
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STABLE GNN EMBEDDINGS FOR RELATIONAL DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) are a valuable tool for extracting meaningful rep-
resentations from graph-structured data. Graphs, like relational databases, rep-
resent relationships between entities. Recent research has explored the poten-
tial of using GNNs for downstream tasks on relational data, such as entity res-
olution and missing value imputation. However, applying GNNs to relational
databases presents two challenges. The first challenge is data conversion: rela-
tional databases, organized as tables connected by key / foreign key constraints,
must be transformed into graphs without losing essential information. The sec-
ond challenge is ensuring that the embedding technique can adapt to the dynamic
nature of databases. When a database is updated, the embeddings of the result-
ing database should be recomputable efficiently. This requires that previously
computed embeddings remain stable despite changes to the data. Motivated by
using GNNs for relational databases, we study stability, i.e., how much the em-
beddings generated by a GNN change when the input graph undergoes modifica-
tions. Building upon the work of Gama et al. (2020), which established a limit for
the distance between embeddings of similar graphs, we focus on node-level sta-
bility for GNN embeddings, particularly when the graphs originate from relations.
We propose several techniques for transforming relational databases into graphs.
To assess the effectiveness of these methods, we conduct experiments using the
TPC-E database benchmark and analyze their stability.

1 INTRODUCTION AND MOTIVATION

Graphs offer a powerful representation of real-world data, capturing intricate relationships and de-
pendencies. However, many modern databases still adhere to the relational data model, popularized
by Codd decades ago; according to one source,1 a whopping 72% of the world’s database manage-
ment systems are relational as of June 2022, while by contrast, a mere 1.8% are graph DBMS. Given
the predominance of enterprise and other operational data in the form of relational databases, many
predictive tasks must operate directly on this relational data.

Recent advances in deep learning, particularly Graph Neural Networks (GNNs), have demonstrated
their effectiveness in learning from tabular, relational data. Our research focuses on “in-database”
learning, where GNNs are applied directly to relational data within operational databases, after
transforming the relational data into a graph representation. This approach is motivated by the
ubiquity of relational databases and by the dynamic nature of operational data, which raises unique
challenges compared to static data like images or text.

Several recent studies have explored graph representations of relational databases. By transforming
relational data into graphs, these studies have successfully applied GNNs to address downstream
tasks like entity resolution and missing value imputation within the original relational data. How-
ever, the existing studies often overlook the stability of graph representations of relational data and
of the corresponding GNN models. In general, small changes in the underlying data can lead to
significant shifts in the GNN-learned representations, potentially resulting in drastically different
predictions and thus different outcomes in downstream tasks. Therefore, techniques to understand
and mitigate or bound these effects are essential.

Inspired by the successful application of GNNs to relational databases, we investigate GNN stability.
This involves understanding how changes to the graph representation of a relational database affect

1https://tinyurl.com/popularDBMS

1

https://tinyurl.com/popularDBMS

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the generated embeddings. Building upon the work of Gama et al. (2020), we revisit the influence
of graph topology on GNN outcomes and establish a boundary for the distance between embeddings
of similar graphs. Gama et al. (2020)’s study primarily focuses on small graph perturbations, over-
looking the potential impact of more significant changes often seen in relational databases, such as
modifying attribute values or adding /removing tuples. To address this issue, we modify the specific
type of GNN considered in Gama et al. (2020) and derive a global stability theorem based on their
local stability results.

Our first contribution is hence to extend the stability results to take into account more significant
graph perturbations, and to provide bounds that do not directly depend on the size of the input graph
(Section 4); both of these properties are desirable in the context of relational databases.

Our second contribution is a comprehensive analysis of existing heterogeneous (having different
types of nodes) database-to-graph constructions. We identify one major drawback, their tendency
to be overly heterophilic (with dissimilar nodes grouped together), a characteristic that can hinder
the effectiveness of GNNs Zhu et al. (2021),He et al. (2022), Wang et al. (2022b). To address
it, we propose an alternative construction method (detailed in Section 5). Our experiments on the
Cora and TPC-E datasets demonstrate that our approach is up to 10 times more stable than existing
state-of-the-art methods (Section 6).

2 RELATED WORK

Graph Neural Networks GNNs are a robust and versatile tool for prediction tasks related to
graph-structured data. Inspired by Convolutional Neural Networks (CNNs), GNNs compute infor-
mation for each node by aggregating data from neighboring nodes. Many GNN architectures have
been proposed; these include GNNs with attention mechanisms Veličković et al. (2017), simple
convolution Kipf & Welling (2016), spectral convolution Defferrard et al. (2016), inductive learning
Hamilton et al. (2017), or message passing approaches Gilmer et al. (2020), Battaglia et al. (2016).

Stability of GNNs When working with GNNs, it is essential to consider how their output is in-
fluenced by the structure of the input graph. A desirable property is isomorphism invariance: when
two graphs are identical in structure (isomorphic), a GNN should produce the same embeddings.

The concepts of invariant and equivariant GNNs have been investigated by Maron et al. (2018), fo-
cusing on ensuring that the network’s output remains unchanged when nodes are permuted. Keriven
& Peyré (2019) proposed universal GNNs, which achieve permutation invariance by using message-
passing frameworks, guaranteeing that the network’s behavior is not affected by the order of nodes.

While permutation equivariance is a valuable property for GNNs, it does not fully explain how em-
beddings change when nodes or edges are added or removed. Diffusion-based GNNs, introduced
by Gama et al. (2018), focus on ensuring stability under local graph perturbations in diffusion pro-
cesses. Subsequent work by Gama et al. (2020) derived stability guarantees for GNNs, focusing
on how small perturbations in graph structure affect GNN performance, ensuring robust feature ex-
traction from locally perturbed graphs. The work of Wang et al. (2022a) has further explored GNN
stability, including the use of positional encoding. Zou & Lerman (2020) introduced graph wavelet
filter banks to achieve robustness against structural changes; they ensure stability by filtering graph
signals and capturing multi-scale information without the need for supervised learning. Finally,
Böker et al. (2024) extended the Weisfeiler-Lehman test to graphons, giving a more general frame-
work for analyzing stability in large graphs. Another point of view of stability, when the graphs are
unchanged, but instead the features applied to the GNN vary, is studied in Jia & Zhang (2023).

Another line of research focuses on GNN robustness against adversarial attacks. Such attacks in-
volve making subtle changes to the input data with the intention of misleading the GNN into making
incorrect predictions or classifications. To defend against such attacks, Zügner et al. (2018) proposed
robust training techniques that enhance the resilience of GNNs. Ennadir et al. (2024) explored the
use of noise injection to mitigate the impact of adversarial perturbations. Nikolentzos et al. (2024)
discussed the vulnerability of GNNs to attacks targeting both the graph structure and node attributes,
highlighting the need for robust defenses.

Generating embeddings for relational databases Several approaches have been developed to
create embeddings for relational databases using language models. Fey et al. (2023) introduced a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

modular neural message-passing system that can operate directly on relational databases, aligning
with the formal relational model and enabling deep learning directly in database systems, without
the need for costly data pre-processing stages.

Other methods focus on constructing heterogeneous or n-partite graphs to generate relevant embed-
dings. Zahradnı́k et al. (2023) proposed Relational Deep Learning (RDL), which treats relational
databases as heterogeneous graphs and employs Message Passing Graph Neural Networks (MPNNs)
to learn from interconnected data. Similarly, Cappuzzo et al. (2024) proposes an approach for miss-
ing value imputation using GNNs on heterogeneous graphs, based on techniques designed for het-
erogenous graphs such as those in Schlichtkrull et al. (2018).

Some methods utilize homogeneous graphs. Toenshoff et al. (2023) generated a bipartite graph and
employed random walk methods to create embeddings, verifying their stability by the accuracy of
downstream tasks. Cappuzzo et al. (2020) proposed a tripartite graph representation of relational
databases, while Niepert (2016) used a Gaifman graph for generating embeddings.

Many existing homogeneous graph representations of databases exhibit a heterophilic property,
where nodes of different types are more likely to be connected, which can hinder the generation
of meaningful embeddings Abu-El-Haija et al. (2019), Zhu et al. (2020), Zhu et al. (2021), Chien
et al. (2020). We present in this paper graph constructions that alleviate this problem.

3 GRAPH NEURAL NETWORKS

3.1 PRELIMINARIES

Graphs In this section we consider graphs, G = (V,E) consisting of a finite set V of N nodes
and set of edges E ⊆ V × V . On this graph, we can define graph shift operators (GSO), matrices
S ∈ RN×N with the property that Sij = 0 if (i, j) /∈ E and i ̸= j. The adjacency matrix A and the
Laplacian matrix L are two examples of GSOs.

MPNNs Combination-Aggregation GNNs, a.k.a. Message Passing Neural Networks (MPNN)
Gilmer et al. (2017), operate by iteratively aggregating information from a node’s neighbors and
updating the node’s representation through a combination of this aggregated information and the
previous node information. The two main steps are message passing and update, represented as:

η(l)v = UPDATE(l)

η(l−1)
v ,

∑
u∈N (v)

MESSAGE(l)
(
η(k−1)
v , η(l−1)

u , euv

) , (1)

where η(l)v is the representation of node v at layer l, N (v) is the set of neighbors of v, and euv is the
edge feature between nodes u and v. MESSAGE(l) and UPDATE(l) are learnable functions.

From this general formulation of GNNs, different variants were proposed. In GATs Veličković et al.
(2017) attention mechanisms are applied to learn the importance of neighboring nodes. GCNs Kipf
& Welling (2016) simplify the message-passing framework by using normalized adjacency matrices
for aggregation. The key aim is to smooth the node features based on their neighbors. Another
variant are GINs Xu et al. (2018) designed to output embeddings as powerful as the Weisfeiler-
Lehman graph isomorphism test, and where the aggregation function uses a multi-layer perceptron
(MLP) to update node embeddings.

3.2 SIGNAL PROCESSING GNNS (SPGNNS)

We detail the variant of GNNs that we study, namely Signal Processing GNNs (SPGNNs), inspired
by signal processing techniques. The following definitions are adapted from Gama et al. (2020).

Features With each layer l, we associate F (l) vectors, called features or graph signals, denoted
(x

(l)
f)f∈{1,...Fl} ∈ (RN)Fl and X(l) ∈ RN×Fl the feature map composed by all the F (l)-th graph

signals. The features are computed from the ones from the previous layer l − 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Construction To compute X(l+1) from X(l), we define a sequence of matrices (H(l,k))k∈N ∈
RF (l)×F (l+1)

that is finite, i.e. H(l,k) = 0 for k > K. The matrices contain the learnable parameters
(H

(l,k)
g,f)(g,f)∈F (l)×F (l+1) of the network. From these parameters, a family (z

(l+1)
f)f∈×{1,...,F (l+1)}

of intermediate vectors is then computed: z(l+1)
f =

K∑
k=0

F (l)∑
g=1

Skx
(l)
g H

(l,k)
g,f where x

(l)
g is X(l)

:,g . If we

denote by H
(l)
f,g the polynomial

K∑
k=0

H
(l,k)
f,g Xk, the formula can be written z

(l+1)
f =

F (l)∑
g=1

H
(l)
g,f (S)x

(l)
g .

