
Variational Deep Learning via Implicit Regularization

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Modern deep learning models generalize remarkably well in-distribution, despite
2 being overparametrized and trained with little to no *explicit* regularization. Instead,
3 current theory credits *implicit* regularization imposed by the choice of
4 architecture, hyperparameters and optimization procedure. However, deploying
5 deep learning models out-of-distribution, in sequential decision-making tasks, or
6 in safety-critical domains, necessitates reliable uncertainty quantification, not just
7 a point estimate. The machinery of modern approximate inference — Bayesian
8 deep learning — should answer the need for uncertainty quantification, but its ef-
9 fectiveness has been challenged by the associated computational burden and by
10 difficulties in defining useful *explicit* inductive biases through priors. Instead, in
11 this work we demonstrate, both theoretically and empirically, how to regularize a
12 variational deep network *implicitly via the optimization procedure*, just as for stan-
13 dard deep learning. We fully characterize the inductive bias of (stochastic) gradi-
14 ent descent in the case of an overparametrized linear model as generalized varia-
15 tional inference and demonstrate the importance of the choice of parametrization.
16 Finally, we show empirically that our approach achieves strong in- and out-of-
17 distribution performance without tuning of additional hyperparameters and with
18 minimal time and memory overhead over standard deep learning.

19

1 Introduction

20 The success of deep learning across many application domains is, on the surface, remarkable, given
21 that deep neural networks are usually overparameterized and trained with little to no *explicit* regular-
22 ization. The generalization properties observed in practice have been explained by *implicit* regular-
23 ization instead, resulting from the choice of architecture [1], hyperparameters [2, 3], and optimizer
24 [4–10]. Notably, the corresponding inductive biases often require no additional computation, in
25 contrast to enforcing a desired inductive bias through explicit regularization.

26 In the last two decades, there has been an increasing focus on improving the reliability and robust-
27 ness of deep learning models via (approximately) Bayesian approaches [11] to improve performance
28 on out-of-distribution data [12], in continual learning [13] and sequential decision-making [14].
29 However, despite its promise, in practice, Bayesian deep learning can suffer from issues with prior
30 elicitation [15], can be challenging to scale [16], and explicit regularization from the prior combined
31 with approximate inference may result in pathological inductive biases and uncertainty [17–20].

32 In this work, we demonstrate both theoretically and empirically how to exploit the implicit bias of
33 optimization for approximate inference in probabilistic neural networks, thus regularizing training
34 implicitly rather than explicitly via the prior. This not only narrows the gap to how standard neural
35 networks are trained, but also reduces the computational overhead of training compared to varia-
36 tional inference. More specifically, we propose to learn a variational distribution over the weights

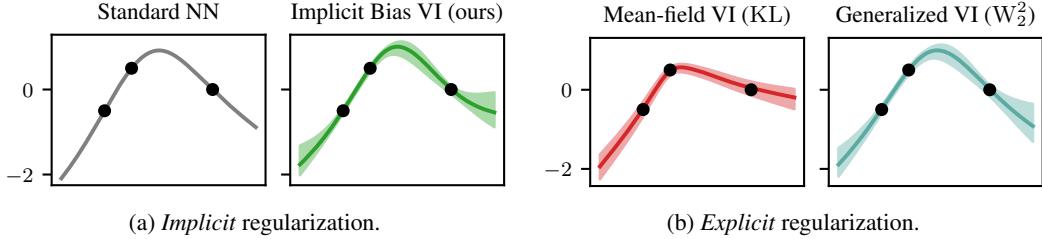


Figure 1: *Variational deep learning via implicit regularization.* Neural networks generalize well without explicit regularization due to implicit regularization from the architecture and optimization. We can exploit this implicit bias for variational deep learning, removing the computational overhead of explicit regularization and narrowing the gap to deep learning practice. As illustrated for a two-hidden layer MLP and proven rigorously for overparametrized linear models in Theorems 1 and 2, the implicit bias of (S)GD in variational networks (see (a)) can be understood as generalized variational inference with a 2-Wasserstein regularizer (see (b)). This differs from the standard ELBO objective with a KL divergence to the prior as used for example in mean-field VI (see (b)).

37 of a deep neural network by maximizing the *expected* log-likelihood in analogy to training via maximum likelihood in the standard case. However, in contrast to variational Bayes, there is *no explicit*
38 regularization via a Kullback-Leibler divergence to the prior. Surprisingly, we show theoretically
39 and empirically that training this way does not cause uncertainty to collapse away from the training
40 data, if initialized and parametrized correctly. More so, for overparametrized linear models we rigor-
41 ously characterize the implicit bias of SGD as generalized variational inference with a 2-Wasserstein
42 regularizer penalizing deviations from the prior. Figure 1 illustrates our approach on a toy example.
43

44 **Contributions** In this work, we propose a new approach to uncertainty quantification in deep
45 learning that exploits the implicit regularization of (stochastic) gradient descent. We precisely char-
46 acterize this implicit bias for regression (Theorem 1) and binary classification (Theorem 2) in over-
47 parameterized linear models, generalizing results for non-probabilistic models and drawing a rig-
48 orous connection to generalized Bayesian inference. We also demonstrate the importance of the
49 parametrization for the inductive bias and its impact on hyperparameter choice. In several bench-
50 marks, we demonstrate competitive performance to state-of-the-art baselines for Bayesian deep
51 learning, at minimal computational overhead compared to standard neural networks. Finally, we
52 provide an open-source implementation of our approach in a standalone library: `inferno`.

53 2 Background

54 Given a training dataset $(\mathbf{X}, \mathbf{y}) = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$ of input-output pairs, supervised learning seeks a
55 model $f_{\mathbf{w}}(\mathbf{x})$ to predict the corresponding output $y(\mathbf{x})$ for a test input \mathbf{x} . The parameters $\mathbf{w} \in \mathbb{R}^P$
56 of the model are typically trained via empirical risk minimization, i.e.

$$\mathbf{w}_* \in \arg \min_{\mathbf{w}} \ell_R(\mathbf{w}) \quad \text{with} \quad \ell_R(\mathbf{w}) = \ell(\mathbf{y}, f_{\mathbf{w}}(\mathbf{X})) + \lambda R(\mathbf{w}), \quad (1)$$

57 where the loss $\ell(\mathbf{y}, f_{\mathbf{w}}(\mathbf{X}))$ encourages fitting the training data and the regularizer $R(\mathbf{w})$, given
58 some $\lambda > 0$, discourages overfitting, which can lead to poor generalization on test data.

59 **Implicit Bias of Optimization** One of the remarkable observations in deep learning is that train-
60 ing overparametrized models ($P > N$) with gradient descent without *explicit* regularization can
61 nonetheless lead to good generalization [21] because the optimizer, initialization, and parametriza-
62 tion *implicitly* regularize the optimization problem $\arg \min_{\mathbf{w}} \ell(\mathbf{y}, f_{\mathbf{w}}(\mathbf{X}))$ [e.g. 4, 5, 7, 22, 23].

63 **Variational Inference** Bayesian inference quantifies uncertainty in the parameters, and conse-
64 quently predictions, by the posterior distribution $p(\mathbf{w} | \mathbf{X}, \mathbf{y}) \propto p(\mathbf{y} | \mathbf{X}, \mathbf{w})p(\mathbf{w})$, which depends
65 on the choice of a prior belief $p(\mathbf{w})$ and a likelihood $p(\mathbf{y} | \mathbf{w})$. Approximating the posterior with
66 $q_{\theta} \approx p(\mathbf{w} | \mathbf{X}, \mathbf{y})$ by maximizing a lower bound to the log-evidence leads to the following varia-
67 tional optimization problem [24]:

$$\theta_* \in \arg \min_{\theta} \ell_R(\theta) \quad \text{with} \quad \ell_R(\theta) = \mathbb{E}_{q_{\theta}(\mathbf{w})}(-\log p(\mathbf{y} | \mathbf{w})) + \text{KL}(q_{\theta}(\mathbf{w}) \| p(\mathbf{w})). \quad (2)$$

68 Equation (2) is an instance of the optimization problem in Equation (1) where the optimization is
 69 over the variational parameters θ of the posterior approximation $q_\theta(w)$. In the case of a potentially
 70 misspecified prior or likelihood, the variational formulation (2) can be generalized to arbitrary loss
 71 functions ℓ and statistical distances D to the prior [25–27], such that

$$\ell_R(\theta) = \mathbb{E}_{q_\theta(w)}(\ell(y, f_w(X))) + \lambda D(q_\theta, p). \quad (3)$$

72 3 Variational Deep Learning via Implicit Regularization

73 Our goal is to learn a variational distribution $q_\theta(w)$ for the parameters w of a neural network,
 74 as in a Bayesian neural network. However, in contrast to training with (generalized) variational
 75 inference, which has an *explicit* regularization term defined via the prior to avoid overfitting, we will
 76 demonstrate how to perform variational inference over the weights of a deep neural network purely
 77 via *implicit* regularization, removing the need to store and compute quantities involving the prior
 78 entirely. We will see that this approach inherits the well-established optimization toolkit from deep
 79 learning seamlessly, while providing uncertainty quantification at minimal overhead.

80 3.1 Training via the Expected Loss

81 Rather than performing variational inference by explicitly regularizing the variational distribution to
 82 remain close to the prior, we propose to train by *minimizing the expected loss* $\bar{\ell}(\theta)$ in analogy to how
 83 deep neural networks are usually trained. Therefore, the optimal variational parameters are given by

$$\theta_* \in \arg \min_{\theta} \underbrace{\mathbb{E}_{q_\theta(w)}(\ell(y, f_w(X)))}_{:=\bar{\ell}(\theta)} + \cancel{D(q_\theta, p)}. \quad (4)$$

84 Practically, this means we do not need to compute the regularization term and its gradient during
 85 training and we do not need to allocate additional memory for the prior hyperparameters.¹ However,
 86 at first glance modifying the variational objective in Eq. (2) by removing the divergence term seems
 87 to defeat the purpose of a Bayesian approach entirely. We are completely omitting the prior from the
 88 training loss. Why should the uncertainty over the weights not collapse? How does this incorporate
 89 any prior information?

90 3.2 Implicit Bias of (S)GD as Generalized Variational Inference

91 Unexpectedly, training via the expected loss achieves regularization to the prior *solely by initializing*
 92 *(stochastic) gradient descent to the prior*, as we will prove in Section 4 for an overparametrized
 93 linear model. Moreover, we can characterize this implicit regularization exactly. (S)GD converges
 94 to a global minimum $\theta_*^{\text{GD}} \in \arg \min_{\theta} \bar{\ell}(\theta)$ of the training loss, given an appropriate learning rate
 95 sequence. But among the global minima, if (S)GD is initialized to the parameters of the prior and
 96 the Gaussian variational family is parametrized appropriately, then the solution identified by (S)GD
 97 minimizes the 2-Wasserstein distance to the prior, i.e.

$$\theta_*^{\text{GD}} = \arg \min_{\substack{q_\theta \\ \text{s.t. } \theta \in \arg \min \bar{\ell}(\theta)}} W_2^2(q_\theta, p).$$

98 This equation shows that the implicit bias of (S)GD is such that it converges to a generalized variational
 99 posterior, minimizing Eq. (3) for a certain regularization strength, but with a regularizer that
 100 is *not* a KL divergence as it would be for standard variational inference, but rather a 2-Wasserstein
 101 distance to the prior. Given this characterization, we call our method **Implicit Bias VI**.

102 Section 4 provides a detailed version of the regression results introduced here and proves a similar
 103 result for binary classification. Our experiments in Section 5 focus on the application to deep neural
 104 networks. Since training via the expected loss can achieve zero loss in overparameterized models,
 105 we expect our approach to mimic vanilla deep networks closely in-distribution, while falling back
 106 to the prior out-of-distribution, as enforced by the 2-Wasserstein regularizer.

¹We only need them to initialize the optimizer after which we can free up the memory.

107 **3.3 Computational Efficiency**

108 In practice, we minibatch the expected loss both over training data and parameter samples \mathbf{w}_m drawn
 109 from the variational distribution $q_{\theta}(\mathbf{w})$ such that

$$\bar{\ell}(\theta) = \mathbb{E}_{q_{\theta}(\mathbf{w})}(\ell(\mathbf{y}, f_{\mathbf{w}}(\mathbf{X}))) \approx \frac{1}{N_b M} \sum_{n=1}^{N_b} \sum_{m=1}^M \ell(\mathbf{y}_n, f_{\mathbf{w}_m}(\mathbf{X}_n)). \quad (5)$$

110 The training cost is primarily determined by two factors. The number of parameter samples M we
 111 draw for each evaluation of the objective, and the variational family, which determines the number
 112 of additional parameters of the model and the cost for sampling a set of parameters in each forward
 113 pass. We wish to keep the overhead compared to a vanilla deep neural network as small as possible.

114 **Training With A Single Parameter Sample ($M = 1$)** When
 115 drawing fewer parameter samples \mathbf{w}_m the training objective in
 116 Eq. (5) becomes noisier in the same way a smaller batch size im-
 117 pacts the loss. This is concerning since the optimization pro-
 118 cedure may not converge given this additional noise. However, one
 119 can *train with a single parameter sample only*, simply by reduc-
 120 ing the learning rate appropriately, as we show experimentally in
 121 Figure 2 and Section S3.2. Therefore given a set of sampled pa-
 122 rameters, the cost of a forward and backward pass is identical to
 123 a standard neural network (up to the overhead of the covariance
 124 parameters). In analogy to the previously observed relationship
 125 [e.g., 28–30] between the optimal batch size N_b , learning rate η
 126 and momentum γ , when optimizing the expected loss we con-
 127 jecture the following scaling law for the optimal batch size N_b
 128 and number of parameter samples M :

$$N_b M \propto \frac{\eta}{1-\gamma}. \quad (6)$$

129 Figure 2 illustrates this. When using fewer parameter samples in
 130 the expected loss, training is unstable unless the learning rate is
 131 chosen sufficiently small. For a fixed number of optimizer steps
 132 this decreases performance, but either training for more steps,
 133 or using momentum closes this gap. As predicted by Eq. (6),
 134 momentum requires a smaller learning rate than vanilla SGD.

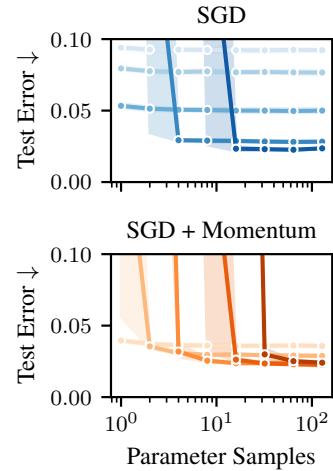


Figure 2: *Training with a single parameter sample given a small enough learning rate.* Lighter color shades correspond to smaller learning rates. See also Section S3.2.

135 **Variational Family and Covariance Structure** We choose a Gaussian variational distribution
 136 $q_{\theta}(\mathbf{w})$ over (a subset of the) weights of the neural network. While at first glance this may seem
 137 restrictive, there is ample evidence that variational families in deep neural networks do not need to
 138 be complex to be expressive [31, 32]. In fact, in analogy to deep feedforward NNs with ReLU acti-
 139 vations being universal approximators [33], one can show that Bayesian neural networks with ReLU
 140 activations and at least one Gaussian hidden layer are universal conditional distribution approxi-
 141 mators, meaning they can approximate any continuous conditional distribution arbitrarily well [32]. As
 142 we show in Section 4, training an overparametrized linear model with SGD via the expected loss
 143 amounts to generalized variational inference *if the covariance is factorized*, i.e. $\Sigma = \mathbf{S}\mathbf{S}^T$ where
 144 $\mathbf{S} \in \mathbb{R}^{P \times R}$ is a *dense* matrix with rank $R \leq P$. Note that this (low-rank) parametrization of a
 145 covariance is non-standard in the sense that the implicit regularization result does *not* hold in the
 146 same form for a Cholesky factorization! Motivated by the theoretical observation of the implicit
 147 bias in Theorem 1, we use Gaussian layers with factorized covariances for all architectures.

148 **3.4 Related Work**

149 Variational inference in the context of Bayesian deep learning has seen rapid development in recent
 150 years [34–39]. Using a Wasserstein regularizer [27] in the context of generalized VI [26] is arguably
 151 most related to our work, given our theoretical results. Structure in the variational parameters has al-
 152 ways played an important role for computational reasons [31, 40, 41] and often only a few layers are
 153 treated probabilistically [32], with some methods only considering the last layer, effectively treat-
 154 ing the neural network as a feature extractor [42, 43]. The Laplace approximation if applied in the

155 last-layer also falls under this category, which has the advantage that it can be applied post-hoc [13,
 156 44–51]. Deep ensembles repeat the standard training process using multiple random initializations
 157 [52, 53] and have been linked to Bayesian methods [54, 55] with certain caveats [56, 57]. While we
 158 use SGD only to optimize the variational parameters and arguably average over samples by using
 159 momentum, SGD has also been used widely to directly approximate samples from a target distri-
 160 bution [54, 58–60]. Our theoretical analysis extends recent developments on the implicit bias of
 161 overparameterized linear models [4, 5, 7] to the probabilistic setting. For classification, works have
 162 focused on convergence rates [6], SGD [7], SGD with momentum [8], and the multiclass setting
 163 [10]. Results on the implicit bias of neural network training [22] often assume large widths [9, 61–
 164 64] allowing similar arguments as for linear models. The former is exemplified by the neural tangent
 165 parametrization, under which neural networks behave like kernel methods in the infinite width limit
 166 [65]. Yang et al. [63, 64, 66, 67] developed an alternative parameterization that still admits feature
 167 learning in the infinite width limit, which we extended to the case of variational networks.

168 4 Theoretical Analysis

169 Consider an overparameterized linear model with a Gaussian prior, which is trained via maximum
 170 expected log-likelihood using (stochastic) gradient descent. We will show that, in both regression
 171 (Theorem 1) and binary classification (Theorem 2), our approach can be understood as generalized
 172 variational inference with a 2-Wasserstein regularizer, which penalizes deviation from the prior.
 173 These theoretical results directly recover analogous results for non-probabilistic models [4, 5].

174 4.1 Linear Regression

175 Theorem 1 (Implicit Bias in Regression)

176 Let $f_w(\mathbf{x}) = \mathbf{x}^\top \mathbf{w}$ be an overparametrized linear model with $P > N$. Define a Gaussian prior
 177 $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}_0, \mathbf{S}_0 \mathbf{S}_0^\top)$ and likelihood $p(\mathbf{y} \mid \mathbf{w}) = \mathcal{N}(\mathbf{y}; f_w(\mathbf{X}), \sigma^2 \mathbf{I})$ and assume a varia-
 178 tional family $q_\theta(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \mathbf{S} \mathbf{S}^\top)$ with $\boldsymbol{\theta} = (\boldsymbol{\mu}, \mathbf{S})$ such that $\boldsymbol{\mu} \in \mathbb{R}^P$ and $\mathbf{S} \in \mathbb{R}^{P \times R}$ where
 179 $R \leq P$. If the learning rate sequence $(\eta_t)_t$ is chosen such that the limit point $\boldsymbol{\theta}_*^{\text{GD}} = \lim_{t \rightarrow \infty} \boldsymbol{\theta}_t^{\text{GD}}$
 180 identified by gradient descent, initialized at $\boldsymbol{\theta}_0 = (\boldsymbol{\mu}_0, \mathbf{S}_0)$, is a (global) minimizer of the expected
 181 log-likelihood $\bar{\ell}(\boldsymbol{\theta})$, then

$$\boldsymbol{\theta}_*^{\text{GD}} \in \arg \min_{\substack{\boldsymbol{\theta} = (\boldsymbol{\mu}, \mathbf{S}) \\ \text{s.t. } \boldsymbol{\theta} \in \arg \min \bar{\ell}(\boldsymbol{\theta})}} \mathbb{W}_2^2(q_\theta, p). \quad (7)$$

182 Further, this also holds in the case of stochastic gradient descent and when using momentum.

183 *Proof.* See Section S1.1.1. □

184 Theorem 1 states that, among those variational parameters which minimize the expected loss, SGD
 185 (with momentum) converges to the unique variational distribution which is closest in 2-Wasserstein
 186 distance to the prior. This characterization of the implicit regularization of SGD as generalized varia-
 187 tional inference differs from a standard ELBO objective (2) in VI via the choice of regularizer. Since
 188 the variational parameters minimize the expected loss in Equation (7), all samples from the predic-
 189 tive distribution interpolate the training data (see Figure 1(b), right panel), the same way a standard
 190 neural network would. In contrast, when training with a KL regularizer, the uncertainty does not
 191 collapse at the training data (see Figure 1(b), left panel), in fact a KL regularizer would diverge to
 192 infinity for a Gaussian with vanishing variance. Now, for test points that are increasingly out-of-
 193 distribution, i.e. less aligned with the span of the training data, the variational predictive matches the
 194 prior predictive more closely. Next, we will prove a similar result for binary classification.

195 4.2 Binary Classification of Linearly Separable Data

196 Consider a binary classification problem with labels $y_n \in \{-1, 1\}$, a linear model $f_w(\mathbf{x}) = \mathbf{x}^\top \mathbf{w}$
 197 and a variational distribution $q_\theta(\mathbf{w})$ with variational parameters $\boldsymbol{\theta}$. The expected empirical loss
 198 is $\bar{\ell}(\boldsymbol{\theta}) = \sum_{n=1}^N \mathbb{E}_{q_\theta(\mathbf{w})}(\ell(y_n \mathbf{x}_n^\top \mathbf{w}))$. We assume without loss of generality that all labels are
 199 positive,² such that $y_n = 1$, and that the dataset is linearly separable.

²This is not a restriction since we can always absorb the sign into the inputs, such that $\mathbf{x}'_n := y_n \mathbf{x}_n$.

200 **Assumption 1** The dataset is *linearly separable*: $\exists \mathbf{w} \in \mathbb{R}^P$ such that $\forall n : \mathbf{w}^\top \mathbf{x}_n > 0$.

201 Define $\hat{\mu}$ to be the L_2 max margin vector, i.e. the solution to the hard margin SVM:

$$\hat{\mu} = \arg \min_{\mu \in \mathbb{R}^P} \|\mu\|_2^2 \quad \text{s.t.} \quad \mu^\top \mathbf{x}_n \geq 1, \quad (8)$$

202 and the set of *support vectors* $\mathcal{S} = \arg \min_{n \in [N]} \mathbf{x}_n^\top \hat{\mu}$ indexing those data points that lie on the
203 margin. We adapt the following additional assumption from Nacson, Srebro, and Soudry [7], which
204 can be omitted at expense of simplicity as we show in Section S1.2.

205 **Assumption 2** The SVM support vectors span the dataset: $\text{span}(\{\mathbf{x}_n\}_{n \in [N]}) = \text{span}(\{\mathbf{x}_n\}_{n \in \mathcal{S}})$.

206 We can now characterize the implicit bias in the case of binary classification.

207 **Theorem 2** (Implicit Bias in Binary Classification)

208 Let $f_{\mathbf{w}}(\mathbf{x}) = \mathbf{x}^\top \mathbf{w}$ be an (overparametrized) linear model and define a Gaussian prior $p(\mathbf{w}) =$
209 $\mathcal{N}(\mathbf{w}; \mu_0, \mathbf{S}_0 \mathbf{S}_0^\top)$. Assume a variational distribution $q_{\theta}(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \mu, \mathbf{S} \mathbf{S}^\top)$ over the weights
210 $\mathbf{w} \in \mathbb{R}^P$ with variational parameters $\theta = (\mu, \mathbf{S})$ such that $\mathbf{S} \in \mathbb{R}^{P \times R}$ and $R \leq P$. Assume we
211 are using the exponential loss $\ell(u) = \exp(-u)$ and optimize the expected empirical loss $\bar{\ell}(\theta)$ via
212 gradient descent initialized at the prior, i.e. $\theta_0 = (\mu_0, \mathbf{S}_0)$, with a sufficiently small learning rate η .
213 Then for almost any dataset which is linearly separable (Assumption 1) and for which the support
214 vectors span the data (Assumption 2), the rescaled gradient descent iterates (rGD)

$$\theta_t^{\text{rGD}} = (\mu_t^{\text{rGD}}, \mathbf{S}_t^{\text{rGD}}) = \left(\frac{1}{\log(t)} \mu_t^{\text{GD}} + P_{\text{null}(\mathbf{X})} \mu_0, \mathbf{S}_t^{\text{GD}} \right) \quad (9)$$

215 converge to a limit point $\theta_*^{\text{rGD}} = \lim_{t \rightarrow \infty} \theta_t^{\text{rGD}}$ for which it holds that

$$\theta_*^{\text{rGD}} \in \arg \min_{\substack{\theta = (\mu, \mathbf{S}) \\ \text{s.t. } \theta \in \Theta_*}} W_2^2(q_{\theta}, p). \quad (10)$$

216 where the feasible set $\Theta_* = \{(\mu, \mathbf{S}) \mid P_{\text{range}(\mathbf{X}^\top)} \mu = \hat{\mu} \text{ and } \forall n : \text{Var}_{q_{\theta}}(f_{\mathbf{w}}(\mathbf{x}_n)) = 0\}$ consists
217 of mean parameters which, if projected onto the training data, are equivalent to the L_2 max margin
218 vector and covariance parameters such that there is no uncertainty at training data.

219 *Proof.* See Section S1.2. □

220 Theorem 2 states that the mean parameters μ_t converge to the L_2 max-margin vector $\hat{\mu}$ in the span
221 of the training data, i.e. the data manifold, and there uncertainty collapses to zero. This is analogous
222 to the regression case, where zero training loss enforces interpolation of the training data. In the
223 null space of the training data, i.e. off of the data manifold, the model falls back on the prior as
224 enforced by the 2-Wasserstein distance. The assumption of an exponential loss is standard in the
225 literature and we expect this to extend to (binary) cross-entropy in the same way it does in results
226 for standard neural networks [4, 6–8, 10]. Similarly, we conjecture that Theorem 2 can be extended
227 to SGD with momentum [cf. 7, 8]. While Theorem 2 is similar to Theorem 1, there are some subtle
228 differences. First, the feasible set for the minimization problem in Equation (10) is not the set of
229 minima of the expected loss. This is because the exponential function does not have an optimum
230 in contrast to a quadratic function. However, the sequence of variational parameters identified by
231 gradient descent still satisfies $\lim_{t \rightarrow \infty} \bar{\ell}(\theta_t) = 0$. Second, without transformation of the mean
232 parameters, the exponential loss results in the mean parameters being unbounded. This necessitates
233 the transformation in Equation (9) as we explain in detail in Section S1.3.

234 5 Experiments

235 We benchmark the *generalization* and *robustness* of our approach, **Implicit Bias VI (IBVI)**, against
236 standard neural networks and several baselines for uncertainty quantification, namely **Temperature
237 Scaling (TS)** [68], **Laplace approximation (LA-GS) & (LA-ML)** [44, 45, 49], **Weight-Space VI
238 (WSVI)** [34, 35], **SWA-Gaussian (SWAG)** [69] and **Deep Ensembles (DE)** [52], on a set of standard
239 benchmark datasets for image classification and robustness to input corruptions. We use a convolu-
240 tional architecture (either LeNet5 [70] or ResNet34 [71]) throughout, which, for all datasets but
241 MNIST, is initialized with pretrained weights in all layers except for the input and output layer.

