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Abstract

Sleep disorders, particularly insomnia, and mental health conditions affect a significant
fraction of adults worldwide, posing serious mental and physical health risk. Music therapy
offers promising, low-cost, and non-invasive treatment, but current approaches rely heavily
on expert-curated playlists, limiting scalability and personalization. We propose a low-cost
generative system leveraging recent advances in diffusion models to synthesize music for
therapy. We focus on insomnia and curate a dataset of waveform sleep music to generate
audio tailored to sleep. To ensure real-world feasibility, we optimize our system for training
and use on a single GPU, balancing quality and efficiency through extensive ablation
studies. We show through subjective human evaluations that our generated music matches
or outperforms existing baselines in both perceived quality and relevance to sleep therapy,
while using only a fraction of the computational cost.

Keywords: Diffusion Models, Music Therapy, Insomnia, Mental Health, Sleep Music
Generation

1. Introduction

It is estimated nearly a third of the world population suffers from insomnia (Bhaskar et al.,
2016), with one in ten suffering from chronic insomnia (Ellis et al., 2023; Riemann et al., 2022).
Mental health conditions such as depression and anxiety are also known to be comorbid with
insomnia (Palagini et al., 2022; Blank et al., 2015), and together they contribute to many
lifestyle diseases with severe impact on health such as lessened metabolic, immunologic, and
cardiovascular health. Additionally, sleep disruption increases susceptibility to numerous
chronic conditions (Ramar et al., 2021; Medic et al., 2017; van Cauter et al., 2007; Gebara
et al., 2018). The progressive decline in sleep duration in the public is considered a public
health epidemic (Consensus Conference Panel et al., 2015) and most common treatments for
insomnia are drug based, which have often been associated with adverse side effects.

Music therapy is emerging as an effective, non-invasive, and low-cost solution in the
treatment of sleep and mental health disorders (Huang et al., 2023a; Mohamad Zamani
et al., 2022; Jespersen et al., 2015; Lee and Thyer, 2013), as there is strong evidence that
music can improve sleep quality (Jespersen et al., 2015; Dickson and Schubert, 2020; Loewy,
2020; Wang et al., 2014) as well as the recovery approach in mental health care (Lee and
Thyer, 2013). However, producing music for therapy on-demand is underexplored (Richter,
2019). Existing systems are static, lacking the adaptability to cater to individual needs.
Moreover, these approaches rely on expert therapists to curate music selections, limiting
their accessibility and scalability for broader public use.

To address the up-and-coming field of music therapy generation, this paper focuses on
low-cost sleep music generation that can be both trained and deployed efficiently, making
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it accessible for wider use, and operates on publicly available sleep music. To summarize,
our main contributions are as follows: (a) we are the first to focus on generative sleep
therapy using waveform audio, a more expressive and available audio data format, that
allows for greater adaptability to personal preferences, surpassing the limitations of previous
MIDI-based or algorithm-based approaches; (b) we are the first to apply the BigVGAN
vocoder to music generation, demonstrating its superior performance despite being origi-
nally trained for speech synthesis; (c) we propose multiple model architectures that offer
various trade-offs between generation quality and computational efficiency, with our fastest
models leveraging a latent diffusion framework combined with the BigVGAN vocoder. We
specifically focus on training models on a single consumer GPU, employing a minimal
latent diffusion architecture and carefully chosen hyperparameters to maximize efficiency
without compromising performance.; (d) we curate a specialized dataset of sleep music and
(e) through comprehensive objective and subjective evaluations, including human listener
studies, we show that our models outperform existing methods in terms of music relevance
to sleep therapy. We achieve these improvements while maintaining smaller model size and
reduced computational requirements compared to other state-of-the-art music models.

2. Background in Computer Music Generation

Previously, music intervention studies often relied on generic sleep music with no expert
curation (Loewy, 2020; Wang et al., 2014; Richter, 2019). While some studies improve upon
this by involving expert-selected music (Dickson and Schubert, 2020; Jespersen et al., 2015),
it has been shown that music preference is individualistic and could have an impact on
music therapy (Chang et al., 2012; Yamasato et al., 2020). Moreover, there still remains a
critical gap: across nearly all studies there is a severe lack of analysis on the specific sleep
music characteristics (Loewy, 2020), including melody, harmony, rhythm, etc. Implementing
personalized music interventions on a large scale remains costly and logistically challenging.