The polynomials H(l)
f,g are called filters. The matrix X(l+1) is then defined by its columns X(l+1)

:,f =

σ(z
(l+1)
f) where σ is a pointwise non-linearity (e.g., ReLU). This can be written in a matrix form:

X(l+1) = σ(

K∑
k=0

SkX(l)H(l,k)).

We denote by an L-layer SPGNN Φ a function composed by the L layers defined above, taking as
input a Graph Shift operator (GSO) S and a graph signal x ∈ RN . The X(0) matrix is initialised as
the single-column matrix containing the vector x, while the output is the only vector stored in the
last layer, X(L)

: , 1. In particular, F0 = FL = 1.

Node embeddings Strictly speaking, the L-layer SPGNN Φ as defined above does not output
embeddings: when applied to a vector, it returns one coordinate of the final embedding for each
node. To return a d-dimensional representation of each node, we use the SPGNN on d vectors in
RN and concatenate the results, which is equivalent to applying the SPGNN on a N × d matrix.

We henceforth denote as X ∈ RN×d the initial feature matrix of the graph, where each row corre-
sponds to the initial embedding of a node, and X ′ ∈ RN×d as the final feature map of the graph,
where its i-th column (i ≤ d) is the i-th column of X after transformation via Φ.

Computational issues Computing the final feature map as shown previously requires recomputing
the H matrices of all the graph filters. This poses a significant memory problem if we want to
carry out learning with high-dimensional embeddings, as all the matrices computed in this way
will have to be saved during the process. This is why we have restricted the SPGNN method to
low dimensional representations. Despite this apparent shortcoming, our experiments, in Section 6,
show that SPGNN remains competitive compared to the state-of-the-art GNNs.

4 STABILITY OF SPGNNS

In this section, we discuss the main technical results of this paper. We first present a refined bound
on the stability of SPGNNs, then we discuss the stability of node embeddings in the average case,
and finally we provide a refined bound for the stability of node embeddings in the worst case.

4.1 EXISTING RESULTS

We use the norm operator of a matrix S, denoted ||S||op and defined as ||S||op := max
||x||=1

||Sx||.

The final theorem in Gama et al. (2020), particularly the first point of their Property 3, can be
simplified as follows:

Theorem 1 (Theorem 4 & Property 3 in Gama et al. (2020)). Let S and Ŝ be two GSOs and Φ
be a SPGNN. We assume that, for all filters H appearing in Φ and all eigenvalues λ of S and
Ŝ, |H(λ)| ≤ 1. We also assume that the pointwise non-linearities in Φ are 1-Lipschitz. Define
ε := ||S− Ŝ||op and δ = (||U −V ||2 +1)2 − 1 where U and V are orthogonal matrices s.t. UTSU

and V T (S − Ŝ)V are diagonal. Then, the following inequality holds for all x ∈ RN s.t. ||x|| = 1:

||Φ(S,x)− Φ(Ŝ,x)|| ≤ (1 + δ
√
N)LFL−1ε+O(ε2).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

While this result is interesting and has been a model for our theoretical work, we face several limita-
tions when trying to apply it. Firstly, the result is local, i.e., only relevant when the amplitude of the
perturbation ε = ||S − Ŝ|| goes to 0. Yet the perturbations we are interested in – in the context of
relational databases – can produce modification of graphs that cannot be considered as infinitesimal.
For example, a tuple being removed would result in the deletion of several edges in the graph rep-
resentation of the database; the perturbation, measured as ||S − Ŝ||op, would typically be roughly
equal to the number of deleted edges. Moreover, the assumption on the filters (|H(λ)| ≤ 1) may not
always hold, since the parameters of the filters are the result of the SPGNN training and therefore
are hard to control. Finally, a key limitation of Gama et al. (2020) is the dependence on the graph
size (N), making it difficult to establish results on asymptotic stability, particularly when dealing
with large graphs and ensuring that embeddings remain reasonably stable as the data grows.

In the next section, we establish a result (Theorem 2) that addresses these issues by using a degree 1
assumption on the polynomial defining the filters. We also show that this assumption can generalize.

4.2 REFINED BOUNDS ON THE STABILITY OF SPGNNS

Our main theorem provides a refinement of the upper bound in Gama et al. (2020) on the distance
between the embeddings of two graphs. The main improvement is that our bound is global and does
not depend on N , the size of the graph, although the bound involves N -dimensional norms:
Theorem 2. Let Φ(·, ·) be a GNN with L layers, with fewer than F features per layer, that
only uses filters of the form H(X) = aX + b. We assume that the non-linearities σ in Φ

are 1-Lipschitz and satisfy σ(0) = 0. Let S, Ŝ ∈ RN×N be two symmetric matrices. Let
||H||∞ := max

H∈Φ, λ∈σ(S)∪σ(Ŝ)
|H(λ)|, the maximum of the value |H(λ)| over all filters H that appear

in Φ and all eigenvalues λ of S or Ŝ. Let A := max
H(X)=aX+b∈Φ

|a|.

Then, for all x ∈ RN , we have:

||Φ(S,x)− Φ(Ŝ,x)|| ≤ LA(F ||H||∞)L−1||S − Ŝ||op||x||. (2)

The proof can be found in Appendix A.1.

Remark 1 The bound given in Theorem 1 is useful to understand how the stability evolves de-
pending on the parameters of the SPGNN. However, our proof reveals an even tighter bound, albeit
less readable and less intuitive.

Remark 2 Note that, in Eq. 2, the value of ||H||∞ depends on S and Ŝ. Therefore, this equation
does not show that SPGNNs are Lipschitz. However, if we restrict the domain of S, Ŝ to a bounded
subset of RN×N , then Eq. 2 indeed states that SPGNNs are Lipschitz. For instance, if S, Ŝ are
adjacency matrices, then their Frobenius norm (defined as ||S||F :=

√
tr(ATA)) is less than N , so

their eigenvalues are less than N . Therefore, ||H||∞ can be bounded by max
λ∈[−N,N],H

(l)
i,j∈Φ

|H(l)
i,j (λ)|

and then Theorem 2 does imply that, for a given x ∈ RN , Φ(·, x) is a Lipschitz function.

Remark 3 The result in Theorem 2 can be instantiated in the distance modulo permutation frame-
work used in Gama et al. (2020). For the sake of clarity and due to lack of space, we defer this to
the supplementary material, Appendix A.3.

Remark 4 We chose to state Theorem 2 for SPGNNs that only contain filters that are order 1
polynomials because a SPGNN that uses polynomials of higher order can be reduced to a SPGNN
that only uses filters of order 1. This is detailed in Appendix A.4.1 and illustrated in Figure 4.

However, to apply our results directly to a SPGNN Ψ with L layers, fewer than F features by layer,
and using higher order polynomials, the following holds, in the same vein as Theorem 2:

||Ψ(S,x)−Ψ(Ŝ,x)|| ≤ L∆(H)∞(F ||H||∞)L−1||S − Ŝ||op||x||

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where ∆(H)∞ = max
H∈Ψ

∆(H) and if H(X) =
d∑

i=0

hiX
i, ∆(H) :=

d∑
i=1

i|hi|Λi−1 for Λ =

max
λ∈σ(S)∪σ(Ŝ)

|λ|. The proof is given in Appendix A.4.1.

As a consequence, our framework can be applied to a wide variety of architectures, such as graph
convolutional neural networks (see also Remark 3 in Gama et al. (2020)).

Remark 5 While this is not our focus in this work, we mention that Theorem 2 extends to non-
symmetric matrices, i.e. to directed graphs. This is further detailed in Appendix A.4.2.

4.3 NODE EMBEDDING STABILITY

The result of Theorem 2 holds for the embeddings of all the nodes of the graph, but it may be too
loose for some node pairs. For instance, for a graph G and Ĝ obtained from G by removing an edge,
the bound on the distance between two node embeddings is the same for a node that “lost” that edge
and for a node that is far from the deleted edge. However, intuitively we would expect that for nodes
that are far from the perturbation the effect on their embeddings should be less pronounced.

Therefore, in this section, we discuss two corollaries of Theorem 2 that translate the original result
in stability properties at the node embedding level and deal with the refinement of the bound for
nodes that are less impacted by the perturbation.

Notice that being given a graph shift operator (GSO) on a graph amounts to being given integers
corresponding to an arbitrary but fixed ordering of the nodes: each node v of G is represented by
an integer i that corresponds to the row/column of S that represents this node. If we are given two
graphs G, Ĝ with two associated GSOs S, Ŝ, then we can define the identification of two nodes by
stating that a pair of nodes in (G, Ĝ) are identified if they are represented by the same integer i. When
discussing the node embedding stability, we always compare the distance between the embeddings
of a pair of identified nodes, and, in the following, we use the notation (vi, v̂i) to refer to the couple
of nodes in G × Ĝ that are identified by the integer i.

The purpose of the first corollary is to instantiate Theorem 2 to bound the distance between node
embeddings. The bound is given on the sum of these distances, which provides both a worst case
bound and an average bound:

Corollary 2.1. Consider a GNN Φ satisfying the hypotheses of Theorem 2, and a pair of graphs
G, Ĝ with their associated shift operators S, Ŝ. Assume that all the columns of the initialisation
matrix X(0) are normalized. Then the total squared distances between the embeddings satisfies:

N∑
i=1

||Φ(S,X(0))vi − Φ(Ŝ,X(0))v̂i ||2 ≤ dM2, (3)

where M is the bound of Theorem 2, i.e. M = B(L)||S − Ŝ||op.

The proof can be found in appendix A.2.

Remarks On the one hand, Corollary 2.1 implies that, given a pair of identified nodes (vi, v̂i),
we can bound the distance of their embeddings by ||Φ(S,X(0))vi − Φ(Ŝ,X(0))v̂i || ≤

√
dM . On

the other hand, the result ensures that, for at least N/2 pairs of nodes (vi, v̂i), ||Φ(S,X(0))vi −
Φ(Ŝ,X(0))v̂i || ≤

√
2dM√
N

. This last inequality ensures that, if we consider GSOs whose eigenvalues
tend not to increase with the number of nodes N , the bound on the distance between the embeddings
approaches 0, which ensures an asymptotic stability for SPGNNs. The fact that the bound no longer
depends on

√
N , following our improvement, is crucial for this result to hold.

While Corollary 2.1 states that the majority of the node embeddings are stable, it does not give a
method to identify which pairs of nodes will be more stable. The goal of the next result is to analyze
pairs of nodes that are more stable than what is stated by Theorem 2. We start by defining the notion
of k-hop equality, which is crucial to identify these pairs:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Definition 4.1 (k-hop equality). We consider two graphs G, Ĝ with two associated GSOs S, Ŝ. We
define the k-hop equality relative to S, Ŝ inductively:

• Every pair of identified nodes in G, Ĝ have equal 0-hops.