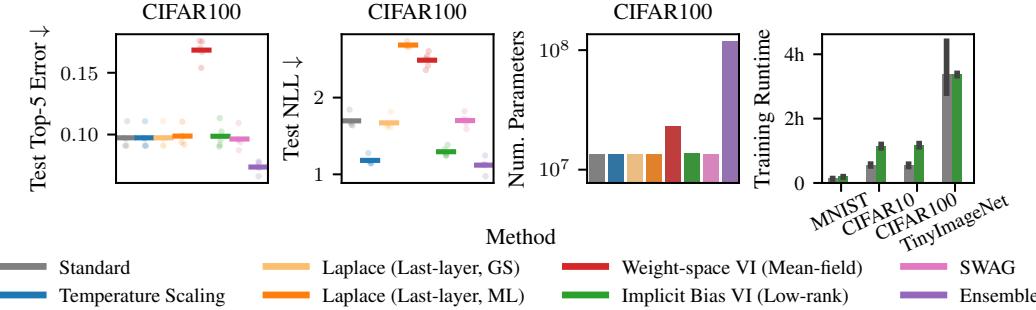


Figure 3: *In-distribution generalization and uncertainty quantification.* Implicit Bias VI (IBVI) has similar test error to other Bayesian deep learning approaches and achieves competitive uncertainty quantification on in-distribution data. While ensembles have improved accuracy, they come at an additional memory overhead. Training a probabilistic model via IBVI has only a minor computational overhead during training, both in time and memory, over standard deep learning.

242 All models were trained with SGD with momentum $\gamma = 0.9$ and a batch size of $N_b = 128$ for
 243 200 epochs in single precision on an NVIDIA GH200 GPU. Results shown are averaged across five
 244 random seeds. A detailed description of the datasets, metrics, models and training can be found in
 245 Section S3. An implementation of our method is contained in the supplementary material and will
 246 be open-sourced upon publication.

247 **In-Distribution Generalization and Uncertainty Quantification** In order to assess the in-
 248 distribution generalization, we measure the test error, negative log-likelihood (NLL) and cali-
 249 bration error (ECE) on MNIST, CIFAR10, CIFAR100 and TinyImageNet. As Figure 3 shows for CI-
 250 FAR100, and Figure S11 for all datasets, the test error for post-hoc methods (TS, LA-GS, LA-ML)
 251 is unchanged. As expected, SWAG and IBVI perform similarly with only Ensembles providing an
 252 increase in accuracy, but at substantial memory overhead compared to most other approaches. In-
 253 distribution uncertainty quantification measured in terms of NLL is improved substantially by TS,
 254 DE and IBVI with only LA and WSVI showing occasional worsening of NLL compared to the base
 255 model. The full results in Figure S11 show that TS, DE and IBVI consistently are also the best cali-
 256 brated. As described in Section 3.3, for IBVI we train with a single sample only and a probabilistic
 257 input and output layer with low-rank covariance, reducing the computational overhead compared
 258 to a standard neural network to as little as $\approx 10\%$ both in time and memory (see Figure 3). See
 259 Section S3.3.2 for the full experimental results including different parametrizations (SP vs μ P).

260 **Robustness to Input Corruptions** We evaluate the robustness of the different models on
 261 MNISTC [72], CIFAR10C, CIFAR100C and TinyImageNetC [73]. These are corrupted versions
 262 of the original datasets, where the images are modified via a set of 15 corruptions, such as impulse
 263 noise, blur, pixelation etc. We selected the maximum severity for each corruption and averaged
 264 the performance across all. As expected, the performance of all models drops compared to the in-
 265 distribution performance measured on the standard test sets as Figure 4 shows. Besides DE which
 266 consistently show lower test error, also IBVI shows improved accuracy on corrupted data compared
 267 to all other approaches. When using the maximal update parametrization, SWAG shows good ac-
 268 curacy on the two larger datasets (see Figure S13). TS, DE and IBVI perform consistently well in
 269 terms of uncertainty quantification (both for NLL and ECE) across all datasets, with LA-ML being
 270 somewhat competitive in terms of NLL. However, compared to the in-distribution setting IBVI has
 271 better uncertainty quantification than the Ensembles across all datasets.

272 **Limitations** Compared to standard neural networks, when training via Implicit Bias VI, we ob-
 273 served that often lower learning rates were necessary due to the additional stochasticity in the ob-
 274 jective (see also Section 3.3). While this does not have a significant impact on generalization, the
 275 models sometimes require slightly more epochs to achieve similar in-distribution performance to
 276 standard neural networks. Effectively, in the beginning of training it takes a bit more time for IBVI
 277 to become sufficiently certain about those features which are critical for in-distribution performance.
 278 This also means that folk knowledge on learning rate settings for specific architectures may not im-
 279 mediately transfer. In the experiments we train models with probabilistic in- and output layers with

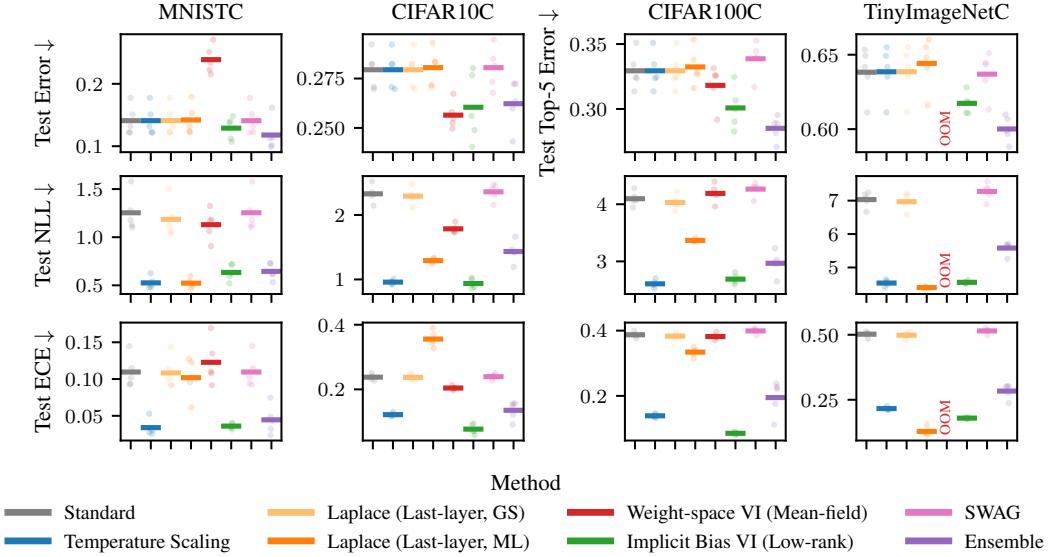


Figure 4: *Generalization on robustness benchmark problems.* When comparing different methods for Bayesian deep learning with regards to robustness to 15 different input corruptions, our approach, Implicit Bias VI, consistently has competitive uncertainty quantification across different datasets and metrics without sacrificing accuracy compared to a non-probabilistic network.

280 our approach, but we have so far not explored other covariance structures or where in the network
 281 probabilistic layers are most beneficial. While there is some theoretical evidence this may be suf-
 282 ficient [32], we believe there is potential for improvement. Beyond the prior induced by a choice
 283 of parametrization, we did not experiment with more informative or learned priors, which could
 284 potentially give significant performance improvements on certain tasks [15].

285 6 Conclusion

286 In this paper, we demonstrated how to exploit the implicit regularization of (stochastic) gradient
 287 descent for variational deep learning, as opposed to relying on explicit regularization. We rigorously
 288 characterized this implicit bias for an overparametrized linear model and showed that our approach is
 289 equivalent to generalized variational inference with a 2-Wasserstein regularizer at reduced computa-
 290 tional cost, thus conferring desirable properties such as learning rate transfer. Lastly, we empirically
 291 demonstrated competitive performance with state-of-the-art methods for Bayesian deep learning on
 292 a set of in- and out-of-distribution benchmarks with minimal computational overhead over standard
 293 deep learning. In principle, our approach is not restricted to Gaussian variational families and should
 294 seemlessly extend to location-scale families, which could further improve performance. Finally, it
 295 would be interesting to explore connections between Implicit Bias VI and Bayesian deep learning
 296 in function-space [e.g., 27, 51, 74–76].

297 **References**

298 [1] M. Goldblum, M. Finzi, K. Rowan, and A. G. Wilson. “The No Free Lunch Theorem, Kol-
299 mogorov Complexity, and the Role of Inductive Biases in Machine Learning”. In: *Inter-
300 national Conference on Machine Learning (ICML)*. 2024. DOI: [10.48550/arXiv.2304.05366](https://doi.org/10.48550/arXiv.2304.05366) (cit. on p. 1).

302 [2] M. S. Nacson, R. Mulayoff, G. Ongie, T. Michaeli, and D. Soudry. “The Implicit Bias of
303 Minima Stability in Multivariate Shallow ReLU Networks”. In: *International Conference on
304 Learning Representations (ICLR)*. 2023. DOI: [10.48550/arXiv.2306.17499](https://doi.org/10.48550/arXiv.2306.17499) (cit. on p. 1).

305 [3] R. Mulayoff, T. Michaeli, and D. Soudry. “The Implicit Bias of Minima Stability: A
306 View from Function Space”. In: *Advances in Neural Information Processing Systems
307 (NeurIPS)*. 2021. URL: <https://proceedings.neurips.cc/paper/2021/hash/944a5ae3483ed5c1e10bbcc7942a279-Abstract.html> (cit. on p. 1).

309 [4] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro. “The Implicit Bias of
310 Gradient Descent on Separable Data”. In: *Journal of Machine Learning Research (JMLR)*
311 (2018). DOI: [10.48550/arXiv.1710.10345](https://doi.org/10.48550/arXiv.1710.10345) (cit. on pp. 1, 2, 5, 6, 19, 20, 23, 28).

312 [5] S. Gunasekar, J. Lee, D. Soudry, and N. Srebro. “Characterizing Implicit Bias in Terms of
313 Optimization Geometry”. In: *International Conference on Machine Learning (ICML)*. 2018.
314 DOI: [10.48550/arXiv.1802.08246](https://doi.org/10.48550/arXiv.1802.08246) (cit. on pp. 1, 2, 5, 18).

315 [6] M. S. Nacson, J. D. Lee, S. Gunasekar, P. H. P. Savarese, N. Srebro, and D. Soudry. “Con-
316 vergence of Gradient Descent on Separable Data”. In: *International Conference on Artificial
317 Intelligence and Statistics (AISTATS)*. 2019. DOI: [10.48550/arXiv.1803.01905](https://doi.org/10.48550/arXiv.1803.01905) (cit. on
318 pp. 1, 5, 6).

319 [7] M. S. Nacson, N. Srebro, and D. Soudry. “Stochastic Gradient Descent on Separable Data:
320 Exact Convergence with a Fixed Learning Rate”. In: *International Conference on Artificial
321 Intelligence and Statistics (AISTATS)*. 2019. DOI: [10.48550/arXiv.1806.01796](https://doi.org/10.48550/arXiv.1806.01796) (cit. on
322 pp. 1, 2, 5, 6).

323 [8] B. Wang, Q. Meng, H. Zhang, R. Sun, W. Chen, Z.-M. Ma, and T.-Y. Liu. “Does Momentum
324 Change the Implicit Regularization on Separable Data?” In: *Advances in Neural Information
325 Processing Systems (NeurIPS)* (2022) (cit. on pp. 1, 5, 6).

326 [9] H. Jin and G. Montúfar. *Implicit Bias of Gradient Descent for Mean Squared Error Regression
327 with Two-Layer Wide Neural Networks*. arXiv:2006.07356 [stat]. May 2023. DOI: [10.48550/arXiv.2006.07356](https://doi.org/10.48550/arXiv.2006.07356) (cit. on pp. 1, 5).

329 [10] H. Ravi, C. Scott, D. Soudry, and Y. Wang. “The Implicit Bias of Gradient Descent on Sep-
330 arable Multiclass Data”. In: *Advances in Neural Information Processing Systems (NeurIPS)*.
331 2024. DOI: [10.48550/arXiv.2411.01350](https://doi.org/10.48550/arXiv.2411.01350) (cit. on pp. 1, 5, 6).

332 [11] T. Papamarkou, M. Skoularidou, K. Palla, L. Aitchison, J. Arbel, D. Dunson, M. Filippone, V.
333 Fortuin, P. Hennig, J. M. Hernández-Lobato, A. Hubin, A. Immer, T. Karaletsos, M. E. Khan,
334 A. Kristiadi, Y. Li, S. Mandt, C. Nemeth, M. A. Osborne, T. G. J. Rudner, D. Rügamer, Y. W.
335 Teh, M. Welling, A. G. Wilson, and R. Zhang. “Position: Bayesian Deep Learning is Needed
336 in the Age of Large-Scale AI”. In: *International Conference on Machine Learning (ICML)*.
337 2024. DOI: [10.48550/arXiv.2402.00809](https://doi.org/10.48550/arXiv.2402.00809) (cit. on p. 1).

338 [12] D. Tran, J. Liu, M. W. Dusenberry, D. Phan, M. Collier, J. Ren, K. Han, Z. Wang, Z. Mariet, H.
339 Hu, N. Band, T. G. J. Rudner, K. Singhal, Z. Nado, J. v. Amersfoort, A. Kirsch, R. Jenatton, N.
340 Thain, H. Yuan, K. Buchanan, K. Murphy, D. Sculley, Y. Gal, Z. Ghahramani, J. Snoek, and
341 B. Lakshminarayanan. *Plex: Towards Reliability using Pretrained Large Model Extensions*.
342 July 15, 2022. DOI: [10.48550/arXiv.2207.07411](https://doi.org/10.48550/arXiv.2207.07411). arXiv: [2207.07411\[cs\]](https://arxiv.org/abs/2207.07411). URL: [http://arxiv.org/abs/2207.07411](https://arxiv.org/abs/2207.07411) (visited on 05/16/2025) (cit. on p. 1).

344 [13] H. Ritter, A. Botev, and D. Barber. “Online Structured Laplace Approximations For Over-
345 coming Catastrophic Forgetting”. In: *Advances in Neural Information Processing Systems
346 (NeurIPS)*. 2018. DOI: [10.48550/arXiv.1805.07810](https://doi.org/10.48550/arXiv.1805.07810) (cit. on pp. 1, 5).

347 [14] Y. L. Li, T. G. J. Rudner, and A. G. Wilson. “A Study of Bayesian Neural Network Surro-
348 gates for Bayesian Optimization”. In: *International Conference on Learning Representations
349 (ICLR)*. 2024. DOI: [10.48550/arXiv.2305.20028](https://doi.org/10.48550/arXiv.2305.20028) (cit. on p. 1).

350 [15] V. Fortuin. “Priors in Bayesian Deep Learning: A Review”. In: *International Statistical Re-
351 view* 90.3 (2022), pp. 563–591. DOI: [10.1111/insr.12502](https://doi.org/10.1111/insr.12502) (cit. on pp. 1, 8).

352 [16] P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. Wilson. “What Are Bayesian Neural Net-
 353 work Posteriors Really Like?” In: *International Conference on Machine Learning (ICML)*.
 354 2021. DOI: [10.48550/arXiv.2104.14421](https://doi.org/10.48550/arXiv.2104.14421) (cit. on p. 1).

355 [17] B. Adlam, J. Snoek, and S. L. Smith. *Cold Posteriors and Aleatoric Uncertainty*. July 31,
 356 2020. DOI: [10.48550/arXiv.2008.00029](https://doi.org/10.48550/arXiv.2008.00029). arXiv: [2008.00029](https://arxiv.org/abs/2008.00029) [stat]. URL: [http://arxiv.org/abs/2008.00029](https://arxiv.org/abs/2008.00029) (visited on 05/15/2025) (cit. on p. 1).

358 [18] T. Cinquin, A. Immer, M. Horn, and V. Fortuin. “Pathologies in priors and inference for
 359 Bayesian transformers”. In: *NeurIPS Bayesian Deep Learning Workshop*. 2021. DOI: [10.48550/arXiv.2110.04020](https://doi.org/10.48550/arXiv.2110.04020) (cit. on p. 1).

361 [19] B. Coker, W. P. Bruinsma, D. R. Burt, W. Pan, and F. Doshi-Velez. “Wide Mean-Field
 362 Bayesian Neural Networks Ignore the Data”. In: *International Conference on Artificial In-
 363 telligence and Statistics (AISTATS)*. 2022. DOI: [10.48550/arXiv.2202.11670](https://doi.org/10.48550/arXiv.2202.11670) (cit. on
 364 p. 1).

365 [20] A. Y. K. Foong, D. R. Burt, Y. Li, and R. E. Turner. “On the Expressiveness of Approximate
 366 Inference in Bayesian Neural Networks”. In: *Advances in Neural Information Processing
 367 Systems (NeurIPS)*. 2020. DOI: [10.48550/arXiv.1909.00719](https://doi.org/10.48550/arXiv.1909.00719) (cit. on p. 1).

368 [21] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Understanding deep learning re-
 369 quires rethinking generalization”. In: *International Conference on Learning Representations
 370 (ICLR)*. 2017. DOI: [10.48550/arXiv.1611.03530](https://doi.org/10.48550/arXiv.1611.03530) (cit. on p. 2).

371 [22] G. Vardi. “On the Implicit Bias in Deep-Learning Algorithms”. In: *Commun. ACM* 66.6 (May
 372 2023), pp. 86–93. DOI: [10.1145/3571070](https://doi.org/10.1145/3571070) (cit. on pp. 2, 5).

373 [23] B. Vasudeva, P. Deora, and C. Thrampoulidis. *Implicit Bias and Fast Convergence Rates for
 374 Self-attention*. 2024. DOI: [10.48550/arXiv.2402.05738](https://doi.org/10.48550/arXiv.2402.05738) (cit. on p. 2).

375 [24] A. Zellner. “Optimal Information Processing and Bayes’s Theorem”. In: *The American Statis-
 376 tician* 42.4 (1988), pp. 278–280. DOI: [10.2307/2685143](https://doi.org/10.2307/2685143) (cit. on p. 2).

377 [25] P. G. Bissiri, C. Holmes, and S. Walker. “A General Framework for Updating Belief Distr-
 378 ibutions”. In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 78.5
 379 (Nov. 2016), pp. 1103–1130. ISSN: 1369-7412, 1467-9868. DOI: [10.1111/rssb.12158](https://doi.org/10.1111/rssb.12158)
 380 (cit. on p. 3).

381 [26] J. Knoblauch, J. Jewson, and T. Damoulas. “An Optimization-centric View on Bayes’ Rule:
 382 Reviewing and Generalizing Variational Inference”. In: *Journal of Machine Learning Re-
 383 search (JMLR)* 23.132 (2022), pp. 1–109. ISSN: 1533-7928. URL: <http://jmlr.org/papers/v23/19-1047.html> (cit. on pp. 3, 4).

385 [27] V. D. Wild, R. Hu, and D. Sejdinovic. “Generalized Variational Inference in Function Spaces:
 386 Gaussian Measures meet Bayesian Deep Learning”. In: *Advances in Neural Information Pro-
 387 cessing Systems (NeurIPS)*. Oct. 2022. DOI: [10.48550/arXiv.2205.06342](https://doi.org/10.48550/arXiv.2205.06342) (cit. on pp. 3,
 388 4, 8).

389 [28] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
 390 and K. He. *Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour*. Tech. rep. 2018.
 391 URL: [http://arxiv.org/abs/1706.02677](https://arxiv.org/abs/1706.02677) (cit. on pp. 4, 37).

392 [29] S. L. Smith and Q. V. Le. “A Bayesian Perspective on Generalization and Stochastic Gradient
 393 Descent”. In: *International Conference on Learning Representations (ICLR)*. 2018. DOI: [10.48550/arXiv.1710.06451](https://doi.org/10.48550/arXiv.1710.06451) (cit. on pp. 4, 37).

395 [30] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le. “Don’t Decay the Learning Rate, In-
 396 crease the Batch Size”. In: *International Conference on Learning Representations (ICLR)*.
 397 2018. DOI: [10.48550/arXiv.1711.00489](https://doi.org/10.48550/arXiv.1711.00489) (cit. on pp. 4, 37).

398 [31] S. Farquhar, L. Smith, and Y. Gal. “Liberty or Depth: Deep Bayesian Neural Nets Do Not
 399 Need Complex Weight Posterior Approximations”. In: *Advances in Neural Information Pro-
 400 cessing Systems (NeurIPS)*. 2020. DOI: [10.48550/arXiv.2002.03704](https://doi.org/10.48550/arXiv.2002.03704). URL: [http://arxiv.org/abs/2002.03704](https://arxiv.org/abs/2002.03704) (cit. on p. 4).

402 [32] M. Sharma, S. Farquhar, E. Nalisnick, and T. Rainforth. “Do Bayesian Neural Networks Need
 403 To Be Fully Stochastic?” In: *International Conference on Artificial Intelligence and Statistics
 404 (AISTATS)*. 2023. DOI: [10.48550/arXiv.2211.06291](https://doi.org/10.48550/arXiv.2211.06291) (cit. on pp. 4, 8).

405 [33] B. Hanin and M. Sellke. *Approximating Continuous Functions by ReLU Nets of Minimal
 406 Width*. arXiv:1710.11278 [stat]. Mar. 2018. DOI: [10.48550/arXiv.1710.11278](https://doi.org/10.48550/arXiv.1710.11278). URL:
 407 [http://arxiv.org/abs/1710.11278](https://arxiv.org/abs/1710.11278) (cit. on p. 4).

408 [34] A. Graves. “Practical Variational Inference for Neural Networks”. In: *Advances in Neural In-*
 409 *formation Processing Systems (NeurIPS)*. 2011. URL: https://papers.nips.cc/paper_files/paper/2011/hash/7eb3c8be3d411e8ebfab08eba5f49632-Abstract.html (cit. on pp. 4, 6, 38).

410

411

412 [35] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. “Weight Uncertainty in Neu-
 413 *ral Networks*”. In: *International Conference on Machine Learning (ICML)*. 2015. DOI: [10.48550/arXiv.1505.05424](https://doi.org/10.48550/arXiv.1505.05424) (cit. on pp. 4, 6, 38).

414

415 [36] G. Zhang, S. Sun, D. Duvenaud, and R. Grosse. *Noisy Natural Gradient as Variational Infer-*
 416 *ence*. Feb. 26, 2018. DOI: [10.48550/arXiv.1712.02390](https://doi.org/10.48550/arXiv.1712.02390). arXiv: [1712.02390\[cs\]](https://arxiv.org/abs/1712.02390). URL:
 417 [http://arxiv.org/abs/1712.02390](https://arxiv.org/abs/1712.02390) (visited on 05/15/2025) (cit. on p. 4).

418 [37] M.-N. Tran, N. Nguyen, D. Nott, and R. Kohn. *Bayesian Deep Net GLM and GLMM*. May 25,
 419 2018. DOI: [10.48550/arXiv.1805.10157](https://doi.org/10.48550/arXiv.1805.10157). arXiv: [1805.10157\[stat\]](https://arxiv.org/abs/1805.10157). URL: [http://arxiv.org/abs/1805.10157](https://arxiv.org/abs/1805.10157) (visited on 05/15/2025) (cit. on p. 4).

420

421 [38] K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota, and M. E. Khan.
 422 “Practical Deep Learning with Bayesian Principles”. In: *Advances in Neural Information Pro-*
 423 *cessing Systems (NeurIPS)*. 2019. DOI: [10.48550/arXiv.1906.02506](https://doi.org/10.48550/arXiv.1906.02506) (cit. on p. 4).

424 [39] Y. Shen, N. Daheim, B. Cong, P. Nickl, G. M. Marconi, C. Bazan, R. Yokota, I. Gurevych,
 425 D. Cremers, M. E. Khan, and T. Möllenhoff. “Variational Learning is Effective for Large
 426 Deep Networks”. In: *International Conference on Machine Learning (ICML)*. 2024. DOI:
 427 [10.48550/arXiv.2402.17641](https://doi.org/10.48550/arXiv.2402.17641) (cit. on p. 4).

428 [40] C. Louizos and M. Welling. *Structured and Efficient Variational Deep Learning with Matrix*
 429 *Gaussian Posteriors*. June 23, 2016. DOI: [10.48550/arXiv.1603.04733](https://doi.org/10.48550/arXiv.1603.04733). arXiv: [1603.04733\[stat\]](https://arxiv.org/abs/1603.04733). URL: [http://arxiv.org/abs/1603.04733](https://arxiv.org/abs/1603.04733) (visited on 05/15/2025) (cit.
 430 on p. 4).

431

432 [41] A. Mishkin, F. Kunstner, D. Nielsen, M. Schmidt, and M. E. Khan. *SLANG: Fast Structured*
 433 *Covariance Approximations for Bayesian Deep Learning with Natural Gradient*. Jan. 12,
 434 2019. DOI: [10.48550/arXiv.1811.04504](https://doi.org/10.48550/arXiv.1811.04504). arXiv: [1811.04504\[cs\]](https://arxiv.org/abs/1811.04504). URL: [http://arxiv.org/abs/1811.04504](https://arxiv.org/abs/1811.04504) (visited on 05/15/2025) (cit. on p. 4).

435

436 [42] J. Harrison, J. Willes, and J. Snoek. “Variational Bayesian Last Layers”. In: *International*
 437 *Conference on Learning Representations (ICLR)*. Apr. 2024. DOI: [10.48550/arXiv.2404.11599](https://doi.org/10.48550/arXiv.2404.11599) (cit. on p. 4).

438

439 [43] J. Z. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax-Weiss, and B. Lakshminarayanan. “Sim-
 440 *ple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance*
 441 *Awareness*”. In: *Advances in Neural Information Processing Systems (NeurIPS)*. Oct. 2020.
 442 DOI: [10.48550/arXiv.2006.10108](https://doi.org/10.48550/arXiv.2006.10108) (cit. on p. 4).

443

444 [44] D. J. C. MacKay. “A Practical Bayesian Framework for Backpropagation Networks”. In:
 445 *Neural Computation* 4 (1992). ISSN: 0899-7667, 1530-888X. DOI: [10.1162/neco.1992.4.3.448](https://doi.org/10.1162/neco.1992.4.3.448) (cit. on pp. 5, 6).

446

447 [45] H. Ritter, A. Botev, and D. Barber. “A Scalable Laplace Approximation for Neural Net-
 448 *works*”. In: *International Conference on Learning Representations (ICLR)*. 2018 (cit. on
 449 pp. 5, 6).

450

451 [46] M. E. Khan, A. Immer, E. Abedi, and M. Korzepa. “Approximate Inference Turns Deep
 452 Networks into Gaussian Processes”. In: *Advances in Neural Information Processing Systems*
 453 (*NeurIPS*). 2019. DOI: [10.48550/arXiv.1906.01930](https://doi.org/10.48550/arXiv.1906.01930) (cit. on p. 5).

454

455 [47] A. Immer, M. Korzepa, and M. Bauer. “Improving predictions of Bayesian neural nets via lo-
 456 *cal linearization*”. In: *International Conference on Artificial Intelligence and Statistics (AIS-*
 457 *TATS*). 2021 (cit. on p. 5).

458

459 [48] E. Daxberger, E. Nalisnick, J. U. Allingham, J. Antorán, and J. M. Hernández-Lobato.
 460 “Bayesian Deep Learning via Subnetwork Inference”. In: *International Conference on Ma-*
 461 *chine Learning (ICML)*. 2021. DOI: [10.48550/arXiv.2010.14689](https://doi.org/10.48550/arXiv.2010.14689) (cit. on p. 5).