Music generation methods can be broadly categorized into MIDI-based and waveform-
based approaches. Transformers (Vaswani et al., 2023) have been widely employed to
sequentially model MIDI notes, treating the task as a language modeling problem (Huang
and Yang, 2020; Qu et al., 2024; Zhang, 2023; Jiang et al., 2020). However, MIDI only
provides instructions for synthesizing sound; it does not directly produce audio and requires
additional processing through instruments or software synthesizers to generate sound, thus
lacking the expressiveness and fidelity required for generating full, synchronized soundtracks.
As such, MIDI datasets need to often be created manually, in contrast to being able to use
readily available sleep music in the audio (waveform) format.

On the other hand, learning from raw audio (waveform) provides both flexibility and
ease of access to training data. Instead of needing to build music from MIDI instructions,
music can be directly created from waveforms, allowing for more naturally sounding and
expressive results. Additionally, this approach benefits from a large amount of sleep music
available as waveforms, whereas MIDI versions of these songs are rarely accessible.

Specifically for sleep music, only two music generation approaches have been put forth
so far. The first uses MIDI-based music generation (Yang et al., 2022), while the other
utilizes an algorithmic approach using randomization and Markov Chains to construct music
elements (Tulilaulu et al., 2012). Thus, no works up to date have focused on generating
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expressive sleep music from waveform audio. As a result, existing methods lack the ability
to produce music that is both highly expressive, natural-sounding, and adaptable to users’
preferences, limiting their effectiveness. Nevertheless, we cover the most popular approaches
in literature for general music generation.

Recently, diffusion models have shown exceptional performance in generative AI tasks
involving waveform audio. Existing approaches in the literature can be categorized as follows:
(a) Spectrogram-based Diffusion Models, which process spectrogram data using encoders
such as VAEs and employ a neural vocoder to convert spectrograms back into audio (Chen
et al., 2023; Liu et al., 2023; Huang et al., 2023b; Yang et al., 2023; Huang et al., 2023c), or
operate directly on waveforms (Schneider et al., 2023; Schneider, 2023; Li et al., 2023); (b)
Diffusion Transformers (DiT), which generate audio by operating in the latent space, and
use a combined diffusion model and transformer approach (Agostinelli et al., 2023; Ning
et al., 2025); (c) Auto-regressive Language Models (most commonly transformers), which
generate audio based on trained codecs (Copet et al., 2023; Evans et al., 2024; Lan et al.,
2024; Wu et al., 2024a,b); and (d) Alternative Generative Methods, such as Consistency
Autoencoders (CAE) (Pasini et al., 2024).

However, in the field of music generation, few released models are able to accommodate
use on a single consumer GPU, often requiring large amounts of compute to train and run
for inference. Our research addresses this limitation by developing lightweight models that
can be trained and deployed for inference on a single consumer GPU.

3. Proposed Approach

Our framework consists of four main components: (a) the Waveform Processor, (b) Vari-
ational Autoencoder (VAE), (c) Diffusion Model, (d) and Vocoder. Figure 1 depicts the
overall pipeline of the proposed approach.

3.1. Framework Components

The Waveform Processor (a) starts the pipeline by taking raw audio waveforms x ∈ RTs

from the training dataset, where Ts is the length of the audio signal in samples (e.g. an
audio file with a sampling rate of 44.1kHz has 44,100 samples per second). To optimize
computational efficiency, the audio is downmixed to mono and resampled to 22 kHz, unless
stated otherwise. The processed waveform is then transformed into a mel-spectrogram
Xm ∈ RTpx×Fmb , where Tpx is the time resolution and Fmb is the number of mel-frequency
bins. The mel-spectrograms are sliced to the appropriate length for the next stage.

Next, the Variational Autoencoder (VAE) (b) encodes mel-spectrograms into a
compact latent space, enabling efficient training and inference. Specifically, Xm ∈ RTpx×Fmb is

encoded into z ∈ RC×Tpx
r

×Fmb
r , where C is the latent channel size and r is the downsampling

factor. The decoder reverses this process, reconstructing a mel-spectrogram from the latent
representation. Once the VAE is trained, its parameters are frozen during the training and
inference stages of the diffusion model.