• Let k ≥ 1. If u and û are a pair of identified nodes both represented by the same integer i,
they have equal k-hop if Si,: = Ŝi,: and all their neighbors can be identified pairwise with
each pair having equal (k − 1)-hops.

In other words, the fact that two nodes u, û have equal k-hop means that the sub-graph induced in
G by all the edges and vertices that can be reached in a k-walk starting from u is exactly the same
as the sub-graph induced in Ĝ by all the edges and vertices that can be reached in a k-walk starting
from û, i.e., the perturbation in G is at least at distance k from u.

Building upon this notion, we can refine the worst-case result of Corollary 2.1 for pairs of nodes that
have equal k-hops:
Corollary 2.2. Consider an SPGNN Φ satisfying the hypotheses of Theorem 2, and a pair of graphs
G, Ĝ with associated shift operators S, Ŝ. Assume that all the columns of the initialisation matrices
X(0) are normalized. Consider the i-th nodes of G and Ĝ, denoted vi and v′i and assume that their
have equal k-hops, then we have the following property:

||Φ(S,X(0))vi − Φ(Ŝ,X(0))v′
i
|| ≤

√
d(L− k)+A(F ||H||∞)L−1||S − Ŝ||op (4)

where (L− k)+ = max(0, L− k).

The proof can be found in Appendix A.2.

In particular, note that when k ≥ L we have Φ(S,X(0))vi = Φ(Ŝ,X(0))v′
i
. Similar to the findings

in Theorem 2, the proof reveals a tighter bound. While this refined bound provides greater accuracy,
it may be less intuitive to understand.

5 APPLICATION: STABILITY OF EMBEDDINGS FOR RELATIONAL DATABASES

One application scenario where stability is important are databases. This is because databases have
frequent updates and even may contain missing values. To ensure that embeddings results from
graph constructions from databases can be used even under perturbation, they must be stable.

Transforming Relational Databases to Graphs Consider a database D = (∆,R) with a set of
tuples ∆, a set of relations R, and the set of its attribute names Ω. The active domain of the database
is denoted adom(D), to which we add the NULL value, denoted ⊥.

There are multiple ways to encode relational databases as graphs. One approach from the state-of-
the-art is EmBDi Cappuzzo et al. (2020), which constructs a tripartite graph having three types of
nodes corresponding to tuples in ∆, values in the database, and attributes in Ω respectively. Edges
exist between values and tuples, and between values and attributes As this graph has three types of
node and is tripartite, EmBDi constructs a heterogeneous and heterophilic graph. Another recent
construction is FoRWaRD Toenshoff et al. (2023), a bipartite graph linking attribute value nodes to
the corresponding tuple nodes of the same relation. A value node from a relation is be linked to a
tuple node of another relation only if there are foreign key constraints between the two relations. For
multiple relations, an edge is present if there are foreign key constraints between them. FoRWard
is a heterogeneous and heterophilic graph, containing two types of nodes (hence a bipartite graph).
A limitation of these two graph constructions is their heterophilic nature and their inability to fully
capture the underlying structure of the database.

To address these limitations, we propose 5-DB, a novel graph encoding approach for relational
databases, designed to more comprehensively capture the underlying database structure.
Definition 5.1 (5-DBconstruction). Let D = (∆,R) be a database, and Ω its set of attributes. We
create a graph as follows.

(Nodes). For each relation R ∈ R, we create a node vR with label R. For each non-null element
a ∈ adom(D) \ {⊥}, we create a node va with label a. For each tuple t in a relation R ∈ R, we

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

create a node vt with label t. For each attribute name A ∈ Ω, we create a node vA with label A. For
each relation R ∈ R, each attribute A ∈ Ω(R), and each tuple t ∈ R, we create a node vA,t with
label (A, t).

(Edges). For each relation R ∈ R and each tuple t ∈ R, we create an edge (vR, vt). For each tuple
t in a relation R ∈ R and attribute name A of the relation R, we create (vt, vA,t). For each relation
R ∈ R, each tuple t ∈ R, and each attribute A ∈ Ω(R), we create (vA,t, vA). For each non-null
value a of attribute A in tuple t, we create (vA,t, va). If the value is ⊥, no edge is created.

5-DB has five types of nodes which are never connected to other nodes of the same type. This
graph is hence both heterophilic and heterogeneous. We also distinguish a variant of 5-DB, one
in which attribute nodes are removed, denoted 5-DB-Att. Additionally, we define another variant,
5-DB Gaif, which is similar to 5-DB-Att but with an added constraint: values belonging to the
same tuple form a clique. 5-DB Gaif’s rationale is to increase the homophily of the graph. Finally,
Tuple+Clique is similar to FoRWaRD, where the tuples of the same relation form a clique. The
goal of this construction is to investigate whether imposing density can enhance the stability of the
generated embeddings. All the above graphs are heterogeneous.

Perturbations Our primary motivation for studying GNN embeddings is their application to rela-
tional databases, which are often subject to frequent updates (perturbations). Two common types of
perturbations in databases are:

• Tuple Removal: Some tuples present in the original database may be deleted in the up-
dated version. In the corresponding graph representation, this translates to removing nodes
associated with these tuples.

• Value Removal: Tuples in the updated database might have missing values. This can be
represented in the graph by removing edges between attribute nodes and value nodes.

• Tuple/Value Addition Since adding tuples/values to a database D to obtain a database D is
the exact opposite of removing tuples/values in D̂ to obtain D, and given that our bounds
are symmetric in the matrices S and Ŝ derived from the databases, the case of tuple/value
addition is exactly the same as the case of tuple/value removal. Therefore, in the following,
we only consider the case of removal.

From the perspective of this study, adding tuples is essentially the opposite of removing tuples, and
adding values is the reverse of removing values. Therefore, to analyze the impact of these operations,
we can simply switch the corresponding Graph Shift Operators (GSOs) in our stability formulas.

When a database is modified, its size changes. If we consider directly the corresponding graphs, their
GSOs have different sizes, making them incomparable. To circumvent the size mismatch problem,
in the case of deletion, we do not truly delete the nodes targeted by the deletion, but we remove
all their edges instead. This yields a graph Ĝ′ with exactly the same node set as G, but with fewer
edges. We can therefore directly compute ||S − Ŝ′||op. In the case of a tuple addition, we add a row
/ column of 0s in the matrix S in the place of the row / column that represents the tuple in the matrix
Ŝ. This is one illustration the removal / addition symmetry mentioned before.

Putting it all together, by transforming a relational database into a graph using one of the methods
discussed earlier and applying the dimension matching procedure above, we can directly leverage
the results of Corollary 2.1 to analyze the stability of tuple embeddings within a database.

6 EXPERIMENTAL RESULTS

For our experimental evaluation, we implemented in Python the GNNs that we evaluated
along with the graph construction, using the NetworkX and PyTorch Geometric
packages. The experiments were run on a 32 GB machine equipped with a 8GB
NVIDIA A2000 GPU. The code and additional implementation and experimental
details are available at https://github.com/ForAnonymousSubmission/
STABLE-GNN-EMBEDDINGS-FOR-RELATIONAL-DATA.git. For space limitations,
we present here only the most relevant results, and additional results can be found in Appendix B.

8

https://github.com/ForAnonymousSubmission/STABLE-GNN-EMBEDDINGS-FOR-RELATIONAL-DATA.git
https://github.com/ForAnonymousSubmission/STABLE-GNN-EMBEDDINGS-FOR-RELATIONAL-DATA.git

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
Miss Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

GNN Accuracy vs Miss Rate (With training) (a)
GAT
GCN
SP GNN

0.0 0.2 0.4 0.6 0.8
Miss Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

GNN Accuracy vs Miss Rate (Without training) (b)
GAT
GCN
SP GNN

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Miss rate

0

2

4

6

8

10

Di
st

an
ce

s

Distances between node embeddings (c)
1.0-6.0
6.0-11.0
11.0-16.0

Figure 1: Subfigures (a) and (b): Classification accuracy for the SPGNN having order-one filters
and other state-of-the-art GNNs, on the Cora dataset, when removing a proportion of nodes ranging
from 0% to 90%. Subfigure (c): Distance between SPGNN embedding for different node degrees.

Table 1: Size of graphs encoding the relational database.

FoRWaRD EmBDi 5-DB 5-DB Gaif 5-DB-Att Tuple+Clique
nodes 10,089 10,225 26,377 26,241 26,241 10,089
edges 15,131 24,571 50,748 96,246 34,305 205,168

6.1 COMPARING SPGNNS WITH OTHER GNN VARIANTS (CORA GRAPH DATASET)

First, to demonstrate the effectiveness of order-one SPGNNs, we compare them with other GNN
architectures. Our results indicate that despite their apparent simplicity, order-one SPGNNs can
achieve performance comparable to more complex GNN models. For simplicity and computational
efficiency, we use the order-one filter H(S) = H1S +H0. We compare SPGNNs with GCNs Kipf
& Welling (2016) and GATs Veličković et al. (2017) on the Cora dataset Yang et al. (2016), a graph
having 2,708 nodes, 10,556 edges, and 7 node classes. We use the same architecture for all models:
a 4-layer GNN followed by a 2-layer MLP for node classification. Each layer of the GNN contains
10-dimensional features. We remove a proportion of nodes from the graph, ranging from 0 to 90%
and we report the classification accuracy of the models on the reduced graphs. All GNNs are trained
once and then remain fixed; this is because our main objective is to evaluate the stability of the
embeddings with respect to perturbations.

The results are shown in Figure 1. Fig. 1(a) shows the accuracy when the classification MLP is
re-trained on each incomplete graph. Interestingly, it shows that the accuracy of the SPGNN is more
stable than the one of the GCN and GAT. This suggests that the SPGNN embeddings are more robust
to perturbations. On the other hand, when the MLP is not re-trained, the three variants are indistin-
guishable in terms of accuracy, as shown in Fig. 1(b). This suggests that the SPGNN embeddings
are not necessarily more informative, in a geometric sense, than those generated by GCN and GAT.
The results in Figure 1(c) indicate that the stability of SPGNN embeddings is influenced to some
extent by the degree of nodes in the graph. However, this influence is relatively minor, suggesting
that SPGNNs can be applied effectively to graphs with varying node degree distributions.

6.2 STABILITY FOR GRAPHS ENCODING RELATIONAL DATABASES (TPC-E DATASET)

Having established the stability of SPGNN embeddings, we now evaluate the stability of the dif-
ferent graph constructions introduced in Section 5. To achieve this, we leverage a subset of tables
from the well-known TPC-E database benchmark (https://www.tpc.org/) and we construct
corresponding graphs for stability analysis. The details of the resulting graphs are given in Table 1,
while the statistics on the TPC-E data we used are in Appendix B.