462

463 [49] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig. “Laplace
 464 *Redux – Effortless Bayesian Deep Learning*”. In: *Advances in Neural Information Processing*
 465 *Systems (NeurIPS)*. 2021. DOI: [10.48550/arXiv.2106.14806](https://doi.org/10.48550/arXiv.2106.14806) (cit. on pp. 5, 6, 38).

466

467 [50] A. Kristiadi, A. Immer, R. Eschenhagen, and V. Fortuin. “Promises and Pitfalls of the Lin-
 468 *earized Laplace in Bayesian Optimization*”. In: *Advances in Approximate Bayesian Inference*
 469 (*AABI*). 2023. DOI: [10.48550/arXiv.2304.08309](https://doi.org/10.48550/arXiv.2304.08309) (cit. on p. 5).

464 [51] T. Cinquin, M. Pförtner, V. Fortuin, P. Hennig, and R. Bamler. “FSP-Laplace: Function-Space
 465 Priors for the Laplace Approximation in Bayesian Deep Learning”. In: *Advances in Neural In-*
 466 *formation Processing Systems (NeurIPS)*. Oct. 2024. DOI: [10.48550/arXiv.2407.13711](https://doi.org/10.48550/arXiv.2407.13711).
 467 URL: <http://arxiv.org/abs/2407.13711> (cit. on pp. 5, 8).

468 [52] B. Lakshminarayanan, A. Pritzel, and C. Blundell. “Simple and Scalable Predictive Uncer-
 469 tainty Estimation using Deep Ensembles”. In: *Advances in Neural Information Processing*
 470 *Systems (NeurIPS)*. 2017. DOI: [10.48550/arXiv.1612.01474](https://doi.org/10.48550/arXiv.1612.01474). URL: <http://arxiv.org/abs/1612.01474> (cit. on pp. 5, 6, 39).

472 [53] S. Fort, H. Hu, and B. Lakshminarayanan. *Deep Ensembles: A Loss Landscape Perspective*.
 473 June 25, 2020. DOI: [10.48550/arXiv.1912.02757](https://doi.org/10.48550/arXiv.1912.02757). arXiv: [1912.02757\[stat\]](https://arxiv.org/abs/1912.02757). URL:
 474 <http://arxiv.org/abs/1912.02757> (visited on 05/15/2025) (cit. on p. 5).

475 [54] A. G. Wilson and P. Izmailov. “Bayesian Deep Learning and a Probabilistic Perspective of
 476 Generalization”. In: *Advances in Neural Information Processing Systems (NeurIPS)*. 2020.
 477 DOI: [10.48550/arXiv.2002.08791](https://doi.org/10.48550/arXiv.2002.08791) (cit. on p. 5).

478 [55] V. D. Wild, S. Ghalebikesabi, D. Sejdinovic, and J. Knoblauch. “A Rigorous Link between
 479 Deep Ensembles and (Variational) Bayesian Methods”. In: *Advances in Neural Information*
 480 *Processing Systems (NeurIPS)*. 2023. DOI: [10.48550/arXiv.2305.15027](https://doi.org/10.48550/arXiv.2305.15027) (cit. on p. 5).

481 [56] T. Abe, E. K. Buchanan, G. Pleiss, R. Zemel, and J. P. Cunningham. “Deep Ensembles
 482 Work, But Are They Necessary?” In: *Advances in Neural Information Processing Systems*
 483 (*NeurIPS*). 2022. DOI: [10.48550/arXiv.2202.06985](https://doi.org/10.48550/arXiv.2202.06985) (cit. on p. 5).

484 [57] N. Dern, J. P. Cunningham, and G. Pleiss. *Theoretical Limitations of Ensembles in the Age of*
 485 *Overparameterization*. arXiv:2410.16201 [stat]. Oct. 2024. DOI: [10.48550/arXiv.2410.16201](https://doi.org/10.48550/arXiv.2410.16201) (cit. on p. 5).

487 [58] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. “Averaging Weights
 488 Leads to Wider Optima and Better Generalization”. In: *Conference on Uncertainty in Arti-*
 489 *ficial Intelligence (UAI)*. 2018. URL: <https://arxiv.org/abs/1803.05407v3> (cit. on
 490 p. 5).

491 [59] C. Mingard, G. Valle-Pérez, J. Skalse, and A. A. Louis. “Is SGD a Bayesian sampler? Well,
 492 almost.” In: *Journal of Machine Learning Research (JMLR)* (2020) (cit. on p. 5).

493 [60] J. A. Lin, J. Antorán, S. Padhy, D. Janz, J. M. Hernández-Lobato, and A. Terenin. “Sampling
 494 from Gaussian Process Posteriors using Stochastic Gradient Descent”. In: *Advances in Neural*
 495 *Information Processing Systems (NeurIPS)*. 2023. DOI: [10.48550/arXiv.2306.11589](https://doi.org/10.48550/arXiv.2306.11589) (cit.
 496 on p. 5).

497 [61] J. Lee, L. Xiao, S. S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington.
 498 “Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent”.
 499 In: *Journal of Statistical Mechanics: Theory and Experiment* 2020.12 (2020). DOI: [10.1088/1742-5468/abc62b](https://doi.org/10.1088/1742-5468/abc62b) (cit. on p. 5).

501 [62] J. Lai, M. Xu, R. Chen, and Q. Lin. *Generalization Ability of Wide Neural Networks on \mathbb{R}* .
 502 Feb. 12, 2023. DOI: [10.48550/arXiv.2302.05933](https://doi.org/10.48550/arXiv.2302.05933). arXiv: [2302.05933\[stat\]](https://arxiv.org/abs/2302.05933). URL:
 503 <http://arxiv.org/abs/2302.05933> (visited on 05/15/2025) (cit. on p. 5).

504 [63] G. Yang. “Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Ar-
 505 chitecture are Gaussian Processes”. In: *Advances in Neural Information Processing Systems*
 506 (*NeurIPS*). 2019. DOI: [10.48550/arXiv.1910.12478](https://doi.org/10.48550/arXiv.1910.12478) (cit. on p. 5).

507 [64] G. Yang. *Tensor Programs II: Neural Tangent Kernel for Any Architecture*. 2020. DOI: [10.48550/arXiv.2006.14548](https://doi.org/10.48550/arXiv.2006.14548) (cit. on p. 5).

509 [65] A. Jacot, F. Gabriel, and C. Hongler. “Neural Tangent Kernel: Convergence and Generaliza-
 510 tion in Neural Networks”. In: *Advances in Neural Information Processing Systems (NeurIPS)*.
 511 2018. DOI: [10.48550/arXiv.1806.07572](https://doi.org/10.48550/arXiv.1806.07572) (cit. on p. 5).

512 [66] G. Yang and E. J. Hu. “Tensor Programs IV: Feature Learning in Infinite-Width Neural
 513 Networks”. In: *International Conference on Machine Learning (ICML)*. 2021. DOI: [10.48550/arXiv.2011.14522](https://doi.org/10.48550/arXiv.2011.14522) (cit. on pp. 5, 29, 30).

515 [67] G. Yang, E. J. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J. Pachocki, W. Chen,
 516 and J. Gao. “Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperpa-
 517 rameter Transfer”. In: *Advances in Neural Information Processing Systems (NeurIPS)*. 2021.
 518 DOI: [10.48550/arXiv.2203.03466](https://doi.org/10.48550/arXiv.2203.03466) (cit. on pp. 5, 29, 32, 34, 36).

519 [68] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. “On Calibration of Modern Neural Networks”. In: *International Conference on Machine Learning (ICML)*. 2017. DOI: [10.48550/arXiv.1706.04599](https://doi.org/10.48550/arXiv.1706.04599) (cit. on pp. 6, 28, 38).

520

521

522 [69] W. Maddox, T. Garipov, P. Izmailov, D. Vetrov, and A. G. Wilson. “A Simple Baseline for Bayesian Uncertainty in Deep Learning”. In: *Advances in Neural Information Processing Systems (NeurIPS)*. 2019. DOI: [10.48550/arXiv.1902.02476](https://doi.org/10.48550/arXiv.1902.02476) (cit. on pp. 6, 39).

523

524

525 [70] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to document recognition”. In: *Proceedings of the IEEE* 86.11 (Nov. 1998), pp. 2278–2324. ISSN: 1558-2256. DOI: [10.1109/5.726791](https://doi.org/10.1109/5.726791). URL: <https://ieeexplore.ieee.org/document/726791> (cit. on pp. 6, 36, 37).

526

527

528

529 [71] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”. In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. IEEE, 2016, pp. 770–778. ISBN: 978-1-4673-8851-1. DOI: [10.1109/CVPR.2016.90](https://doi.org/10.1109/CVPR.2016.90). URL: [http://ieeexplore.ieee.org/document/7780459/](https://ieeexplore.ieee.org/document/7780459/) (cit. on pp. 6, 37).

530

531

532

533 [72] N. Mu and J. Gilmer. “MNIST-C: A Robustness Benchmark for Computer Vision”. In: *ICML Workshop on Uncertainty and Robustness in Deep Learning*. June 2019. DOI: [10.48550/arXiv.1906.02337](https://doi.org/10.48550/arXiv.1906.02337). URL: [http://arxiv.org/abs/1906.02337](https://arxiv.org/abs/1906.02337) (cit. on pp. 7, 36).

534

535

536 [73] D. Hendrycks and T. Dietterich. “Benchmarking Neural Network Robustness to Common Corruptions and Perturbations”. In: *International Conference on Learning Representations (ICLR)*. 2019. DOI: [10.48550/arXiv.1903.12261](https://doi.org/10.48550/arXiv.1903.12261). URL: [http://arxiv.org/abs/1903.12261](https://arxiv.org/abs/1903.12261) (cit. on pp. 7, 36).

537

538

539

540 [74] D. R. Burt, S. W. Ober, A. Garriga-Alonso, and M. van der Wilk. *Understanding Variational Inference in Function-Space*. Nov. 2020. DOI: [10.48550/arXiv.2011.09421](https://doi.org/10.48550/arXiv.2011.09421) (cit. on p. 8).

541

542 [75] S. Qiu, T. G. J. Rudner, S. Kapoor, and A. G. Wilson. “Should We Learn Most Likely Functions or Parameters?” In: *Advances in Neural Information Processing Systems (NeurIPS)*. 2023. DOI: [10.48550/arXiv.2311.15990](https://doi.org/10.48550/arXiv.2311.15990) (cit. on p. 8).

543

544

545 [76] T. G. J. Rudner, Z. Chen, Y. W. Teh, and Y. Gal. “Tractable Function-Space Variational Inference in Bayesian Neural Networks”. In: *Advances in Neural Information Processing Systems (NeurIPS)*. 2023. DOI: [10.48550/arXiv.2312.17199](https://doi.org/10.48550/arXiv.2312.17199) (cit. on p. 8).

546

547

548 [77] S. P. Boyd and L. Vandenberghe. *Convex optimization*. Cambridge University Press, 2004. ISBN: 978-0-521-83378-3 (cit. on p. 14).

549

550 [78] Y. Nesterov. “A method for solving the convex programming problem with convergence rate $O(\frac{1}{k^2})$ ”. In: *Dokl Akad Nauk SSSR* 269 (1983), p. 543 (cit. on p. 17).

551

552 [79] B. T. Polyak. “Some methods of speeding up the convergence of iteration methods”. In: *USSR Computational Mathematics and Mathematical Physics* 4.5 (1964), pp. 1–17. DOI: [10.1016/0041-5553\(64\)90137-5](https://doi.org/10.1016/0041-5553(64)90137-5) (cit. on p. 17).

553

554

555 [80] A. Bhattacharya, A. Linero, and C. J. Oates. “Grand Challenges in Bayesian Computation”. In: *Bulletin of the International Society for Bayesian Analysis (ISBA)* 31.3 (Sept. 2024). DOI: [10.48550/arXiv.2410.00496](https://doi.org/10.48550/arXiv.2410.00496) (cit. on p. 29).

556

557

558 [81] A. Krizhevsky et al. *Learning multiple layers of features from tiny images*. Tech. rep. 2009 (cit. on p. 36).

559

560 [82] Y. Le and X. Yang. “Tiny ImageNet Visual Recognition Challenge”. In: *Stanford CS 231N* (2015). URL: <http://cs231n.stanford.edu/tiny-imagenet-200.zip> (cit. on p. 36).

561

562 [83] T. maintainers and contributors. *TorchVision: PyTorch’s Computer Vision library*. <https://github.com/pytorch/vision>. 2016 (cit. on p. 37).

563

564 **Supplementary Material**

565 This supplementary material contains additional results and proofs for all theoretical statements.
 566 References referring to sections, equations or theorem-type environments within this document are
 567 prefixed with ‘S’, while references to, or results from, the main paper are stated as is.

568	S1 Theoretical Results	14
569	S1.1 Overparametrized Linear Regression	15
570	S1.1.1 Characterization of Implicit Bias (Proof of Theorem 1)	15
571	S1.1.2 Connection to Ensembles	18
572	S1.2 Binary Classification of Linearly Separable Data	19
573	S1.2.1 Preliminaries	19
574	S1.2.2 Gradient Flow for the Expected Loss	20
575	S1.2.3 Complete Proof of Theorem 2	23
576	S1.3 NLL Overfitting and the Need for (Temperature) Scaling	28
577	S2 Parametrization, Feature Learning and Hyperparameter Transfer	29
578	S2.1 Definitions of Stability and Feature Learning	30
579	S2.2 Initialization Scaling for a Linear Network	30
580	S2.3 Proposed Scaling	32
581	S2.4 Hyperparameter Transfer Experiment	34
582	S3 Experiments	35
583	S3.1 Setup and Details	35
584	S3.1.1 Datasets	36
585	S3.1.2 Metrics	36
586	S3.2 Time and Memory-Efficient Training	37
587	S3.3 In- and Out-of-distribution Generalization	37
588	S3.3.1 Architectures, Training, and Methods	37
589	S3.3.2 In-Distribution Generalization and Uncertainty Quantification	39
590	S3.3.3 Robustness to Input Corruptions	40

591 **S1 Theoretical Results**

592 **Lemma S1**

593 Let $q(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$, $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$ such that $\boldsymbol{\mu}, \boldsymbol{\mu}_0 \in \mathbb{R}^P$, $\boldsymbol{\Sigma}, \boldsymbol{\Sigma}_0 \in \mathbb{R}^{P \times P}$ positive semi-definite and let $\mathbf{V}_A \in \mathbb{R}^{P \times N}$, $\mathbf{V}_B \in \mathbb{R}^{P \times (P-N)}$ be matrices with pairwise orthonormal columns that together define an orthonormal basis of \mathbb{R}^P , i.e. for $\mathbf{V} = [\mathbf{V}_A \quad \mathbf{V}_B]$ it holds that $\mathbf{V}\mathbf{V}^\top = \mathbf{V}^\top\mathbf{V} = \mathbf{I}$ and $\text{span}(\mathbf{V}) = \mathbb{R}^P$. Assume further that

$$\mathbf{V}_A^\top \boldsymbol{\Sigma} \mathbf{V}_A = \mathbf{0}, \quad (\text{S11})$$

597 then the squared 2-Wasserstein distance is given by

$$W_2^2(q, p) = \|\mathbf{V}_A^\top \boldsymbol{\mu} - \mathbf{V}_A^\top \boldsymbol{\mu}_0\|_2^2 + W_2^2(\mathcal{N}(\mathbf{V}_B^\top \boldsymbol{\mu}, \mathbf{V}_B^\top \boldsymbol{\Sigma} \mathbf{V}_B), \mathcal{N}(\mathbf{V}_B^\top \boldsymbol{\mu}_0, \mathbf{V}_B^\top \boldsymbol{\Sigma}_0 \mathbf{V}_B)) + C, \quad (\text{S12})$$

598 where the constant C is independent of $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

599 *Proof.* Consider the matrix

$$\mathbf{V}^\top \boldsymbol{\Sigma} \mathbf{V} = \begin{bmatrix} \mathbf{0}_{N \times N} & \mathbf{V}_A^\top \boldsymbol{\Sigma} \mathbf{V}_B \\ \mathbf{V}_B^\top \boldsymbol{\Sigma} \mathbf{V}_A & \mathbf{V}_B^\top \boldsymbol{\Sigma} \mathbf{V}_B \end{bmatrix}.$$

600 Since $\mathbf{V}^\top \boldsymbol{\Sigma} \mathbf{V}$ is symmetric positive semi-definite, its off-diagonal block $\mathbf{V}_A^\top \boldsymbol{\Sigma} \mathbf{V}_B$ satisfies

$$(\mathbf{I} - \mathbf{0}\mathbf{0}^\dagger) \mathbf{V}_A^\top \boldsymbol{\Sigma} \mathbf{V}_B = \mathbf{0} \iff \mathbf{V}_A^\top \boldsymbol{\Sigma} \mathbf{V}_B = \mathbf{0}$$

601 by Boyd and Vandenberghe [A5.5, 77]. Therefore, we have

$$\mathbf{V}^\top \boldsymbol{\Sigma} \mathbf{V} = \begin{bmatrix} \mathbf{0}_{N \times N} & \mathbf{V}_A^\top \boldsymbol{\Sigma} \mathbf{V}_B \\ \mathbf{V}_B^\top \boldsymbol{\Sigma} \mathbf{V}_A & \mathbf{V}_B^\top \boldsymbol{\Sigma} \mathbf{V}_B \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{N \times N} & \mathbf{0}_{N \times (P-N)} \\ \mathbf{0}_{(P-N) \times N} & \mathbf{V}_B^\top \boldsymbol{\Sigma} \mathbf{V}_B \end{bmatrix}. \quad (\text{S13})$$

602 The squared 2-Wasserstein distance between $q(\mathbf{w})$ and $p(\mathbf{w})$ is given by

$$W_2^2(q, p) = \|\boldsymbol{\mu} - \boldsymbol{\mu}_0\|_2^2 + \text{tr}(\boldsymbol{\Sigma} - 2(\boldsymbol{\Sigma}^{\frac{1}{2}}\boldsymbol{\Sigma}_0\boldsymbol{\Sigma}^{\frac{1}{2}})^{\frac{1}{2}} + \boldsymbol{\Sigma}_0).$$

603 For the squared norm term it holds by unitary invariance of $\|\cdot\|_2$ that

$$\|\boldsymbol{\mu} - \boldsymbol{\mu}_0\|_2^2 = \|\mathbf{V}^\top(\boldsymbol{\mu} - \boldsymbol{\mu}_0)\|_2^2 = \left\| \begin{bmatrix} \mathbf{V}_A^\top(\boldsymbol{\mu} - \boldsymbol{\mu}_0) \\ \mathbf{V}_B^\top(\boldsymbol{\mu} - \boldsymbol{\mu}_0) \end{bmatrix} \right\|_2^2 = \|\mathbf{V}_A^\top\boldsymbol{\mu} - \mathbf{V}_A^\top\boldsymbol{\mu}_0\|_2^2 + \|\mathbf{V}_B^\top\boldsymbol{\mu} - \mathbf{V}_B^\top\boldsymbol{\mu}_0\|_2^2$$

604 Now for the trace term we have that

$$\begin{aligned} & \text{tr}(\mathbf{V}\mathbf{V}^\top(\boldsymbol{\Sigma} - 2(\boldsymbol{\Sigma}^{\frac{1}{2}}\boldsymbol{\Sigma}_0\boldsymbol{\Sigma}^{\frac{1}{2}})^{\frac{1}{2}} + \boldsymbol{\Sigma}_0)) \\ &= \text{tr}(\mathbf{V}^\top\boldsymbol{\Sigma}\mathbf{V}) - 2\text{tr}(\mathbf{V}^\top(\boldsymbol{\Sigma}^{\frac{1}{2}}\boldsymbol{\Sigma}_0\boldsymbol{\Sigma}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{V}) + \text{tr}(\mathbf{V}^\top\boldsymbol{\Sigma}_0\mathbf{V}) \\ &= \text{tr}(\mathbf{V}_A^\top\boldsymbol{\Sigma}\mathbf{V}_A) + \text{tr}(\mathbf{V}_B^\top\boldsymbol{\Sigma}\mathbf{V}_B) + \text{tr}(\mathbf{V}_A^\top\boldsymbol{\Sigma}_0\mathbf{V}_A) + \text{tr}(\mathbf{V}_B^\top\boldsymbol{\Sigma}_0\mathbf{V}_B) - 2\text{tr}(\mathbf{V}^\top(\boldsymbol{\Sigma}^{\frac{1}{2}}\boldsymbol{\Sigma}_0\boldsymbol{\Sigma}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{V}) \\ &\stackrel{+c}{=} \text{tr}(\mathbf{V}_B^\top\boldsymbol{\Sigma}\mathbf{V}_B) + \text{tr}(\mathbf{V}_B^\top\boldsymbol{\Sigma}_0\mathbf{V}_B) - 2\text{tr}(\mathbf{V}^\top(\boldsymbol{\Sigma}^{\frac{1}{2}}\boldsymbol{\Sigma}_0\boldsymbol{\Sigma}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{V}) \end{aligned} \tag{S14}$$

605 where we used Eq. (S11) and $\stackrel{+c}{=}$ denotes equality up to constants independent of $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

606 Now by Eq. (S13), we have that $\boldsymbol{\Sigma} = \mathbf{V}_B\mathbf{M}\mathbf{V}_B^\top$ for $\mathbf{M} = \mathbf{V}_B^\top\boldsymbol{\Sigma}\mathbf{V}_B$ and its unique principal square root is given by $\boldsymbol{\Sigma}^{\frac{1}{2}} = \mathbf{V}_B\mathbf{M}^{\frac{1}{2}}\mathbf{V}_B^\top$ since

$$(\mathbf{V}_B\mathbf{M}^{\frac{1}{2}}\mathbf{V}_B^\top)(\mathbf{V}_B\mathbf{M}^{\frac{1}{2}}\mathbf{V}_B^\top) = \mathbf{V}_B\mathbf{M}^{\frac{1}{2}}\mathbf{I}_{(P-N) \times (P-N)}\mathbf{M}^{\frac{1}{2}}\mathbf{V}_B^\top = \boldsymbol{\Sigma}.$$

608 It also holds that the unique principal square root

$$(\boldsymbol{\Sigma}^{\frac{1}{2}}\boldsymbol{\Sigma}_0\boldsymbol{\Sigma}^{\frac{1}{2}})^{\frac{1}{2}} = \mathbf{V}_B(\mathbf{M}^{\frac{1}{2}}\mathbf{V}_B^\top\boldsymbol{\Sigma}_0\mathbf{V}_B\mathbf{M}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{V}_B^\top$$

609 since direct calculation gives

$$\begin{aligned} & (\mathbf{V}_B(\mathbf{M}^{\frac{1}{2}}\mathbf{V}_B^\top\boldsymbol{\Sigma}_0\mathbf{V}_B\mathbf{M}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{V}_B^\top)(\mathbf{V}_B(\mathbf{M}^{\frac{1}{2}}\mathbf{V}_B^\top\boldsymbol{\Sigma}_0\mathbf{V}_B\mathbf{M}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{V}_B^\top) \\ &= \mathbf{V}_B\mathbf{M}^{\frac{1}{2}}\mathbf{V}_B^\top\boldsymbol{\Sigma}_0\mathbf{V}_B\mathbf{M}^{\frac{1}{2}}\mathbf{V}_B^\top = \boldsymbol{\Sigma}^{\frac{1}{2}}\boldsymbol{\Sigma}_0\boldsymbol{\Sigma}^{\frac{1}{2}}. \end{aligned}$$

610 Therefore we have that

$$\text{tr}(\mathbf{V}^\top(\boldsymbol{\Sigma}^{\frac{1}{2}}\boldsymbol{\Sigma}_0\boldsymbol{\Sigma}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{V}) = \text{tr}(\mathbf{V}^\top\mathbf{V}_B(\mathbf{M}^{\frac{1}{2}}\mathbf{V}_B^\top\boldsymbol{\Sigma}_0\mathbf{V}_B\mathbf{M}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{V}_B^\top\mathbf{V}) = \text{tr}((\mathbf{M}^{\frac{1}{2}}\mathbf{V}_B^\top\boldsymbol{\Sigma}_0\mathbf{V}_B\mathbf{M}^{\frac{1}{2}})^{\frac{1}{2}}).$$

611 Putting it all together we obtain

$$\begin{aligned} W_2^2(q, p) &\stackrel{+c}{=} \|\mathbf{V}_A^\top\boldsymbol{\mu} - \mathbf{V}_A^\top\boldsymbol{\mu}_0\|_2^2 + \|\mathbf{V}_B^\top\boldsymbol{\mu} - \mathbf{V}_B^\top\boldsymbol{\mu}_0\|_2^2 + \text{tr}(\mathbf{V}_B^\top\boldsymbol{\Sigma}\mathbf{V}_B) + \text{tr}(\mathbf{V}_B^\top\boldsymbol{\Sigma}_0\mathbf{V}_B) - 2\text{tr}(\mathbf{V}^\top(\boldsymbol{\Sigma}^{\frac{1}{2}}\boldsymbol{\Sigma}_0\boldsymbol{\Sigma}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{V}) \\ &= \|\mathbf{V}_A^\top\boldsymbol{\mu} - \mathbf{V}_A^\top\boldsymbol{\mu}_0\|_2^2 + \|\mathbf{V}_B^\top\boldsymbol{\mu} - \mathbf{V}_B^\top\boldsymbol{\mu}_0\|_2^2 + \text{tr}(\mathbf{V}_B^\top\boldsymbol{\Sigma}\mathbf{V}_B) + \text{tr}(\mathbf{V}_B^\top\boldsymbol{\Sigma}_0\mathbf{V}_B) - 2\text{tr}((\mathbf{M}^{\frac{1}{2}}\mathbf{V}_B^\top\boldsymbol{\Sigma}_0\mathbf{V}_B\mathbf{M}^{\frac{1}{2}})^{\frac{1}{2}}) \\ &= \|\mathbf{V}_A^\top\boldsymbol{\mu} - \mathbf{V}_A^\top\boldsymbol{\mu}_0\|_2^2 + W_2^2(\mathcal{N}(\mathbf{V}_B^\top\boldsymbol{\mu}, \mathbf{V}_B^\top\boldsymbol{\Sigma}\mathbf{V}_B), \mathcal{N}(\mathbf{V}_B^\top\boldsymbol{\mu}_0, \mathbf{V}_B^\top\boldsymbol{\Sigma}_0\mathbf{V}_B)) \end{aligned}$$

612 which completes the proof. \square

613 S1.1 Overparametrized Linear Regression

614 S1.1.1 Characterization of Implicit Bias (Proof of Theorem 1)

615 **Theorem 1** (Implicit Bias in Regression)

616 Let $f_{\mathbf{w}}(\mathbf{x}) = \mathbf{x}^\top\mathbf{w}$ be an overparametrized linear model with $P > N$. Define a Gaussian prior $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}_0, \mathbf{S}_0\mathbf{S}_0^\top)$ and likelihood $p(\mathbf{y} \mid \mathbf{w}) = \mathcal{N}(\mathbf{y}; f_{\mathbf{w}}(\mathbf{X}), \sigma^2\mathbf{I})$ and assume a variational family $q_{\boldsymbol{\theta}}(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \mathbf{S}\mathbf{S}^\top)$ with $\boldsymbol{\theta} = (\boldsymbol{\mu}, \mathbf{S})$ such that $\boldsymbol{\mu} \in \mathbb{R}^P$ and $\mathbf{S} \in \mathbb{R}^{P \times R}$ where $R \leq P$. If the learning rate sequence $(\eta_t)_t$ is chosen such that the limit point $\boldsymbol{\theta}_*^{\text{GD}} = \lim_{t \rightarrow \infty} \boldsymbol{\theta}_t^{\text{GD}}$ identified by gradient descent, initialized at $\boldsymbol{\theta}_0 = (\boldsymbol{\mu}_0, \mathbf{S}_0)$, is a (global) minimizer of the expected log-likelihood $\bar{\ell}(\boldsymbol{\theta})$, then

$$\boldsymbol{\theta}_*^{\text{GD}} \in \arg \min_{\substack{\boldsymbol{\theta} = (\boldsymbol{\mu}, \mathbf{S}) \\ s.t. \boldsymbol{\theta} \in \arg \min \bar{\ell}(\boldsymbol{\theta})}} W_2^2(q_{\boldsymbol{\theta}}, p). \tag{7}$$

622 Further, this also holds in the case of stochastic gradient descent and when using momentum.

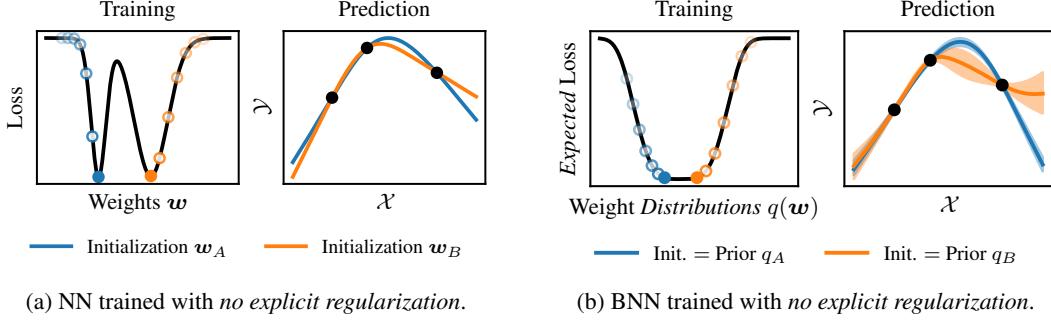


Figure S1: *Implicit regularization in standard neural networks versus in probabilistic networks.* Left panels: A neural network trained without explicit regularization can converge to different global minima of the loss. Optimization of the weights will implicitly regularize towards one or the other. Right panels: Analogously, there are multiple distributions over neural networks that are global minima of the *expected loss*. Optimization of the *distribution* over the weights will implicitly regularize towards one or the other. Our approach uses this implicit regularization instead of an explicit regularization to a prior.