Then, theDiffusion Model (c) generates novel samples z′ ∈ RC×Tpx
r

×Fmb
r from Gaussian

noise, either in the pixel space (if no VAE is used), or in latent space (if the VAE is used).
Using a U-Net backbone, the model progressively denoises the input noise through a reverse
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Figure 1: Diagram of our proposed framework, which consists of four components: Waveform
Processor, VAE, Diffusion, and Vocoder. Raw audio (waveform) of length Ts from
our sleep dataset is downsampled to sr = 22kHz and converted to mono. It is then
transformed into mel-spectrograms (Xm) with a time (x) resolution of Tpx and a
frequency (y) resolution of Fmb. A pre-trained VAE encodes the mel-spectrogram
into a compressed 2-dimensional latent space (z) with a compression ratio r.
During training (bold arrows), the diffusion model processes the batch once to
predict the added noise in training samples, computing the loss for backpropagation.
During inference (dashed arrows), the process starts with Gaussian noise and
performs 1000 steps of ancestral sampling to generate a novel sample, which is
passed through the VAE decoder to reconstruct the mel-spectrogram. Finally, the
Vocoder converts the mel-spectrogram back into audio.

diffusion process over N iterative steps. During training, the model learns to predict the
noise added at each step of the forward diffusion process. In inference, it generates novel
samples by iteratively reversing this process, starting from pure Gaussian noise.

Finally, the Vocoder Component (d) converts the generated mel-spectrograms X′
mel ∈

RTpx×Fmb back into waveform audio X′ ∈ RTs . Since phase information of mel-spectrograms is
no longer present, this approach is not straightforward. We experiment with two approaches
two make the conversion back to audio: the deterministic Griffin-Lim algorithm and the
BigVGAN neural vocoder. The BigVGAN vocoder was pretrained on a diverse dataset,
originally for speech synthesis, but we show it performs well for the music generation tasks.
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Component Hyperparameter Value

Waveform
Processor

Sampling Rate 22 kHz or 44 kHz

Mel-spec Pixel Width 512 px or 2048 px

Mel Bands Variable

Hop Length Variable

FFT Size Variable

VAE

KL Divergence Reg. Term 1× 10−6

Discriminator After 50,001 steps

Base Channel Width 32

Channel Multipliers [1, 2, 4, 4]

Input/Output Channels 1

Residual Blocks per Level 2

Learning Rate 4.5× 10−6

Batch Size 32

EMA inv. gamma = 1.0, power = 3
4
,max decay = 0.9999

Compression Rate Variable

Diffusion
Model

Down Blocks [DownBlock, DownBlock, DownBlock, DownBlock,

AttnDownBlock, DownBlock]

Up Blocks [UpBlock, AttnUpBlock, UpBlock, UpBlock, UpBlock,

UpBlock]

Out Block Channels [128, 128, 256, 256, 512, 512]

Learning Rate 10−4 w/ 500 warmup steps

Adam Optimizer β1 = 0.95, β2 = 0.999, ϵ = 10−8,weight decay = 10−6

EMA inv. gamma = 1.0, power = 3
4
,max decay = 0.9999

Training Steps 1000 DDPM Steps

Noising Parameters β1 = 10−4, βT = 0.02

Noising Schedule Cosine

Inference Steps 1000 DDPM steps or 100 DDIM steps

Batch Size 16 or 8

Vocoder
Neural Vocoder bigvgan v2 44khz 128band 256x

Griffin-Lim Iterations 32

Table 1: Hyperparameters for each component. While most parameters are fixed throughout
the paper following standard literature practices, others are the focus of the paper
and vary during individual experiments and are marked as ‘Variable’.

3.2. Training Dataset

To train our model, we selected a suitable dataset of sleep music. We used samples from the
publicly available Spotify Sleep Playlist Dataset (Scarratt et al., 2023). After filtering, the
dataset has 19,000 30-second samples, amounting to ∼158 hours of music. For brevity, this
paper often refers to this dataset as SSD (Spotify Sleep Dataset).

