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Abstract

Modern deep learning models generalize remarkably well in-distribution, despite1

being overparametrized and trained with little to no explicit regularization. In-2

stead, current theory credits implicit regularization imposed by the choice of3

architecture, hyperparameters and optimization procedure. However, deploying4

deep learning models out-of-distribution, in sequential decision-making tasks, or5

in safety-critical domains, necessitates reliable uncertainty quantification, not just6

a point estimate. The machinery of modern approximate inference — Bayesian7

deep learning — should answer the need for uncertainty quantification, but its ef-8

fectiveness has been challenged by the associated computational burden and by9

difficulties in defining useful explicit inductive biases through priors. Instead, in10

this work we demonstrate, both theoretically and empirically, how to regularize a11

variational deep network implicitly via the optimization procedure, just as for stan-12

dard deep learning. We fully characterize the inductive bias of (stochastic) gradi-13

ent descent in the case of an overparametrized linear model as generalized varia-14

tional inference and demonstrate the importance of the choice of parametrization.15

Finally, we show empirically that our approach achieves strong in- and out-of-16

distribution performance without tuning of additional hyperparameters and with17

minimal time and memory overhead over standard deep learning.18

1 Introduction19

The success of deep learning across many application domains is, on the surface, remarkable, given20

that deep neural networks are usually overparameterized and trained with little to no explicit regular-21

ization. The generalization properties observed in practice have been explained by implicit regular-22

ization instead, resulting from the choice of architecture [1], hyperparameters [2, 3], and optimizer23

[4–10]. Notably, the corresponding inductive biases often require no additional computation, in24

contrast to enforcing a desired inductive bias through explicit regularization.25

In the last two decades, there has been an increasing focus on improving the reliability and robust-26

ness of deep learning models via (approximately) Bayesian approaches [11] to improve performance27

on out-of-distribution data [12], in continual learning [13] and sequential decision-making [14].28

However, despite its promise, in practice, Bayesian deep learning can suffer from issues with prior29

elicitation [15], can be challenging to scale [16], and explicit regularization from the prior combined30

with approximate inference may result in pathological inductive biases and uncertainty [17–20].31

In this work, we demonstrate both theoretically and empirically how to exploit the implicit bias of32

optimization for approximate inference in probabilistic neural networks, thus regularizing training33

implicitly rather than explicitly via the prior. This not only narrows the gap to how standard neural34

networks are trained, but also reduces the computational overhead of training compared to varia-35

tional inference. More specifically, we propose to learn a variational distribution over the weights36
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Figure 1: Variational deep learning via implicit regularization. Neural networks generalize well
without explicit regularization due to implicit regularization from the architecture and optimization.
We can exploit this implicit bias for variational deep learning, removing the computational overhead
of explicit regularization and narrowing the gap to deep learning practice. As illustrated for a two-
hidden layer MLP and proven rigorously for overparametrized linear models in Theorems 1 and 2,
the implicit bias of (S)GD in variational networks (see (a)) can be understood as generalized vari-
ational inference with a 2-Wasserstein regularizer (see (b)). This differs from the standard ELBO
objective with a KL divergence to the prior as used for example in mean-field VI (see (b)).

of a deep neural network by maximizing the expected log-likelihood in analogy to training via max-37

imum likelihood in the standard case. However, in contrast to variational Bayes, there is no explicit38

regularization via a Kullback-Leibler divergence to the prior. Surprisingly, we show theoretically39

and empirically that training this way does not cause uncertainty to collapse away from the training40

data, if initialized and parametrized correctly. More so, for overparametrized linear models we rigor-41

ously characterize the implicit bias of SGD as generalized variational inference with a 2-Wasserstein42

regularizer penalizing deviations from the prior. Figure 1 illustrates our approach on a toy example.43

Contributions In this work, we propose a new approach to uncertainty quantification in deep44

learning that exploits the implicit regularization of (stochastic) gradient descent. We precisely char-45

acterize this implicit bias for regression (Theorem 1) and binary classification (Theorem 2) in over-46

parameterized linear models, generalizing results for non-probabilistic models and drawing a rig-47

orous connection to generalized Bayesian inference. We also demonstrate the importance of the48

parametrization for the inductive bias and its impact on hyperparameter choice. In several bench-49

marks, we demonstrate competitive performance to state-of-the-art baselines for Bayesian deep50

learning, at minimal computational overhead compared to standard neural networks. Finally, we51

provide an open-source implementation of our approach in a standalone library: inferno.52

2 Background53

Given a training dataset (X,y) = {(xn, yn)}Nn=1 of input-output pairs, supervised learning seeks a54

model fw(x) to predict the corresponding output y(x) for a test input x. The parameters w ∈ RP55

of the model are typically trained via empirical risk minimization, i.e.56

w⋆ ∈ argmin
w

ℓR(w) with ℓR(w) = ℓ(y, fw(X)) + λR(w), (1)

where the loss ℓ(y, fw(X)) encourages fitting the training data and the regularizer R(w), given57

some λ > 0, discourages overfitting, which can lead to poor generalization on test data.58

Implicit Bias of Optimization One of the remarkable observations in deep learning is that train-59

ing overparametrized models (P > N ) with gradient descent without explicit regularization can60

nonetheless lead to good generalization [21] because the optimizer, initialization, and parametriza-61

tion implicitly regularize the optimization problem argminw ℓ(y, fw(X)) [e.g. 4, 5, 7, 22, 23].62

Variational Inference Bayesian inference quantifies uncertainty in the parameters, and conse-63

quently predictions, by the posterior distribution p(w | X,y) ∝ p(y | X,w)p(w), which depends64

on the choice of a prior belief p(w) and a likelihood p(y | w). Approximating the posterior with65

qθ ≈ p(w | X,y) by maximizing a lower bound to the log-evidence leads to the following varia-66

tional optimization problem [24]:67

θ⋆ ∈ argmin
θ

ℓR(θ) with ℓR(θ) = Eqθ(w)(− log p(y | w)) + KL(qθ(w) ∥ p(w)) . (2)
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Equation (2) is an instance of the optimization problem in Equation (1) where the optimization is68

over the variational parameters θ of the posterior approximation qθ(w). In the case of a potentially69

misspecified prior or likelihood, the variational formulation (2) can be generalized to arbitrary loss70

functions ℓ and statistical distances D to the prior [25–27], such that71

ℓR(θ) = Eqθ(w)(ℓ(y, fw(X))) + λD(qθ, p). (3)

3 Variational Deep Learning via Implicit Regularization72

Our goal is to learn a variational distribution qθ(w) for the parameters w of a neural network,73

as in a Bayesian neural network. However, in contrast to training with (generalized) variational74

inference, which has an explicit regularization term defined via the prior to avoid overfitting, we will75

demonstrate how to perform variational inference over the weights of a deep neural network purely76

via implicit regularization, removing the need to store and compute quantities involving the prior77

entirely. We will see that this approach inherits the well-established optimization toolkit from deep78

learning seamlessly, while providing uncertainty quantification at minimal overhead.79

3.1 Training via the Expected Loss80

Rather than performing variational inference by explicitly regularizing the variational distribution to81

remain close to the prior, we propose to train by minimizing the expected loss ℓ̄(θ) in analogy to how82

deep neural networks are usually trained. Therefore, the optimal variational parameters are given by83

θ⋆ ∈ argmin
θ

Eqθ(w)(ℓ(y, fw(X)))

:=ℓ̄(θ)

+D(qθ, p). (4)