623 *Proof.* Let $\theta_* = (\mu_*, S_*)$ be a minimizer of $\bar{\ell}(\theta)$. By assumption it holds that the expected negative
624 log-likelihood is equal to the following non-negative loss function up to an additive constant:

$$\begin{aligned}\bar{\ell}(\theta) &= \mathbb{E}_{q_\theta(\mathbf{w})}(\ell(\mathbf{y}, f_\mathbf{w}(\mathbf{X}))) = \mathbb{E}_{q_\theta(\mathbf{w})}(-\log p(\mathbf{y} \mid \mathbf{w})) \\ &\stackrel{+c}{=} \frac{1}{2\sigma^2} \mathbb{E}_{q_\theta(\mathbf{w})}(\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2) \\ &= \frac{1}{2\sigma^2} (\|\mathbf{y} - \mathbf{X}\mu_*\|_2^2 + \text{tr}(\mathbf{X}\Sigma\mathbf{X}^\top)) \geq 0,\end{aligned}$$

625 where $\Sigma = SS^\top$ and non-negativity follows from Σ being symmetric positive semi-definite. There-
626 fore any (global) minimizer $\theta_* = (\mu_*, \Sigma_*)$ necessarily satisfies

$$\|\mathbf{y} - \mathbf{X}\mu_*\|_2^2 = 0, \quad (\text{S15})$$

$$\text{tr}(\mathbf{X}\Sigma_*\mathbf{X}^\top) = 0. \quad (\text{S16})$$

627 Let $\mathbf{V} = [\mathbf{V}_{\text{range}} \quad \mathbf{V}_{\text{null}}] \in \mathbb{R}^{P \times P}$ be the orthonormal matrix of right singular vectors of $\mathbf{X} =$
628 $\mathbf{U}\Lambda\mathbf{V}^\top$, where $\mathbf{V}_{\text{range}} \in \mathbb{R}^{P \times N}$ and $\mathbf{V}_{\text{null}} \in \mathbb{R}^{P \times (P-N)}$. Since $\mathbf{X} \in \mathbb{R}^{N \times P}$ and we are in the
629 overparametrized regime, i.e. $P > N$, the optimal mean parameter decomposes into the least-
630 squares solution and a null space contribution

$$\mu_* = \mathbf{V}_{\text{range}}\mathbf{u}_* + \mathbf{V}_{\text{null}}\mathbf{z} = \mathbf{X}^\dagger\mathbf{y} + \mathbf{V}_{\text{null}}\mathbf{z}. \quad (\text{S17})$$

631 Furthermore, it holds for positive semi-definite $\Sigma \in \mathbb{R}^{P \times P}$ that

$$\begin{aligned}0 \leq \text{tr}(\mathbf{X}\Sigma\mathbf{X}^\top) &= \text{tr}(\mathbf{U}\Lambda\mathbf{V}^\top\Sigma\mathbf{V}\Lambda\mathbf{U}^\top) = \text{tr}(\Lambda\mathbf{V}^\top\Sigma\mathbf{V}\Lambda) \\ &= \text{tr}([\Lambda_{N \times N} \quad \mathbf{0}] \begin{bmatrix} \mathbf{V}_{\text{range}}^\top \Sigma \mathbf{V}_{\text{range}} & * \\ * & * \end{bmatrix} \begin{bmatrix} \Lambda_{N \times N} \\ \mathbf{0} \end{bmatrix}) \\ &= \text{tr}(\Lambda_{N \times N} \mathbf{V}_{\text{range}}^\top \Sigma \mathbf{V}_{\text{range}} \Lambda_{N \times N}) \\ &= \sum_{i=1}^N \lambda_i^2 [\mathbf{V}_{\text{range}}^\top \Sigma \mathbf{V}_{\text{range}}]_{ii}\end{aligned}$$

632 where $\lambda_i^2 > 0$ are the squared singular values of \mathbf{X} , which are strictly positive since $\text{rank}(\mathbf{X}) = N$.
633 Therefore using Equation (S16) any global minimizer necessarily satisfies $[\mathbf{V}_{\text{range}}^\top \Sigma_* \mathbf{V}_{\text{range}}]_{ii} = 0$
634 for $i \in \{1, \dots, N\}$. Now since $\mathbf{V}_{\text{range}}^\top \Sigma_* \mathbf{V}_{\text{range}}$ is symmetric positive semi-definite and its diagonal
635 is zero, so is its trace and therefore the sum of its non-negative eigenvalues is necessarily zero. Thus
636 all eigenvalues are zero and therefore

$$\mathbf{V}_{\text{range}}^\top \Sigma \mathbf{V}_{\text{range}} = \mathbf{0}. \quad (\text{S18})$$

637 Now by Lemma S1 we have that the squared 2-Wasserstein distance between $q_{\theta_*}(\mathbf{w}) =$
638 $\mathcal{N}(\mathbf{w}; \boldsymbol{\mu}_*, \boldsymbol{\Sigma}_*)$ and the initialization $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$ is given up to a constant independent
639 of $(\boldsymbol{\mu}_*, \boldsymbol{\Sigma}_*)$ by

$$\begin{aligned} W_2(q_{\theta_*}, p) &\stackrel{+c}{=} \|\mathbf{V}_{\text{range}}^\top \boldsymbol{\mu}_* - \mathbf{V}_{\text{range}}^\top \boldsymbol{\mu}_0\|_2^2 + W_2^2(\mathcal{N}(\mathbf{V}_{\text{null}}^\top \boldsymbol{\mu}_*, \mathbf{V}_{\text{null}}^\top \boldsymbol{\Sigma}_* \mathbf{V}_{\text{null}}), \mathcal{N}(\mathbf{V}_{\text{null}}^\top \boldsymbol{\mu}_0, \mathbf{V}_{\text{null}}^\top \boldsymbol{\Sigma}_0 \mathbf{V}_{\text{null}})) \\ &= \|\mathbf{X}^\dagger \mathbf{y} - \mathbf{V}_{\text{range}}^\top \boldsymbol{\mu}_0\|_2^2 + W_2^2(\mathcal{N}(\mathbf{V}_{\text{null}}^\top \boldsymbol{\mu}_*, \mathbf{V}_{\text{null}}^\top \boldsymbol{\Sigma}_* \mathbf{V}_{\text{null}}), \mathcal{N}(\mathbf{V}_{\text{null}}^\top \boldsymbol{\mu}_0, \mathbf{V}_{\text{null}}^\top \boldsymbol{\Sigma}_0 \mathbf{V}_{\text{null}})) \\ &\stackrel{+c}{=} W_2^2(\mathcal{N}(\mathbf{V}_{\text{null}}^\top \boldsymbol{\mu}_*, \mathbf{V}_{\text{null}}^\top \boldsymbol{\Sigma}_* \mathbf{V}_{\text{null}}), \mathcal{N}(\mathbf{V}_{\text{null}}^\top \boldsymbol{\mu}_0, \mathbf{V}_{\text{null}}^\top \boldsymbol{\Sigma}_0 \mathbf{V}_{\text{null}})) \end{aligned}$$

640 Therefore among variational distributions q_{θ_*} with parameters θ_* that minimize the expected loss
641 $\bar{\ell}(\theta)$, any such θ_* that minimizes the squared 2-Wasserstein distance to the prior satisfies

$$\underbrace{(\mathbf{V}_{\text{null}}^\top \boldsymbol{\mu}_*, \mathbf{V}_{\text{null}}^\top \boldsymbol{\Sigma}_* \mathbf{V}_{\text{null}})}_{=:z} = \underbrace{(\mathbf{V}_{\text{null}}^\top \boldsymbol{\mu}_0, \mathbf{V}_{\text{null}}^\top \boldsymbol{\Sigma}_0 \mathbf{V}_{\text{null}})}_{=:M}. \quad (\text{S19})$$

642 **(Stochastic) Gradient Descent** It remains to show that (stochastic) gradient descent identifies a
643 minimum of the expected loss $\bar{\ell}(\theta)$, such that the above holds. By assumption we have for the loss
644 on a batch \mathbf{X}_b of data that

$$\begin{aligned} \bar{\ell}(\theta) &= \mathbb{E}_{q_\theta(\mathbf{w})}(\ell(\mathbf{y}_b, f_\mathbf{w}(\mathbf{X}_b))) = \mathbb{E}_{q_\theta(\mathbf{w})}(-\log p(\mathbf{y}_b \mid \mathbf{w})) \\ &\stackrel{+c}{=} \frac{1}{2\sigma^2} (\|\mathbf{y}_b - \mathbf{X}_b \boldsymbol{\mu}\|_2^2 + \text{tr}(\mathbf{X}_b \boldsymbol{\Sigma} \mathbf{X}_b^\top)), \end{aligned}$$

645 Therefore, at convergence of (stochastic) gradient descent the variational parameters $\boldsymbol{\theta}_\infty =$
646 $(\boldsymbol{\mu}_\infty, \mathbf{S}_\infty)$ are given by

$$\boldsymbol{\mu}_\infty = \boldsymbol{\mu}_0 - \sum_{t=1}^{\infty} \eta_t \nabla_{\boldsymbol{\mu}} \bar{\ell}_b(\boldsymbol{\theta}_{t-1}) = \boldsymbol{\mu}_0 + \sum_{t=1}^{\infty} \frac{\eta_t}{\sigma^2} \mathbf{X}_b^\top (\mathbf{y}_b - \mathbf{X}_b \boldsymbol{\mu}_{t-1})$$

647 as well as

$$\mathbf{S}_\infty = \mathbf{S}_0 - \sum_{t=1}^{\infty} \eta_t \nabla_{\mathbf{S}} \bar{\ell}_b(\boldsymbol{\theta}_{t-1}) = \mathbf{S}_0 - \sum_{t=1}^{\infty} \frac{\eta_t}{\sigma^2} \mathbf{X}_b^\top \mathbf{X}_b \mathbf{S}_{t-1}$$

648 and therefore

$$\begin{aligned} \mathbf{z}_\infty &= \mathbf{V}_{\text{null}}^\top \boldsymbol{\mu}_\infty = \mathbf{V}_{\text{null}}^\top \boldsymbol{\mu}_0 + \sum_{t=1}^{\infty} \frac{\eta_t}{\sigma^2} \mathbf{V}_{\text{null}}^\top \underbrace{\mathbf{X}_b^\top (\mathbf{y}_b - \mathbf{X}_b \boldsymbol{\mu}_{t-1})}_{\in \text{range}(\mathbf{X}_b^\top)} = \mathbf{V}_{\text{null}}^\top \boldsymbol{\mu}_0 \\ \mathbf{V}_{\text{null}}^\top \mathbf{S}_\infty &= \mathbf{V}_{\text{null}}^\top \mathbf{S}_0 - \sum_{t=1}^{\infty} \frac{\eta_t}{\sigma^2} \mathbf{V}_{\text{null}}^\top \underbrace{\mathbf{X}_b^\top \mathbf{X}_b \mathbf{S}_{t-1}}_{\text{columns } \in \text{range}(\mathbf{X}_b^\top)} = \mathbf{V}_{\text{null}}^\top \mathbf{S}_0 \end{aligned}$$

649 where we used continuity of linear maps between finite-dimensional spaces. It follows that

$$\mathbf{M}_\infty = \mathbf{V}_{\text{null}}^\top \boldsymbol{\Sigma}_\infty \mathbf{V}_{\text{null}} = \mathbf{V}_{\text{null}}^\top \mathbf{S}_\infty \mathbf{S}_\infty^\top \mathbf{V}_{\text{null}} = \mathbf{V}_{\text{null}}^\top \mathbf{S}_0 \mathbf{S}_0^\top \mathbf{V}_{\text{null}} = \mathbf{V}_{\text{null}}^\top \boldsymbol{\Sigma}_0 \mathbf{V}_{\text{null}}.$$

650 Therefore any limit point of (stochastic) gradient descent that minimizes the expected log-likelihood
651 also minimizes the 2-Wasserstein distance to the prior, since $\boldsymbol{\theta}_\infty$ satisfies Equation (S19).

652 **Momentum** In case we are using (stochastic) gradient descent with momentum, the updates are
653 given by

$$\begin{aligned} \boldsymbol{\mu}_{t+1} &= \boldsymbol{\mu}_t + \gamma_t \Delta \boldsymbol{\mu}_t - \eta_t \nabla_{\boldsymbol{\mu}} \bar{\ell}_b(\boldsymbol{\theta}_t + \alpha_t \Delta \boldsymbol{\theta}_t) \\ \mathbf{S}_{t+1} &= \mathbf{S}_t + \gamma_t \Delta \mathbf{S}_t - \eta_t \nabla_{\mathbf{S}} \bar{\ell}_b(\boldsymbol{\theta}_t + \alpha_t \Delta \boldsymbol{\theta}_t) \end{aligned} \quad (\text{S20})$$

654 where

$$\Delta \boldsymbol{\theta}_t = \begin{pmatrix} \Delta \boldsymbol{\mu}_t \\ \Delta \mathbf{S}_t \end{pmatrix} = \boldsymbol{\theta}_t - \boldsymbol{\theta}_{t-1}, \quad \Delta \boldsymbol{\theta}_0 = \mathbf{0}.$$

655 for parameters $\gamma_t, \alpha_t \geq 0$, which includes Nesterov's acceleration ($\gamma_t = \alpha_t$) [78] and heavy ball
656 momentum ($\alpha_t = 0$) [79].

657 To prove that the updates of the variational parameters are always orthogonal to the null space of \mathbf{X}_b ,
658 we proceed by induction. The base case is trivial since $\Delta\theta_0 = \mathbf{0}$. Assume now that $\mathbf{V}_{\text{null}}^\top \Delta\mu_t = \mathbf{0}$
659 and $\mathbf{V}_{\text{null}}^\top \Delta\mathbf{S}_t = \mathbf{0}$, then by Equation (S20), we have

$$\begin{aligned}\mathbf{V}_{\text{null}}^\top \Delta\mu_{t+1} &= \mathbf{V}_{\text{null}}^\top (\mu_{t+1} - \mu_t) = \gamma_t \mathbf{V}_{\text{null}}^\top \Delta\mu_t - \eta_t \mathbf{V}_{\text{null}}^\top \nabla_\mu \bar{\ell}_b(\theta_t + \alpha_t \Delta\theta_t) = \mathbf{0} \\ \mathbf{V}_{\text{null}}^\top \Delta\mathbf{S}_{t+1} &= \mathbf{V}_{\text{null}}^\top (\mathbf{S}_{t+1} - \mathbf{S}_t) = \gamma_t \mathbf{V}_{\text{null}}^\top \Delta\mathbf{S}_t - \eta_t \mathbf{V}_{\text{null}}^\top \nabla_\mathbf{S} \bar{\ell}_b(\theta_t + \alpha_t \Delta\theta_t) = \mathbf{0}\end{aligned}$$

660 where we used the induction hypothesis and the fact that the gradients are orthogonal to the null
661 space as shown earlier.

662 Therefore by the same argument as above we have that θ_∞ computed via (stochastic) gradient
663 descent with momentum satisfies Equation (S19), which directly implies Theorem 1. \square

664 S1.1.2 Connection to Ensembles

665 **Proposition S1** (Connection to Ensembles)

666 Consider an ensemble of overparametrized linear models $f_w(\mathbf{x}) = \mathbf{x}^\top \mathbf{w}$ initialized with weights
667 drawn from the prior $\mathbf{w}_0^{(i)} \sim \mathcal{N}(\mathbf{w}; \mu_0, \mathbf{S}_0 \mathbf{S}_0^\top)$. Assume each model is trained independently to
668 convergence via (S)GD such that $\mathbf{w}_*^{(i)} = \arg \min_{\mathbf{w}} \ell(\mathbf{y}, f_w(\mathbf{X}))$. Then the distribution over the
669 weights of the trained ensemble $q_{\text{Ens}}(\mathbf{w})$ is equal to the variational approximation $q_{\theta_*}(\mathbf{w})$ learned
670 via (S)GD initialized at the prior hyperparameters $\theta_0 = (\mu_0, \mathbf{S}_0)$, i.e.

$$q_{\text{Ens}}(\mathbf{w}) = q_{\theta_*}(\mathbf{w}). \quad (\text{S21})$$

671 *Proof.* The parameters $\mathbf{w}_\infty^{(i)}$ of the (independently) trained ensemble members identified via
672 (stochastic) gradient descent are given by

$$\mathbf{w}_\infty^{(i)} = \arg \min_{\mathbf{w} \in F} \|\mathbf{w} - \mathbf{w}_0^{(i)}\|_2$$

673 where $F = \{\mathbf{w} \in \mathbb{R}^P \mid f_w(\mathbf{X}) = \mathbf{X}\mathbf{w} = \mathbf{y}\}$ is the set of interpolating solutions [5, Sec. 2.1]. Since
we can write F equivalently via the minimum norm solution and an arbitrary null space contribution,
s.t. $F = \{\mathbf{w} = \mathbf{X}^\dagger \mathbf{y} + \mathbf{w}_{\text{null}} \mid \mathbf{w}_{\text{null}} \in \text{null}(\mathbf{X})\}$ we have

$$\begin{aligned}&= \mathbf{X}^\dagger \mathbf{y} + \arg \min_{\mathbf{w}_{\text{null}} \in \text{null}(\mathbf{X})} \|\mathbf{w}_{\text{null}} - (\mathbf{w}_0^{(i)} - \mathbf{X}^\dagger \mathbf{y})\|_2 \\ &= \mathbf{X}^\dagger \mathbf{y} + \text{proj}_{\text{null}(\mathbf{X})} \left(\mathbf{w}_0^{(i)} - \underbrace{\mathbf{X}^\dagger \mathbf{y}}_{\in \text{range}(\mathbf{X}^\top)} \right)\end{aligned}$$

674 where we used the characterization of an orthogonal projection onto a linear subspace as the (unique)
closest point in the subspace. Finally, we use that the minimum norm solution is in the range space
of the data and rewrite the projection in matrix form, s.t.

$$= \mathbf{X}^\dagger \mathbf{y} + \mathbf{P}_{\text{null}} \mathbf{w}_0^{(i)}.$$

675 Therefore the distribution over the parameters $\mathbf{w}_\infty^{(i)}$ of the ensemble members computed via (S)GD
676 with initial parameters $\mathbf{w}_0 \sim \mathcal{N}(\mathbf{w}; \mu_0, \mathbf{S}_0 \mathbf{S}_0^\top)$ is given by

$$q_{\text{Ens}}(\mathbf{w}) = \mathcal{N} \left(\mathbf{w}; \underbrace{\mathbf{X}^\dagger \mathbf{y} + \mathbf{P}_{\text{null}} \mu_0}_{= \mu_{\text{Ens}}}, \underbrace{\mathbf{P}_{\text{null}} \mathbf{S}_0 \mathbf{S}_0^\top \mathbf{P}_{\text{null}}^\top}_{= \mathbf{S}_{\text{Ens}}} \right).$$

677 Now the expected negative log-likelihood of the distribution over the parameters of the trained en-
678 semble members $q_{\text{Ens}}(\mathbf{w})$ with hyperparameters $\theta_{\text{Ens}} = (\mu_{\text{Ens}}, \mathbf{S}_{\text{Ens}})$ is

$$\bar{\ell}(\theta_{\text{Ens}}) \stackrel{+c}{=} \frac{1}{2\sigma^2} (\|\mathbf{y} - \mathbf{X}\mu_{\text{Ens}}\|_2^2 + \text{tr}(\mathbf{X} \mathbf{S}_{\text{Ens}} \mathbf{S}_{\text{Ens}}^\top \mathbf{X}^\top)) = 0$$

679 and therefore θ_{Ens} is a minimizer of the expected log-likelihood. Further it holds that

$$\mathbf{z} = \mathbf{V}_{\text{null}}^\top (\mathbf{P}_{\text{null}} \mu_0) = \mathbf{V}_{\text{null}}^\top \mu_0$$

$$\mathbf{M} = \mathbf{V}_{\text{null}}^T (\mathbf{P}_{\text{null}} \mathbf{S}_0) (\mathbf{P}_{\text{null}} \mathbf{S}_0)^T \mathbf{V}_{\text{null}} = \mathbf{V}_{\text{null}}^T \mathbf{S}_0 \mathbf{S}_0^T \mathbf{V}_{\text{null}} = \mathbf{V}_{\text{null}}^T \boldsymbol{\Sigma}_0 \mathbf{V}_{\text{null}}$$

680 and thus by Equation (S19), the distribution of the trained ensemble parameters minimizes the 2-
681 Wasserstein distance to the prior distribution, i.e.

$$q_{\text{Ens}} = \arg \min_{q(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \boldsymbol{\Sigma})} W_2^2(q(\mathbf{w}), \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)).$$

682 Combining this with the characterization of the variational posterior in Theorem 1 proves the claim. □
683

684 S1.2 Binary Classification of Linearly Separable Data

685 In this subsection we provide proofs of claims from Section 4.2. We begin with presenting some
686 preliminary results from Soudry et al. [4] which will be used throughout the proof. Next, we will
687 analyze the gradient flow of the expected loss. We extend the results for the gradient flow to gradient
688 descent and derive the characterization of the implicit bias, completing the proof of Theorem 2.

689 **Theorem 2** (Implicit Bias in Binary Classification)

690 Let $f_{\mathbf{w}}(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$ be an (overparametrized) linear model and define a Gaussian prior $p(\mathbf{w}) =$
691 $\mathcal{N}(\mathbf{w}; \boldsymbol{\mu}_0, \mathbf{S}_0 \mathbf{S}_0^T)$. Assume a variational distribution $q_{\boldsymbol{\theta}}(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \mathbf{S} \mathbf{S}^T)$ over the weights
692 $\mathbf{w} \in \mathbb{R}^P$ with variational parameters $\boldsymbol{\theta} = (\boldsymbol{\mu}, \mathbf{S})$ such that $\mathbf{S} \in \mathbb{R}^{P \times R}$ and $R \leq P$. Assume we
693 are using the exponential loss $\ell(u) = \exp(-u)$ and optimize the expected empirical loss $\bar{\ell}(\boldsymbol{\theta})$ via
694 gradient descent initialized at the prior, i.e. $\boldsymbol{\theta}_0 = (\boldsymbol{\mu}_0, \mathbf{S}_0)$, with a sufficiently small learning rate η .
695 Then for almost any dataset which is linearly separable (Assumption 1) and for which the support
696 vectors span the data (Assumption 2), the rescaled gradient descent iterates (rGD)

$$\boldsymbol{\theta}_t^{\text{rGD}} = (\boldsymbol{\mu}_t^{\text{rGD}}, \mathbf{S}_t^{\text{rGD}}) = \left(\frac{1}{\log(t)} \boldsymbol{\mu}_t^{\text{GD}} + \mathbf{P}_{\text{null}(\mathbf{X})} \boldsymbol{\mu}_0, \mathbf{S}_t^{\text{GD}} \right) \quad (9)$$

697 converge to a limit point $\boldsymbol{\theta}_*^{\text{rGD}} = \lim_{t \rightarrow \infty} \boldsymbol{\theta}_t^{\text{rGD}}$ for which it holds that

$$\boldsymbol{\theta}_*^{\text{rGD}} \in \arg \min_{\substack{\boldsymbol{\theta} = (\boldsymbol{\mu}, \mathbf{S}) \\ \text{s.t. } \boldsymbol{\theta} \in \Theta_*}} W_2^2(q_{\boldsymbol{\theta}}, p). \quad (10)$$

698 where the feasible set $\Theta_* = \{(\boldsymbol{\mu}, \mathbf{S}) \mid \mathbf{P}_{\text{range}(\mathbf{X}^T)} \boldsymbol{\mu} = \hat{\boldsymbol{\mu}} \text{ and } \forall n : \text{Var}_{q_{\boldsymbol{\theta}}}(f_{\mathbf{w}}(\mathbf{x}_n)) = 0\}$ consists
699 of mean parameters which, if projected onto the training data, are equivalent to the L_2 max margin
700 vector and covariance parameters such that there is no uncertainty at training data.