For generating embeddings, we used an 5-layer SPGNN with a polynomial filter of degree one,
having the following feature dimensions F = [3, 4, 6, 3, 1], with the last layer of dimension 1 in
order to return a graph filter. We initialize a random matrix X0 = RN×d as the initial feature map.
The generated embeddings represent different elements from the original database, including tuples,
attributes, and values. Our experimental comparison focuses on tuple embeddings since they are
present in all graph constructions. Furthermore, stability of tuple embeddings is of fundamental
importance since tuples are the core information content in a relational database.

9

https://www.tpc.org/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

Embedding Stability (For the different graphs)

5-DB
5-DB Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+Clique

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Missing tuple rate

105

106

107

||
(S

,X
)

(S
,X

)||

Upper bound (For the different graphs)
Upper Bound 5-DB
Upper Bound 5-DB-Gaif
Upper Bound 5-DB-Att
Upper Bound FoRWaRD
Upper Bound EmbDI
Upper Bound Tuple+Clique

Figure 2: Stability against tuple removal. Left: the average distance between embeddings of the
tuples in the original database vs. the perturbed one. Right: the theoretical stability upper bounds.

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 1 - 1

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 2

10 1

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 2

10 1

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 4

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 5 - 352
5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

Figure 3: Stability against missing values, by removing up to 90% of the values from the database.
We show results for removal of values for various frequency bins.

Figure 2 shows the stability of the embeddings when tuples are removed from the database. We can
observe that the SPGNNs used on all the graphs are able to generate stable embeddings. However,
graphs that encode explicitly the various relations, using a relation node connected to its tuples (5-
DB, 5-DB Gaif, 5-DB-Att) have lower absolute embedding distances than the other constructions.
This suggests that the structure of the graph is important for the stability of the embeddings.

Two relevant results can be observed in Figure 2. First, embeddings generated using FoRWaRD
and Tuple+Clique showed poor resilience to tuple removal. This can be explained by the absence
of anchor nodes which are less impacted by tuple deletion (for example attribute nodes or relation
nodes). Moreover among the graphs generating embeddings showing better resilience to tuple re-
moval, 5-DB Gaif showed the best results which is not surprising. Indeed, 5-DB Gaif has an higher
density in its subgraphs corresponding to attribute value nodes, which are less likely to be deleted
by the process than tuple nodes.

When analyzing the impact of value removal (Figure 3), we observed a similar trend to that of tuple
removal. However, Tuple+Clique demonstrated more resilience to value removal. This can be
attributed to the cliques introduced between tuples of the same relation, resulting in a denser graph
structure. Indeed, subgraphs of Tuple+Clique only composed of tuples are very dense and none of
the nodes constituting these subgraphs are deleted by the perturbation. The counterpart to this high
density graph is a much less efficient learning processing. In comparison 5-DB Gaif although it too
has cliques is twice sparser (as shown in Table 1).

7 CONCLUSION

Motivated by the dynamic nature of databases, this research investigates the stability properties
of embeddings generated by an important class of GNNs, Signal Processing GNNs (SPGNNs). We
refine existing global stability bounds by eliminating the dependence on graph size. Additionally, we
extend our analysis to the node level. When applied to graphs generated from relational databases,
we demonstrate that considering the heterogeneous and heterophilic nature of these graphs can lead
to more stable embeddings. To achieve this, we propose improved database-to-graph constructions
that outperform existing methods in terms of embedding stability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learn-
ing, pp. 21–29. PMLR, 2019.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information processing
systems, 29, 2016.

Jan Böker, Ron Levie, Ningyuan Huang, Soledad Villar, and Christopher Morris. Fine-grained
expressivity of graph neural networks. Advances in Neural Information Processing Systems, 36,
2024.

Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. Creating embeddings of
heterogeneous relational datasets for data integration tasks. In Proceedings of the 2020 ACM
SIGMOD international conference on management of data, pp. 1335–1349, 2020.

Riccardo Cappuzzo, Saravanan Thirumuruganathan, and Paolo Papotti. Relational data imputation
with graph neural networks. In EDBT/ICDT 2024, 27th International Conference on Extending
Database Technology, 2024.

Jie Cheng, Christos Hatzis, Hisashi Hayashi, Mark-A Krogel, Shinichi Morishita, David Page, and
Jun Sese. Kdd cup 2001 report. ACM SIGKDD Explorations Newsletter, 3(2):47–64, 2002.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Sofiane Ennadir, Yassine Abbahaddou, Johannes F Lutzeyer, Michalis Vazirgiannis, and Henrik
Boström. A simple and yet fairly effective defense for graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 21063–21071, 2024.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
Ying, Jiaxuan You, and Jure Leskovec. Relational deep learning: Graph representation learning
on relational databases. arXiv preprint arXiv:2312.04615, 2023.

Fernando Gama, Alejandro Ribeiro, and Joan Bruna. Diffusion scattering transforms on graphs.
arXiv preprint arXiv:1806.08829, 2018.

Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural networks.
IEEE Transactions on Signal Processing, 68:5680–5695, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Message
passing neural networks. Machine learning meets quantum physics, pp. 199–214, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Dongxiao He, Chundong Liang, Huixin Liu, Mingxiang Wen, Pengfei Jiao, and Zhiyong Feng.
Block modeling-guided graph convolutional neural networks. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 36, pp. 4022–4029, 2022.

Yaning Jia and Chunhui Zhang. Promoting fairness in gnns: A characterization of stability. arXiv
e-prints, pp. arXiv–2309, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Advances in Neural Information Processing Systems, 32, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Huma Lodhi and Stephen Muggleton. Is mutagenesis still challenging. ILP-Late-Breaking Papers,
35, 2005.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. arXiv preprint arXiv:1812.09902, 2018.

Wolfgang May. Information extraction and integration with florid: The mondial case study. Techni-
cal report, Citeseer, 1999.

Jennifer Neville, David Jensen, Lisa Friedland, and Michael Hay. Learning relational probability
trees. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 625–630, 2003.

Mathias Niepert. Discriminative gaifman models. Advances in Neural Information Processing
Systems, 29, 2016.

Giannis Nikolentzos, Siyun Wang, Johannes Lutzeyer, and Michalis Vazirgiannis. Graph neural
machine: A new model for learning with tabular data. arXiv preprint arXiv:2402.02862, 2024.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In The semantic web: 15th
international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings
15, pp. 593–607. Springer, 2018.

Jan Toenshoff, Neta Friedman, Martin Grohe, and Benny Kimelfeld. Stable tuple embeddings for
dynamic databases. In 2023 IEEE 39th International Conference on Data Engineering (ICDE),
pp. 1286–1299. IEEE, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. arXiv preprint arXiv:2203.00199, 2022a.

Tao Wang, Di Jin, Rui Wang, Dongxiao He, and Yuxiao Huang. Powerful graph convolutional
networks with adaptive propagation mechanism for homophily and heterophily. In Proceedings
of the AAAI conference on artificial intelligence, volume 36, pp. 4210–4218, 2022b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Lukáš Zahradnı́k, Jan Neumann, and Gustav Šı́r. A deep learning blueprint for relational databases.
In NeurIPS 2023 Second Table Representation Learning Workshop, 2023.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in
neural information processing systems, 33:7793–7804, 2020.

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai
Koutra. Graph neural networks with heterophily. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 11168–11176, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dongmian Zou and Gilad Lerman. Graph convolutional neural networks via scattering. Applied and
Computational Harmonic Analysis, 49(3):1046–1074, 2020.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2847–2856, 2018.

A STABILITY

A.1 PROOF OF THEOREM 2

We follow a method that is similar to what is done in Gama et al. (2020).

We define ||H(l)
f,g||∞ := max

λ∈σ(S)
|H(l)

f,g(λ)| and ||Ĥ(l)
f,g||∞ := max

λ∈σ(Ŝ)
|H(l)

f,g(λ)|.

We will use regularly the fact that ||H(l)
f,g||∞ = ||H(l)

f,g(S)||op and ||Ĥ(l)
f,g||∞ = ||H(l)

f,g(Ŝ)||op, which
follows from the definition.

We begin with a lemma:
Lemma 3. We consider a SPGNN Φ satisfying the hypotheses of Theorem 2, Ŝ a symmetric matrix
and x a vector. Then we have:

||Φ(Ŝ,x)|| ≤

 ∑
f∈Lay(L)

L−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞

 ||x||

where Lay(L) := {1, . . . , F (0)} × {1, . . . , F (1)} × · · · × {1, . . . , F (L)}.

Proof. Indeed, we show this lemma by induction on the number of layers of Φ. For a SPGNN Φ with
only one layer, since F (0) = F (1) = 1 by definition, then Φ is of the form Φ(Ŝ,x) = σ(H

(0)
1,1 (Ŝ)x).

Consequently,

||Φ(Ŝ,x)|| ≤ ||H(0)
1,1 (Ŝ)x||

≤ ||Ĥ(0)
1,1 ||∞||x||.

This proves that the lemma holds for the initial case.

We now consider L ∈ N∗ and we assume that the lemma is true for all SPGNNs with L layers
satisfying the hypotheses.

Let Φ(·, ·) be a SPGNN with L + 1 layers satisfying the hypotheses, let Ŝ be a symmetric ma-
trix and let x be a vector. By definition of the SPGNNs, Φ(Ŝ,x) has the form Φ(Ŝ,x) =

σ(
F (L)∑

f(L)=1

H
(L)

f(L),1
(Ŝ)Φ

(L)

f(L)(Ŝ,x)) where (Φ(L)
f) are SPGNNs themselves, with only L layers. When

applying the induction hypothesis to SPGNNs with L layers, we use the notation Lay(L,f(L)) to
define the set of vectors f ∈ Lay(L) whose last coordinate is fL = f (L) rather than fL = 1. (The
last coordinate of vectors in Lay(L) is always 1 since F (L) = 1 in a L-layer SPGNN.)

We can then write:

||Φ(Ŝ,x)|| ≤
F (L)∑

f(L)=1

||Ĥ(L)

f(L),1
||∞||Φ(L)

f(L)(Ŝ,x)||

≤
F (L)∑

f(L)=1

∑
f∈Lay(L,f(L))

||Ĥ(L)

f(L),1
||∞

(
L−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞

)
||x||,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

hence ||Φ(Ŝ,x)|| ≤
∑

f∈Lay(L+1)

L∏
l=0

||Ĥ(l)
fl+1,fl

||∞||x||.

This proves the lemma.

Proof. We now prove Theorem 2 by induction on the number of layers L. We prove a more precise
bound:

||Φ(S,x)− Φ(Ŝ,x)|| ≤ B(L)||S − Ŝ||op||x||

where B(L) :=
∑

f∈Lay(L)

L∑
k=1

[
(

L−1∏
l=L−k+1

||H(l)
fl,fl+1

||∞) ·A(L−k)
fL−k,fL−k+1

· (
L−k−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞)

]
.

We remind that Lay(L) = {1, . . . , F (0)} × · · · × {1, . . . , F (L)}, ||H(l)
f,g||∞ := max

λ∈σ(S)
|H(l)(λ)| and

A(l)f,g is defined as A(l)f,g = |a| where a is the coefficient such that H(l)
f,g(X) = aX + b. This

bound is much less readable, but it is more accurate, because it does not assume that the different
parameters are uniform in the SPGNN.