Practically, this means we do not need to compute the regularization term and its gradient during84

training and we do not need to allocate additional memory for the prior hyperparameters.1 However,85

at first glance modifying the variational objective in Eq. (2) by removing the divergence term seems86

to defeat the purpose of a Bayesian approach entirely. We are completely omitting the prior from the87

training loss. Why should the uncertainty over the weights not collapse? How does this incorporate88

any prior information?89

3.2 Implicit Bias of (S)GD as Generalized Variational Inference90

Unexpectedly, training via the expected loss achieves regularization to the prior solely by initializing91

(stochastic) gradient descent to the prior, as we will prove in Section 4 for an overparametrized92

linear model. Moreover, we can characterize this implicit regularization exactly. (S)GD converges93

to a global minimum θGD
⋆ ∈ argmin ℓ̄(θ) of the training loss, given an appropriate learning rate94

sequence. But among the global minima, if (S)GD is initialized to the parameters of the prior and95

the Gaussian variational family is parametrized appropriately, then the solution identified by (S)GD96

minimizes the 2-Wasserstein distance to the prior, i.e.97

qθGD
⋆

= argmin
qθ

s.t. θ∈argmin ℓ̄(θ)

W2
2(qθ, p) .

This equation shows that the implicit bias of (S)GD is such that it converges to a generalized varia-98

tional posterior, minimizing Eq. (3) for a certain regularization strength, but with a regularizer that99

is not a KL divergence as it would be for standard variational inference, but rather a 2-Wasserstein100

distance to the prior. Given this characterization, we call our method Implicit Bias VI.101

Section 4 provides a detailed version of the regression results introduced here and proves a similar102

result for binary classification. Our experiments in Section 5 focus on the application to deep neural103

networks. Since training via the expected loss can achieve zero loss in overparameterized models,104

we expect our approach to mimic vanilla deep networks closely in-distribution, while falling back105

to the prior out-of-distribution, as enforced by the 2-Wasserstein regularizer.106

1We only need them to initialize the optimizer after which we can free up the memory.
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3.3 Computational Efficiency107

In practice, we minibatch the expected loss both over training data and parameter samples wm drawn108

from the variational distribution qθ(w) such that109

ℓ̄(θ) = Eqθ(w)(ℓ(y, fw(X))) ≈ 1

NbM

Nb∑
n=1

M∑
m=1

ℓ(yn, fwm
(Xn)). (5)

The training cost is primarily determined by two factors. The number of parameter samples M we110

draw for each evaluation of the objective, and the variational family, which determines the number111

of additional parameters of the model and the cost for sampling a set of parameters in each forward112

pass. We wish to keep the overhead compared to a vanilla deep neural network as small as possible.113
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Figure 2: Training with a
single parameter sample given
a small enough learning rate.
Lighter color shades correspond
to smaller learning rates. See
also Section S3.2.

Training With A Single Parameter Sample (M = 1) When114

drawing fewer parameter samples wm the training objective in115

Eq. (5) becomes noisier in the same way a smaller batch size im-116

pacts the loss. This is concerning since the optimization proce-117

dure may not converge given this additional noise. However, one118

can train with a single parameter sample only, simply by reduc-119

ing the learning rate appropriately, as we show experimentally in120

Figure 2 and Section S3.2. Therefore given a set of sampled pa-121

rameters, the cost of a forward and backward pass is identical to122

a standard neural network (up to the overhead of the covariance123

parameters). In analogy to the previously observed relationship124

[e.g., 28–30] between the optimal batch size Nb, learning rate η125

and momentum γ, when optimizing the expected loss we con-126

jecture the following scaling law for the optimal batch size Nb127

and number of parameter samples M :128

NbM ∝ η
1−γ . (6)

Figure 2 illustrates this. When using fewer parameter samples in129

the expected loss, training is unstable unless the learning rate is130

chosen sufficiently small. For a fixed number of optimizer steps131

this decreases performance, but either training for more steps,132

or using momentum closes this gap. As predicted by Eq. (6),133

momentum requires a smaller learning rate than vanilla SGD.134

Variational Family and Covariance Structure We choose a Gaussian variational distribution135

qθ(w) over (a subset of the) weights of the neural network. While at first glance this may seem136

restrictive, there is ample evidence that variational families in deep neural networks do not need to137

be complex to be expressive [31, 32]. In fact, in analogy to deep feedforward NNs with ReLU acti-138

vations being universal approximators [33], one can show that Bayesian neural networks with ReLU139

activations and at least one Gaussian hidden layer are universal conditional distribution approxima-140

tors, meaning they can approximate any continuous conditional distribution arbitrarily well [32]. As141

we show in Section 4, training an overparametrized linear model with SGD via the expected loss142

amounts to generalized variational inference if the covariance is factorized, i.e. Σ = SST where143

S ∈ RP×R is a dense matrix with rank R ≤ P . Note that this (low-rank) parametrization of a144

covariance is non-standard in the sense that the implicit regularization result does not hold in the145

same form for a Cholesky factorization! Motivated by the theoretical observation of the implicit146

bias in Theorem 1, we use Gaussian layers with factorized covariances for all architectures.147

3.4 Related Work148

Variational inference in the context of Bayesian deep learning has seen rapid development in recent149

years [34–39]. Using a Wasserstein regularizer [27] in the context of generalized VI [26] is arguably150

most related to our work, given our theoretical results. Structure in the variational parameters has al-151

ways played an important role for computational reasons [31, 40, 41] and often only a few layers are152

treated probabilistically [32], with some methods only considering the last layer, effectively treat-153

ing the neural network as a feature extractor [42, 43]. The Laplace approximation if applied in the154
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last-layer also falls under this category, which has the advantage that it can be applied post-hoc [13,155

44–51]. Deep ensembles repeat the standard training process using multiple random initializations156

[52, 53] and have been linked to Bayesian methods [54, 55] with certain caveats [56, 57]. While we157

use SGD only to optimize the variational parameters and arguably average over samples by using158

momentum, SGD has also been used widely to directly approximate samples from a target distri-159

bution [54, 58–60]. Our theoretical analysis extends recent developments on the implicit bias of160

overparameterized linear models [4, 5, 7] to the probabilistic setting. For classification, works have161

focused on convergence rates [6], SGD [7], SGD with momentum [8], and the multiclass setting162

[10]. Results on the implicit bias of neural network training [22] often assume large widths [9, 61–163

64] allowing similar arguments as for linear models. The former is exemplified by the neural tangent164

parametrization, under which neural networks behave like kernel methods in the infinite width limit165

[65]. Yang et al. [63, 64, 66, 67] developed an alternative parameterization that still admits feature166

learning in the infinite width limit, which we extended to the case of variational networks.167

4 Theoretical Analysis168

Consider an overparameterized linear model with a Gaussian prior, which is trained via maximum169

expected log-likelihood using (stochastic) gradient descent. We will show that, in both regression170

(Theorem 1) and binary classification (Theorem 2), our approach can be understood as generalized171

variational inference with a 2-Wasserstein regularizer, which penalizes deviation from the prior.172

These theoretical results directly recover analogous results for non-probabilistic models [4, 5].173