701 S1.2.1 Preliminaries

702 Recall that the expected loss is given by

$$\bar{\ell}(\boldsymbol{\theta}) = \sum_{n=1}^N \mathbb{E}_{q_{\boldsymbol{\theta}}(\mathbf{w})} (\ell(y_n \mathbf{x}_n^T \mathbf{w})), \quad (\text{S22})$$

703 and specifically, for the exponential loss, we have

$$\bar{\ell}(\boldsymbol{\theta}) = \bar{\ell}(\boldsymbol{\mu}, \mathbf{S}) = \sum_{n=1}^N \exp(-\mathbf{x}_n^T \boldsymbol{\mu} + \frac{1}{2} \mathbf{x}_n^T \mathbf{S} \mathbf{S}^T \mathbf{x}_n). \quad (\text{S23})$$

704 Throughout these proofs, for any mean parameter iterate $\boldsymbol{\mu}_t$, we define the residual as

$$\mathbf{r}_t = \boldsymbol{\mu}_t - \hat{\boldsymbol{\mu}} \log t - \tilde{\boldsymbol{\mu}} \quad (\text{S24})$$

705 where $\hat{\boldsymbol{\mu}}$ is the solution to the hard margin SVM, and $\tilde{\boldsymbol{\mu}}$ is the vector which satisfies

$$\forall n \in \mathcal{S} : \eta \exp(-\mathbf{x}_n^T \tilde{\boldsymbol{\mu}}) = \alpha_n, \quad (\text{S25})$$

706 where weights α_n are defined through the KKT conditions on the hard margin SVM problem, i.e.

$$\hat{\boldsymbol{\mu}} = \sum_{n \in \mathcal{S}} \alpha_n \mathbf{x}_n. \quad (\text{S26})$$

707 In Lemma 12 (Appendix B) of Soudry et al. [4], it is shown that, for almost any dataset, there are no
708 more than P support vectors and $\alpha_n \neq 0, \forall n \in \mathcal{S}$. Furthermore, we denote the minimum margin to
709 a non-support vector as:

$$\kappa = \min_{n \notin \mathcal{S}} \mathbf{x}_n^T \hat{\boldsymbol{\mu}} > 1. \quad (\text{S27})$$

710 Finally, we define $\mathbf{P}_{\mathcal{S}} \in \mathbb{R}^{P \times P}$ as the orthogonal projection matrix to the subspace spanned by the
711 support vectors, and $\bar{\mathbf{P}}_{\mathcal{S}} = \mathbf{I} - \mathbf{P}_{\mathcal{S}}$ as the complementary projection.

712 **S1.2.2 Gradient Flow for the Expected Loss**

713 Similar as in Soudry et al. [4], we begin by studying the gradient flow dynamics, i.e. taking the
714 continuous time limit of gradient descent:

$$\dot{\theta}_t = -\nabla \bar{\ell}(\theta_t), \quad (\text{S28})$$

715 which can be written componentwise as:

$$\dot{\mu}_t = -\nabla_{\mu} \bar{\ell}(\mu_t, S_t) = \sum_{n=1}^N \exp \left(-\mu_t^T x_n + \frac{1}{2} x_n^T S_t S_t^T x_n \right) x_n \quad (\text{S29})$$

$$\dot{S}_t = -\nabla_{S} \bar{\ell}(\mu_t, S_t) = - \sum_{n=1}^N \exp \left(-\mu_t^T x_n + \frac{1}{2} x_n^T S_t S_t^T x_n \right) x_n x_n^T S_t. \quad (\text{S30})$$

716 We begin by showing that the total uncertainty, as measured by the Frobenius norm of the covariance
717 factor, is bounded during the gradient flow dynamics. To that end, we derive the following dynamics:

$$\frac{d}{dt} \frac{1}{2} \|S_t\|_F^2 = \text{tr}(S_t^T \dot{S}_t) = - \sum_{n=1}^N \exp \left(-\mu_t^T x_n + \frac{1}{2} x_n^T S_t S_t^T x_n \right) \|x_n^T S_t\|^2 \leq 0, \quad (\text{S31})$$

718 and therefore

$$\|S_t\|_F^2 \leq \|S_0\|_F^2. \quad (\text{S32})$$

719 Finally, by Cauchy-Schwarz inequality, we have that

$$\|S_t S_t^T\|_F \leq \|S_t\|_F^2 \leq \|S_0\|_F^2. \quad (\text{S33})$$

720 We continue by studying the convergence behavior of the mean parameter μ_t .

721 **Mean parameter** Our goal is to show that $\|r_t\|$ is bounded. Equation (S24) implies that

$$\dot{r}_t = \dot{\mu}_t - \frac{1}{t} \hat{\mu} = -\nabla_{\mu} \bar{\ell}(\mu_t, S_t) - \frac{1}{t} \hat{\mu}. \quad (\text{S34})$$

722 This in turn implies that

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} \|r_t\|^2 &= \dot{r}_t^T r_t \\ &= \sum_{n=1}^N \exp \left(-\mu_t^T x_n + \frac{1}{2} x_n^T S_t S_t^T x_n \right) x_n^T r_t - \frac{1}{t} \hat{\mu}^T r_t \\ &= \sum_{n \in \mathcal{S}} \exp \left(-\log(t) \hat{\mu}^T x_n - \tilde{\mu}^T x_n + \frac{1}{2} x_n^T S_t S_t^T x_n - x_n^T r_t \right) x_n^T r_t - \frac{1}{t} \hat{\mu}^T r_t \\ &\quad + \sum_{n \notin \mathcal{S}} \exp \left(-\log(t) \hat{\mu}^T x_n - \tilde{\mu}^T x_n + \frac{1}{2} x_n^T S_t S_t^T x_n - x_n^T r_t \right) x_n^T r_t \\ &= \left[\frac{1}{t} \sum_{n \in \mathcal{S}} \exp(-\tilde{\mu}^T x_n) \left(\exp \left(-x_n^T r_t + \frac{1}{2} x_n^T S_t S_t^T x_n \right) - 1 \right) x_n^T r_t \right] \\ &\quad + \left[\sum_{n \notin \mathcal{S}} \left(\frac{1}{t} \right)^{\tilde{\mu}^T x_n} \exp \left(-\tilde{\mu}^T x_n + \frac{1}{2} x_n^T S_t S_t^T x_n \right) \exp(-x_n^T r_t) x_n^T r_t \right]. \end{aligned} \quad (\text{S35})$$

723 where in last line we used the fact that $\hat{\mu}^T x_n = 1$ for $n \in \mathcal{S}$, and that $\sum_{n \in \mathcal{S}} \exp(-x_n^T \tilde{\mu}) x_n = \hat{\mu}$.
724 We begin by examining the first bracket, studying three possible cases for each of the summands.
725 First, note that if $x_n^T r_t \leq 0$, then since $\frac{1}{2} x_n^T S_t S_t^T x_n \geq 0$, we have that

$$\left(\exp \left(-x_n^T r_t + \frac{1}{2} x_n^T S_t S_t^T x_n \right) - 1 \right) x_n^T r_t \leq 0. \quad (\text{S36})$$

726 Next, by defining $B := \|S_0\|_F^2$, if $0 < \mathbf{x}_n^\top \mathbf{r}_t < \frac{B}{2}$, we have that

$$\left| \left(\exp \left(-\mathbf{x}_n^\top \mathbf{r}_t + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n \right) - 1 \right) \mathbf{x}_n^\top \mathbf{r}_t \right| < \left(\exp \left(\frac{B}{2} \right) - 1 \right) \frac{B}{2}, \quad (\text{S37})$$

727 and if $\mathbf{x}_n^\top \mathbf{r}_t \geq \frac{B}{2}$, we have that

$$\left(\exp \left(-\mathbf{x}_n^\top \mathbf{r}_t + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n \right) - 1 \right) \mathbf{x}_n^\top \mathbf{r}_t \leq 0. \quad (\text{S38})$$

728 Finally, for arbitrary $\epsilon \geq \max\{B, 1\}$, if $|\mathbf{x}_n^\top \mathbf{r}_t| \geq \epsilon$, we have that

$$\left(\exp \left(-\mathbf{x}_n^\top \mathbf{r}_t + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n \right) - 1 \right) \mathbf{x}_n^\top \mathbf{r}_t \leq \left(\exp \left(-\frac{B}{2} \right) - 1 \right) \epsilon < 0, \quad (\text{S39})$$

729 Furthermore, let $\gamma_* = \min_{n \in \mathcal{S}} \tilde{\mu}^\top \mathbf{x}_n$ and $\gamma^* = \max_{n \in \mathcal{S}} \tilde{\mu}^\top \mathbf{x}_n$. Now, by taking $\epsilon \geq \max\{B, 1\}$
730 large enough such that

$$\left| \exp(-\gamma^*) \left(\exp \left(-\frac{B}{2} \right) - 1 \right) \epsilon \right| \geq |\mathcal{S}| \exp(-\gamma_*) \left(\exp \left(\frac{B}{2} \right) - 1 \right) \frac{B}{2}, \quad (\text{S40})$$

731 if there exists a support vector $n \in \mathcal{S}$ such that $|\mathbf{x}_n^\top \mathbf{r}_t| \geq \epsilon$, then

$$\frac{1}{t} \sum_{n \in \mathcal{S}} \exp(-\tilde{\mu}^\top \mathbf{x}_n) \left(\exp \left(-\mathbf{x}_n^\top \mathbf{r}_t + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n \right) - 1 \right) \mathbf{x}_n^\top \mathbf{r}_t \leq 0. \quad (\text{S41})$$

732 On the other hand, for the second bracket in Eq. (S35), note that for $n \notin \mathcal{S}$, we have that $\mathbf{x}_n^\top \hat{\mu} \geq \kappa$,
733 and hence

$$\begin{aligned} & \sum_{n \notin \mathcal{S}} \left(\frac{1}{t} \right)^{\hat{\mu}^\top \mathbf{x}_n} \exp \left(-\tilde{\mu}^\top \mathbf{x}_n + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n \right) \exp(-\mathbf{x}_n^\top \mathbf{r}_t) \mathbf{x}_n^\top \mathbf{r}_t \\ & \leq \frac{1}{t^\kappa} \sum_{n \notin \mathcal{S}} \exp \left(-\tilde{\mu}^\top \mathbf{x}_n + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n \right) = \mathcal{O}\left(\frac{1}{t^\kappa}\right), \end{aligned} \quad (\text{S42})$$

734 where in the last line we used that $ze^{-z} \leq 1, \forall z \in \mathbb{R}$ and fact that $\|\mathbf{S}_t \mathbf{S}_t^\top\|_F \leq \|\mathbf{S}_0\|_F^2 < \infty$.

735 We will now combine the results from above to show that the residual \mathbf{r}_t is bounded in the following
736 way: if there exists a support vector $n \in \mathcal{S}$ such that $|\mathbf{x}_n^\top \mathbf{r}_t| \geq \epsilon$ for big enough $\epsilon > 0$, then
737 $\frac{1}{2} \frac{d}{dt} \|\mathbf{r}_t\|^2 = \mathcal{O}(t^{-\kappa})$. If such a support vector does not exist at time t , we will show that \mathbf{r}_t is
738 contained inside a compact set. To that end, if $\|\mathbf{P}_{\mathcal{S}} \mathbf{r}_t\| \geq \epsilon_1$, we have that

$$\max_{n \in \mathcal{S}} |\mathbf{x}_n^\top \mathbf{r}_t|^2 \geq \frac{1}{|\mathcal{S}|} \sum_{n \in \mathcal{S}} |\mathbf{x}_n^\top \mathbf{P}_{\mathcal{S}} \mathbf{r}_t|^2 = \frac{1}{|\mathcal{S}|} \|\mathbf{X}_{\mathcal{S}}^\top \mathbf{P}_{\mathcal{S}} \mathbf{r}_t\|^2 \geq \frac{1}{|\mathcal{S}|} \sigma_{\min}^2(\mathbf{X}_{\mathcal{S}}) \epsilon_1^2, \quad (\text{S43})$$

739 where in the first inequality we used the fact that $\mathbf{P}_{\mathcal{S}}^\top \mathbf{x}_n = \mathbf{x}_n$ for $n \in \mathcal{S}$. Hence by choosing ϵ_1
740 such that $\sigma_{\min}^2(\mathbf{X}_{\mathcal{S}}) \epsilon_1^2 / |\mathcal{S}| = \epsilon^2$, where the ϵ is chosen in Eq. (S40), we have that

$$\|\mathbf{P}_{\mathcal{S}} \mathbf{r}_t\| \geq \epsilon_1 \Rightarrow \frac{1}{2} \frac{d}{dt} \|\mathbf{r}_t\|^2 = \mathcal{O}(t^{-\kappa}). \quad (\text{S44})$$

741 On the other hand, if $\|\mathbf{P}_{\mathcal{S}} \mathbf{r}_t\| \leq \epsilon_1$, recall that

$$\mathbf{r}_t = (\boldsymbol{\mu}_t - \boldsymbol{\mu}_0) + \boldsymbol{\mu}_0 - \hat{\boldsymbol{\mu}} \log t - \tilde{\boldsymbol{\mu}}, \quad (\text{S45})$$

742 and since all updates to the mean parameter are in the space spanned by the support vectors (As-
743 sumption 2), we have that

$$\bar{\mathbf{P}}_{\mathcal{S}} \mathbf{r}_t = \bar{\mathbf{P}}_{\mathcal{S}} \boldsymbol{\mu}_0 - \bar{\mathbf{P}}_{\mathcal{S}} \tilde{\boldsymbol{\mu}}. \quad (\text{S46})$$

744 We can now conclude that

$$\|\mathbf{P}_{\mathcal{S}} \mathbf{r}_t\| \leq \epsilon_1 \Rightarrow \|\mathbf{r}_t\| \leq \|\mathbf{P}_{\mathcal{S}} \mathbf{r}_t\| + \|\bar{\mathbf{P}}_{\mathcal{S}} \mathbf{r}_t\| \leq \epsilon_1 + \|\bar{\mathbf{P}}_{\mathcal{S}} \boldsymbol{\mu}_0\| + \|\bar{\mathbf{P}}_{\mathcal{S}} \tilde{\boldsymbol{\mu}}\| < \infty. \quad (\text{S47})$$

745 Finally, combining the results from Eq. (S42) and Eq. (S47), recalling that $\kappa > 1$, we have that $\|\mathbf{r}_t\|$
746 is bounded for all $t > 0$. This completes the first part of the proof and shows that

$$\boldsymbol{\mu}_t = \hat{\boldsymbol{\mu}} \log t + \tilde{\boldsymbol{\mu}} + \mathbf{r}_t = \hat{\boldsymbol{\mu}} \log t + \mathcal{O}(1), \quad (\text{S48})$$

747 and in particular

$$\lim_{t \rightarrow \infty} \frac{\boldsymbol{\mu}_t}{\|\boldsymbol{\mu}_t\|} = \frac{\hat{\boldsymbol{\mu}}}{\|\hat{\boldsymbol{\mu}}\|}. \quad (\text{S49})$$

748 We proceed by showing that the limit covariance parameter vanishes in the span of the support
749 vectors.

750 **Covariance parameter** We begin by plugging the definition of residual \mathbf{r}_t (Equation (S24)) into
751 the dynamics of \mathbf{S}_t :

$$\begin{aligned}\dot{\mathbf{S}}_t &= -\nabla_{\mathbf{S}} \bar{\ell}(\boldsymbol{\mu}_t, \mathbf{S}_t) = -\sum_{n=1}^N \exp \left(-\boldsymbol{\mu}_t^\top \mathbf{x}_n + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n \right) \mathbf{x}_n \mathbf{x}_n^\top \mathbf{S}_t \\ &= -\sum_{n \in \mathcal{S}} \frac{1}{t} \exp \left(-\tilde{\boldsymbol{\mu}}^\top \mathbf{x}_n - \mathbf{r}_t^\top \mathbf{x}_n \right) \exp \left(\frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n \right) \mathbf{x}_n \mathbf{x}_n^\top \mathbf{S}_t \\ &\quad - \sum_{n \notin \mathcal{S}} \left(\frac{1}{t} \right)^{\mathbf{x}_n^\top \tilde{\boldsymbol{\mu}}} \exp \left(-\tilde{\boldsymbol{\mu}}^\top \mathbf{x}_n - \mathbf{r}_t^\top \mathbf{x}_n \right) \exp \left(\frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n \right) \mathbf{x}_n \mathbf{x}_n^\top \mathbf{S}_t,\end{aligned}\tag{S50}$$

752 where we used that $\mathbf{x}_n^\top \tilde{\boldsymbol{\mu}} = 1$ for $n \in \mathcal{S}$. Also, we know that $\|\mathbf{r}_t\|$ is bounded from the previous
753 part. Hence, let

$$C := \min_{n \in [N]} \min_{t \geq 0} \exp \left(-\tilde{\boldsymbol{\mu}}^\top \mathbf{x}_n - \mathbf{r}_t^\top \mathbf{x}_n \right) > 0.\tag{S51}$$

754 Furthermore, let σ_{\min} be the smallest non-zero eigenvalue of the matrix $\sum_{n \in \mathcal{S}} \mathbf{x}_n \mathbf{x}_n^\top$. Finally, we
755 define

$$\Delta_t := \text{tr}(\mathbf{P}_{\mathcal{S}} \mathbf{S}_t \mathbf{S}_t^\top \mathbf{P}_{\mathcal{S}})$$

756 to be the trace of the projection of the covariance parameter to the space of support vectors in \mathcal{S} . We
757 compute its derivative over time and plug in the dynamics of \mathbf{S}_t :

$$\begin{aligned}\frac{1}{2} \frac{d}{dt} \Delta_t &= \text{tr}(\mathbf{P}_{\mathcal{S}} \dot{\mathbf{S}}_t \mathbf{S}_t^\top \mathbf{P}_{\mathcal{S}}) \\ &= -\frac{1}{t} \sum_{n \in \mathcal{S}} \exp \left(-\tilde{\boldsymbol{\mu}}^\top \mathbf{x}_n - \mathbf{r}_t^\top \mathbf{x}_n \right) \exp \left(\frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n \right) \text{tr}(\mathbf{P}_{\mathcal{S}} \mathbf{x}_n \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{P}_{\mathcal{S}}) \\ &\quad - \sum_{n \notin \mathcal{S}} \left(\frac{1}{t} \right)^{\mathbf{x}_n^\top \tilde{\boldsymbol{\mu}}} \exp \left(-\tilde{\boldsymbol{\mu}}^\top \mathbf{x}_n - \mathbf{r}_t^\top \mathbf{x}_n \right) \exp \left(\frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n \right) \text{tr}(\mathbf{P}_{\mathcal{S}} \mathbf{x}_n \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{P}_{\mathcal{S}}) \\ &= -\frac{1}{t} \sum_{n \in \mathcal{S}} \exp \left(-\tilde{\boldsymbol{\mu}}^\top \mathbf{x}_n - \mathbf{r}_t^\top \mathbf{x}_n \right) \exp \left(\frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n \right) \text{tr}(\mathbf{P}_{\mathcal{S}} \mathbf{x}_n \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{P}_{\mathcal{S}}) + \mathcal{O}\left(\frac{1}{t^\kappa}\right) \\ &\leq -\frac{C}{t} \sum_{n \in \mathcal{S}} \text{tr}(\mathbf{P}_{\mathcal{S}} \mathbf{x}_n \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{P}_{\mathcal{S}}) + \mathcal{O}\left(\frac{1}{t^\kappa}\right) \\ &= -\frac{C}{t} \text{tr}\left(\mathbf{P}_{\mathcal{S}} \left(\sum_{n \in \mathcal{S}} \mathbf{x}_n \mathbf{x}_n^\top \right) \mathbf{S}_t \mathbf{S}_t^\top \mathbf{P}_{\mathcal{S}}\right) + \mathcal{O}\left(\frac{1}{t^\kappa}\right) \\ &\leq -\frac{C \sigma_{\min}}{t} \text{tr}(\mathbf{P}_{\mathcal{S}} \mathbf{S}_t \mathbf{S}_t^\top \mathbf{P}_{\mathcal{S}}) + \mathcal{O}\left(\frac{1}{t^\kappa}\right) \\ &= -\frac{C \sigma_{\min}}{t} \Delta_t + \mathcal{O}\left(\frac{1}{t^\kappa}\right),\end{aligned}\tag{S52}$$

758 where the first inequality follows from Eq. (S51), and the second from the definition of σ_{\min} . By
759 Grönwall's lemma, we have that there exists a constant $K > 0$ such that, for some fixed $t_0 > 0$,

$$\Delta_t \leq \Delta_{t_0} \left(\frac{t}{t_0} \right)^{-2C\sigma_{\min}} + \frac{K}{2C\sigma_{\min} + \kappa - 1} t^{-(\kappa-1)}, \quad \forall t \geq t_0.\tag{S53}$$

760 Finally, since $|\mathcal{S}| C \sigma_{\min} > 0$ and $\kappa > 1$, we conclude that $\Delta_t \rightarrow 0$ as $t \rightarrow \infty$. This implies that the
761 covariance parameter converges to zero in the span of the support vectors, i.e.

$$\forall n \in \mathcal{S} : \lim_{t \rightarrow \infty} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n = 0,\tag{S54}$$

762 as desired. \square

763 **S1.2.3 Complete Proof of Theorem 2**

764 We will now extend the results for the gradient flow to gradient descent and then use these results to
765 characterize the implicit bias of gradient descent as generalized variational inference.

766 Throughout this proof, let

$$A_t = \sum_{n=1}^N \exp \left(-\mu_t^\top x_n + \frac{1}{2} x_n^\top S_t S_t^\top x_n \right) x_n x_n^\top \quad (\text{S55})$$

767 be a positive definite matrix at iteration t . We begin the section with a few lemmata which will be
768 used throughout the proof.

769 **Lemma S2**

770 Suppose that we start gradient descent from (μ_0, S_0) . If $\eta < \lambda_{\max}(A_0)^{-1}$, then for the gradient
771 descent iterates

$$S_{t+1} = S_t - \eta \nabla_S \bar{\ell}(\mu_t, S_t), \quad (\text{S56})$$

772 we have that $\|S_t\|_F \leq \|S_0\|_F$ for all $t \geq 0$.

773 *Proof.* First, note that the gradient descent update for the covariance factor is given by

$$S_{t+1} = S_t(I - \eta A_t), \quad (\text{S57})$$

774 and hence we have that

$$\|S_{t+1}\|_F = \|S_t(I - \eta A_t)\|_F \leq \|S_t\|_F \|(I - \eta A_t)\|_2. \quad (\text{S58})$$

775 Now, since $\eta \leq \lambda_{\max}(A_0)^{-1} \leq \lambda_{\max}(A_t)^{-1}$ for all $t \geq 0$ and noting that $A_t \succeq 0$, we have that

$$\|(I - \eta A_t)\|_2 \leq 1, \quad (\text{S59})$$

776 and therefore

$$\|S_{t+1}\|_F \leq \|S_t\|_F. \quad (\text{S60})$$

777 Finally, we can conclude that $\|S_t\|_F \leq \|S_0\|_F$ for all $t \geq 0$, as required.

778 \square

779 **Lemma S3**

780 Suppose that we start gradient descent from (μ_0, S_0) . If $\eta < \lambda_{\max}(A_0)^{-1}$, then for the gradient
781 descent iterates

$$\mu_{t+1} = \mu_t - \eta \nabla_\mu \bar{\ell}(\mu_t, S_t), \quad (\text{S61})$$

782 we have that $\sum_{u=0}^{\infty} \|\nabla_\mu \bar{\ell}(\mu_u, S_u)\|^2 < \infty$. Consequently, we also have that
783 $\lim_{t \rightarrow \infty} \|\nabla_\mu \bar{\ell}(\mu_t, S_t)\|^2 = 0$.

784 *Proof.* Note that our loss function is not globally smooth in μ . However, if we initialize at (μ_0, S_0) ,
785 the gradient descent iterates with $\eta < \lambda_{\max}(A_0)^{-1}$ maintain bounded local smoothness. The state-
786 ment now follows directly from Lemma 10 in Soudry et al. [4]. \square

787 **Lemma S4**

788 By choosing ϵ_1 as in Eq. (S44), if $\|P_S r_t\| \geq \epsilon_1$, we have that

$$(r_{t+1} - r_t)^\top r_t \leq \mathcal{O}\left(\frac{1}{t^\kappa}\right) + \mathcal{O}\left(\frac{1}{t^2}\right) \|r_t\|. \quad (\text{S62})$$

789 If $\|P_S r_t\| < \epsilon_1$, there exists a constant C such that

$$(r_{t+1} - r_t)^\top r_t \leq C. \quad (\text{S63})$$

790 *Proof.* We follow similar steps as in the gradient flow case. It holds that

$$\begin{aligned}
& (\mathbf{r}_{t+1} - \mathbf{r}_t)^\top \mathbf{r}_t \\
&= (-\eta \nabla_{\boldsymbol{\mu}}(\boldsymbol{\mu}_t, \mathbf{S}_t) - \hat{\boldsymbol{\mu}}(\log(t+1) - \log(t)))^\top \mathbf{r}_t \\
&= \eta \sum_{n=1}^N \exp\left(-\boldsymbol{\mu}_t^\top \mathbf{x}_n + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n\right) \mathbf{x}_n^\top \mathbf{r}_t - \hat{\boldsymbol{\mu}}^\top \mathbf{r}_t \log(1+t^{-1}) \\
&= \hat{\boldsymbol{\mu}}^\top \mathbf{r}_t (t^{-1} - \log(1+t^{-1})) + \eta \sum_{n \notin \mathcal{S}} \exp\left(-\boldsymbol{\mu}_t^\top \mathbf{x}_n + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n\right) \mathbf{x}_n^\top \mathbf{r}_t \\
&\quad + \eta \sum_{n \in \mathcal{S}} \left[-\frac{1}{t} \exp(-\tilde{\boldsymbol{\mu}}^\top \mathbf{x}_n) + \exp\left(-\boldsymbol{\mu}_t^\top \mathbf{x}_n + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n\right) \right] \mathbf{x}_n^\top \mathbf{r}_t,
\end{aligned} \tag{S64}$$

791 where in the last equality we used Equation (S26) to expand $\hat{\boldsymbol{\mu}}^\top \mathbf{r}_t$. Furthermore, we can bound all
792 four terms as follows, beginning with the first term:

$$\hat{\boldsymbol{\mu}}^\top \mathbf{r}_t (t^{-1} - \log(1+t^{-1})) \leq \|\mathbf{r}_t\| \mathcal{O}\left(\frac{1}{t^2}\right), \tag{S65}$$

793 where we used that $\log(1+t^{-1}) = t^{-1} + \mathcal{O}(t^{-2})$. For the second term, using the same argument
794 as in Equation (S42), we derive that

$$\eta \sum_{n \notin \mathcal{S}} \exp\left(-\boldsymbol{\mu}_t^\top \mathbf{x}_n + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n\right) \mathbf{x}_n^\top \mathbf{r}_t \leq \mathcal{O}\left(\frac{1}{t^\kappa}\right). \tag{S66}$$

795 For the third item, from Eq. (S41) and Eq. (S43), we have that $\|\mathbf{P}_{\mathcal{S}} \mathbf{r}_t\| \geq \epsilon_1$ implies that

$$\eta \sum_{n \in \mathcal{S}} \left[-\frac{1}{t} \exp(-\tilde{\boldsymbol{\mu}}^\top \mathbf{x}_n) + \exp\left(-\boldsymbol{\mu}_t^\top \mathbf{x}_n + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n\right) \right] \mathbf{x}_n^\top \mathbf{r}_t \leq 0. \tag{S67}$$

796 The first result follows from combining the above three inequalities.

797 Next, if $\|\mathbf{P}_{\mathcal{S}} \mathbf{r}_t\| < \epsilon_1$, by defining $B := \|\mathbf{S}_0\|_F^2$, following the steps in Eq. (S37), we have that

$$\eta \sum_{n \notin \mathcal{S}} \exp\left(-\boldsymbol{\mu}_t^\top \mathbf{x}_n + \frac{1}{2} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n\right) \mathbf{x}_n^\top \mathbf{r}_t \leq \eta |\mathcal{S}| \left(\exp\left(\frac{B}{2}\right) - 1 \right) \frac{B}{2}, \tag{S68}$$

798 and hence, combining this with Assumption 2 which implies that \mathbf{r}_t is bounded as in Eq. (S47), one
799 can find a constant C such that

$$(\mathbf{r}_{t+1} - \mathbf{r}_t)^\top \mathbf{r}_t \leq C. \tag{S69}$$

800 \square

801 Proof of Theorem 2

802 *Proof.* As in the simple version of the proof, we begin by considering the convergence behavior of
803 the mean parameter $\boldsymbol{\mu}_t$.