To motivate the technical proof below, we begin by showing that the result shown (||Φ(S,x) −
Φ(Ŝ,x)|| ≤ B(L)||S − Ŝ||op||x||) implies Theorem 2, which means that B(L) is indeed a tighter
bound.

To achieve this objective, it suffices to show that B(L) ≤ LA(F ||H||∞)L−1. This can be seen by
replacing all the terms that appears in B(L) by their global counterpart:

B(L) =
∑

f∈Lay(L)

L∑
k=1

[
(

L−1∏
l=L−k+1

||H(l)
fl,fl+1

||∞) ·A(L−k)
fL−k,fL−k+1

· (
L−k−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞)

]

≤
∑

f∈Lay(L)

L∑
k=1

[
(

L−1∏
l=L−k+1

||H||∞) ·A · (
L−k−1∏
l=0

||H||∞)

]

= A(||H||∞)L−1
∑

f∈Lay(L)

L∑
k=1

1

= A(||H||∞)L−1L|Lay(L)|

= A(||H||∞)L−1L

L∏
l=0

F (l)

≤ A(||H||∞)L−1LFL−1.

We remind that F (0) = F (L) = 1, which is explains why FL−1 appears in the last inequality rather
than FL+1.

We now prove the base case of the induction. We consider a GNN with 1 layer Φ(S,x) =

σ(H(S)x) with H(S) = aS+ bIN . Given two symmetric matrices S and Ŝ and a vector x ∈ RN ,
the theorem is written: ||σ(H(S)x)−σ(H(Ŝ)x)|| ≤ B(1)||S− Ŝ||op||x|| with B(1) = A

(1)
1,1 = |a|.

This holds since:
||σ(H(S)x)− σ(H(Ŝ)x)|| ≤ ||H(S)x−H(Ŝ)x||

= ||a(S − Ŝ)x||
≤ |a|||S − Ŝ||op||x||.

We now consider L ∈ N∗ and we assume that the theorem holds for SPGNNs with L layers.

We consider a SPGNN Φ with L + 1 layers and we use the exact same notations as in the proof of

Lemma 3, i.e. Φ(S,x) = σ

(
F (L)∑
f(L)

H
(L)

f(L),1
(S)Φ

(L)

f(L)(S,x)

)
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We begin by bounding Φ(S,x)− Φ(Ŝ,x) with the Φ
(L)
i :

||Φ(S,x)− Φ(Ŝ,x)|| = ||σ

 F (L)∑
f(L)=1

H
(L)

f(L),1
(S)Φ

(L)

f(L)(S,x)

− σ

 F (L)∑
f(L)=1

H
(L)

f(L),1
(Ŝ)Φ

(L)

f(L)(Ŝ,x)

 ||

≤
F (L)∑

f(L)=1

||H(L)

f(L),1
(S)Φ

(L)

f(L)(S,x)−H
(L)

f(L),1
(Ŝ)Φ

(L)

f(L)(Ŝ,x) ||

≤
F (L)∑

f(L)=1

||H(L)

f(L),1
(S)

(
Φ

(L)

f(L)(S,x)− Φ
(L)

f(L)(Ŝ,x)
)
||

+

F (L)∑
f(L)=1

||
(
H

(L)

f(L),1
(S)−H

(L)

f(L),1
(Ŝ)
)
Φ

(L)

f(L)(Ŝ,x) || (5)

We should now bound both terms in inequality 5 separately. We begin with
||H(L)

f(L),1
(S)

(
Φ

(L)

f(L)(S,x)− Φ
(L)

f(L)(Ŝ,x)
)
||:

||H(L)

f(L),1
(S)

(
Φ

(L)

f(L)(S,x)− Φ
(L)

f(L)(Ŝ,x)
)
||

≤ ||H(L)

f(L),1
||∞||Φ(L)

f(L)(S,x)− Φ
(L)

f(L)(Ŝ,x)||

≤ ||H(L)

f(L),1
||∞B

(L)

f(L) ||S − Ŝ||op||x|| (6)

where B
(L)

f(L) is the bound of the theorem applied to the L-layer SPGNN ΦL
f(L) .

For the second term, using the definition of A(L) and Lemma 3, we get:

|| (H(L)

f(L),1
(S)−H

(L)

f(L),1
(Ŝ))Φ

(L)

f(L)(Ŝ,x) ||

≤ A
(L)

f(L),1
||S − Ŝ||op||Φ(L)

f(L)(Ŝ,x)||

≤ A
(L)

f(L),1
||S − Ŝ||op

 ∑
f∈Lay(L)

L−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞

 ||x||. (7)

Combining the bounds given by inequalities 6 and 7 in the inequality 5 yields

||Φ(S,x)− Φ(Ŝ,x)|| (8)

≤
F (L)∑

f(L)=1

||H(L)

f(L),1
||∞B

(L)

f(L) ||S − Ŝ||op||x||

+

F (L)∑
f(L)=1

A
(L)

f(L),1

 ∑
f∈Lay(L)

L−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞

 ||S − Ŝ||op||x|| (9)

=

F (L)∑
f(L)=1

||H(L)

f(L),1
||∞B

(L)

f(L) +A
(L)

f(L),1

 ∑
f∈Lay(L)

L−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞

 ||S − Ŝ||op||x||.

(10)

Given that
F (L)∑

f(L)=1

(
||H(L)

f(L),1
||∞B

(L)

f(L) +A
(L)

f(L),1

(∑
f∈Lay(L)

L−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞

))
= B(L+1), this

can be rewritten:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

||Φ(S,x)− Φ(Ŝ,x)|| ≤ B(L+1)||S − Ŝ||op||x||, (11)

which shows that the theorem holds for GNN with L+ 1 layers and concludes the proof.

We would like to highlight that the proof only relies on on the fact ||H(l)
i,j (S)||op = ||H(l)

i,j ||∞
(through Lemma 3 and inequality 6) and on the bound ||H(l)

i,j (S)−H
(l)
i,j (Ŝ)||op ≤ A

(l)
i,j ||S − Ŝ||op

(through the base case of the induction and inequality 7). The rest of the proof only involves general
computations that do not require any specific hypothesis, and the complicated expression of B(L)

is simply what appears to be the tightest bound that our method can yield. In particular, if we
have different bounds for ||H(l)

i,j (S)||op and ||H(l)
i,j (S)−H

(l)
i,j (Ŝ)||op in other settings, then Theorem

2 applies if we replace the ||H(l)
i,j ||∞ and A

(l)
i,j in the definition of B(L) by those bounds. This

observation is the ground for two important generalizations of Theorem 2.

The first generalization allows to apply the theorem to polynomials of higher order and is based on
the fact that we can provide a bound for ||(H(L)

f(L),1
(S)−H

(L)

f(L),1
||op even when H

(L)

f(L),1
is not an or-

der one polynomial, while the definition ||H(l)
i,j ||∞ := max

λ∈σ(S)
|H(l)

i,j (λ)| is still equal to ||H(l)
i,j (S)||op

independently of the degree of H . This is detailed in Appendix A.4.1.

The second generalization allows to apply the theorem to non-symmetric GSOs. The main point is
that the symmetry of the GSOs S is only used to efficiently compute the operator norm of H(S)
through ||H||∞ = max

λ∈σ(S)
|H(λ)| (when H is a degree 1 polynomial, it is enough to evaluate this

expression on the smallest and largest eigenvalues of S, which is O(1) operations). However, replac-
ing ||H||∞ by ||H(S)||op is perfectly rigorous. The only issue is the computational cost of repeated
computation of operator norms for non-symmetric matrices, but we can solve this issue by loosening

the bound using the inequality, if H(X) =
d∑

i=0

hiX
i is a filter, ||H(S)||op ≤

d∑
i=0

|hi|||S||iop. This

means that it is enough to compute the operator of a N ×N matrix once, and it is not necessary to
do it for every filters. This is further detailed in Appendix A.4.2.

A.2 PROOFS OF THE COROLLARIES.

We begin by proving Corollary 2.1:

Proof. We consider Φ, S, Ŝ and X(0) as in the statement of the corollary.

By definition of the embedding, ||Φ(S,X(0))vi
−Φ(Ŝ,X(0))v̂i || = ||Li||2 where Li is the i-th line

of the matrix Φ(S,X(0))− Φ(Ŝ,X(0)). Therefore,
N∑
i=1

||Φ(S,X(0))vi
− Φ(Ŝ,X(0))v′

i
||2 =

N∑
i=1

||Li||2

=

d∑
j=1

||Cj ||2

=

d∑
j=1

||Φ(S,X(0)
:,j)− Φ(Ŝ,X

(0)
:,j)||

2

where Cj is the j-th column of the matrix Φ(S,X(0))− Φ(Ŝ,X(0)).

Since Theorem 2 ensures that ||Φ(S, C(0)
j)− Φ(Ŝ, C

(0)
j)|| ≤ M , we deduce:

N∑
i=1

||Φ(S,X(0))vi
− Φ(Ŝ,X(0))v̂i ||2 ≤ dM2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We now prove Corollary 2.2. Similarly as what is done for the proof of Theorem 2, we
provide a tighter bound: ||Φ(S,X(0))vi − Φ(Ŝ,X(0))v′

i
|| ≤

√
dB

(L)
k ||S − Ŝ||op where

B
(L)
k :=

∑
f∈Lay(L)

L∑
m=k+1

[
(

L−1∏
l=L−m+1

||H(l)
fl,fl+1

||∞) ·A(L−m)
fL−m,fL−m+1

· (
L−m−1∏

l=0

||Ĥ(l)
fl,fl+1

||∞)

]
.

Proof. For the purpose of this proof, we introduce SPGNNs that are slightly more generals than
the SPGNNs used previously: we allow the SPGNN to have F (0) ≥ 1; i.e. they take F (0) vectors
as input rather than one, and we note Φ(S, (x1,x2, . . . ,xF (0))) such a generalized SPGNN with
initialization vectors (x1,x2, . . . ,xF (0)).

We consider a generalized SPGNN Φ with L layers, and a couple of identified nodes vi, v̂i ∈
G, Ĝ having their k-hop equal. We prove by induction on L that, if k ≥ L, then
Φ(S, (x1,x2, . . . ,xF (0)))i = Φ(Ŝ, (x1,x2, . . . ,xF (0)))i.

If L = 0 then Φ(S, (x1,x2, . . . ,xF (0))) = (x1,x2, . . . ,xF (0)) and the property is true.

We now consider L ∈ N∗ and we assume that the theorem holds for SPGNNs with L layers. We
consider a SPGNN Φ with L + 1 layers and we use the exact same notations as in the previous

proofs, i.e. Φ(S, (x1,x2, . . . ,xF (0))) = σ

(
F (L)∑
f(L)

H
(L)

f(L),1
(S)Φ

(L)

f(L)(S, (x1,x2, . . . ,xF (0)))

)
.