4.1 Linear Regression174

Theorem 1 (Implicit Bias in Regression)175

Let fw(x) = xTw be an overparametrized linear model with P > N . Define a Gaussian prior176

p(w) = N
(
w;µ0,S0S

T
0

)
and likelihood p(y | w) = N

(
y; fw(X), σ2I

)
and assume a varia-177

tional family qθ(w) = N
(
w;µ,SST

)
with θ = (µ,S) such that µ ∈ RP and S ∈ RP×R where178

R ≤ P . If the learning rate sequence (ηt)t is chosen such that the limit point θGD
⋆ = limt→∞ θGD

t179

identified by gradient descent, initialized at θ0 = (µ0,S0), is a (global) minimizer of the expected180

log-likelihood ℓ̄(θ), then181

θGD
⋆ ∈ argmin

θ=(µ,S)
s.t. θ∈argmin ℓ̄(θ)

W2
2(qθ, p) . (7)

Further, this also holds in the case of stochastic gradient descent and when using momentum.182

Proof. See Section S1.1.1.183

Theorem 1 states that, among those variational parameters which minimize the expected loss, SGD184

(with momentum) converges to the unique variational distribution which is closest in 2-Wasserstein185

distance to the prior. This characterization of the implicit regularization of SGD as generalized varia-186

tional inference differs from a standard ELBO objective (2) in VI via the choice of regularizer. Since187

the variational parameters minimize the expected loss in Equation (7), all samples from the predic-188

tive distribution interpolate the training data (see Figure 1(b), right panel), the same way a standard189

neural network would. In contrast, when training with a KL regularizer, the uncertainty does not190

collapse at the training data (see Figure 1(b), left panel), in fact a KL regularizer would diverge to191

infinity for a Gaussian with vanishing variance. Now, for test points that are increasingly out-of-192

distribution, i.e. less aligned with the span of the training data, the variational predictive matches the193

prior predictive more closely. Next, we will prove a similar result for binary classification.194

4.2 Binary Classification of Linearly Separable Data195

Consider a binary classification problem with labels yn ∈ {−1, 1}, a linear model fw(x) = xTw196

and a variational distribution qθ(w) with variational parameters θ. The expected empirical loss197

is ℓ̄(θ) =
∑N

n=1 Eqθ(w)

(
ℓ(ynx

T
nw)

)
. We assume without loss of generality that all labels are198

positive,2 such that yn = 1, and that the dataset is linearly separable.199

2This is not a restriction since we can always absorb the sign into the inputs, such that x′
n := ynxn.
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Assumption 1 The dataset is linearly separable: ∃w ∈ RP such that ∀n : wTxn > 0.200

Define µ̂ to be the L2 max margin vector, i.e. the solution to the hard margin SVM:201

µ̂ = argmin
µ∈RP

∥µ∥22 s.t. µTxn ≥ 1, (8)

and the set of support vectors S = argminn∈[N ] x
T
nµ̂ indexing those data points that lie on the202

margin. We adapt the following additional assumption from Nacson, Srebro, and Soudry [7], which203

can be omitted at expense of simplicity as we show in Section S1.2.204

Assumption 2 The SVM support vectors span the dataset: span({xn}n∈[N ]) = span({xn}n∈S).205

We can now characterize the implicit bias in the case of binary classification.206

Theorem 2 (Implicit Bias in Binary Classification)207

Let fw(x) = xTw be an (overparametrized) linear model and define a Gaussian prior p(w) =208

N
(
w;µ0,S0S

T
0

)
. Assume a variational distribution qθ(w) = N

(
w;µ,SST

)
over the weights209

w ∈ RP with variational parameters θ = (µ,S) such that S ∈ RP×R and R ≤ P . Assume we210

are using the exponential loss ℓ(u) = exp(−u) and optimize the expected empirical loss ℓ̄(θ) via211

gradient descent initialized at the prior, i.e. θ0 = (µ0,S0), with a sufficiently small learning rate η.212

Then for almost any dataset which is linearly separable (Assumption 1) and for which the support213

vectors span the data (Assumption 2), the rescaled gradient descent iterates (rGD)214

θrGD
t = (µrGD

t ,SrGD
t ) =

(
1

log(t)µ
GD
t + Pnull(X)µ0,S

GD
t

)
(9)

converge to a limit point θrGD
⋆ = limt→∞ θrGD

t for which it holds that215

θrGD
⋆ ∈ argmin

θ=(µ,S)
s.t. θ∈Θ⋆

W2
2(qθ, p) . (10)

where the feasible set Θ⋆ = {(µ,S) | Prange(XT)µ = µ̂ and ∀n : Varqθ (fw(xn)) = 0} consists216

of mean parameters which, if projected onto the training data, are equivalent to the L2 max margin217

vector and covariance parameters such that there is no uncertainty at training data.218

Proof. See Section S1.2.219

Theorem 2 states that the mean parameters µt converge to the L2 max-margin vector µ̂ in the span220

of the training data, i.e. the data manifold, and there uncertainty collapses to zero. This is analogous221

to the regression case, where zero training loss enforces interpolation of the training data. In the222

null space of the training data, i.e. off of the data manifold, the model falls back on the prior as223

enforced by the 2-Wasserstein distance. The assumption of an exponential loss is standard in the224

literature and we expect this to extend to (binary) cross-entropy in the same way it does in results225

for standard neural networks [4, 6–8, 10]. Similarly, we conjecture that Theorem 2 can be extended226

to SGD with momentum [cf. 7, 8]. While Theorem 2 is similar to Theorem 1, there are some subtle227

differences. First, the feasible set for the minimization problem in Equation (10) is not the set of228

minima of the expected loss. This is because the exponential function does not have an optimum229

in contrast to a quadratic function. However, the sequence of variational parameters identified by230

gradient descent still satisfies limt→∞ ℓ̄(θt) = 0. Second, without transformation of the mean231

parameters, the exponential loss results in the mean parameters being unbounded. This necessitates232

the transformation in Equation (9) as we explain in detail in Section S1.3.233

5 Experiments234

We benchmark the generalization and robustness of our approach, Implicit Bias VI (IBVI), against235

standard neural networks and several baselines for uncertainty quantification, namely Temperature236

Scaling (TS) [68], Laplace approximation (LA-GS) & (LA-ML) [44, 45, 49], Weight-Space VI237

(WSVI) [34, 35], SWA-Gaussian (SWAG) [69] and Deep Ensembles (DE) [52], on a set of standard238

benchmark datasets for image classification and robustness to input corruptions. We use a convo-239

lutional architecture (either LeNet5 [70] or ResNet34 [71]) throughout, which, for all datasets but240

MNIST, is initialized with pretrained weights in all layers except for the input and output layer.241
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Figure 3: In-distribution generalization and uncertainty quantification. Implicit Bias VI (IBVI) has
similar test error to other Bayesian deep learning approaches and achieves competitive uncertainty
quantification on in-distribution data. While ensembles have improved accuracy, they come at an
additional memory overhead. Training a probabilistic model via IBVI has only a minor computa-
tional overhead during training, both in time and memory, over standard deep learning.