804 **Mean parameter** Our goal is again to show that $\|\mathbf{r}_t\|$ is bounded. To that end, we will provide an
805 upper bound to the following equation

$$\|\mathbf{r}_{t+1}\|^2 = \|\mathbf{r}_{t+1} - \mathbf{r}_t\|^2 + 2(\mathbf{r}_{t+1} - \mathbf{r}_t)^\top \mathbf{r}_t + \|\mathbf{r}_t\|^2 \tag{S70}$$

806 First, consider the first term in the above equation:

$$\begin{aligned}
& \|\mathbf{r}_{t+1} - \mathbf{r}_t\|^2 \\
&= \|\boldsymbol{\mu}_{t+1} - \hat{\boldsymbol{\mu}} \log(t+1) - \tilde{\boldsymbol{\mu}} - \boldsymbol{\mu}_t + \hat{\boldsymbol{\mu}} \log(t) + \tilde{\boldsymbol{\mu}}\|^2 \\
&= \|-\eta \nabla_{\boldsymbol{\mu}} \bar{\ell}(\boldsymbol{\mu}_t, \mathbf{S}_t) - \hat{\boldsymbol{\mu}} \log(1+t^{-1})\|^2 \\
&\leq 2 \left[\eta^2 \|\nabla_{\boldsymbol{\mu}} \bar{\ell}(\boldsymbol{\mu}_t, \mathbf{S}_t)\|^2 + \|\hat{\boldsymbol{\mu}}\|^2 \log^2(1+t^{-1}) \right] \\
&\leq 2 \left[\eta^2 \|\nabla_{\boldsymbol{\mu}} \bar{\ell}(\boldsymbol{\mu}_t, \mathbf{S}_t)\|^2 + \|\hat{\boldsymbol{\mu}}\|^2 t^{-2} \right]
\end{aligned} \tag{S71}$$

807 where in the first inequality we used the standard inequality that $(x + y)^2 \leq 2(x^2 + y^2)$, and in the
 808 second inequality we used the fact that $\log(1 + x) \leq x$ for $x \geq 0$. Now, from Lemma S3 and the
 809 fact that t^{-2} is summable, we conclude that there exists $C_1 < \infty$ such that

$$\sum_{t=1}^{\infty} \|\mathbf{r}_{t+1} - \mathbf{r}_t\|^2 \leq C_1 < \infty. \quad (\text{S72})$$

810 Next, for the second term, recall that in Lemma S4 we showed that if $\|\mathbf{P}_{\mathcal{S}}\mathbf{r}_t\| \geq \epsilon_1$, then, for some
 811 constants $C_2, C_3 < \infty$, we have that, eventually

$$(\mathbf{r}_{t+1} - \mathbf{r}_t)^T \mathbf{r}_t \leq C_2 \frac{1}{t^\kappa} + C_3 \frac{1}{t^2} \|\mathbf{r}_t\|, \quad (\text{S73})$$

812 and that if $\|\mathbf{P}_{\mathcal{S}}\mathbf{r}_t\| < \epsilon_1$, then there exists a constant $C_4 < \infty$ such that

$$(\mathbf{r}_{t+1} - \mathbf{r}_t)^T \mathbf{r}_t \leq C_4. \quad (\text{S74})$$

813 We will show that when $\|\mathbf{P}_{\mathcal{S}}\mathbf{r}_t\| < \epsilon_1$, the residual \mathbf{r}_t is contained in a compact set, and when
 814 $\|\mathbf{P}_{\mathcal{S}}\mathbf{r}_t\| \geq \epsilon_1$, the residual \mathbf{r}_t can't escape to infinity. We now formally show this claim.

815 Let S_1 be the first time such that $\|\mathbf{P}_{\mathcal{S}}\mathbf{r}_t\| \geq \epsilon_1$, if such a time does not exist, we are done since the
 816 support vectors span the data and hence $\|\mathbf{r}_t\|$ is bounded. Now, let T_1 be the first time after S_1 such
 817 that $\|\mathbf{P}_{\mathcal{S}}\mathbf{r}_t\| < \epsilon_1$, where we allow $T_1 = \infty$ if such a time does not exist. Continuing in this manner,
 818 we define the sequences $S_1 < T_1 < S_2 < T_2 < \dots$, where we allow $T_i = \infty$ for some i .

819 We proceed by showing that $\|\mathbf{r}_t\|$ is uniformly bounded on each of the intervals $[S_i, T_i)$. To that
 820 end, note that for $t \in [S_i, T_i)$, we have that

$$\|\mathbf{r}_{t+1}\|^2 - \|\mathbf{r}_t\|^2 \leq 2C_2 \frac{1}{t^\kappa} + 2C_3 \frac{1}{t^2} \|\mathbf{r}_t\| + \|\mathbf{r}_{t+1} - \mathbf{r}_t\|^2, \quad (\text{S75})$$

821 and hence, using the fact that $\kappa > 1$, by the discrete version of Grönwall's lemma, that

$$\max_{t \in [S_i, T_i)} (\|\mathbf{r}_t\|^2 - \|\mathbf{r}_{S_i}\|^2) \leq K, \quad (\text{S76})$$

822 for some constant $K < \infty$ independent of i . Furthermore, we also know from Eq. (S74) that

$$\|\mathbf{r}_{S_i}\| \leq \epsilon_1 + 2C_4 + \|\mathbf{r}_{S_i} - \mathbf{r}_{S_i-1}\|^2 \leq \epsilon_1 + 2C_4 + \max_{t \geq 0} \|\mathbf{r}_{t+1} - \mathbf{r}_t\|^2 < \infty, \quad (\text{S77})$$

823 showing that the first jump outside the ϵ_1 -ball is bounded. Combining the two results, we conclude
 824 that $\|\mathbf{r}_t\|$ is uniformly bounded on each of the intervals $[S_i, T_i)$.

825 Finally, by noting that the support vectors span the data, we have that $\|\mathbf{r}_t\|$ is uniformly bounded
 826 on each of the intervals $[T_i, S_{i+1})$. Combining the two results, we conclude that $\|\mathbf{r}_t\|$ is uniformly
 827 bounded for all $t \geq 0$ and hence we have that

$$\lim_{t \rightarrow \infty} \frac{\boldsymbol{\mu}_t}{\|\boldsymbol{\mu}_t\|} = \frac{\hat{\boldsymbol{\mu}}}{\|\hat{\boldsymbol{\mu}}\|} \quad (\text{S78})$$

828 and the following lemma.

829 **Lemma S5**

830 For the mean parameter $\boldsymbol{\mu}_t$, we have that

$$\boldsymbol{\mu}_t = \log(t) \hat{\boldsymbol{\mu}} + \mathcal{O}(1). \quad (\text{S79})$$

831 *Proof.* This follows immediately from the definition of the residual in Equation (S24):

$$\boldsymbol{\mu}_t = \hat{\boldsymbol{\mu}} \log t + \mathbf{r}_t + \tilde{\boldsymbol{\mu}}_t,$$

832 and the fact that \mathbf{r}_t and $\tilde{\boldsymbol{\mu}}_t$ are bounded as we showed above. \square

833 We continue with the analysis of the covariance parameter over optimization iterations.

834 **Covariance parameter** As before, let $\Delta_t = \text{tr}(\mathbf{P}_S \mathbf{S}_t \mathbf{S}_t^\top \mathbf{P}_S)$ be the trace of the projection of the
 835 covariance parameter on the space of support vectors in \mathcal{S} . By following the ideas from the gradient
 836 flow case, we have the following dynamics:

$$\begin{aligned}\Delta_{t+1} &= \text{tr}(\mathbf{P}_S (\mathbf{I} - \eta \mathbf{A}_t) \mathbf{S}_t \mathbf{S}_t^\top (\mathbf{I} - \eta \mathbf{A}_t)^\top \mathbf{P}_S) \\ &= \text{tr}(\mathbf{P}_S \mathbf{S}_t \mathbf{S}_t^\top \mathbf{P}_S) - 2\eta \text{tr}(\mathbf{P}_S \mathbf{S}_t \mathbf{S}_t^\top \mathbf{A}_t \mathbf{P}_S) + \eta^2 \text{tr}(\mathbf{P}_S \mathbf{A}_t \mathbf{S}_t \mathbf{S}_t^\top \mathbf{A}_t \mathbf{P}_S) \\ &\leq \Delta_t - \frac{2\eta}{t} C \sigma_{\min} \text{tr}(\mathbf{P}_S \mathbf{S}_t \mathbf{S}_t^\top \mathbf{P}_S) + \mathcal{O}\left(\frac{1}{t^\kappa}\right) + \mathcal{O}\left(\frac{1}{t^2}\right) \\ &= \Delta_t - \frac{2\eta}{t} C \sigma_{\min} \Delta_t + \mathcal{O}\left(\frac{1}{t^\kappa}\right) + \mathcal{O}\left(\frac{1}{t^2}\right),\end{aligned}\tag{S80}$$

837 where we used the same arguments as in Equation (S52) to derive the last inequality, in addition to
 838 noting that $\lambda_{\max}(\mathbf{A}_t^2) \leq \mathcal{O}\left(\frac{1}{t^2}\right)$ in order to bound the last term. Hence, we can write

$$\Delta_{t+1} - \Delta_t \leq -\frac{2\eta}{t} C \sigma_{\min} \Delta_t + \mathcal{O}\left(\frac{1}{t^\kappa}\right) + \mathcal{O}\left(\frac{1}{t^2}\right).\tag{S81}$$

839 Again, by the discrete version of Grönwall's lemma, we derive the equivalent result to Eq. (S53).
 840 Now, noting that $\sum_t \frac{1}{t}$ diverges, the fact that $\kappa > 1$ and $\eta C \sigma_{\min} > 0$, we conclude that Δ_t converges
 841 to zero. This implies that the covariance parameter converges to zero in the span of the support
 842 vectors, i.e.

$$\forall n \in \mathcal{S} : \lim_{t \rightarrow \infty} \mathbf{x}_n^\top \mathbf{S}_t \mathbf{S}_t^\top \mathbf{x}_n = 0,\tag{S82}$$

843 as desired.

844 **Characterization as Generalized Variational Inference** As a final step we need to show that
 845 the solution identified by gradient descent if appropriately transformed identifies the minimum 2-
 846 Wasserstein solution in the feasible set. Define the feasible set

$$\Theta_* = \{(\boldsymbol{\mu}, \mathbf{S}) \mid \mathbf{P}_S \boldsymbol{\mu} = \hat{\boldsymbol{\mu}} \text{ and } \forall n \in \mathcal{S} : \text{Var}_{q_{\boldsymbol{\theta}}}(f_{\mathbf{w}}(\mathbf{x}_n)) = 0\}\tag{S83}$$

$$= \{(\boldsymbol{\mu}, \mathbf{S}) \mid \mathbf{P}_S \boldsymbol{\mu} = \hat{\boldsymbol{\mu}} \text{ and } \forall n \in \mathcal{S} : \mathbf{x}_n^\top \mathbf{S} \mathbf{S}^\top \mathbf{x}_n = 0\}\tag{S84}$$

847 and the variational parameters identified by rescaled gradient descent as

$$\boldsymbol{\theta}_*^{\text{rGD}} = \lim_{t \rightarrow \infty} \boldsymbol{\theta}_t^{\text{rGD}} = \lim_{t \rightarrow \infty} \left(\frac{1}{\log(t)} \boldsymbol{\mu}_t + \mathbf{P}_{\text{null}(\mathbf{X})} \boldsymbol{\mu}_0, \mathbf{S}_t \right).\tag{S85}$$

848 It holds by Lemma S5 that

$$\mathbf{P}_S \boldsymbol{\mu}_*^{\text{rGD}} = \mathbf{P}_S \left(\lim_{t \rightarrow \infty} \frac{1}{\log(t)} \boldsymbol{\mu}_t \right) + \mathbf{0} = \mathbf{P}_S \hat{\boldsymbol{\mu}} = \hat{\boldsymbol{\mu}}\tag{S86}$$

849 and additionally by Equation (S82) we have for all $n \in \mathcal{S}$ that

$$\mathbf{x}_n^\top \mathbf{S}_*^{\text{rGD}} (\mathbf{S}_*^{\text{rGD}})^\top \mathbf{x}_n = \lim_{t \rightarrow \infty} \mathbf{x}_n^\top \mathbf{S}_t (\mathbf{S}_t)^\top \mathbf{x}_n = 0.\tag{S87}$$

850 Therefore the limit point $\boldsymbol{\theta}_*^{\text{rGD}}$ of rescaled gradient descent is in the feasible set. It remains to show
 851 that it is also a minimizer of the 2-Wasserstein distance to the prior / initialization. We will first
 852 show a more general result that does not require Assumption 2.

853 To that end define $(\mathbf{V}_S \quad \mathbf{V}_{\mathbf{X} \perp \mathcal{S}} \quad \mathbf{V}_{\text{null}(\mathbf{X})}) \in \mathbb{R}^{P \times P}$ where $\mathbf{V}_S \in \mathbb{R}^{P \times P_S}$ is an orthonormal basis
 854 of the span of the support vectors $\text{range}(\mathbf{X}_S^\top)$, $\mathbf{V}_{\mathbf{X} \perp \mathcal{S}} \in \mathbb{R}^{P \times (N-P_S)}$ an orthonormal basis of its
 855 orthogonal complement in $\text{range}(\mathbf{X}^\top)$ and $\mathbf{V}_{\text{null}(\mathbf{X})} \in \mathbb{R}^{P \times (P-N)}$ the corresponding orthonormal
 856 basis of the null space $\text{null}(\mathbf{X})$ of the data. Let $\mathbf{V} = (\mathbf{V}_S \quad \mathbf{V}_{\text{null}(\mathbf{X})}) \in \mathbb{R}^{P \times (P-N+P_S)}$ and define
 857 the projected variational distribution and prior onto the span of the support vectors and the null space
 858 of the data as

$$q_{\boldsymbol{\theta}}^{\text{proj}}(\tilde{\mathbf{w}}) = \mathcal{N}(\tilde{\mathbf{w}}; \mathbf{P}_V \boldsymbol{\mu}, \mathbf{P}_V \boldsymbol{\Sigma} \mathbf{P}_V^\top) = \mathcal{N}(\tilde{\mathbf{w}}; \tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{\Sigma}})\tag{S88}$$

$$p^{\text{proj}}(\tilde{\mathbf{w}}) = \mathcal{N}(\tilde{\mathbf{w}}; \mathbf{P}_V \boldsymbol{\mu}_0, \mathbf{P}_V \boldsymbol{\Sigma}_0 \mathbf{P}_V^\top) = \mathcal{N}(\tilde{\mathbf{w}}; \tilde{\boldsymbol{\mu}}_0, \tilde{\boldsymbol{\Sigma}}_0)\tag{S89}$$

859 where $\tilde{\mathbf{w}} \in \mathbb{R}^{P-N+P_S}$. Now earlier we showed that the limit point of rescaled gradient descent is
860 in the feasible set, defined in Equation (S85), and thus the same holds for the projected limit point
861 of rescaled gradient descent, i.e.

$$(\tilde{\boldsymbol{\mu}}_*^{\text{rGD}}, \tilde{\mathbf{S}}_*^{\text{rGD}}) \in \Theta_*$$
 (S90)

862 in particular

$$\mathbf{P}_S \tilde{\boldsymbol{\mu}}_*^{\text{rGD}} = \mathbf{P}_S \boldsymbol{\mu}_*^{\text{rGD}} = \hat{\boldsymbol{\mu}},$$
 (S91)

$$\forall n \in \mathcal{S} : \mathbf{x}_n^\top \tilde{\mathbf{S}}_*^{\text{rGD}} (\tilde{\mathbf{S}}_*^{\text{rGD}})^\top \mathbf{x}_n = \mathbf{x}_n^\top \mathbf{S}_*^{\text{rGD}} (\mathbf{S}_*^{\text{rGD}})^\top \mathbf{x}_n = 0.$$
 (S92)

863 Therefore we have for all $n \in \mathcal{S}$ that

$$0 = \mathbf{x}_n^\top \tilde{\mathbf{S}}_*^{\text{rGD}} (\tilde{\mathbf{S}}_*^{\text{rGD}})^\top \mathbf{x}_n = \|(\tilde{\mathbf{S}}_*^{\text{rGD}})^\top \mathbf{x}_n\|_2^2 \iff (\tilde{\mathbf{S}}_*^{\text{rGD}})^\top \mathbf{x}_n = \mathbf{0}$$
 (S93)

$$\iff (\tilde{\mathbf{S}}_*^{\text{rGD}})^\top \mathbf{V}_S = \mathbf{0}$$
 (S94)

864 and thus $\mathbf{V}_S^\top \tilde{\mathbf{S}}_*^{\text{rGD}} (\tilde{\mathbf{S}}_*^{\text{rGD}})^\top \mathbf{V}_S = \mathbf{0}$. Therefore by Lemma S1 it holds for the squared 2-Wasserstein
865 distance between the projected limit point of rescaled gradient descent and the projected prior that

$$\begin{aligned} W_2^2(q_{\boldsymbol{\theta}_*}^{\text{proj}}, p^{\text{proj}}) &\stackrel{+c}{=} \|\mathbf{V}_S^\top \tilde{\boldsymbol{\mu}} - \mathbf{V}_S^\top \tilde{\boldsymbol{\mu}}_0\|_2^2 + W_2^2(\mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}} \mathbf{V}_{\text{null}}), \mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}_0, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}}_0 \mathbf{V}_{\text{null}})) \\ &= \left\| \begin{pmatrix} \mathbf{V}_S^\top \tilde{\boldsymbol{\mu}} - \mathbf{V}_S^\top \tilde{\boldsymbol{\mu}}_0 \\ \mathbf{0} \end{pmatrix} \right\|_2^2 + W_2^2(\mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}} \mathbf{V}_{\text{null}}), \mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}_0, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}}_0 \mathbf{V}_{\text{null}})) \\ &= \left\| \mathbf{V} \begin{pmatrix} \mathbf{V}_S^\top \tilde{\boldsymbol{\mu}} - \mathbf{V}_S^\top \tilde{\boldsymbol{\mu}}_0 \\ \mathbf{0} \end{pmatrix} \right\|_2^2 + W_2^2(\mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}} \mathbf{V}_{\text{null}}), \mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}_0, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}}_0 \mathbf{V}_{\text{null}})) \\ &= \|\mathbf{P}_S \tilde{\boldsymbol{\mu}} - \mathbf{P}_S \tilde{\boldsymbol{\mu}}_0\|_2^2 + W_2^2(\mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}} \mathbf{V}_{\text{null}}), \mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}_0, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}}_0 \mathbf{V}_{\text{null}})) \\ &= \|\hat{\boldsymbol{\mu}} - \mathbf{P}_S \tilde{\boldsymbol{\mu}}_0\|_2^2 + W_2^2(\mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}} \mathbf{V}_{\text{null}}), \mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}_0, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}}_0 \mathbf{V}_{\text{null}})) \\ &\stackrel{+c}{=} W_2^2(\mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}} \mathbf{V}_{\text{null}}), \mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}_0, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}}_0 \mathbf{V}_{\text{null}})) \end{aligned}$$

866 where we used that $\mathbf{P}_S \tilde{\boldsymbol{\mu}} = \hat{\boldsymbol{\mu}}$ for any $(\tilde{\boldsymbol{\mu}}, \tilde{\mathbf{S}})$ in the feasible set Θ_* . Therefore it suffices to show
867 that the projected solution $\tilde{\boldsymbol{\theta}}_*^{\text{rGD}}$ minimizes

$$W_2^2(\mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}} \mathbf{V}_{\text{null}}), \mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}_0, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}}_0 \mathbf{V}_{\text{null}})) \geq 0.$$
 (S95)

868 We have using the definition of the iterates in Equation (9) that

$$\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}_*^{\text{rGD}} = \mathbf{V}_{\text{null}}^\top \mathbf{P}_V \left(\lim_{t \rightarrow \infty} \frac{1}{\log(t)} \boldsymbol{\mu}_t + \mathbf{P}_{\text{null}(\mathbf{X})} \boldsymbol{\mu}_0 \right)$$
 (S96)

$$= \mathbf{V}_{\text{null}}^\top (\hat{\boldsymbol{\mu}} + \mathbf{P}_{\text{null}(\mathbf{X})} \boldsymbol{\mu}_0) = \mathbf{V}_{\text{null}}^\top \boldsymbol{\mu}_0$$
 (S97)

869 where we used $\hat{\boldsymbol{\mu}} \in \text{range}(\mathbf{X}_S^\top)$. Further, it holds for the gradient of the expected loss (S23) with
respect to the covariance factor parameters that

$$\begin{aligned} \mathbf{V}_{\text{null}}^\top \tilde{\mathbf{S}}_*^{\text{rGD}} &= \mathbf{V}_{\text{null}}^\top \mathbf{P}_V \mathbf{S}_*^{\text{rGD}} = \mathbf{V}_{\text{null}}^\top \mathbf{S}_*^{\text{rGD}} = \mathbf{V}_{\text{null}}^\top \left(\mathbf{S}_0 - \underbrace{\sum_{t=1}^{\infty} \eta_t \nabla_{\mathbf{S}} \bar{\ell}(\boldsymbol{\mu}_t, \mathbf{S}_t)}_{\in \text{range}(\mathbf{X}^\top)} \right) \\ &= \mathbf{V}_{\text{null}}^\top \mathbf{S}_0 = \mathbf{V}_{\text{null}}^\top \mathbf{P}_V \mathbf{S}_0 = \mathbf{V}_{\text{null}}^\top \tilde{\mathbf{S}}_0. \end{aligned}$$
 (S98)

$$= \mathbf{V}_{\text{null}}^\top \mathbf{S}_0 = \mathbf{V}_{\text{null}}^\top \mathbf{P}_V \mathbf{S}_0 = \mathbf{V}_{\text{null}}^\top \tilde{\mathbf{S}}_0.$$
 (S99)

870 Therefore we have that

$$W_2^2(\mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}_*^{\text{rGD}}, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}}_*^{\text{rGD}} \mathbf{V}_{\text{null}}), \mathcal{N}(\mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\mu}}_0, \mathbf{V}_{\text{null}}^\top \tilde{\boldsymbol{\Sigma}}_0 \mathbf{V}_{\text{null}})) = 0$$
 (S100)

871 and thus the projected variational parameters $\tilde{\boldsymbol{\theta}}_*^{\text{rGD}}$ are both feasible (S90) and minimize the squared
872 2-Wasserstein distance to the projected initialization / prior (S95). This completes the proof for the
873 generalized version of Theorem 2 without Assumption 2, which we state here for convenience.

874 **Lemma S6**

875 *Given the assumptions of Theorem 2, except for Assumption 2 meaning the support vectors \mathbf{X}_S do*
 876 *not necessarily span the data, it holds for the limit point of rescaled gradient descent that*

$$\theta_*^{\text{rGD}} \in \arg \min_{\substack{\theta=(\mu, S) \\ \text{s.t. } \theta \in \Theta_*}} W_2^2(q_\theta^{\text{proj}}, p^{\text{proj}}). \quad (\text{S101})$$

877 If in addition Assumption 2 holds, i.e. the support vectors span the training data \mathbf{X} , such that

$$\text{span}(\{\mathbf{x}_n\}_{n \in [N]}) = \text{span}(\{\mathbf{x}_n\}_{n \in \mathcal{S}}), \quad (\text{S102})$$

878 then the orthogonal complement of the support vectors in $\text{range}(\mathbf{X}^\top)$ has dimension $N - P_S = 0$
 879 and thus the projection $\mathbf{P}_V = \mathbf{I}_{P \times P}$ is the identity and therefore

$$q_\theta^{\text{proj}} = q_\theta \quad \text{and} \quad p^{\text{proj}} = p. \quad (\text{S103})$$

880 This completes the proof of Theorem 2.

881 \square

882 S1.3 NLL Overfitting and the Need for (Temperature) Scaling

883 In Theorem 2, we assume we rescale the mean parameters. This is because the exponential loss can
 884 be made arbitrarily small for a mean vector that is aligned with the L_2 max-margin vector simply
 885 by increasing its magnitude. In fact, the sequence of mean parameters identified by gradient descent
 886 diverges to infinity at a logarithmic rate $\mu_t^{\text{GD}} \approx \log(t)\hat{\mu}$ as we show³ in Lemma S5 and illustrate in
 887 Figure S2 (right panel).

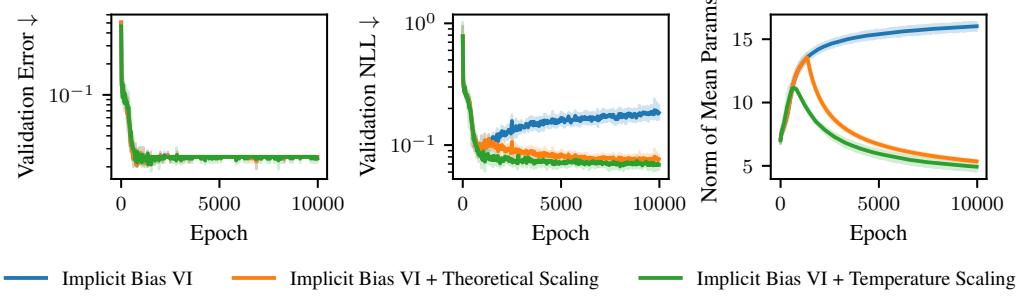


Figure S2: *NLL overfitting in classification due to implicit bias of the mean parameters.* As shown here for a two-hidden layer neural network on synthetic data, when training with vanilla SGD the mean parameters diverge to infinity $\|\mu_t\|_2 \approx \mathcal{O}(\log(t))$ (right) and thus the classifier will eventually overfit in terms of negative log-likelihood (left and middle). Rescaling the GD iterates as in Theorem 2 or using temperature scaling [68] avoids overfitting.