Since σ is point-wise, we have:

Φ(S, (x1,x2, . . . ,xF (0)))i = σ

F (L)∑
f(L)

(
H

(L)

f(L),1
(S)Φ

(L)

f(L)(S, (x1,x2, . . . ,xF (0)))
)
i


= σ

F (L)∑
f(L)

N∑
k=1

(H
(L)

f(L),1
)i,k(S)(Φ

(L)

f(L)(S, (x1,x2, . . . ,xF (0))))k

 .

However, in the last sum (H
(L)

f(L),1
)i,k(S) = 0 if k is not the index of a neighbour of vi in G.

Therefore, we can apply the induction hypothesis on the terms (Φ
(L)

f(L)(S, (x1,x2, . . . ,xF (0))))k

because the neighbour of vi have equal k − 1-hops, and (H
(L)

f(L),1
)i,k(S) = (H

(L)

f(L),1
)i,k(Ŝ) by

definition of the k-hop equality.

This yields:

Φ(S, (x1,x2, . . . ,xF (0)))i = σ

F (L)∑
f(L)

(
H

(L)

f(L),1
(S)Φ

(L)

f(L)(S, (x1,x2, . . . ,xF (0)))
)
i


= σ

F (L)∑
f(L)

(
H

(L)

f(L),1
(Ŝ)Φ

(L)

f(L)(Ŝ, (x1,x2, . . . ,xF (0)))
)
i


= Φ(Ŝ, (x1,x2, . . . ,xF (0)))i.

We now use this result to show the corollary. Firstly, we remark that we can replace the initialisation
matrix X(0) by a vector x (i.e. consider embeddings in dimension d = 1) since going from d = 1 to
a general d ∈ N only involves applying the inequality to each element of the vector Φ(S,X(0)) −
Φ(Ŝ,X(0)), similarly than what is done in the proof of Corollary 2.1. Note that, in this setting,
Φ(S,x)vi is the i-th coordinate of the vector Φ(S,x), noted Φ(S,x)i.

Then, we remark that Φ(S,x) = Φ(L−k),(L)(S, (Φ
(L−K)
1 (S,x),Φ

(L−K)
2 (S,x), . . . ,Φ

(L−K)

F (L−k)(S,x)))

where Φ
(L−K)
f is the sub-SPGNN of Φ that returns the intermediate value of Φ in the f -th com-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

ponents of the (L − k)-th layer, and Φ(L−k),(L) is the generalized SPGNN that transforms the
(L− k)-th layer in the last one.

By the previous result, we have

(Φ(S,X(0))− Φ(Ŝ,X(0)))i =

(Φ(L−k),(L)(S, (Φ
(L−K)
1 (S,x),Φ

(L−K)
2 (S,x), . . . ,Φ

(L−K)

F (L−k)(S,x))))i

− (Φ(L−k),(L)(S, (Φ
(L−K)
1 (Ŝ,x),Φ

(L−K)
2 (Ŝ,x), . . . ,Φ

(L−K)

F (L−k)(Ŝ,x))))i.

Finally, the proof of Theorem 2 shows that this vector can be bounded by B
(L)
k ||S − Ŝ||op||x||.

(Basically because, in the induction step, the term || (H(L)

f(L),1
(S) − H

(L)

f(L),1
(Ŝ))Φ

(L)

f(L)(Ŝ,x) ||,
which is the term studied in 7, is 0 for the last k layers.)

A.3 INSTANTIATION IN THE DISTANCE MODULO PERMUTATION FRAMEWORK

We remind the distance modulo permutation framework, that is commonly used to give stability
results: To measure the distance between two graph shift operators, and consequently the distance
between the graphs they are derived from, we use dP(S, Ŝ), denoted ||S − Ŝ||P in Gama et al.
(2020), defined as dP(S, Ŝ) = min

P∈P
||S −PŜP T || where P is the set of permutation matrices. We

change the notations to highlight the fact that the quantity depends on the two matrices S, Ŝ and
not on the difference S − Ŝ. The definition of dP can be extended to general continuous operators
Ψ, Ψ̂ : RN → RN by dP(Ψ, Ψ̂) = min

P∈P
max
||x||=1

||P TΨ(x)− Ψ̂(P Tx)||.

We can now give a version of Theorem 2 in this framework:
Corollary 3.1. Given a GNN Φ satisfying the hypotheses of Theorem 2, the following equality
holds:

dP(Φ(S, ·),Φ(Ŝ, ·)) ≤ LA(F ||H||∞)L−1dP(S, Ŝ).

Proof. We consider P0 ∈ P such that dP(S, Ŝ) = ||S − P0ŜP
T
0 ||op. The theorem then provides

the inequality, for ||x|| = 1,

||Φ(S,x)− Φ(P0ŜP
T
0 ,x)|| ≤ LA(F ||H||∞)L−1||S − P0ŜP

T
0 ||op

= LA(F ||H||∞)L−1dP(S, Ŝ)

and since

dP(Φ(S, ·),Φ(Ŝ, ·)) = min
P∈P

max
||x||=1

||P TΦ(S,x)− Φ(Ŝ,P Tx)||

= min
P∈P

max
||x||=1

||Φ(S,x)− PΦ(Ŝ,P Tx)||

= min
P∈P

max
||x||=1

||Φ(S,x)− Φ(PŜP T ,x)||

≤ max
||x||=1

||Φ(S,x)− Φ(P0ŜP
T
0 ,x)||,

then we have for the x that reaches the max:

dP(Φ(S, ·),Φ(Ŝ, ·)) ≤ ||Φ(S,x)− Φ(PŜP T ,x)||
≤ LA(F ||H||∞)L−1dP(S, Ŝ).

This proves the corollary.

The same instantiation can be made for Corollaries 2.1 and 2.2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

SPGNN ΨH :
H(X) = hdX

d + · · ·+ h0

SPGNN ΦH :

hdX + hd−1

X X

X

1

1 1

h0

hd−2 hd−3

Figure 4: Construction of a SPGNN ΦH that only contains one order polynomials from a SPGNN
ΨH that contains a polynomial of order d.

A.4 GENERALIZATION OF THEOREM 2.

As mentioned at the end of the proof of Theorem 2, we can generalize the result to SPGNNs that
use polynomials of any degree and non-symmetric GSOs.

A.4.1 HYPOTHESIS ON THE DEGREE OF THE FILTERS

We begin by showing that if we consider a SPGNN ΨH of the form ΨH(S,x) = H(S)x where H
is a polynomial of any degree, then there exists a SPGNN ΦH that uses only polynomials of order
one and satisfies ΨH(S,x) = ΦH(S,x) for all S and x.

The generalization of the construction described here to transform any SPGNN Ψ into a SPGNN
Φ that only uses order 1 polynomials by replacing every filter H in Ψ by the corresponding ΦH is
straightforward.

Proof. We consider a SPGNN ΨH of the form ΨH(S,x) = H(S)x where H(X) =
d∑

i=0

hiX
i is

a polynomial of degree d ≥ 2. (If d ≤ 1, then the definition ΦH = ΨH satisfies the property.) As
shown in Figure 4, we define ΦH from ΨH as the d layer SPGNN with two features per intermediate
layer and filters:

• H
(0)
1,1 = hdX + hd−1, H(0)

1,2 = 1

• For 1 ≤ l ≤ d− 2, H(l)
1,1 = X , H(l)

1,2 = 0, H(l)
2,1 = hd−(l+1)X , H(l)

2,2 = 1.

• H
(d−1)
1,1 = X , H(d−1)

2,1 = h0.

The equality ΦH(S,x) = H(S)x = ΨH(S,x) is simply a rewriting of the equality hdX
d +

hd−1X
d−1 + · · ·+ h0 = X(. . . X(X(hdX + hd−1) + hd−2) + · · ·+ h1) + h0.

Then, since we have the equality ||ΨH(S,x)−ΨH(Ŝ,x)|| = ||ΦH(S,x)−ΦH(Ŝ,x)|| by defini-
tion of ΦH , and since ΦH now satisfies hypotheses of Theorem 2, we have the inequality:

||ΨH(S,x)−ΨH(Ŝ,x)|| ≤ BH ||S − Ŝ||op||x||

where BH is the bound of Theorem 2 applied to ΦH .

To complete this analysis, we can compute explicitly BH . We fix two GSOs S, Ŝ and we note
Λ := max

λ∈S
|λ| and Λ̂ := max

λ∈Ŝ
|λ| their largest eigenvalues. The proof of Theorem 4 yields the

expression:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

BH =
∑

f∈Lay(d)

d∑
k=1

[
(

d−1∏
l=d−k+1

||H(l)
fl,fl+1

||∞) ·A(d−k)
fd−k,fd−k+1

· (
d−k−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞)

]

where Lay(d) = {1} × {1, 2}d−1 × {1} and

• ||Ĥ(0)
1,1 ||∞ = max

λ∈σ(S)
|hdλ+ hd−1| and A

(0)
1,1 = |hd|,

• ||H(0)
1,2 ||∞ = 1 and A

(0)
1,2 = 0,

• for l ∈ {1, . . . d − 1}, ||H(l)
1,1||∞ = Λ, ||Ĥ(l)

1,1||∞ = Λ̂, ||H(l)
1,2||∞ = ||Ĥ(l)

1,2||∞ = 0,

||H(l)
2,1||∞ = ||Ĥ(l)

2,1||∞ = |hd−(l+1)|, ||H
(l)
2,2||∞ = ||Ĥ(l)

(2,2)||∞ = 1 and

A
(l)
1,1 = 1, A(l)

1,2 = A
(l)
2,1 = A

(l)
2,2 = 0,

• ||H(d−1)
1,1 ||∞ = Λ and A

(d−1)
1,1 = 1,

• ||H(d−1)
2,1 ||∞ = |h0| and A

(d−1)
2,1 = 0.

If we note λd a value such that |hdλd + hd−1| = max
λ∈σ(S)

|hdλ+ hd−1|, we can write:

BH = |hdλd +hd−1|(
d−1∑
l=1

Λ̂l−1 ∗Λd−(l+1))+ |hd|Λ̂d−1 + |hd−2|(
d−1∑
l=2

Λ̂l−2 ∗Λd−(l+1))+ · · ·+ |h1|

.

Using the inequality |hdλd + hd−1| ≤ |hd|Λ + |hd−1| and redefining Λ = max{Λ, Λ̂} for better

readability, we finally obtain: BH ≤
d∑

i=1

i|hi|Λi−1. Note that this bound is a bound to the derivative

of H , which is highly natural for an inequality on ||H(S)−H(Ŝ)||op. To match this intuition with

the notations, we now write ∆(H) =
d∑

i=1

i|hi|Λi−1.

So far, we have shown that ||H(S)x − H(Ŝ)x|| ≤ BH ||S − Ŝ||opx, in particular ||H(S) −
H(Ŝ)||op ≤ BH ||S − Ŝ||op.