3.3. Hyperparameters and Training Details

This section describes important hyperparameters and technical details of the relevant
components used in our approach. An overview of the parameters is shown in Table 1.
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4. Evaluation Setup

We perform objective and subjective evaluation for the generated music. We evaluate
generated music using the Fréchet Audio Distance (FAD) metric and both objective and
subjective methods when comparing to recent baseline models.

4.1. Objective Assessments

In our experiments, generated samples are evaluated using the Fréchet Audio Distance
(FAD) metric (Kilgour et al., 2019). FAD measures the similarity between the distributions
of two sets of audio tracks, one generated and one reference, by computing the Fréchet
Distance (Heusel et al., 2018), also known as the Wasserstein-2 distance, between their
respective embeddings. We leverage the library and incorporate improved parameters for
FAD calculation from (Gui et al., 2024), addressing their recent findings that traditional
FAD metrics may not reliably align with human judgment. Specifically, the widely used
VGGish (Hershey et al., 2017) embedding model has been shown to inadequately reflect
human perception. Instead, we leverage the CLAP music model backbone (Wu et al., 2024c),
which offers a stronger alignment with human evaluations, and comes in two variations:
clap-laion-audio and clap-laion-music. This is in line with other new works such as
(Novack et al., 2024; Manor and Michaeli, 2024), which also adopt the CLAP model backbone
to compute embeddings for FAD calculation. To remain consistent with recent literature,
we nonetheless still report VGGish scores for comparison. For brevity, from now on we refer
to FAD scores calculated using each of the three models as FADcla , FADclm , and FADvgg ,
respectively.

We use the FMA Pop dataset (Defferrard et al., 2017) as the reference set for FAD
calculation to evaluate music quality, following recommendations for generative music tasks
(Gui et al., 2024). The FMA Pop dataset provides a more reliable benchmark for assessing
music quality compared to the commonly used MusicCaps dataset (Agostinelli et al., 2023).
Next, to specifically evaluate how closely our generated samples align with sleep music
characteristics, we compute FAD scores using our curated Spotify Sleep Dataset as a reference
set. Throughout this paper, we report FAD scores for both reference sets of FMA Pop and
the Spotify Sleep Dataset. To prepare our reference sets for FAD calculation, we download
the FMA Pop dataset (Defferrard et al., 2017) from the official repository.

4.2. Subjective Assessments

We conduct a subjective human study following the same procedure as in existing studies (Li
et al., 2023; Copet et al., 2023; Kreuk et al., 2023), to evaluate the generated music.

Human participants were asked to rate: (a) the overall perceived quality of the generated
audio samples (Qual), and (b) the relevance of the generated audio samples to sleep music
(Rel), both on a scale of 1 to 100. We leverage the Amazon Mechanical Turk platform to
recruit participants and ensure they are paid at least the UK national minimum wage. Noisy
annotations and outliers are dropped, such that responses from participants who did not
listen to the full audio samples and/or annotators who rated the reference audio samples less
than 85 are discarded. All audio samples were also normalized to -20.0 dBFS for fairness.
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4.3. Baseline Models

Based on the findings from our literature review, we select AudioLDM (Liu et al., 2023)
and MusicGen (Copet et al., 2023) as baseline models for comparison with our proposed
model. We choose these models as they have publicly available APIs to generate samples
and also offer configurations with small enough model sizes, which is in line with our goal
of developing lightweight models for resource-constrained environments. We deploy these
respective baseline models using the publicly available implementation on HuggingFace and
generate samples by providing the prompt “relaxing sleep music perfect for sleep therapy”
as well as other inputs based on the respective author’s recommendations. Sleep music
generated by our model is filtered to ensure the quality of the presented samples. We
compute individual FAD scores (Gui et al., 2024) for these generated samples and select a
subset with the top scores for further stages.

5. Evaluation Results

In this section, we first present a comparison between different model configurations followed
by our objective and subjective evaluation results.

5.1. Model Configuration Comparison

Our ablation experiments showed that we can improve FAD scores by small architectural
tweaks. To further enhance performance, we replace the Griffin-Lim algorithm for mel-
spectrogram-to-audio conversion with a neural vocoder. We showcase all the main models
and parameters side by side in Table 2.