888 This bias of the mean parameters towards the max-margin solution does not impact the train loss or
 889 validation error, but leads to overfitting in terms of validation NLL (see Figure S2) as long as there
 890 is at least one misclassified datapoint \mathbf{x} , since then the (average) validation NLL is given by

$$\begin{aligned} \bar{\ell}(\theta_t^{\text{GD}}) &= \mathbb{E}_{q_{\theta_t^{\text{GD}}}(\mathbf{w})}(\exp(-\mathbf{y}\mathbf{x}^\top \mathbf{w})) = \exp(\mathbf{x}^\top \mu_t^{\text{GD}} + \frac{1}{2}\mathbf{x}^\top \mathbf{S}_t^{\text{GD}}(\mathbf{S}_t^{\text{GD}})^\top \mathbf{x}) \\ &\approx \exp(\log(t)\mathbf{x}^\top \hat{\mu} + \frac{1}{2}\mathbf{x}^\top \mathbf{S}_t^{\text{GD}}(\mathbf{S}_t^{\text{GD}})^\top \mathbf{x}) \rightarrow \infty \quad \text{as } t \rightarrow \infty. \end{aligned} \quad (\text{S104})$$

891 However, by rescaling the mean parameters as we do in Theorem 2, this can be prevented as Fig-
 892 ure S2 (middle panel) illustrates for a two-hidden layer neural network on synthetic data. Such
 893 overfitting in terms of NLL has been studied extensively empirically with the perhaps most com-
 894 mon remedy being Temperature Scaling (TS) [68]. As we show empirically in Figure S2, instead

³This has been observed previously in the deterministic case (see Theorem 3 of Soudry et al. [4]) and thus naturally also appears in our probabilistic extension.

895 of using the theoretical rescaling, using temperature scaling performs very well, especially in the
 896 non-asymptotic regime, which is why we also adopt it for our experiments in Section 5.

897 The aforementioned divergence of the mean parameters to infinity also explains the need for the pro-
 898 jection of the prior mean parameters in Equation (9), since any bias from the initialization vanishes
 899 in the limit of infinite training. At first glance the additional projection seems computationally pro-
 900 hibitive for anything but a zero mean prior, but close inspection of the implicit bias of the covariance
 901 parameters \mathbf{S} in Theorem 2 shows that at convergence

$$\forall n : \text{Var}_{q_\theta}(f_w(\mathbf{x}_n)) = \mathbf{x}_n^\top \mathbf{S} \mathbf{S}^\top \mathbf{x}_n = 0 \implies \text{range}(\mathbf{S}) \subset \text{null}(\mathbf{X}) \quad (\text{S105})$$

902 Meaning we can approximate a basis of the null space of the training data by computing a QR
 903 decomposition of the covariance factor in $\mathcal{O}(PR^2)$ once at the end of training. For $R = P$ the
 904 inclusion becomes an equality and the projection can be computed exactly.

905 S2 Parametrization, Feature Learning and Hyperparameter Transfer

906 The inductive bias of SGD in the variational setting is determined by the initialization and varia-
 907 tional parametrization, and is formalized in Theorem 1. What is not covered, but not unusual in
 908 practice, are layer-specific learning rates. Luckily, these can be absorbed into the weights of the
 909 model and the initialization, resulting in a single global learning rate [Lemma J.1, 67]. We refer
 910 to this set of choices — initialization, (variational) parameters and layer-specific learning rates —
 911 as the *parametrization* of a variational neural network in analogy to how the term is used in deep
 912 learning. While parameterization is well-studied for non-probabilistic deep learning, it has been
 913 identified as one of the “grand challenges of Bayesian computation” [80].

914 The “standard parameterization” (SP) initializes the weights of a neural network randomly from a
 915 distribution with variance $\propto 1/\text{fan_in}$ (e.g., as in Kaiming initialization, the PyTorch default) and
 916 makes no further adjustments to the forward pass or learning rate. In contrast, the maximal update
 917 parametrization (μ P) [66] ensures feature learning even as the width of the network tends to infinity.
 918 Feature learning is at the core of the modern deep learning pipeline, permitting foundation models to
 919 extract features from large datasets that are then fine-tuned. Additionally, under μ P, hyperparameters
 920 like the learning rate, can be tuned on a small model and transferred to a large-scale model [67].

921 Given our interpretation of training via the expected loss as generalized variational inference with
 922 *a prior that is implied by the parametrization*, a natural question is whether we can extend μ P to
 923 the variational setting and thus inherit its inductive bias. In the probabilistic setting, feature learning
 924 now occurs when the *distribution* over hidden units changes from initialization. At any point during
 925 training, the i th hidden unit in layer l is a function of four random variables: the variational mean
 926 and covariance parameters $(\boldsymbol{\mu}, \mathbf{S})$, Gaussian noise \mathbf{z} , and the previous layer hidden units:

$$\mathbf{h}_i^{(l)}(\mathbf{x}) = \mathbf{W}_i \mathbf{h}^{(l-1)}(\mathbf{x}) = (\boldsymbol{\mu}_i + \mathbf{S}_i \mathbf{z}) \mathbf{h}^{(l-1)}(\mathbf{x}). \quad (\text{S106})$$

927 The parameters are random because of the stochasticity in the initialization and/or optimization
 928 procedure, while the noise is randomly drawn during each forward pass. Since the $\mathbf{S}_i \mathbf{z}$ term is a
 929 sum over R terms, where R is the rank of $\mathbf{S} \in \mathbb{R}^{P \times R}$, applying the central limit theorem we propose
 930 scaling this term by $R^{-1/2}$ and then applying μ P to the mean and covariance parameters. In practice,
 931 we implement the scaling via an adjustment to the covariance initialization and learning rate.

932 In this section we discuss the role of parameterization at initialization, feature learning in the last
 933 hidden layer as the width is increased, and how parameterization can enable hyperparameter transfer.

934 **Notation** For this section we need a more detailed neural network notation. Denote an L -hidden
 935 layer, width- D feedforward neural network by $f(\mathbf{x}) \in \mathbb{R}_{\text{out}}^D$, with inputs $\mathbf{x} \in \mathbb{R}^{D_{\text{in}}}$, weights $\mathbf{W}^{(l)}$,
 936 pre-activations $\mathbf{h}^{(l)}(\mathbf{x}) \in \mathbb{R}^{D^{(l)}}$, and post-activations (or “features”) $\mathbf{g}^{(l)}(\mathbf{x}) \in \mathbb{R}^{D^{(l)}}$. That is,
 937 $\mathbf{h}^{(1)}(\mathbf{x}) = \mathbf{W}^{(1)} \mathbf{x}$ and, for $l \in 1, \dots, L-1$,

$$\mathbf{g}^{(l)}(\mathbf{x}) = \phi(\mathbf{h}^{(l)}(\mathbf{x})), \quad \mathbf{h}^{(l+1)}(\mathbf{x}) = \mathbf{W}^{(l+1)} \mathbf{g}^{(l)}(\mathbf{x}),$$

938 and the network output is given by $f(\mathbf{x}) = \mathbf{W}^{(L+1)} \mathbf{g}^{(L)}(\mathbf{x})$, where $\phi(\bullet)$ is an activation function.

939 For convenience, we may abuse notation and write $\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x}$ and $\mathbf{h}^{(L+1)}(\mathbf{x}) = f(\mathbf{x})$. Through-
 940 out we use $\bullet^{(l)}$ to indicate the layer, subscript \bullet_t to indicate the training time (i.e., epoch),

941 $\Delta \bullet_t = \bullet_t - \bullet_0$ to indicate the change since initialization, and $[\bullet]_i$, $[\bullet]_{ij}$ to indicate the compo-
 942 nent within a vector or matrix.

943 **S2.1 Definitions of Stability and Feature Learning**

944 The following definitions extend those of Yang and Hu [66] to the variational setting.

945 **Definition S1** (*bc* scaling)

946 In layer l , the variational parameters are initialized as

$$[\boldsymbol{\mu}_0^{(l)}]_i \sim \mathcal{N}(0, D^{-2b^{(l)}}), \quad [\boldsymbol{S}_0^{(l)}]_{ij} \sim \mathcal{N}(0, D^{-2\tilde{b}^{(l)}})$$

947 and the learning rates for the mean and covariance parameters, respectively, are set to

$$\eta^{(l)} = \eta D^{-c^{(l)}}, \tilde{\eta}^{(l)} = \eta D^{-\tilde{c}^{(l)}}.$$

948 The hyperparameter η represents a global learning rate that can be tuned, as for example in the
 949 hyperparameter transfer experiment from Section S2.4.

950 For the next two definitions, let $m_r(X) = \mathbb{E}_z((X - \mathbb{E}_z(X))^r)$ denote the r th central moment
 951 moment of a random variable X with respect to z , which represents all reparameterization noise in
 952 the random variable X . All Landau notation in Section S2 refers to asymptotic behavior in width D
 953 in probability over reparameterization noise z . We say that a vector sequence $\{\mathbf{v}_D\}_{D=1}^\infty$, where each
 954 $\mathbf{v}_D \in \mathbb{R}^D$, is $\mathcal{O}(D^{-a})$ if the scalar sequence $\{\sqrt{\frac{1}{D}\|\mathbf{v}_D\|^2}\}_{D=1}^\infty = \{\text{RMSE}(\mathbf{v}_D)\}_{D=1}^\infty$ is $\mathcal{O}(D^{-a})$.

955 **Definition S2** (Stability of Moment r)

956 A neural network is *stable in moment r* , if all of the following hold for all \mathbf{x} and $l \in \{1, \dots, L\}$.

957 1. At initialization ($t = 0$):

958 (a) The pre- and post-activations are $\Theta(1)$:

$$m_r(\mathbf{h}_0^{(l)}(\mathbf{x})), m_r(\mathbf{g}_0^{(l)}(\mathbf{x})) = \Theta(1)$$

959 (b) The function is $\mathcal{O}(1)$:

$$m_r(f_0(\mathbf{x})) = \mathcal{O}(1)$$

960 2. At any point during training $t > 0$:

961 (a) The change from initialization in the pre- and post-activations are $\mathcal{O}(1)$:

$$\Delta m_r(\mathbf{h}_t^{(l)}(\mathbf{x})), \Delta m_r(\mathbf{g}_t^{(l)}(\mathbf{x})) = \mathcal{O}(1)$$

962 (b) The function is $\mathcal{O}(1)$:

$$m_r(f_t(\mathbf{x})) = \mathcal{O}(1)$$

963 **Definition S3** (Feature Learning of Moment r)

964 *Feature learning* occurs in moment r in layer l if, for any $t > 0$, the change from initialization is
 965 $\Omega(1)$:

$$\Delta m_r(\mathbf{g}_t^{(l)}(\mathbf{x})) = \Omega(1).$$

966 As we will see later, Figure S5 and Figure S6 investigate feature learning for the first two moments.

967 **S2.2 Initialization Scaling for a Linear Network**

968 In this section we illustrate how the initialization scaling $\{(b^{(l)}, \tilde{b}^{(l)})\}$ can be chosen for stability.
 969 For simplicity, we consider a linear feedforward network of width D evaluated on a single input
 970 $\mathbf{x} \in \mathbb{R}_{\text{in}}^D$. We assume a Gaussian variational family that factorizes across layers. This implies the
 971 hidden units evolve as $\mathbf{h}_t^{(l+1)} = \mathbf{W}_t^{(l+1)} \mathbf{h}_t^{(l)}$ and the weights are linked to the variational parameters
 972 by $\text{vec}(\mathbf{W}_t^{(l)}) = \boldsymbol{\mu}_t^{(l)} + \mathbf{S}_t^{(l)} \mathbf{z}$.

973 Therefore, the mean and variance of the i th component hidden units in layer $l \in \{1, \dots, L+1\}$,
974 where $i \in 1 \dots, D^{(l)}$, are given by

$$\begin{aligned}\mathbb{E}_z([\mathbf{h}_t^{(l)}]_i) &= [\boldsymbol{\mu}_t^{(l)}]_I^\top \mathbb{E}_z(\mathbf{h}_t^{(l-1)}) \\ \text{Var}_z([\mathbf{h}_t^{(l)}]_i) &= [\boldsymbol{\mu}_t^{(l)}]_I^\top \mathbf{C}_t^{(l-1)} [\boldsymbol{\mu}_t^{(l)}]_I + \text{tr}([\mathbf{S}_t^{(l)}]_I^\top \mathbf{A}_t^{(l-1)} [\mathbf{S}_t^{(l)}]_{I,:}),\end{aligned}$$

975 where $I = \{iD^{(l-1)}, \dots, (i+1)D^{(l-1)}\}$ and the second moment of and covariance of layer- l hidden
976 units are denoted by

$$\begin{aligned}\mathbf{A}_t^{(l)} &= \mathbb{E}_z(\mathbf{h}_t^{(l)} \mathbf{h}_t^{(l)\top}) \\ \mathbf{C}_t^{(l)} &= \mathbf{A}_t^{(l)} - \mathbb{E}_z(\mathbf{h}_t^{(l)}) \mathbb{E}_z(\mathbf{h}_t^{(l)})^\top.\end{aligned}$$

977 **Mean** We start with the mean of the hidden units, which conveniently depends only on the mean
978 variational parameters and the previous layer hidden units.

$$\begin{aligned}\mathbb{E}_z([\mathbf{h}_0^{(l)}]_i) &= \sum_{j=1}^{D^{(l-1)}} [\boldsymbol{\mu}_0^{(l)}]_{I_j} \mathbb{E}_z([\mathbf{h}_0^{(l-1)}]_j) \\ &= \mathcal{O}\left(\sqrt{D^{(l-1)}} \cdot D^{-b^{(l)}} \cdot 1\right) \\ &= \begin{cases} \mathcal{O}(D^{-b^{(1)}}) & l = 1 \\ \mathcal{O}(D^{-(b^{(l)} - \frac{1}{2})}) & l \in \{2, \dots, L+1\} \end{cases}.\end{aligned}$$

979 Therefore, we require $b^{(1)} \geq 0$ and $b^{(l)} \geq \frac{1}{2}$ for $l \in \{2, \dots, L+1\}$.

980 **Variance** Next we examine the variance of hidden units. Consider the first term, which represents
981 the contribution of the mean parameters.

$$\begin{aligned}[\boldsymbol{\mu}_0^{(l)}]_I^\top \mathbf{C}_0^{(l-1)} [\boldsymbol{\mu}_0^{(l)}]_I &= \sum_{j=1}^{D^{(l-1)}} [\boldsymbol{\mu}_0^{(l)}]_{I_j}^2 [\mathbf{C}_0^{(l-1)}]_{j,j} + \sum_{j \neq j'}^{D^{(l-1)}} [\boldsymbol{\mu}_0^{(l)}]_{I_j} [\mathbf{C}_0^{(l-1)}]_{j,j'} [\boldsymbol{\mu}_0^{(l)}]_{I_{j'}} \\ &= \mathcal{O}(D^{(l-1)} \cdot D^{-2b^{(l)}} \cdot 1) + \mathcal{O}\left(\sqrt{D^{(l-1)}(D^{(l-1)} - 1)} \cdot D^{-b^{(l)}} \cdot 1 \cdot D^{-b^{(l)}}\right) \\ &= \mathcal{O}(D^{(l-1)} \cdot D^{-2b^{(l)}}) \\ &= \begin{cases} \mathcal{O}(D^{-2b^{(1)}}) & l = 1 \\ \mathcal{O}(D^{-(2b^{(l)} - 1)}) & l \in \{2, \dots, L+1\} \end{cases}.\end{aligned}$$

982 Therefore, we require $b^{(1)} \geq 0$ and $b^{(l)} \geq \frac{1}{2}$ for $l \in \{2, \dots, L+1\}$. Notice these are the same
983 requirements as above for the mean of the hidden units. We summarize the scaling for the mean
984 parameters as

$$b^{(l)} \geq \begin{cases} 0 & l = 1 \\ \frac{1}{2} & l \in \{2, \dots, L+1\} \end{cases} \quad (\text{S107})$$

985 Now consider the second term in the variance of the hidden units. Assume the rank scales with the
986 input and output dimension of a layer as $R^{(l)} = (D^{(l-1)} D^{(l)})^{p^{(l)}}$, where $p^{(l)} \in [0, 1]$.

$$\begin{aligned}\text{tr}([\mathbf{S}_0^{(l)}]_{I,:}^\top \mathbf{A}_0^{(l-1)} [\mathbf{S}_0^{(l)}]_{I,:}) &= \sum_{r=1}^{R^{(l)}} [\mathbf{S}_0^{(l)}]_{I,r}^\top \mathbf{A}_0^{(l-1)} [\mathbf{S}_0^{(l)}]_{I,r} \\ &= \sum_{r=1}^{R^{(l)}} \left(\sum_{j=1}^{D^{(l-1)}} [\mathbf{S}_0^{(l)}]_{I_j,r}^2 [\mathbf{A}_0^{(l-1)}]_{j,j} + \sum_{j \neq j'}^{D^{(l-1)}} [\mathbf{S}_0^{(l)}]_{I_j,r} [\mathbf{A}_0^{(l-1)}]_{j,j'} [\mathbf{S}_0^{(l)}]_{I_{j'},r} \right)\end{aligned}$$

$$\begin{aligned}
&= \mathcal{O}\left(R^{(l)} D^{(l-1)} \cdot D^{-2\tilde{b}^{(l)}} \cdot 1\right) + \mathcal{O}\left(\sqrt{R^{(l)} D^{(l-1)} (D^{(l-1)} - 1)} \cdot D^{-\tilde{b}^{(l)}} \cdot 1 \cdot D^{-\tilde{b}^{(l)}}\right) \\
&= \mathcal{O}\left(R^{(l)} D^{(l-1)} D^{-2\tilde{b}^{(l)}}\right) \\
&= \begin{cases} \mathcal{O}\left(D^{-(2\tilde{b}^{(1)} - p^{(1)})}\right) & l = 1 \\ \mathcal{O}\left(D^{-(2\tilde{b}^{(l)} - 1 - 2p^{(l)})}\right) & l \in \{2, \dots, L\} \\ \mathcal{O}\left(D^{-(2\tilde{b}^{(L+1)} - 1 - p^{(L+1)})}\right) & l = L + 1. \end{cases}
\end{aligned}$$

987 Therefore we require $\tilde{b}^{(0)} \geq \frac{p^{(1)}}{2}$, $\tilde{b}^{(l)} \geq \frac{1}{2} + p^{(l)}$ for $l \in \{2, \dots, L\}$, and $\tilde{b}^{(L+1)} \geq \frac{1}{2} + \frac{p^{(L+1)}}{2}$.
988 Notice we can write these conditions in terms of the mean scaling as

$$\tilde{b}^{(l)} \geq b^{(l)} + \begin{cases} \frac{p^{(l)}}{2} & l = 1 \\ p^{(l)} & l \in \{2, \dots, L\} \\ \frac{p^{(l)}}{2} & l = L + 1. \end{cases} \quad (\text{S108})$$

989 S2.3 Proposed Scaling

990 The previous section derives the necessary conditions for stability at initialization. Recall we pro-
991 pose scaling the contribution of the covariance parameters to the forward pass, i.e. the $\mathbf{S}\mathbf{z}$ term, by
992 $R^{-1/2}$ since each element in the term is a sum over R random variables, where R is the rank of
993 \mathbf{S} . In the more detailed notation of this section, the proposed scaling implies the forward pass in a
994 linear layer is given by

$$[\mathbf{h}_t^{(l)}]_i = [\mathbf{W}_t]_{:,i} \mathbf{h}_t^{(l-1)} = \left([\boldsymbol{\mu}_t^{(l)}]_I + R^{-1/2} [\mathbf{S}_t^{(l)}]_I \mathbf{z}^{(l)}\right) \mathbf{h}_t^{(l-1)}. \quad (\text{S109})$$

995 In practice, rather than scaling $[\mathbf{S}_t^{(l)}]_I \mathbf{z}^{(l)}$ by $R^{-1/2}$ in the forward pass, we apply Lemma J.1 from
996 Yang et al. [67] to instead scale the initialization by $R^{-1/2}$ and, in SGD, the learning rate by R^{-1} .
997 Scaling by the rank allows treating the mean and covariance parameters as if they were weights
998 parameterized by $\mu\mathbf{P}$ in a non-probabilistic network, inheriting any scaling that has already been
999 derived for that architecture.

1000 From Table 3 of Yang et al. [67], we therefore scale the mean parameters as

$$b^{(l)} = \begin{cases} 0 & l = 1 \\ 1/2 & l \in \{2, \dots, L\} \\ 1 & l = L + 1 \end{cases} \quad \text{and} \quad c^{(l)} = \begin{cases} -1 & l = 1 \\ 0 & l \in \{2, \dots, L\} \\ 1 & l = L + 1. \end{cases} \quad (\text{S110})$$

1001 Assuming $R^{(l)} = (D^{(l-1)} D^{(l)})^{p^{(l)}}$ as before, where $p^{(l)} \in [0, 1]$, we scale the covariance
1002 parameters as

$$\tilde{b}^{(l)} = b^{(l)} + \begin{cases} \frac{p^{(l)}}{2} & l = 1 \\ p^{(l)} & l \in \{2, \dots, L\} \\ \frac{p^{(l)}}{2} & l = L + 1 \end{cases} \quad \text{and} \quad \tilde{c}^{(l)} = c^{(l)} + \begin{cases} p^{(l)} & l = 1 \\ 2p^{(l)} & l \in \{2, \dots, L\} \\ p^{(l)} & l = L + 1. \end{cases} \quad (\text{S111})$$

1003 By comparing to Equations S107 and S108, we see the mean and covariance parameters in all but
1004 the output layer are initialized as large as possible while still maintaining stability. The output layer
1005 parameters scale to zero faster, since, as in $\mu\mathbf{P}$ for the weights of non-probabilistic networks, we set
1006 $b^{(L+1)}$ to 1 instead of 1/2.

1007 Note that in Section S2.2 we did not consider input and output dimensions that scaled with the width
1008 D for simplicity. For our experiments, we take the exact $\mu\mathbf{P}$ initialization and learning rate scaling
1009 from Yang et al. [67] — which includes, for example, a $1/\text{fan_in}$ scaling in the input layer — for
1010 the means and then make the rank adjustment for the covariance parameters as described above.

1011 We investigate the proposed scaling in Figures S4 and S5. We train two-hidden-layer ($L = 2$) MLPs
1012 of hidden sizes 8, 16, 32, and 64 on a single observation $(x, y) = (1, 1)$ using a squared error loss.

1013 We use SGD with a learning rate of 0.05. For the variational networks, we assume a multivariate
 1014 Gaussian variational family with a full rank covariance.

1015 Figures S3 and S4 show the RMSE of the change in the hidden units from initialization, $\Delta g_t^{(l)}(x) =$
 1016 $g_t^{(l)}(x) - g_0^{(l)}(x)$, as a function of the hidden size. The RMSE of the hidden units *at* initialization,
 1017 $g_0^{(l)}$ is also shown in **blue**. Each panel corresponds to a layer of the network, so the first two panels
 1018 correspond to features $g_t^{(1)}(x)$ and $g_t^{(2)}(x)$, respectively, while the third panel corresponds to the
 1019 output of the network, $g_t^{(3)}(x) = f_t(x)$. The difference between the figures is the parameterization.
 1020 Figure S3 uses standard parameterization (SP) while Figure S4 uses maximal update parameterization
 1021 (μ P). We observe that (a) the features change more under μ P than SP and (b) training is more stable
 1022 across hidden sizes under μ P than SP, especially for smaller networks.

1023 Figures S5 and S6 show the analogous results for a variational network. The top row shows the
 1024 change in the mean of the hidden units, while the bottom row shows the change in the standard
 1025 deviation. As in the non-probabilistic case, we observe that (a) both the mean and standard deviation
 1026 of the features change more under μ P than SP and (b) training is more stable across hidden sizes
 1027 under μ P than SP, especially for smaller networks.

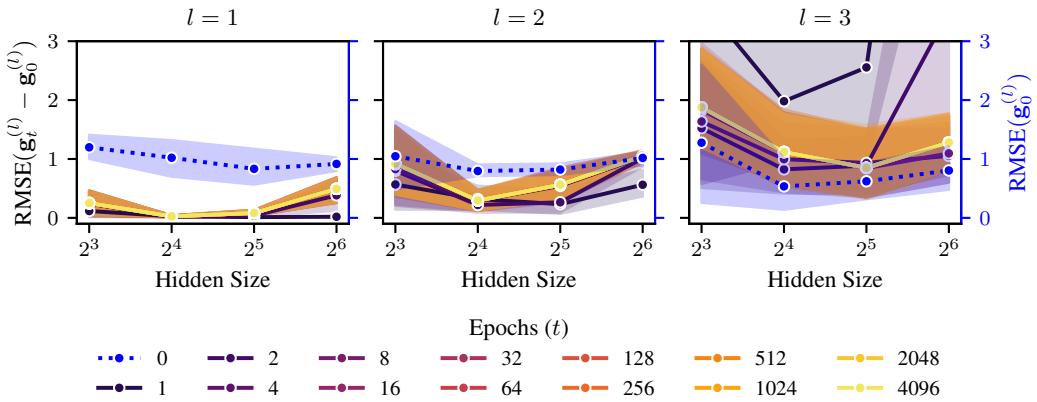


Figure S3: *MLP, Standard Parameterization.* RMSE of the change in the hidden units and, in **blue**, their initial values. Shaded region represents 95% confidence interval over 5 random initializations. The MLP is trained under SP.

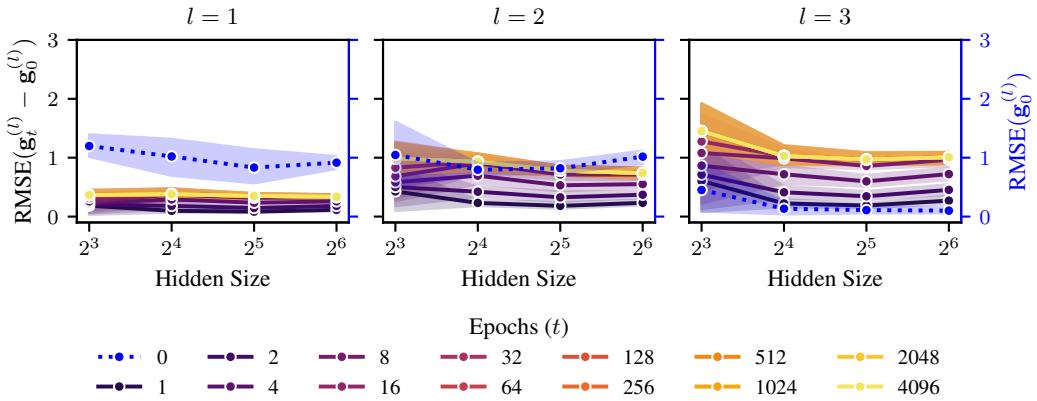


Figure S4: *MLP, Maximal Update Parameterization.* RMSE of the change in the hidden units and, in **blue**, their initial values. Shaded region represents 95% confidence interval over 5 random initializations. The MLP is trained under μ P.