Now remind the remark made at the end of the proof of Theorem 2: the whole proof on relies on
bounding ||H(S)||op and ||H(S) − H(Ŝ)||op for a general filter H . The definition of ||H||∞ :=
max

λ∈σ(S)
|H(λ)| still satisfies ||H(S)||op = ||H||∞, and the property we have just shown is a bound

to ||H(S) − H(Ŝ)||op. Therefore, Theorem 2 applies and states, for a SPGNN Ψ that uses filters
that are polynomials of any order, with the same notations as in the original statement:

||Ψ(S,x)−Ψ(Ŝ,x)|| ≤ B(L)||S − Ŝ||op||x||

where B(L) =
∑

f∈Lay(L)

L∑
k=1

[
(

L−1∏
l=L−k+1

||H(l)
fl,fl+1

||∞) ·B
H

(L−k)
fL−k,fL−k+1

· (
L−k−1∏
l=0

||Ĥ(l)
fl,fl+1

||∞)

]
.

This can be written in the simpler form:

||Ψ(S,x)−Ψ(Ŝ,x)|| ≤ L∆(H)∞(F ||H||∞)L−1||S − Ŝ||op||x||

where ∆(H)∞ = max
H∈Ψ

∆(H).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5
rate of missing tuples

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

Our graph

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.1 0.2 0.3 0.4 0.5
rate of missing tuples

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

Our Graph + Gaifman

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.1 0.2 0.3 0.4 0.5
rate of missing tuples

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

Our Graph - Attribute nodes

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.1 0.2 0.3 0.4 0.5
rate of missing tuples

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

FoRWaRD

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.1 0.2 0.3 0.4 0.5
rate of missing tuples

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

EmbDI

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.1 0.2 0.3 0.4 0.5
rate of missing tuples

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

Click on Tuple

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

Figure 5: Average distances between the tuple embeddings of each relation of clean database and
their counterpart from the perturbed database. The perturbed database has been generated from the
clean one where tuples have been removed at a rate from 0 up to 0.5. The neural network is composed
of 12 layers; a minor perturbation in the database can impact the embedding of all elements of the
database.

A.4.2 HYPOTHESIS ON THE SYMMETRY OF THE GSOS

Once again, we use the remark made at the end of the proof to Theorem 2: if we can provide
alternative bounds for ||H(S)||op and ||H(S) −H(Ŝ)||op, we have a new version of the result. If
we assume that the filters are order 1 polynomials, then ||H(S) − H(Ŝ)||op ≤ A||S − Ŝ||op and
therefore Theorem 2 yields, for a SPGNN Φ:

||Φ(S,x)− Φ(Ŝ,x)|| ≤ B(L)||S − Ŝ||op||x||

where B(L) =
∑

f∈Lay(L)

L∑
k=1

[
(

L−1∏
l=L−k+1

||H(l)
fl,fl+1

(S))||op ·A(L−k)
fL−k,fL−k+1

· (
L−k−1∏
l=0

||H(l)
fl,fl+1

(Ŝ)||op)

]
.

This can be written in the simpler form:

||Φ(S,x)− Φ(Ŝ,x)|| ≤ LA(F ||H||op,∞)L−1||S − Ŝ||op||x||

where ||H||op,∞ = max
H∈Φ

||H(S)||op, ||H(Ŝ)||op.

Finally, we can combine both of the generalizations and they yield, for a SPGNN Ψ with filters of
any orders:

||Ψ(S,x)−Ψ(Ŝ,x)|| ≤ B(L)||S − Ŝ||op||x||

where B(L) =
∑

f∈Lay(L)

L∑
k=1

[
(

L−1∏
l=L−k+1

||H(l)
fl,fl+1

(S))||op ·BH
(L−k)
fL−k,fL−k+1

· (
L−k−1∏
l=0

||H(l)
fl,fl+1

(Ŝ)||op)

]
and, in that context, for a filter H , BH = ||hdS + hd−1||op(

d−1∑
l=1

||Ŝ||l−1
op ∗ ||S||d−(l+1)

op) +

|hd|||Ŝ||d−1
op + |hd−2|(

d−1∑
l=2

||Ŝ||l−2
op ∗ ||S||d−(l+1)

op) + · · ·+ |h1|.

This can be written in the simpler form:

||Ψ(S,x)−Ψ(Ŝ,x)|| ≤ L∆̃(H)∞(F ||H||op,∞)L−1||S − Ŝ||op||x||

where ∆̃(H)∞ = max
H∈Ψ,M∈{S,Ŝ}

d∑
i=1

i|hi| · ||M ||i−1
op .

B OTHER EXPERIMENTAL DETAILS

Table 2 shows the detail of the TPC-E tables used to generate the database graphs.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

Our graph
nbr occurrences: 1 - 1

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

Our Graph + Gaifman
nbr occurrences: 1 - 1

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

Our Graph - Attribute nodes
nbr occurrences: 1 - 1

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

FoRWaRD
nbr occurrences: 1 - 1

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

EmbDI
nbr occurrences: 1 - 1

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

Click on Tuple
nbr occurrences: 1 - 1

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 19

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 19

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 19

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 19

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 19

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 19

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

nbr occurrences: 20 - 145

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

nbr occurrences: 20 - 145

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

nbr occurrences: 20 - 145

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

104

||
(S

,X
)

(S
,X

)||

nbr occurrences: 20 - 145

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

nbr occurrences: 20 - 145

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 8

10 6

10 4

10 2

100

102

||
(S

,X
)

(S
,X

)||

nbr occurrences: 20 - 145

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

Figure 6: Average distances between the tuple embeddings of each relation of clean database and
their counterpart from the perturbed database. The perturbed database has been generated from
the clean one where values have been removed at a rate from 0 up to 0.5. The neural network
is composed of 12 layers; a minor perturbation in the database can impact the embedding of all
elements of the database.

0.0 0.1 0.2 0.3 0.4 0.5
rate of missing tuples

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

Our graph

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.1 0.2 0.3 0.4 0.5
rate of missing tuples

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

Our Graph + Gaifman

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.1 0.2 0.3 0.4 0.5
rate of missing tuples

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

Our Graph - Attribute nodes

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.1 0.2 0.3 0.4 0.5
rate of missing tuples

10 5

10 4

10 3

10 2

10 1

||
(S

,X
)

(S
,X

)||

FoRWaRD

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.1 0.2 0.3 0.4 0.5
rate of missing tuples

10 5

10 4

10 3

10 2

10 1

||
(S

,X
)

(S
,X

)||

EmbDI

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.1 0.2 0.3 0.4 0.5
rate of missing tuples

10 5

10 4

10 3

10 2

10 1

||
(S

,X
)

(S
,X

)||

Click on Tuple

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

Figure 7: Average distances between the tuple embeddings of each relation of clean database and
their counterpart from the perturbed database. The perturbed database has been generated from
the clean one where tuples have been removed at a rate from 0 up to 0.5. The neural network is
composed of 3 layers; a minor perturbation in the database is less likely to impact the embedding of
all elements of the database.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

Our graph
nbr occurrences: 1 - 1

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

Our Graph + Gaifman
nbr occurrences: 1 - 1

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1
||

(S
,X

)
(S

,X
)||

Our Graph - Attribute nodes
nbr occurrences: 1 - 1

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

||
(S

,X
)

(S
,X

)||

FoRWaRD
nbr occurrences: 1 - 1

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

||
(S

,X
)

(S
,X

)||

EmbDI
nbr occurrences: 1 - 1

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

||
(S

,X
)

(S
,X

)||

Click on Tuple
nbr occurrences: 1 - 1

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||
nbr occurrences: 2 - 2

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2
CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 19

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 19

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 19

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 19

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||
nbr occurrences: 3 - 19

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 19

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 20 - 145

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 20 - 145

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

||
(S

,X
)

(S
,X

)||

nbr occurrences: 20 - 145

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 20 - 145

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 20 - 145

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

0.0 0.2 0.4 0.6
missing rate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 20 - 145

CH_
CR_
TT_
EX_
IN_
SC_
ST_
TX_

Figure 8: Average distances between the tuple embeddings of each relation of clean database and
their counterpart from the perturbed database. The perturbed database has been generated from
the clean one where values have been removed at a rate from 0 up to 0.5. The neural network is
composed of 3 layers; a minor perturbation in the database is less likely to impact the embedding of
all elements of the database.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 2: Detail of TPC-E tables used.

Table ISO Prefix Tuples Attributes
Security S 154 16
Broker B 49 5

TaxRate TX 169 3
Company CO 112 9
Industry IN 101 3
Sector SC 11 2

Customer C 145 24
CommissionRate CR 134 6

ZipCode ZC 134 3
Financial FI 142 14

CustomerTaxrate CX 180 2
WatchList WL 117 2

Charge CH 14 3
Exchange EX 3 7

HoldingSummary HS 126 3
WatchItem WI 204 2
TradeType TT 4 4
LastTrade LT 119 5

AccountPermission AP 135 5
NewsXRef NX 164 2

Address AD 107 5
CustomerAccount CA 118 6

CompanyCompetitor CP 199 3
StatusType ST 4 2

Other comparison with GNN variants We also compare the degree one SPGNNs on other
datasets, CitySeer Yang et al. (2016) and PubMed Yang et al. (2016) along with the Cora dataset.
CitySeer is a graph composed of 3,327 nodes and 9,104 edges. Each node belongs to one of the six
classes which compose the corpus and has an initial feature mappings of dimension 3,703. PubMed
is another graph dataset composed of 19,717 node distributed among three different classes. These
nodes are connected by 88,648 edges and have an initial feature map of dimension 500. The exper-
imental conditions remain the same as the ones presented in Section 6 and the results are presented
in Table 3 and reinforce the results presented in the main text. The table presents the accuracy scores
performed by the different GNNs on graphs that keep 100%, 90%, 70%, 50%, 30% of their original
nodes. The annotation (1) identify the experiments where the 2-layer MLP is retrained for each
“dirty” graph while (2) denote the experiments where none of the GNNs nor the MLP are retrained.

Other databases We have used the following other datasets from the relational database domain
to corroborate the results in Section 6:

• genes Cheng et al. (2002) This dataset has been presented for the 2001 KDD competition,
containing genomics and drug design related data.

• hepatitis Neville et al. (2003) a database which presents biological conditions of patients
having contracted either hepatitis A or B.

• mondial May (1999) a dataset which shows whether a country is is predominantly Chris-
tian or not.

• mutagenesis Lodhi & Muggleton (2005) a dataset composed of data concerning muta-
genicity of molecules on Salmonella typhimurium.

• world Toenshoff et al. (2023) a dataset which contains data on countries and their cities.