All models were trained with SGD with momentum γ = 0.9 and a batch size of Nb = 128 for242

200 epochs in single precision on an NVIDIA GH200 GPU. Results shown are averaged across five243

random seeds. A detailed description of the datasets, metrics, models and training can be found in244

Section S3. An implementation of our method is contained in the supplementary material and will245

be open-sourced upon publication.246

In-Distribution Generalization and Uncertainty Quantification In order to assess the in-247

distribution generalization, we measure the test error, negative log-likelihood (NLL) and calibra-248

tion error (ECE) on MNIST, CIFAR10, CIFAR100 and TinyImageNet. As Figure 3 shows for CI-249

FAR100, and Figure S11 for all datasets, the test error for post-hoc methods (TS, LA-GS, LA-ML)250

is unchanged. As expected, SWAG and IBVI perform similarly with only Ensembles providing an251

increase in accuracy, but at substantial memory overhead compared to most other approaches. In-252

distribution uncertainty quantification measured in terms of NLL is improved substantially by TS,253

DE and IBVI with only LA and WSVI showing occasional worsening of NLL compared to the base254

model. The full results in Figure S11 show that TS, DE and IBVI consistently are also the best cali-255

brated. As described in Section 3.3, for IBVI we train with a single sample only and a probabilistic256

input and output layer with low-rank covariance, reducing the computational overhead compared257

to a standard neural network to as little as ≈ 10% both in time and memory (see Figure 3). See258

Section S3.3.2 for the full experimental results including different parametrizations (SP vs µP).259

Robustness to Input Corruptions We evaluate the robustness of the different models on260

MNISTC [72], CIFAR10C, CIFAR100C and TinyImageNetC [73]. These are corrupted versions261

of the original datasets, where the images are modified via a set of 15 corruptions, such as impulse262

noise, blur, pixelation etc. We selected the maximum severity for each corruption and averaged263

the performance across all. As expected, the performance of all models drops compared to the in-264

distribution performance measured on the standard test sets as Figure 4 shows. Besides DE which265

consistently show lower test error, also IBVI shows improved accuracy on corrupted data compared266

to all other approaches. When using the maximal update parametrization, SWAG shows good ac-267

curacy on the two larger datasets (see Figure S13). TS, DE and IBVI perform consistently well in268

terms of uncertainty quantification (both for NLL and ECE) across all datasets, with LA-ML being269

somewhat competitive in terms of NLL. However, compared to the in-distribution setting IBVI has270

better uncertainty quantification than the Ensembles across all datasets.271

Limitations Compared to standard neural networks, when training via Implicit Bias VI, we ob-272

served that often lower learning rates were necessary due to the additional stochasticity in the ob-273

jective (see also Section 3.3). While this does not have a significant impact on generalization, the274

models sometimes require slightly more epochs to achieve similar in-distribution performance to275

standard neural networks. Effectively, in the beginning of training it takes a bit more time for IBVI276

to become sufficiently certain about those features which are critical for in-distribution performance.277

This also means that folk knowledge on learning rate settings for specific architectures may not im-278

mediately transfer. In the experiments we train models with probabilistic in- and output layers with279
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Figure 4: Generalization on robustness benchmark problems. When comparing different methods
for Bayesian deep learning with regards to robustness to 15 different input corruptions, our approach,
Implicit Bias VI, consistently has competitive uncertainty quantification across different datasets and
metrics without sacrificing accuracy compared to a non-probabilistic network.

our approach, but we have so far not explored other covariance structures or where in the network280

probabilistic layers are most beneficial. While there is some theoretical evidence this may be suf-281

ficient [32], we believe there is potential for improvement. Beyond the prior induced by a choice282

of parametrization, we did not experiment with more informative or learned priors, which could283

potentially give significant performance improvements on certain tasks [15].284

6 Conclusion285

In this paper, we demonstrated how to exploit the implicit regularization of (stochastic) gradient286

descent for variational deep learning, as opposed to relying on explicit regularization. We rigorously287

characterized this implicit bias for an overparametrized linear model and showed that our approach is288

equivalent to generalized variational inference with a 2-Wasserstein regularizer at reduced computa-289

tional cost. thus conferring desirable properties such as learning rate transfer. Lastly, we empirically290

demonstrated competitive performance with state-of-the-art methods for Bayesian deep learning on291

a set of in- and out-of-distribution benchmarks with minimal computational overhead over standard292

deep learning. In principle, our approach is not restricted to Gaussian variational families and should293

seemlessly extend to location-scale families, which could further improve performance. Finally, it294

would be interesting to explore connections between Implicit Bias VI and Bayesian deep learning295

in function-space [e.g., 27, 51, 74–76].296
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Supplementary Material564

This supplementary material contains additional results and proofs for all theoretical statements.565

References referring to sections, equations or theorem-type environments within this document are566
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S1 Theoretical Results591

Lemma S1592

Let q(w) = N (w;µ,Σ), p(w) = N (w;µ0,Σ0) such that µ,µ0 ∈ RP , Σ,Σ0 ∈ RP×P posi-593

tive semi-definite and let VA ∈ RP×N , VB ∈ RP×(P−N) be matrices with pairwise orthonormal594

columns that together define an orthonormal basis of RP , i.e. for V = [VA VB ] it holds that595

V V T = V TV = I and span(V ) = RP . Assume further that596

V T
AΣVA = 0, (S11)

then the squared 2-Wasserstein distance is given by597

W2
2(q, p) =

∥∥V T
Aµ− V T

Aµ0

∥∥2
2
+W2

2

(
N
(
V T
Bµ,V T

BΣVB

)
,N
(
V T
Bµ0,V

T
BΣ0VB

))
+ C, (S12)

where the constant C is independent of (µ,Σ).598

Proof. Consider the matrix599

V TΣV =

[
0N×N V T

AΣVB

V T
BΣVA V T

BΣVB

]
.

Since V TΣV is symmetric positive semi-definite, its off-diagonal block V T
AΣVB satisfies600

(I − 00†)V T
AΣVB = 0 ⇐⇒ V T

AΣVB = 0

by Boyd and Vandenberghe [A5.5, 77]. Therefore, we have601

V TΣV =

[
0N×N V T

AΣVB

V T
BΣVA V T

BΣVB

]
=

[
0N×N 0N×(P−N)

0(P−N)×N V T
BΣVB

]
. (S13)
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The squared 2-Wasserstein distance between q(w) and p(w) is given by602

W2
2(q, p) = ∥µ− µ0∥22 + tr(Σ− 2(Σ

1
2Σ0Σ

1
2 )

1
2 +Σ0).

For the squared norm term it holds by unitary invariance of ∥·∥2 that603

∥µ− µ0∥22 = ∥V T(µ− µ0)∥22 =

∥∥∥∥[V T
A (µ− µ0)

V T
B (µ− µ0)

]∥∥∥∥2
2

=
∥∥V T

Aµ− V T
Aµ0

∥∥2
2
+
∥∥V T

Bµ− V T
Bµ0

∥∥2
2
.

Now for the trace term we have that604

tr(V V T(Σ− 2(Σ
1
2Σ0Σ

1
2 )

1
2 +Σ0))

= tr(V TΣV )− 2 tr(V T(Σ
1
2Σ0Σ

1
2 )

1
2V ) + tr(V TΣ0V )

= tr(V T
AΣVA) + tr(V T

BΣVB) + tr(V T
AΣ0VA) + tr(V T

BΣ0VB)− 2 tr(V T(Σ
1
2Σ0Σ

1
2 )

1
2V )

+c
= tr(V T

BΣVB) + tr(V T
BΣ0VB)− 2 tr(V T(Σ

1
2Σ0Σ

1
2 )

1
2V )

(S14)
where we used Eq. (S11) and +c

= denotes equality up to constants independent of (µ,Σ).605

Now by Eq. (S13), we have that Σ = VBMV T
B for M = V T

BΣVB and its unique principal square606

root is given by Σ
1
2 = VBM

1
2V T

B since607

(VBM
1
2V T

B )(VBM
1
2V T

B ) = VBM
1
2 I(P−N)×(P−N)M

1
2V T

B = Σ.