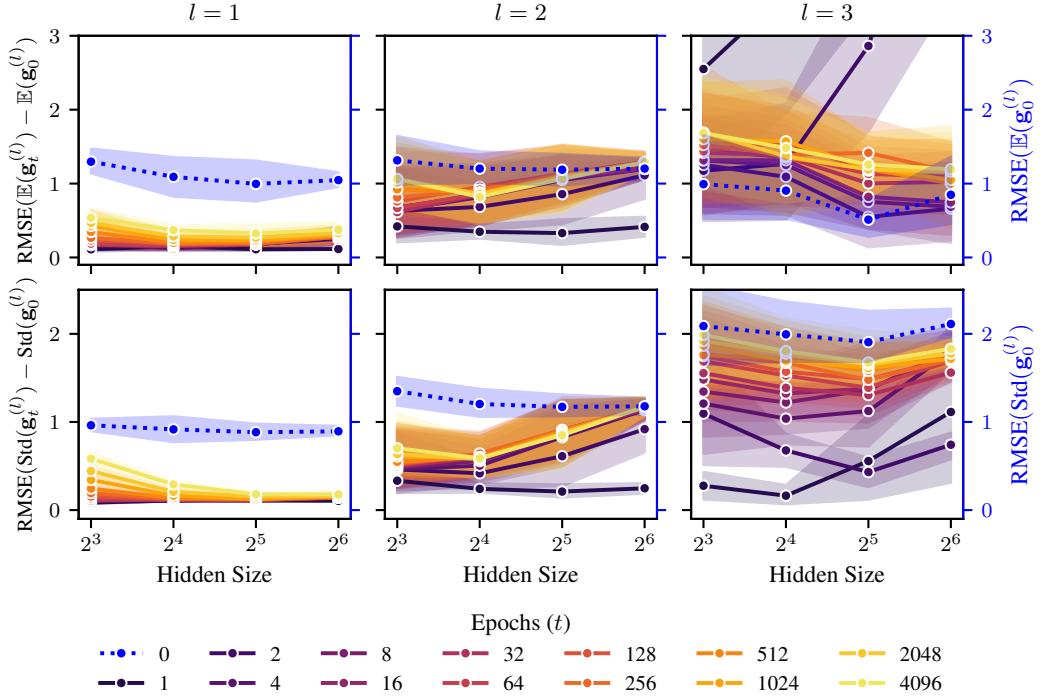


Figure S5: *Variational MLP, Standard Parameterization*. RMSE of the change in the hidden units and, in blue, their initial values. Shaded region represents 95% confidence interval over 5 random initializations. The variational MLP is trained under SP with a full rank covariance in each layer.

1028 S2.4 Hyperparameter Transfer Experiment

1029 Figure S7 demonstrates that our proposed maximal update parametrization enables hyperparameter
 1030 transfer in a probabilistic model. We train two-hidden-layer MLPs on CIFAR10, using a low rank
 1031 covariance in the final two layers. Under standard parametrization (left panel), the learning rate
 1032 that results in the smallest training loss decreases with hidden size. In contrast, under μ P (middle
 1033 panel), it remains the same across hidden sizes. The right panel of Fig. S7 demonstrates the practical
 1034 implications for model selection. For each parametrization and each hidden size D , we select the
 1035 learning rate based on a grid search. In “transferred grid search” we do a grid search using the
 1036 smallest model (hidden size 128) and transfer the best validating learning rate to the hidden size D
 1037 model, whereas in “grid search” we perform the grid search on the hidden size D model. Relative
 1038 to the test accuracy of the best performing model across learning rate and parametrization, we see
 1039 that (a) μ P outperforms SP, though the gap decreases with hidden size, and (b) the transfer strategy
 1040 works well for μ P but poorly for SP once the hidden size exceeds 256.

1041 The μ P parametrization ensures stability and feature learning. Since we interpret the initialization
 1042 as a prior, which we emphasize is fully theoretically justified in the case of a linear model, this
 1043 suggests a new approach to designing priors over neural networks. Instead of eliciting beliefs about
 1044 the relative likelihood of weights or functions, consider how the optimization process evolves the
 1045 initial parameters and whether desirable properties, like feature learning, will be preserved.

1046 **Details on Hyperparameter Transfer Experiment** We train two-hidden-layer MLPs of width
 1047 128, 256, 512, 1024, and 2048 on CIFAR-10. For comparability to Figure 3 in Tensor Programs
 1048 V [67] we use the same hyperparameters but applied to the mean parameters.⁴ For the input layer,
 1049 we scale the mean parameters at initialization by a factor of 16 and in the forward pass by a factor
 1050 of 1/16. For the output layer, we scale the mean parameters by 0.0 at initialization and by 32.0 in

⁴Specifically, we used the hyperparameters as indicated here: [https://github.com/microsoft/mup/
 blob/main/examples/MLP/demo.ipynb](https://github.com/microsoft/mup/blob/main/examples/MLP/demo.ipynb)

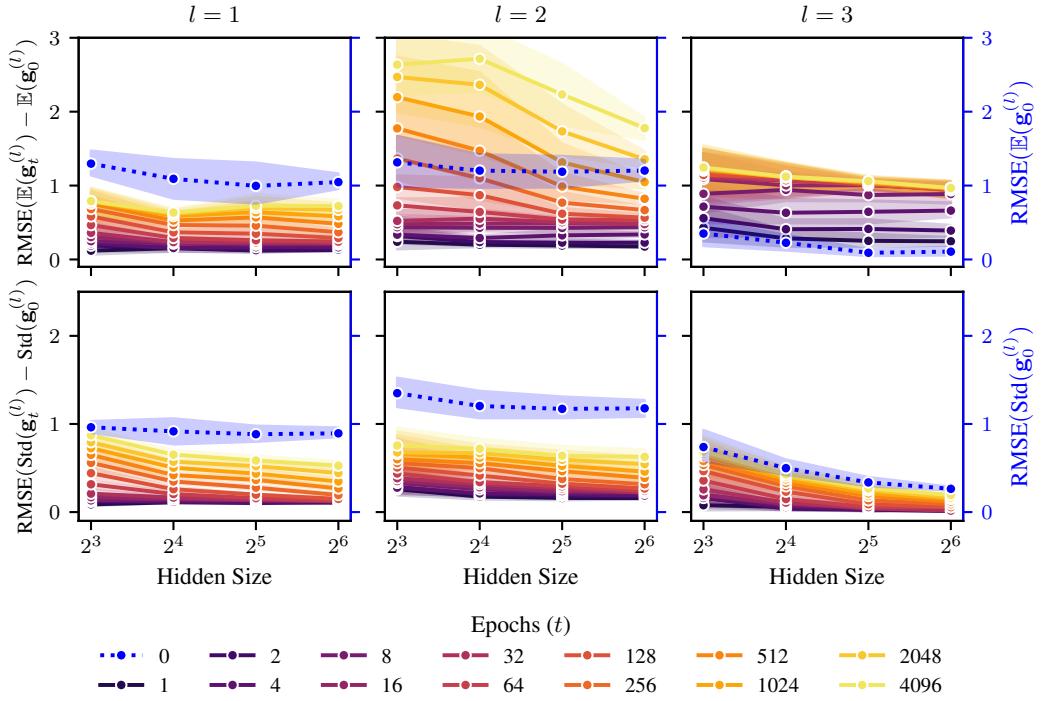


Figure S6: *Variational MLP, Maximal Update Parametrization.* RMSE of the change in the hidden units and, in blue, their initial values. Shaded region represents 95% confidence interval over 5 random initializations. The variational MLP is trained under μP with a full rank covariance in each layer.

1051 the forward pass. We use 20 epochs, batch size 64, and a grid of global learning rates ranging from
 1052 2^{-8} to 2^0 with cosine annealing during training. For the grid search results shown in the right panel
 1053 of Figure S7, we use validation NLL for model selection and then evaluate the relative test error
 1054 compared to the best performing model for that width across parameterizations and learning rates.

1055 S3 Experiments

1056 This section outlines in more detail the experimental setup, including datasets (Section S3.1.1),
 1057 metrics (Section S3.1.2), architectures, the training setup and method details (Section S3.3.1). It also
 1058 contains additional experiments to the ones in the main paper (Sections S3.2, S3.3.2 and S3.3.3).

1059 S3.1 Setup and Details

1060 In all of our experiments we used the following datasets and metrics.

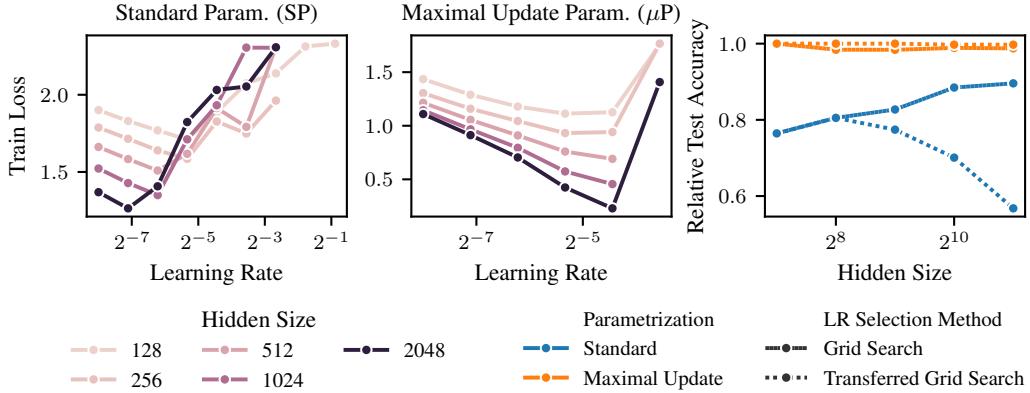


Figure S7: *Hyperparameter Transfer*. When scaling the size of a neural network, one has to re-tune the hyperparameters, such as the learning rate, when using the standard parametrization (SP). The same is true for probabilistic networks as we show here on CIFAR-10 (left). However, when using our proposed extension of the maximal update parametrization (μ P) [67] to probabilistic networks, one can tune the learning rate on a small model and achieve optimal generalization for larger models by “transferring” the optimal learning rate from a smaller model (center and right).

1061 S3.1.1 Datasets

Table S1: *Benchmark datasets used in our experiments*. All corrupted datasets are only intended for evaluation and thus only have test sets consisting of 15 different corruptions of the original test set.

Dataset	N	N_{test}	D_{in}	C	Train / Validation Split
MNIST [70]	60 000	10 000	28×28	10	(0.9, 0.1)
CIFAR-10 [81]	50 000	10 000	$3 \times 32 \times 32$	10	(0.9, 0.1)
CIFAR-100 [81]	50 000	10 000	$3 \times 32 \times 32$	100	(0.9, 0.1)
TinyImageNet [82]	100 000	10 000	$3 \times 64 \times 64$	200	(0.9, 0.1)
MNIST-C [72]	-	150 000	28×28	10	-
CIFAR-10-C [73]	-	150 000	$3 \times 32 \times 32$	10	-
CIFAR-100-C [73]	-	150 000	$3 \times 32 \times 32$	100	-
TinyImageNet-C [73]	-	150 000	$3 \times 64 \times 64$	200	-

1062 S3.1.2 Metrics

1063 **Accuracy** The (top-k) accuracy is defined as

$$\text{Accuracy}_k(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N_{\text{test}}} \sum_{n=1}^{N_{\text{test}}} \mathbb{1}_{(y_n \in \hat{y}_n^{1:k})}. \quad (\text{S112})$$

1064 **Negative Log-Likelihood (NLL)** The (normalized) negative log likelihood for classification is
1065 given by

$$\text{NLL}(\mathbf{y}, \hat{\mathbf{y}}) = -\frac{1}{N_{\text{test}}} \sum_{n=1}^{N_{\text{test}}} \log \hat{p}_{\hat{y}_n}, \quad (\text{S113})$$

1066 where $\hat{p}_{\hat{y}_n}$ is the probability a model assigns to the predicted class \hat{y}_n .

1067 **Expected Calibration Error (ECE)** The expected calibration error measures how well a model
1068 is calibrated, i.e. how closely the predicted class probability matches the accuracy of the model.
1069 Assume the predicted probabilities of the model on the test set are binned into a given binning of the
1070 unit interval. Compute the accuracy a_j and average predicted probability \hat{p}_j of each bin, then the

1071 expected calibration error is given by

$$\text{ECE} = \sum_{j=1}^J b_j |a_j - \hat{p}_j|, \quad (\text{S114})$$

1072 where b_j is the fraction of datapoints in bin $j \in \{1, \dots, J\}$.

1073 S3.2 Time and Memory-Efficient Training

1074 To keep the time and memory overhead low during training, we would like to draw as few samples
 1075 of the parameters as possible to evaluate the training objective $\ell(\theta)$. Drawing M parameter samples
 1076 for the loss increases the time and memory overhead of a forward and backward pass M times
 1077 (disregarding parallelism). Therefore it is paramount for efficiency to use as few parameter samples
 1078 as possible, ideally $M = 1$.

1079 When drawing fewer samples from the variational distribution, the variance in the training loss and
 1080 gradients increases. In practice this means one has to potentially choose a smaller learning rate to
 1081 still achieve good performance. This is analogous to the previously observed linear relationship
 1082 $N_b \propto \eta$ between the optimal batch size N_b and learning rate η [e.g., 28–30]. Figure S8 shows this
 1083 relationship between the number of parameter samples used for training and the learning rate on
 1084 MNIST for a two-hidden layer MLP of width 128.

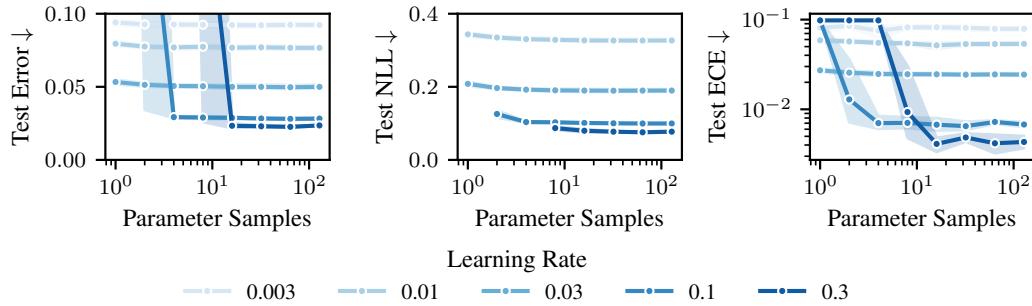


Figure S8: *Generalization versus number of parameter samples*. For a fixed number of epochs and batch size, fewer samples require a smaller learning rate. For a fixed learning rate, generalization performance quickly plateaus with more parameter samples.

1085 As Figure S9 shows, when using momentum, generalization performance tends to increase, but only
 1086 if either the number of samples is increased, or the learning rate is decreased accordingly. A similar
 1087 relationship between noise in the objective and the use of momentum has previously been observed
 1088 by Smith and Le [29], which propose and empirically verify a scaling law for the optimal batch size
 1089 $N_b \propto \frac{\eta}{1-\gamma}$ as a function of the momentum parameter $\gamma > 0$.

1090 S3.3 In- and Out-of-distribution Generalization

1091 This section recounts details of the methods we benchmark in Section 5, how they are trained and
 1092 additional experimental results.

1093 S3.3.1 Architectures, Training, and Methods

1094 **Architectures** We use convolutional architectures for all experiments in Section 5. For MNIST,
 1095 we use a standard LeNet-5 [70] with ReLU activations. For CIFAR-10, CIFAR-100 and TinyImageNet
 1096 we use a ResNet-34 [71] where the first layer is a 2D convolution with `kernel_size=3`,
 1097 `stride=1` and `padding=1` to account for the image resolution of CIFAR and TinyImageNet and
 1098 the normalization layers are GroupNorm layers. We use pretrained weights from ImageNet for all
 1099 but the first and last layer of the ResNets from `torchvision` [83] and fully finetune all parameters
 1100 during training.

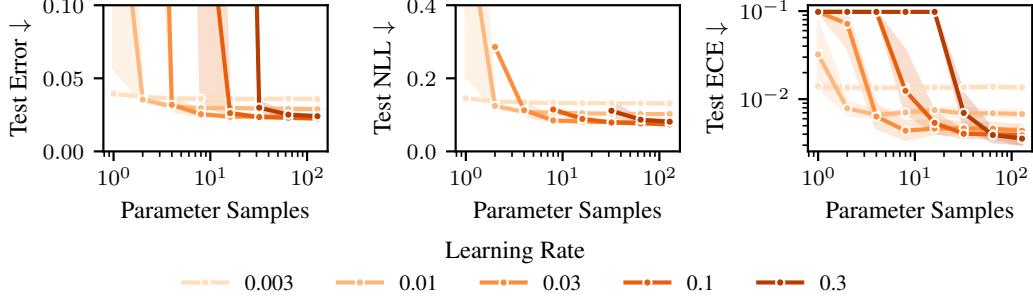


Figure S9: *Generalization versus number of parameter samples when using momentum.* Using momentum improves generalization performance, but when using fewer parameter samples, a smaller learning rate is necessary than for vanilla SGD as predicted by Equation (6).

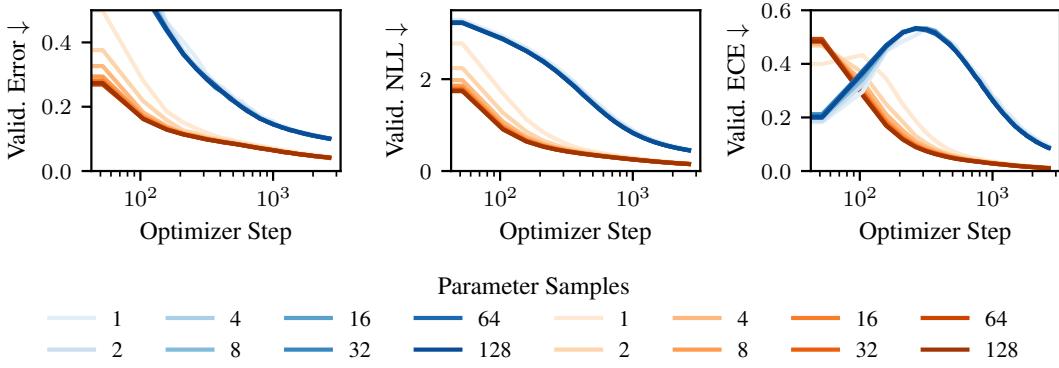


Figure S10: *Validation error during training for different numbers of parameter samples.* The difference in generalization error between different number of parameter samples vanishes with more optimization steps both for SGD (—) and when using momentum (—), if the learning rate is sufficiently small (in this example $\eta = 0.003$).

1101 **Training** We train all models using SGD with momentum ($\gamma = 0.9$) with batch size $N_b = 128$
 1102 and learning rate $\eta = 0.005$ for 200 epochs. We do not use a learning rate scheduler since we found
 1103 that neither cosine annealing nor learning rate warm-up improved the results.

1104 **Temperature Scaling [68]** For temperature scaling we optimize the scalar temperature parameter
 1105 in the last layer on the validation set via the L-BFGS implementation in `torch` with an initial
 1106 learning rate $\eta_{TS} = 0.1$, a maximum number of 100 iterations per optimization step and
 1107 `history_size=100`.

1108 **Laplace Approximation (Last-Layer, GS + ML) [49]** As recommended by Daxberger et al.
 1109 [49] we use a post-hoc KFAC last-layer Laplace approximation with a GGN approximation to the
 1110 Hessian. We tune the hyperparameters post-hoc using type-II maximum likelihood (ML). As an
 1111 alternative we also do a grid search (GS) for the prior scale, which we found to be somewhat more
 1112 robust in our experiments. Finally, we compute the predictive using an (extended) probit approxi-
 1113 mation. Our implementation of the Laplace approximation is a thin wrapper of `laplace` [49] and
 1114 we use its default hyperparameters throughout.

1115 **Weight-space VI (Mean-field) [34, 35]** For variational inference, we used a mean-field variational
 1116 family and trained via an ELBO objective with a weighting of the Kullback-Leibler regularization
 1117 term to the prior. We chose a unit-variance Gaussian prior with mean that was set to the pretrained
 1118 weights, except for the in- and output layer which had zero mean. We found that using a KL weight
 1119 and more than a single sample (here $M = 8$) was necessary to achieve competitive performance.
 1120 The KL weight was chosen to be inversely proportional to the number of parameters of the model, for

1121 which we observed better performance than a KL weight that was independent of the architecture.
 1122 At test time we compute the predictive by averaging logits using 32 samples.

1123 **Implicit Bias VI [ours]** For all architectures in Section 5 we use a Gaussian in- and output layer
 1124 with a low-rank covariance ($R = 10, 20$). We train with a single parameter sample $M = 1$ through-
 1125 out and do temperature scaling at the end of training on the validation set with the same settings as
 1126 when just performing temperature scaling. We do temperature scaling in classification due to the
 1127 specific form of the implicit bias in classification as described in Section S1.3. Since IBVI trains
 1128 by optimizing a minibatch approximation of the expected negative log-likelihood (an average over
 1129 log-probabilities with respect to parameter samples), we also average log-probabilities at test-time
 1130 to compute the predictive distribution over class probabilities. Although we did not see a significant
 1131 difference between averaging log-probabilities, probabilities or logits. Like for WSVI we use 32
 1132 samples at test time.

1133 **SWAG** [69] We used a slightly modified implementation of SWAG based on
 1134 `torch-uncertainty` and the original implementation by Maddox et al. [69]. The begin-
 1135 ning of the averaging cycle set to half the number of total epochs and a cycle length of one, i.e.
 1136 SWAG updates happen every epoch. For all other hyperparameters we use the default settings.

1137 **Deep Ensembles** [52] We use five ensemble members initialized and trained independently. We
 1138 compute the predictive by averaging the predicted probabilities of the ensemble members in line with
 1139 standard practice [52]. We did not see a significant difference in performance between averaging
 1140 logits or averaging class probabilities.

1141 S3.3.2 In-Distribution Generalization and Uncertainty Quantification

1142 The full results from the in-distribution generalization experiment in Section 5 can be found in
 1143 Figure S11. The same experiment but done in the Maximal Update parametrization is depicted in
 1144 Figure S12. When finetuning a pretrained model, we found that on some datasets (CIFAR-100,
 1145 TinyImageNet) μ P resulted in somewhat lower performance, contrary to the results in Section S2,
 1146 where we trained from scratch. This suggests that, when pretraining, there may be a modification to
 1147 the parametrization that could improve generalization.

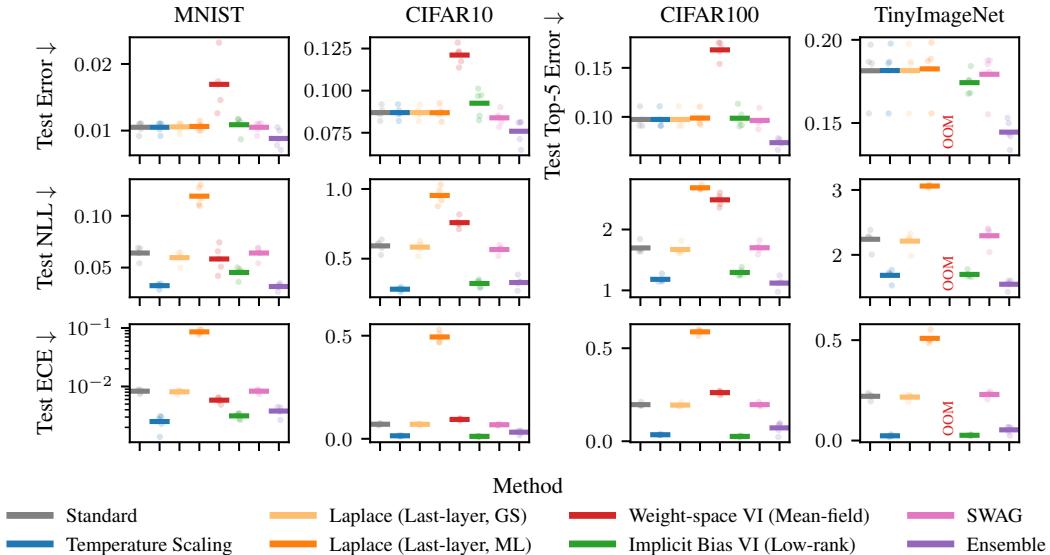


Figure S11: *In-distribution generalization and uncertainty quantification (Standard parametrization).*

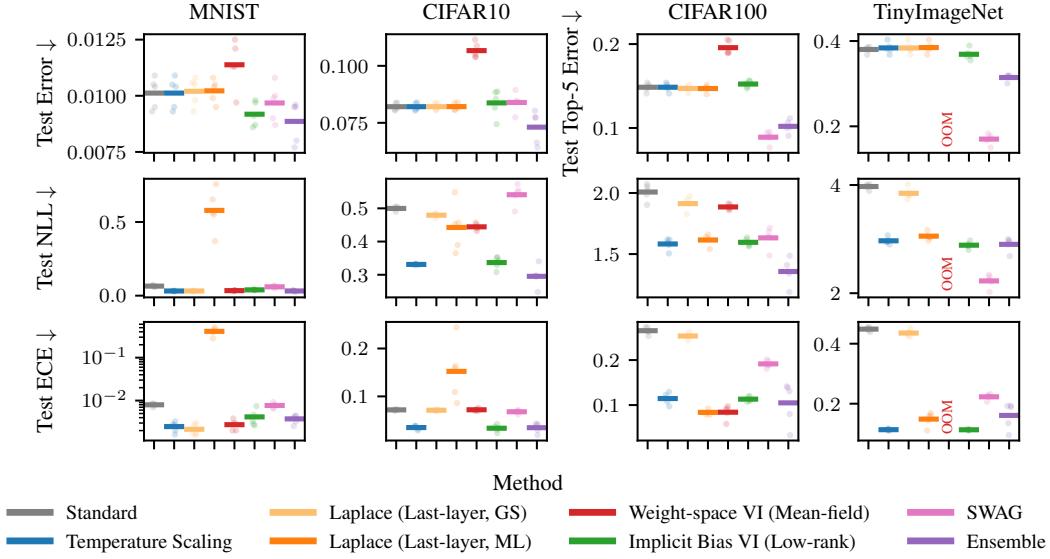


Figure S12: *In-distribution generalization and uncertainty quantification (Maximal Update parametrization).*

1148 S3.3.3 Robustness to Input Corruptions

1149 Besides the benchmark in Figure S12, we also evaluated the models trained using the Maximal
1150 Update parametrization on the corrupted datasets. The results can be found in Figure S13.

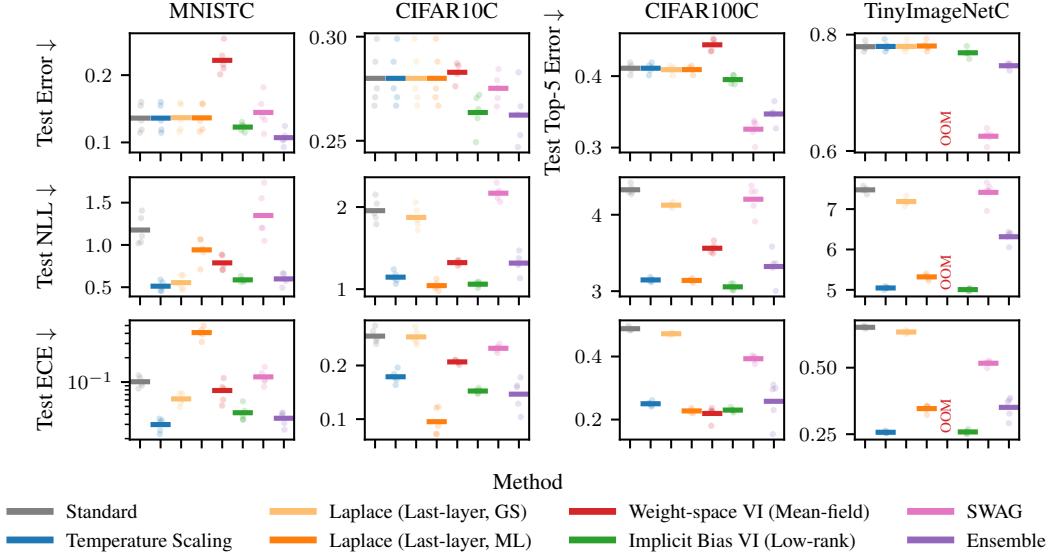


Figure S13: *Generalization on robustness benchmark problems (Maximal Update parametrization).*