Each long-sample model, corresponding to 2048×128-pixel mel-spectrograms, was trained
for approximately 72 hours, while each short-duration model, using 512×128-pixel spec-
trograms, was trained for around 36 hours. All models were trained on a single A100
GPU. We selected these training durations to remain compute efficient, and to roughly have
the same amount of training steps as other small models in the literature. Latent models
performed worse than pure mel-spectrogram diffusion models, with noticeable improvements
observed when employing the BigVGAN vocoder. The impact of the vocoder is more
pronounced for shorter samples, suggesting that the generated mel-spectrograms are of
higher quality. BigVGAN consistently outperforms the Griffin-Lim algorithm across all
configurations, particularly when paired with a VAE during the diffusion process. This
highlights BigVGAN’s ability to mitigate reconstruction artifacts inherent in latent models.
The strongest-performing setup combines a mel-spectrogram diffusion process with the
BigVGAN vocoder. In terms of efficiency, VAE-based configurations are markedly faster,
with generation times reduced from 49.75 to 3.44 seconds for longer samples and from
12.13 to 1.44 seconds for shorter samples. The BigVGAN vocoder enhances sample quality
while introducing only minimal computational overhead, further solidifying its advantage
over the Griffin-Lim algorithm. Additionally, VAE models achieve faster-than-real-time
generation. Across all experiments, the DDIM sampler is capable of faster than real-time
generation. however, this paper focuses on reporting results using the DDPM sampler.
These findings demonstrate the feasibility of utilizing diffusion models for real-time music
generation systems. We select the overall best performing model to carry forward into
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the human evaluation section, which is a mel-spectrogram based diffusion model using a
BigVGAN Vocoder producing samples of ∼12 seconds (Mel-spec + BigvGAN ).

Configuration Sample
Length,
secs+kHz

Sampling
Time
DDPM/
DDIM
(s)

Model Size (#Params/MB) FMA Pop
Reference Set

SSD
Reference Set

FADcla FADclm FADcla FADclm

2048×128 Samples
(Longer)
Mel-spec 23.8

(22kHz)
49.75/4.975 113M/455MB 0.824 0.917 0.446 0.481

Mel-spec (hl512 nfft1024) 47.5
(22kHz)

49.75/4.975 113M/455MB 0.949 0.904 0.697 0.736

Mel-spec + 4× VAE 23.8
(22kHz)

3.44/0.344 113+1.3M/455+5MB 1.154 1.190 0.696 0.719

Mel-spec + BigVGAN 11.9
(44kHz)

50.93/6.155 113+112M/455+451MB 0.607 0.630 0.357 0.460

Mel-spec + 4× VAE +
BigVGAN

11.9
(44kHz)

4.62/1.524 113+1.3+112M/455+5+451MB - - - -

512×128 Samples
(Shorter)
Mel-spec 5.9

(22kHz)
12.13/1.213 113M/455MB 0.988 1.012 0.692 0.628

Mel-spec (hl512 nfft1024) 11.9
(22kHz)

12.13/1.213 113M/455MB 0.807 0.879 0.484 0.506

Mel-spec + 4× VAE 5.9
(22kHz)

1.44/0.144 113+1.3M/455+5MB 1.119 1.129 0.894 0.760

Mel-spec + BigVGAN 3.0
(44kHz)

11.585/1.343 113+112M/455+451MB 0.806 0.807 0.613 0.671

Mel-spec + 4× VAE +
BigVGAN

3.0
(44kHz)

1.645/0.349 113+1.3+112M/455+5+451MB 0.832 0.821 0.478 0.541

Table 2: FAD Score Evaluation on the FMA Pop Dataset for Models With Different Config-
urations and Sample Sizes. Smaller Sample Sizes (512×128) and Longer Sample
Sizes (2048×128) are indicated in the Table. The Mel-spectrogram + 4× VAE +
BigVGAN configuration is omitted as training was unable to converge within the
allocated training time.
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5.2. Comparison with the Baselines

Model

(100 samples)
# Params

FMA Pop Reference Set SSD Reference Set

Qual ↑ Rel ↑ FADcla ↓ FADclm ↓ FADvgg ↓ FADcla ↓ FADclm ↓ FADvgg ↓

Sleep
Dataset
(human com-
posed)