It also holds that the unique principal square root608

(Σ
1
2Σ0Σ

1
2 )

1
2 = VB(M

1
2V T

BΣ0VBM
1
2 )

1
2V T

B

since direct calculation gives609

(VB(M
1
2V T

BΣ0VBM
1
2 )

1
2V T

B )(VB(M
1
2V T

BΣ0VBM
1
2 )

1
2V T

B )

= VBM
1
2V T

BΣ0VBM
1
2V T

B = Σ
1
2Σ0Σ

1
2 .

Therefore we have that610

tr(V T(Σ
1
2Σ0Σ

1
2 )

1
2V ) = tr(V TVB(M

1
2V T

BΣ0VBM
1
2 )

1
2V T

B V ) = tr((M
1
2V T

BΣ0VBM
1
2 )

1
2 ).

Putting it all together we obtain611

W2
2(q, p)

+c
=
∥∥V T

Aµ− V T
Aµ0

∥∥2
2
+
∥∥V T

Bµ− V T
Bµ0

∥∥2
2
+ tr(V T

BΣVB) + tr(V T
BΣ0VB)− 2 tr(V T(Σ

1
2Σ0Σ

1
2 )

1
2V )

=
∥∥V T

Aµ− V T
Aµ0

∥∥2
2
+
∥∥V T

Bµ− V T
Bµ0

∥∥2
2
+ tr(V T

BΣVB) + tr(V T
BΣ0VB)− 2 tr((M

1
2V T

BΣ0VBM
1
2 )

1
2 )

=
∥∥V T

Aµ− V T
Aµ0

∥∥2
2
+W2

2

(
N
(
V T
Bµ,V T

BΣVB

)
,N
(
V T
Bµ0,V

T
BΣ0VB

))
which completes the proof.612

S1.1 Overparametrized Linear Regression613

S1.1.1 Characterization of Implicit Bias (Proof of Theorem 1)614

Theorem 1 (Implicit Bias in Regression)615

Let fw(x) = xTw be an overparametrized linear model with P > N . Define a Gaussian prior616

p(w) = N
(
w;µ0,S0S

T
0

)
and likelihood p(y | w) = N

(
y; fw(X), σ2I

)
and assume a varia-617

tional family qθ(w) = N
(
w;µ,SST

)
with θ = (µ,S) such that µ ∈ RP and S ∈ RP×R where618

R ≤ P . If the learning rate sequence (ηt)t is chosen such that the limit point θGD
⋆ = limt→∞ θGD

t619

identified by gradient descent, initialized at θ0 = (µ0,S0), is a (global) minimizer of the expected620

log-likelihood ℓ̄(θ), then621

θGD
⋆ ∈ argmin

θ=(µ,S)
s.t. θ∈argmin ℓ̄(θ)

W2
2(qθ, p) . (7)

Further, this also holds in the case of stochastic gradient descent and when using momentum.622
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Figure S1: Implicit regularization in standard neural networks versus in probabilistic networks. Left
panels: A neural network trained without explicit regularization can converge to different global
minima of the loss. Optimization of the weights will implicitly regularize towards one or the other.
Right panels: Analogously, there are multiple distributions over neural networks that are global min-
ima of the expected loss. Optimization of the distribution over the weights will implicitly regularize
towards one or the other. Our approach uses this implicit regularization instead of an explicit regu-
larization to a prior.

Proof. Let θ⋆ = (µ⋆,S⋆) be a minimizer of ℓ̄(θ). By assumption it holds that the expected negative623

log-likelihood is equal to the following non-negative loss function up to an additive constant:624

ℓ̄(θ) = Eqθ(w)(ℓ(y, fw(X))) = Eqθ(w)(− log p(y | w))

+c
=

1

2σ2
Eqθ(w)

(
∥y −Xw∥22

)
=

1

2σ2

(
∥y −Xµ∥22 + tr(XΣXT)

)
≥ 0,

where Σ = SST and non-negativity follows from Σ being symmetric positive semi-definite. There-625

fore any (global) minimizer θ⋆ = (µ⋆,Σ⋆) necessarily satisfies626

∥y −Xµ⋆∥22 = 0, (S15)

tr(XΣ⋆X
T) = 0. (S16)

Let V = [Vrange Vnull] ∈ RP×P be the orthonormal matrix of right singular vectors of X =627

UΛV T, where Vrange ∈ RP×N and Vnull ∈ RP×(P−N). Since X ∈ RN×P and we are in the628

overparametrized regime, i.e. P > N , the optimal mean parameter decomposes into the least-629

squares solution and a null space contribution630

µ⋆ = Vrangeu⋆ + Vnullz = X†y + Vnullz. (S17)

Furthermore, it holds for positive semi-definite Σ ∈ RP×P that631

0 ≤ tr(XΣXT) = tr(UΛV TΣV ΛUT) = tr(ΛV TΣV Λ)

= tr([ΛN×N 0]

[
V T

rangeΣVrange ∗
∗ ∗

] [
ΛN×N

0

]
)

= tr(ΛN×NV T
rangeΣVrangeΛN×N )

=

N∑
i=1

λ2
i [V

T
rangeΣVrange]ii

where λ2
i > 0 are the squared singular values of X , which are strictly positive since rank(X) = N .632

Therefore using Equation (S16) any global minimizer necessarily satisfies [V T
rangeΣ⋆Vrange]ii = 0633

for i ∈ {1, . . . , N}. Now since V T
rangeΣ⋆Vrange is symmetric positive semi-definite and its diagonal634

is zero, so is its trace and therefore the sum of its non-negative eigenvalues is necessarily zero. Thus635

all eigenvalues are zero and therefore636

V T
rangeΣVrange = 0. (S18)
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Now by Lemma S1 we have that the squared 2-Wasserstein distance between qθ⋆(w) =637

N (w;µ⋆,Σ⋆) and the initialization p(w) = N (w;µ0,Σ0) is given up to a constant independent638

of (µ⋆,Σ⋆) by639

W2(qθ⋆
, p)

+c
=
∥∥V T

rangeµ⋆ − V T
rangeµ0

∥∥2
2
+W2

2

(
N
(
V T

nullµ⋆,V
T

nullΣ⋆Vnull
)
,N
(
V T

nullµ0,V
T

nullΣ0Vnull
))

=
∥∥X†y − V T

rangeµ0

∥∥2
2
+W2

2

(
N
(
V T

nullµ⋆,V
T

nullΣ⋆Vnull
)
,N
(
V T

nullµ0,V
T

nullΣ0Vnull
))

+c
= W2

2

(
N
(
V T

nullµ⋆,V
T

nullΣ⋆Vnull
)
,N
(
V T

nullµ0,V
T

nullΣ0Vnull
))

Therefore among variational distributions qθ⋆
with parameters θ⋆ that minimize the expected loss640

ℓ̄(θ), any such θ⋆ that minimizes the squared 2-Wasserstein distance to the prior satisfies641

(V T
nullµ⋆

=:z

,V T
nullΣ⋆Vnull

=:M

) = (V T
nullµ0,V

T
nullΣ0Vnull). (S19)

(Stochastic) Gradient Descent It remains to show that (stochastic) gradient descent identifies a642

minimum of the expected loss ℓ̄(θ), such that the above holds. By assumption we have for the loss643

on a batch Xb of data that644

ℓ̄(θ) = Eqθ(w)(ℓ(yb, fw(Xb))) = Eqθ(w)(− log p(yb | w))

+c
=

1

2σ2

(
∥yb −Xbµ∥22 + tr(XbΣXT

b )
)
,

Therefore, at convergence of (stochastic) gradient descent the variational parameters θ∞ =645

(µ∞,S∞) are given by646

µ∞ = µ0 −
∞∑
t=1

ηt∇µℓ̄b(θt−1) = µ0 +

∞∑
t=1

ηt
σ2

XT
b (yb −Xbµt−1)

as well as647

S∞ = S0 −
∞∑
t=1

ηt∇S ℓ̄b(θt−1) = S0 −
∞∑
t=1

ηt
σ2

XT
b XbSt−1

and therefore648

z∞ = V T
nullµ∞ = V T

nullµ0 +

∞∑
t=1

ηt
σ2

V T
null X

T
b (yb −Xbµt−1)

∈range(XT
b )

= V T
nullµ0

V T
nullS∞ = V T

nullS0 −
∞∑
t=1

ηt
σ2

V T
null XT

b XbSt−1

columns ∈range(XT
b )

= V T
nullS0

where we used continuity of linear maps between finite-dimensional spaces. It follows that649

M∞ = V T
nullΣ∞Vnull = V T

nullS∞ST
∞Vnull = V T

nullS0S
T
0 Vnull = V T

nullΣ0Vnull.