The smaller versions of these databases, used in this work, are presented in Table 4 and their associ-
ated graphs in Table 5.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 3: SPGNN vs. state of the art

GCN (1) GAT (1) SPGNN (1) GCN (2) GAT (2) SPGNN (2)

Cora (100%) 0.86± 0.02 0.87± 0.01 0.85± 0.05 0.86± 0.02 0.87± 0.01 0.85± 0.05
Cora (90%) 0.74± 0.04 0.76± 0.018 0.81± 0.02 0.65± 0.06 0.67± 0.06 0.65± 0.07
Cora (70%) 0.71± 0.03 0.73± 0.01 0.80± 0.02 0.62± 0.04 0.60± 0.02 0.58± 0.04
Cora (50%) 0.62± 0.05 0.62± 0.05 0.77± 0.02 0.44± 0.09 0.44± 0.07 0.42± 0.06
Cora (30%) 0.49± 0.07 0.52± 0.05 0.71± 0.04 0.24± 0.07 0.27± 0.04 0.28± 0.10

PubMed (100%) 0.84± 0.01 0.84± 0.01 0.86± 0.01 0.84± 0.01 0.84± 0.01 0.86± 0.01
PubMed (90%) 0.79± 0.04 0.78± 0.05 0.84± 0.01 0.78± 0.05 0.79± 0.03 0.76± 0.07
PubMed (70%) 0.77± 0.08 0.76± 0.02 0.83± 0.01 0.75± 0.03 0.74± 0.02 0.73± 0.03
PubMed (50%) 0.68± 0.08 0.67± 0.08 81± 0.01 0.61± 0.12 0.61± 0.12 0.58± 0.13
PubMed (30%) 0.70± 0.02 0.68± 0.02 0.82± 0.01 0.65± 0.01 0.65± 0.02 0.64± 0.02
CiteSeer (100%) 0.75± 0.02 0.75± 0.02 0.71± 0.04 0.75± 0.02 0.75± 0.02 0.71± 0.04
CiteSeer (90%) 0.64± 0.02 0.61± 0.04 0.68± 0.02 0.32± 0.12 0.32± 0.12 0.29± 0.10
CiteSeer (70%) 0.60± 0.03 0.60± 0.02 0.66± 0.01 0.36± 0.15 0.36± 0.15 0.34± 0.18
CiteSeer (50%) 0.61± 0.02 0.58± 0.05 0.65± 0.05 0.23± 0.08 0.25± 0.09 0.23± 0.08
CiteSeer (30%) 0.56± 0.03 0.53± 0.04 0.62± 0.02 0.24± 0.10 0.23± 0.10 0.23± 0.11

Table 4: Properties of extra databases used.

Database Relations Tuples Attributes
genes 3 300 15

mutagenesis 3 300 14
mondial 34 3170 136
hepatitis 7 632 26

world 3 300 24

Figures 9–14 show further results on the stability of the database embeddings for the value removal
perturbation. These results corroborate the ones presented in Section 6 for TPC-E.

Oversmoothing (Rusch et al. (2023)) To ensure that our stability results are not simply a byprod-
uct of oversmoothing, we compare here the stability results on the Hepatitis dataset, obtained with a
5-layer GNN (Fig. 10) with those obtained with a 2-layer GNN (Fig. 11)(mitigating oversmoothing).
As we can observe similar trends, but at different scales, we can conclude that the initial experiments
(Fig. 1-3) using GNNs with 3 to 5 layers are not significantly impacted by oversmoothing.

Chaining tuple deletions and additions We conduct experiments where we sequentially add or
delete tuples in a database. The rationale for this experiment is to confirm that adding and removing
values are symmetrical operations w.r.t. stability. The results are present in Fig. 15-17. Note

Table 5: Sizes of graphs generated from databases in Table 4.

FoRWaRD EmBDi 5-DB 5-DB Gaif 5-DB-Att Tuple+Clique

genes nodes 7,902 8,041 21,349 21,210 21,210 7,902
edges 11,698 20,048 41,843 46,058 28,569 161,448

mondial nodes 10,089 10,225 26,377 26,241 26,241 10,089
edges 15,131 24,571 50,748 96,246 34,305 205,168

mutagenesis nodes 706 720 2,123 2,109 2,109 706
edges 1,351 1,906 4,500 4,830 3,100 16,201

world nodes 1,792 1,816 4,219 4,195 4,195 1,792
edges 2,266 3,923 7,698 15,340 5,098 17,116

hepatitis nodes 820 846 3,249 3,223 3,223 820
edges 1,782 2,597 7,820 6,211 5,424 31,978

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||
nbr occurrences: 1 - 1

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 6

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 7 - 106

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

Figure 9: Stability to missing values, by removing up to 90% of the values of the database. We show
result for removal of values of various frequency bins. This experiment has been performed on the
Genes database.

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 1 - 1

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 7

10 6

10 5

10 4

10 3

10 2

10 1

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 3

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 4 - 148

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

Figure 10: Stability to missing values, by removing up to 90% of the values of the database. We
show result for removal of values of various frequency bins. This experiment has been performed
on the Mutagenesis database.

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 1 - 1

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 3

10 2

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 7

10 6

10 5

10 4

10 3

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 3

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 2

10 1

||
(S

,X
)

(S
,X

)||

nbr occurrences: 4 - 148

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

Figure 11: Stability to missing values, by removing up to 90% of the values of the database. We
show result for removal of values of various frequency bins. This experiment has been performed
on the Mutagenesis database using a 2-layer SPGNN.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

||
(S

,X
)

(S
,X

)||
nbr occurrences: 1 - 1

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 5

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 6 - 6

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 7 - 686

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

Figure 12: Stability to missing values, by removing up to 90% of the values of the database. We
show result for removal of values of various frequency bins. This experiment has been performed
on the Hepatitis database.

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 1 - 1

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 4

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 5 - 72

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

Figure 13: Stability to missing values, by removing up to 90% of the values of the database. We
show result for removal of values of various frequency bins. This experiment has been performed
on the World database.

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 1 - 1
5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 2

10 1

||
(S

,X
)

(S
,X

)||

nbr occurrences: 2 - 2
5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 2

10 1

||
(S

,X
)

(S
,X

)||

nbr occurrences: 3 - 4
5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

0.1 0.2 0.3 0.4 0.5 0.6
Missing tuple rate

10 2

10 1

100

||
(S

,X
)

(S
,X

)||

nbr occurrences: 5 - 318

5-DB
5-DB+Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+clique

Figure 14: Stability to missing values, by removing up to 90% of the values of the database. We
show result for removal of values of various frequency bins. This experiment has been performed
on the Mondial database.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

ad
d

ad
d

ad
d

de
let

e
de

let
e

de
let

e
ad

d
ad

d
de

let
e

ad
d

Update

101

102

||
(S

,X
)

(S
,X

)||
2

Embedding Stability (For the different graphs)

5-DB
5-DB Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+Clique

ad
d

ad
d

ad
d

de
let

e
de

let
e

de
let

e
ad

d
ad

d
de

let
e

ad
d

Update

103

104

105

dM
2

Upper bound (For the different graphs)

Upper Bound 5-DB
Upper Bound 5-DB-Gaif
Upper Bound 5-DB-Att
Upper Bound FoRWaRD
Upper Bound EmbDI
Upper Bound Tuple+Clique

Figure 15: Experiment performed over the Hepatitis database Neville et al. (2003). The plot on
the left explores the distance between (a) the embeddings generated from a truncated database D1

in which, at each step, some tuples are either added or deleted, and (b) the embeddings generated
using the entire database D2. To plot on the right presents the upper bounds defined in Corollary
2.1; D1 has been preprocessed s.t., at the first iteration, 50% of its tuples are missing. Each addition
increments the database by 20% of the left-out tuples. For each removal operation, 10% of the total
number of tuples are removed.

ad
d

ad
d

ad
d

de
let

e
de

let
e

de
let

e
ad

d
ad

d
de

let
e

ad
d

Update

101

2 × 101

3 × 101

4 × 101

||
(S

,X
)

(S
,X

)||
2

Embedding Stability (For the different graphs)

5-DB
5-DB Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+Clique

ad
d

ad
d

ad
d

de
let

e
de

let
e

de
let

e
ad

d
ad

d
de

let
e

ad
d

Update

104

105

dM
2

Upper bound (For the different graphs)

Upper Bound 5-DB
Upper Bound 5-DB-Gaif
Upper Bound 5-DB-Att
Upper Bound FoRWaRD
Upper Bound EmbDI
Upper Bound Tuple+Clique

Figure 16: Experiment performed over the Mutagenesis database Lodhi & Muggleton (2005).
The plot on the left explores the distance between (a) the embeddings generated from a truncated
database D1 in which, at each step, some tuples are either added or deleted, and (b) the embeddings
generated using the entire database D2. To plot on the right presents the upper bounds defined in
Corollary 2.1; D1 has been preprocessed s.t., at the first iteration, 50% of its tuples are missing. Each
addition increments the database by 20% of the left-out tuples. For each removal operation, 10% of
the total number of tuples are removed.

that the results presented in the main experimental section focus on the worst-case scenario, by
examining the distance between two node embeddings of the two graphs. By applying Corollary
2.1 and summing over all embeddings, one can observe that the practical and theoretical results are
much closer.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

ad
d

ad
d

ad
d

de
let

e
de

let
e

de
let

e
ad

d
ad

d
de

let
e

ad
d

Update

101

2 × 101

3 × 101

4 × 101

||
(S

,X
)

(S
,X

)||
2

Embedding Stability (For the different graphs)

5-DB
5-DB Gaif
5-DB-Att
FoRWaRD
EmbDI
Tuple+Clique

ad
d

ad
d

ad
d

de
let

e
de

let
e

de
let

e
ad

d
ad

d
de

let
e

ad
d

Update

104

dM
2

Upper bound (For the different graphs)

Upper Bound 5-DB
Upper Bound 5-DB-Gaif
Upper Bound 5-DB-Att
Upper Bound FoRWaRD
Upper Bound EmbDI
Upper Bound Tuple+Clique

Figure 17: Experiment performed over the World database Toenshoff et al. (2023). The plot on
the left explores the distance between (a) the embeddings generated from a truncated database D1

in which, at each step, some tuples are either added or deleted, and (b) the embeddings generated
using the entire database D2. To plot on the right presents the upper bounds defined in Corollary
2.1; D1 has been preprocessed s.t., at the first iteration, 50% of its tuples are missing. Each addition
increments the database by 20% of the left-out tuples. For each removal operation, 10% of the total
number of tuples are removed.

29

	Introduction and Motivation
	Related work
	Graph Neural Networks
	Preliminaries
	Signal Processing GNNs (SPGNNs)

	Stability of SPGNNs
	Existing Results
	Refined bounds on the stability of SPGNNs
	Node embedding stability

	Application: stability of embeddings for relational databases
	Experimental Results
	Comparing SPGNNs with other GNN variants (Cora graph dataset)
	Stability for graphs encoding relational databases (TPC-E dataset)

	Conclusion
	STABILITY
	Proof of Theorem 2
	Proofs of the Corollaries.
	Instantiation in the distance modulo permutation framework
	Generalization of Theorem 2.
	Hypothesis on the degree of the filters
	Hypothesis on the symmetry of the GSOs

	Other Experimental Details