- 94.72 ± 0.81 92.31 ± 2.23 0.704∗ 0.827∗ 11.656∗ 0.027 0.022 0.336

AudioLDM-
S

185M 66.14 ± 5.20 65.07 ± 5.59 0.642 0.834 5.483 0.864 0.825 9.069

MusicGen-S 300M 83.08 ± 3.34 82.41 ± 3.74 0.851 0.825 10.272 0.616 0.693 4.212

Proposed 115M 83.70 ± 3.23 85.74 ± 3.03 0.823 0.849 11.609 0.251 0.416 2.782

Table 3: Subjective (Qual and Rel) and Objective (FAD) comparison between the baseline
models (AudioLDM, MusicGen) and our proposed model. FAD scores are computed
using FMA Pop and the Spotify Sleep Dataset as reference as indicated. Lower FAD
scores indicate greater similarity to the reference set and are typically preferred.
Higher Qual and Rel, from the subjective evaluation surveys, indicate better
perceived audio quality and relevance to sleep music and are therefore better.

Both objective and subjective results are reported in Table 3. We first compare our proposed
model with the selected baseline models using objective metrics. When using FMA Pop as
the reference set, our model achieves FAD scores comparable to MusicGen-S while using only
about 1/3 of the number of parameters. On the other hand, when using the Spotify Sleep
Dataset as reference, the proposed model considerably out performs the baseline models
demonstrating better objective alignment with sleep music characteristics. Next, we present
the mean opinion score and 95% confidence intervals from the human evaluation study
(subjective results). Again, the proposed model performs similar to MusicGen-S in both
audio quality and perceived relevance to sleep music and outperforms AudioLDM-S across
the same metrics.

We also observe high FAD values on the Spotify Sleep Dataset (100 samples) when using
FMA Pop as the reference set. The FMA Pop set consists of studio recordings of pop songs
while the Spotify Sleep Dataset consists of sleep music. Sleep music refers to audio that is
typically instrumental and calming. It often features slow tempos, and may incorporate
nature sounds such as rain, ocean waves, wind, etc. This difference in type of music between
the Sleep Dataset and the FMA Pop set could explain the divergence seen, underscoring the
importance of genre-specific reference sets and evaluation metrics when assessing generative
models for specialized tasks such as sleep music generation.

Our model has considerably less parameters and required far less training time when
compared to the baseline models. We train our proposed model for 2 days on one A100 GPU
with a batch size of 8, circa 200k steps, and similarly for our VAE (200k steps on a single
A100 GPU). MusicGen-S trains for 1.5 million steps on 32 GPUs, and AudioLDM’s VAE
alone is trained on 1.5 million steps on a single GPU. Not only do we match performance
but also surpass in terms of computational requirements.
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On the whole, the proposed model outperforms AudioLDM-S and achieves performance
that is comparable to, if not better than, MusicGen-S.

6. Conclusion and Future Work

In this work, we developed lightweight generative models tailored specifically for sleep
music. Objective and subjective evaluations show that our models produce high-quality
audio, often outperforming other approaches in the literature. We also demonstrate the
successful application of the BigVGAN vocoder for music generation, achieving high fidelity.
Our experiments examined key design choices for model architectures, balancing efficiency
(training and sampling speed) with output quality. The results indicate that our lightweight
models generate sleep music with strong resemblance to real examples, supported by low
Fréchet Audio Distance (FAD) scores and similarities across acoustic and audio features.
Key findings include the following: (a) using a curated sleep music dataset enables our
models to achieve superior quality and sleep-music relevance as rated by human listeners
with significantly fewer parameters compared to existing methods; (b) pretrained BigVGAN
vocoders, originally designed for speech, are capable of high-quality music generation; (c)
alternative mel-spectrogram configurations (e.g., non-standard hop length, n fft, and
mel bands) outperform conventional literature settings; and (d) confirming that VAE
compression exhibits diminishing returns, with excessive compression degrading audio
quality, as indicated by higher FAD scores. Based on these findings, we select a middle
ground of 4× compression for lightweight diffusion model training, balancing efficiency with
audio quality. Future research focuses on investigating which musical features best support
specific sleep phases and integrating user data to enable adaptive, real-time music generation
that corresponds to a user’s sleep state. Continuous generation techniques such as successive
conditioning or outpainting offer promising directions.
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