Therefore any limit point of (stochastic) gradient descent that minimizes the expected log-likelihood650

also minimizes the 2-Wasserstein distance to the prior, since θ∞ satisfies Equation (S19).651

Momentum In case we are using (stochastic) gradient descent with momentum, the updates are652

given by653

µt+1 = µt + γt∆µt − ηt∇µℓ̄b(θt + αt∆θt)

St+1 = St + γt∆St − ηt∇S ℓ̄b(θt + αt∆θt)
(S20)

where654

∆θt =

(
∆µt

∆St

)
= θt − θt−1, ∆θ0 = 0.

for parameters γt, αt ≥ 0, which includes Nesterov’s acceleration (γt = αt) [78] and heavy ball655

momentum (αt = 0) [79].656
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To prove that the updates of the variational parameters are always orthogonal to the null space of Xb,657

we proceed by induction. The base case is trivial since ∆θ0 = 0. Assume now that V T
null∆µt = 0658

and V T
null∆St = 0, then by Equation (S20), we have659

V T
null∆µt+1 = V T

null(µt+1 − µt) = γtV
T

null∆µt − ηtV
T

null∇µℓ̄b(θt + αt∆θt) = 0

V T
null∆St+1 = V T

null(St+1 − St) = γtV
T

null∆St − ηtV
T

null∇S ℓ̄b(θt + αt∆θt) = 0

where we used the induction hypothesis and the fact that the gradients are orthogonal to the null660

space as shown earlier.661

Therefore by the same argument as above we have that θ∞ computed via (stochastic) gradient662

descent with momentum satisfies Equation (S19), which directly implies Theorem 1.663

S1.1.2 Connection to Ensembles664

Proposition S1 (Connection to Ensembles)665

Consider an ensemble of overparametrized linear models fw(x) = xTw initialized with weights666

drawn from the prior w
(i)
0 ∼ N

(
w;µ0,S0S

T
0

)
. Assume each model is trained independently to667

convergence via (S)GD such that w(i)
⋆ = argminw ℓ(y, fw(X)). Then the distribution over the668

weights of the trained ensemble qEns(w) is equal to the variational approximation qθ⋆
(w) learned669

via (S)GD initialized at the prior hyperparameters θ0 = (µ0,S0), i.e.670

qEns(w) = qθGD
⋆
(w). (S21)

Proof. The parameters w
(i)
∞ of the (independently) trained ensemble members identified via671

(stochastic) gradient descent are given by672

w(i)
∞ = argmin

w∈F
∥w −w

(i)
0 ∥2

where F = {w ∈ RP | fw(X) = Xw = y} is the set of interpolating solutions [5, Sec. 2.1]. Since
we can write F equivalently via the minimum norm solution and an arbitrary null space contribution,
s.t. F = {w = X†y +wnull | wnull ∈ null(X)} we have673

= X†y + argmin
wnull∈null(X)

∥wnull − (w
(i)
0 −X†y)∥2

= X†y + projnull(X)

w
(i)
0 − X†y

∈range(XT)


where we used the characterization of an orthogonal projection onto a linear subspace as the (unique)
closest point in the subspace. Finally, we use that the minimum norm solution is in the range space
of the data and rewrite the projection in matrix form, s.t.674

= X†y + Pnullw
(i)
0 .

Therefore the distribution over the parameters w(i)
∞ of the ensemble members computed via (S)GD675

with initial parameters w0 ∼ N
(
w;µ0,S0S

T
0

)
is given by676

qEns(w) = N

w;X†y + Pnullµ0

=µEns

,PnullS0

=SEns

ST
0 P

T
null

.

Now the expected negative log-likelihood of the distribution over the parameters of the trained en-677

semble members qEns(w) with hyperparameters θEns = (µEns,SEns) is678

ℓ̄(θEns)
+c
=

1

2σ2

(
∥y −XµEns∥22 + tr(XSEnsS

T
EnsX

T)
)
= 0

and therefore θEns is a minimizer of the expected log-likelihood. Further it holds that679

z = V T
null(Pnullµ0) = V T

nullµ0
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M = V T
null(PnullS0)(PnullS0)

TVnull = V T
nullS0S

T
0 Vnull = V T

nullΣ0Vnull

and thus by Equation (S19), the distribution of the trained ensemble parameters minimizes the 2-680

Wasserstein distance to the prior distribution, i.e.681

qEns = argmin
q(w)=N (w;µ,Σ)

W2
2(q(w),N (w;µ0,Σ0)) .

Combining this with the characterization of the variational posterior in Theorem 1 proves the claim.682

683

S1.2 Binary Classification of Linearly Separable Data684

In this subsection we provide proofs of claims from Section 4.2. We begin with presenting some685

preliminary results from Soudry et al. [4] which will be used throughout the proof. Next, we will686

analyze the gradient flow of the expected loss. We extend the results for the gradient flow to gradient687

descent and derive the characterization of the implicit bias, completing the proof of Theorem 2.688

Theorem 2 (Implicit Bias in Binary Classification)689

Let fw(x) = xTw be an (overparametrized) linear model and define a Gaussian prior p(w) =690

N
(
w;µ0,S0S

T
0

)
. Assume a variational distribution qθ(w) = N

(
w;µ,SST

)
over the weights691

w ∈ RP with variational parameters θ = (µ,S) such that S ∈ RP×R and R ≤ P . Assume we692

are using the exponential loss ℓ(u) = exp(−u) and optimize the expected empirical loss ℓ̄(θ) via693

gradient descent initialized at the prior, i.e. θ0 = (µ0,S0), with a sufficiently small learning rate η.694

Then for almost any dataset which is linearly separable (Assumption 1) and for which the support695

vectors span the data (Assumption 2), the rescaled gradient descent iterates (rGD)696

θrGD
t = (µrGD

t ,SrGD
t ) =

(
1

log(t)µ
GD
t + Pnull(X)µ0,S

GD
t

)
(9)

converge to a limit point θrGD
⋆ = limt→∞ θrGD

t for which it holds that697

θrGD
⋆ ∈ argmin

θ=(µ,S)
s.t. θ∈Θ⋆

W2
2(qθ, p) . (10)

where the feasible set Θ⋆ = {(µ,S) | Prange(XT)µ = µ̂ and ∀n : Varqθ (fw(xn)) = 0} consists698

of mean parameters which, if projected onto the training data, are equivalent to the L2 max margin699

vector and covariance parameters such that there is no uncertainty at training data.700

S1.2.1 Preliminaries701

Recall that the expected loss is given by702

ℓ̄(θ) =
∑N

n=1 Eqθ(w)

