ones presented in Section 6 for TPC-E.

Oversmoothing (Rusch et al. (2023)) To ensure that our stability results are not simply a byprod-
uct of oversmoothing, we compare here the stability results on the Hepatitis dataset, obtained with a
5-layer GNN (Fig. 10) with those obtained with a 2-layer GNN (Fig. 11)(mitigating oversmoothing).
As we can observe similar trends, but at different scales, we can conclude that the initial experiments
(Fig. 1-3) using GNNs with 3 to 5 layers are not significantly impacted by oversmoothing.

Chaining tuple deletions and additions We conduct experiments where we sequentially add or
delete tuples in a database. The rationale for this experiment is to confirm that adding and removing
values are symmetrical operations w.r.t. stability. The results are present in Fig. 15-17. Note

Table 5: Sizes of graphs generated from databases in Table 4.

FoRWaRD EmBDi 5-DB 5-DB Gaif 5-DB-Att Tuple+Clique

genes nodes 7,902 8,041 21,349 21,210 21,210 7,902
edges 11,698 20,048 41,843 46,058 28,569 161,448

mondial nodes 10,089 10,225 26,377 26,241 26,241 10,089
edges 15,131 24,571 50,748 96,246 34,305 205,168

mutagenesis nodes 706 720 2,123 2,109 2,109 706
edges 1,351 1,906 4,500 4,830 3,100 16,201

world nodes 1,792 1,816 4,219 4,195 4,195 1,792
edges 2,266 3,923 7,698 15,340 5,098 17,116

hepatitis nodes 820 846 3,249 3,223 3,223 820
edges 1,782 2,597 7,820 6,211 5,424 31,978
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Figure 9: Stability to missing values, by removing up to 90% of the values of the database. We show
result for removal of values of various frequency bins. This experiment has been performed on the
Genes database.
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Figure 10: Stability to missing values, by removing up to 90% of the values of the database. We
show result for removal of values of various frequency bins. This experiment has been performed
on the Mutagenesis database.
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Figure 11: Stability to missing values, by removing up to 90% of the values of the database. We
show result for removal of values of various frequency bins. This experiment has been performed
on the Mutagenesis database using a 2-layer SPGNN.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

||
(S

,X
)

(S
,X

)||
nbr occurrences: 1 - 1

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 5

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 6 - 6

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 7 - 686

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

Figure 12: Stability to missing values, by removing up to 90% of the values of the database. We
show result for removal of values of various frequency bins. This experiment has been performed
on the Hepatitis database.
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Figure 13: Stability to missing values, by removing up to 90% of the values of the database. We
show result for removal of values of various frequency bins. This experiment has been performed
on the World database.
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Figure 14: Stability to missing values, by removing up to 90% of the values of the database. We
show result for removal of values of various frequency bins. This experiment has been performed
on the Mondial database.
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Figure 15: Experiment performed over the Hepatitis database Neville et al. (2003). The plot on
the left explores the distance between (a) the embeddings generated from a truncated database D1

in which, at each step, some tuples are either added or deleted, and (b) the embeddings generated
using the entire database D2. To plot on the right presents the upper bounds defined in Corollary
2.1; D1 has been preprocessed s.t., at the first iteration, 50% of its tuples are missing. Each addition
increments the database by 20% of the left-out tuples. For each removal operation, 10% of the total
number of tuples are removed.
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Figure 16: Experiment performed over the Mutagenesis database Lodhi & Muggleton (2005).
The plot on the left explores the distance between (a) the embeddings generated from a truncated
database D1 in which, at each step, some tuples are either added or deleted, and (b) the embeddings
generated using the entire database D2. To plot on the right presents the upper bounds defined in
Corollary 2.1; D1 has been preprocessed s.t., at the first iteration, 50% of its tuples are missing. Each
addition increments the database by 20% of the left-out tuples. For each removal operation, 10% of
the total number of tuples are removed.

that the results presented in the main experimental section focus on the worst-case scenario, by
examining the distance between two node embeddings of the two graphs. By applying Corollary
2.1 and summing over all embeddings, one can observe that the practical and theoretical results are
much closer.
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Figure 17: Experiment performed over the World database Toenshoff et al. (2023). The plot on
the left explores the distance between (a) the embeddings generated from a truncated database D1

in which, at each step, some tuples are either added or deleted, and (b) the embeddings generated
using the entire database D2. To plot on the right presents the upper bounds defined in Corollary
2.1; D1 has been preprocessed s.t., at the first iteration, 50% of its tuples are missing. Each addition
increments the database by 20% of the left-out tuples. For each removal operation, 10% of the total
number of tuples are removed.
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