(
ℓ(ynx

T
nw)

)
, (S22)

and specifically, for the exponential loss, we have703

ℓ̄(θ) = ℓ̄(µ,S) =
∑N

n=1 exp
(
−xT

nµ+ 1
2x

T
nSS

Txn

)
. (S23)

Throughout these proofs, for any mean parameter iterate µt, we define the residual as704

rt = µt − µ̂ log t− µ̃ (S24)

where µ̂ is the solution to the hard margin SVM, and µ̃ is the vector which satisfies705

∀n ∈ S : η exp
(
−xT

nµ̃
)
= αn, (S25)

where weights αn are defined through the KKT conditions on the hard margin SVM problem, i.e.706

µ̂ =
∑
n∈S

αnxn. (S26)

In Lemma 12 (Appendix B) of Soudry et al. [4], it is shown that, for almost any dataset, there are no707

more than P support vectors and αn ̸= 0,∀n ∈ S . Furthermore, we denote the minimum margin to708

a non-support vector as:709

κ = min
n/∈S

xT
nµ̂ > 1. (S27)

Finally, we define PS ∈ RP×P as the orthogonal projection matrix to the subspace spanned by the710

support vectors, and P̄S = I − PS as the complementary projection.711
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S1.2.2 Gradient Flow for the Expected Loss712

Similar as in Soudry et al. [4], we begin by studying the gradient flow dynamics, i.e. taking the713

continuous time limit of gradient descent:714

θ̇t = −∇ℓ̄(θt), (S28)

which can be written componentwise as:715

µ̇t = −∇µℓ̄(µt,St) =

N∑
n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xn (S29)

Ṡt = −∇S ℓ̄(µt,St) = −
N∑

n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xnx

T
nSt. (S30)

We begin by showing that the total uncertainty, as measured by the Frobenius norm of the covariance716

factor, is bounded during the gradient flow dynamics. To that end, we derive the following dynamics:717

d

dt

1

2
∥St∥2F = tr(ST

t Ṡt) = −
N∑

n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
∥xT

nSt∥2 ≤ 0, (S31)

and therefore718

∥St∥2F ≤ ∥S0∥2F . (S32)

Finally, by Cauchy-Schwarz inequality, we have that719

∥StS
T
t ∥F ≤ ∥St∥2F ≤ ∥S0∥2F . (S33)

We continue by studying the convergence behavior of the mean parameter µt.720

Mean parameter Our goal is to show that ∥rt∥ is bounded. Equation (S24) implies that721

ṙt = µ̇t −
1

t
µ̂ = −∇µℓ̄(µt,St)−

1

t
µ̂. (S34)

This in turn implies that722

1

2

d

dt
∥rt∥2 = ṙTt rt

=

N∑
n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xT
nrt −

1

t
µ̂Trt

=
∑
n∈S

exp

(
− log(t)µ̂Txn − µ̃Txn +

1

2
xT
nStS

T
t xn − xT

nrt

)
xT
nrt −

1

t
µ̂Trt

+
∑
n/∈S

exp

(
− log(t)µ̂Txn − µ̃Txn +

1

2
xT
nStS

T
t xn − xT

nrt

)
xT
nrt

=

[
1

t

∑
n∈S

exp
(
−µ̃Txn

)(
exp

(
−xT

nrt +
1

2
xT
nStS

T
t xn

)
− 1

)
xT
nrt

]

+

[∑
n/∈S

(
1

t

)µ̂Txn

exp

(
−µ̃Txn +

1

2
xT
nStS

T
t xn

)
exp

(
−xT

nrt
)
xT
nrt

]
.

(S35)

where in last line we used the fact that µ̂Txn = 1 for n ∈ S, and that
∑

n∈S exp(−xT
nµ̃)xn = µ̂.723

We begin by examining the first bracket, studying three possible cases for each of the summands.724

First, note that if xT
nrt ≤ 0, then since 1

2x
T
nStS

T
t xn ≥ 0, we have that725 (

exp

(
−xT

nrt +
1

2
xT
nStS

T
t xn

)
− 1

)
xT
nrt ≤ 0. (S36)
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Next, by defining B := ∥S0∥2F , if 0 < xT
nrt <

B
2 , we have that726 ∣∣∣∣(exp(−xT

nrt +
1

2
xT
nStS

T
t xn

)
− 1

)
xT
nrt

∣∣∣∣ < (exp(B

2

)
− 1

)
B

2
, (S37)

and if xT
nrt ≥ B

2 , we have that727 (
exp

(
−xT

nrt +
1

2
xT
nStS

T
t xn

)
− 1

)
xT
nrt ≤ 0. (S38)

Finally, for arbitrary ϵ ≥ max{B, 1}, if |xT
nrt| ≥ ϵ, we have that728 (

exp

(
−xT

nrt +
1

2
xT
nStS

T
t xn

)
− 1

)
xT
nrt ≤

(
exp

(
−B

2

)
− 1

)
ϵ < 0, (S39)

Furthermore, let γ∗ = minn∈S µ̃Txn and γ∗ = maxn∈S µ̃Txn. Now, by taking ϵ ≥ max{B, 1}729

large enugh such that730 ∣∣∣∣exp(−γ∗)

(
exp

(
−B

2

)
− 1

)
ϵ

∣∣∣∣ ≥ |S| exp(−γ∗)

(
exp

(
B

2

)
− 1

)
B

2
, (S40)

if there exists a support vector n ∈ S such that |xT
nrt| ≥ ϵ, then731

1

t

∑
n∈S

exp
(
−µ̃Txn

)(
exp

(
−xT

nrt +
1

2
xT
nStS

T
t xn

)
− 1

)
xT
nrt ≤ 0. (S41)

On the other hand, for the second bracket in Eq. (S35), note that for n /∈ S , we have that xT
nµ̂ ≥ κ,732

and hence733 ∑
n/∈S

(
1

t

)µ̂Txn

exp

(
−µ̃Txn +

1

2
xT
nStS

T
t xn

)
exp

(
−xT

nrt
)
xT
nrt

≤ 1

tκ

∑
n/∈S

exp

(
−µ̃Txn +

1

2
xT
nStS

T
t xn

)
= O

(
1

tκ

)
,

(S42)

where in the last line we used that ze−z ≤ 1,∀z ∈ R and fact that ∥StS
T
t ∥F ≤ ∥S0∥2F < ∞.734

We will now combine the results from above to show that the residual rt is bounded in the following735

way: if there exists a support vector n ∈ S such that |xT
nrt| ≥ ϵ for big enough ϵ > 0, then736

1
2

d
dt∥rt∥

2 = O(t−κ). If such a support vector does not exist at time t, we will show that rt is737

containted inside a compact set. To that end, if ∥PSrt∥ ≥ ϵ1, we have that738

max
n∈S

∣∣xT
nrt
∣∣2 ≥ 1

|S|
∑
n∈S

∣∣xT
nPSrt

∣∣2 =
1

|S|
∥∥XT

SPSrt
∥∥2 ≥ 1

|S|
σ2
min(XS)ϵ

2
1, (S43)

where in the first inequality we used the fact that P T
S xn = xn for n ∈ S. Hence by choosing ϵ1739

such that σ2
min(XS)ϵ

2
1/|S| = ϵ2, where the ϵ is chosen in Eq. (S40), we have that740

∥PSrt∥ ≥ ϵ1 ⇒ 1

2

d

dt
∥rt∥2 = O

(
t−κ
)
. (S44)

On the other hand, if ∥PSrt∥ ≤ ϵ1, recall that741

rt = (µt − µ0) + µ0 − µ̂ log t− µ̃, (S45)
and since all updates to the mean parameter are in the space spanned by the support vectors (As-742

sumption 2), we have that743

P̄Srt = P̄Sµ0 − P̄Sµ̃. (S46)
We can now conclude that744

∥PSrt∥ ≤ ϵ1 ⇒ ∥rt∥ ≤ ∥PSrt∥+ ∥P̄Srt∥ ≤ ϵ1 + ∥P̄Sµ0∥+ ∥P̄Sµ̃∥ < ∞. (S47)
Finally, combining the results from Eq. (S42) and Eq. (S47), recalling that κ > 1, we have that ∥rt∥745

is bounded for all t > 0. This completes the first part of the proof and shows that746

µt = µ̂ log t+ µ̃+ rt = µ̂ log t+O(1), (S48)
and in particular747

lim
t→∞

µt

∥µt∥
=

µ̂

∥µ̂∥
. (S49)

We proceed by showing that the limit covariance parameter vanishes in the span of the support748

vectors.749
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Covariance parameter We begin by plugging the definition of residual rt (Equation (S24)) into750

the dynamics of St:751

Ṡt = −∇S ℓ̄(µt,St) = −
N∑

n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xnx

T
nSt

= −
∑
n∈S

1

t
exp

(
−µ̃Txn − rTt xn

)
exp

(
1

2
xT
nStS

T
t xn

)
xnx

T
nSt

−
∑
n/∈S

(
1

t

)xT
nµ̂

exp
(
−µ̃Txn − rTt xn

)
exp

(
1

2
xT
nStS

T
t xn

)
xnx

T
nSt,

(S50)

where we used that xT
nµ̂ = 1 for n ∈ S . Also, we know that ∥rt∥ is bounded from the previous752

part. Hence, let753

C := min
n∈[N ]

min
t≥0

exp
(
−µ̃Txn − rTt xn

)
> 0. (S51)

Furthermore, let σmin be the smallest non-zero eigenvalue of the matrix
∑

n∈S xnx
T
n. Finally, we754

define755

∆t := tr(PSStS
T
t PS)

to be the trace of the projection of the covariance parameter to the space of support vectors in S . We756

compute its derivative over time and plug in the dynamics of St:757

1

2

d

dt
∆t = tr(PSṠtS

T
t PS)

= −1

t

∑
n∈S

exp
(
−µ̃Txn − rTt xn

)
exp

(
1

2
xT
nStS

T
t xn

)
tr(PSxnx

T
nStS

T
t PS)

−
∑
n/∈S

(
1

t

)xT
nµ̂

exp
(
−µ̃Txn − rTt xn

)
exp

(
1

2
xT
nStS

T
t xn

)
tr(PSxnx

T
nStS

T
t PS)

= −1

t

∑
n∈S

exp
(
−µ̃Txn − rTt xn

)
exp

(
1

2
xT
nStS

T
t xn

)
tr
(
PSxnx

T
nStS

T
t PS

)
+O

(
1

tκ

)
≤ −C

t

∑
n∈S

tr
(
PSxnx

T
nStS

T
t PS

)
+O

(
1

tκ

)

= −C

t
tr

(
PS

(∑
n∈S

xnx
T
n

)
StS

T
t PS

)
+O

(
1

tκ

)
≤ −Cσmin

t
tr(PSStS

T
t PS) +O

(
1

tκ

)
= −Cσmin

t
∆t +O

(
1

tκ

)
,

(S52)

where the first inequality follows from Eq. (S51), and the second from the definition of σmin. By758

Grönwall’s lemma, we have that there exists a constant K > 0 such that, for some fixed t0 > 0,759

∆t ≤ ∆t0

(
t
t0

)−2Cσmin

+
K

2Cσmin + κ− 1
t−(κ−1), ∀t ≥ t0. (S53)

Finally, since |S|Cσmin > 0 and κ > 1, we conclude that ∆t → 0 as t → ∞. This implies that the760

covariance parameter converges to zero in the span of the support vectors, i.e.761

∀n ∈ S : lim
t→∞

xT
nStS

T
t xn = 0, (S54)

as desired.762
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S1.2.3 Complete Proof of Theorem 2763

We will now extend the results for the gradient flow to gradient descent and then use these results to764

characterize the implicit bias of gradient descent as generalized variational inference.765

Throughout this proof, let766

At =

N∑
n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xnx

T
n (S55)

be a positive definite matrix at iteration t. We begin the section with a few lemmata which will be767

used throughout the proof.768

Lemma S2769

Suppose that we start gradient descent from (µ0,S0). If η < λmax(A0)
−1, then for the gradient770

descent iterates771

St+1 = St − η∇S ℓ̄(µt,St), (S56)

we have that ∥St∥F ≤ ∥S0∥F for all t ≥ 0.772

Proof. First, note that the gradient descent update for the covariance factor is given by773

St+1 = St(I − ηAt), (S57)

and hence we have that774

∥St+1∥F = ∥St(I − ηAt)∥F ≤ ∥St∥F ∥(I − ηAt)∥2. (S58)

Now, since η ≤ λmax(A0)
−1 ≤ λmax(At)

−1 for all t ≥ 0 and noting that At ⪰ 0, we have that775

∥(I − ηAt)∥2 ≤ 1, (S59)

and therefore776

∥St+1∥F ≤ ∥St∥F . (S60)

Finally, we can conclude that ∥St∥F ≤ ∥S0∥F for all t ≥ 0, as required.777

778

Lemma S3779

Suppose that we start gradient descent from (µ0,S0). If η < λmax(A0)
−1, then for the gradient780

descent iterates781

µt+1 = µt − η∇µℓ̄(µt,St), (S61)

we have that
∑∞

u=0 ∥∇µℓ̄(µu,Su)∥2 < ∞. Consequently, we also have that782

limt→∞ ∥∇µℓ̄(µt,St)∥2 = 0.783

Proof. Note that our loss function is not globally smooth in µ. However, if we initialize at (µ0,S0),784

the gradient descent iterates with η < λmax(A0)
−1 maintain bounded local smoothness. The state-785

ment now follows directly from Lemma 10 in Soudry et al. [4].786

Lemma S4787

By choosing ϵ1 as in Eq. (S44), if ∥PSrt∥ ≥ ϵ1, we have that788

(rt+1 − rt)
T
rt ≤ O

(
1

tκ

)
+O

(
1

t2

)
∥rt∥. (S62)

If ∥PSrt∥ < ϵ1, there exists a constant C such that789

(rt+1 − rt)
T
rt ≤ C. (S63)
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Proof. We follow similar steps as in the gradient flow case. It holds that790

(rt+1 − rt)
Trt

= (−η∇µ(µt,St)− µ̂ (log(t+ 1)− log(t)))
T
rt

= η

N∑
n=1

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xT
nrt − µ̂Trt log(1 + t−1)

= µ̂Trt(t
−1 − log(1 + t−1)) + η

∑
n/∈S

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xT
nrt

+ η
∑
n∈S

[
−1

t
exp

(
−µ̃Txn

)
+ exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)]
xT
nrt,

(S64)

where in the last equality we used Equation (S26) to expand µ̂Trt. Furthermore, we can bound all791

four terms as follows, beginning with the first term:792

µ̂Trt(t
−1 − log(1 + t−1)) ≤ ∥rt∥O

(
1

t2

)
, (S65)

where we used that log(1 + t−1) = t−1 +O
(
t−2
)
. For the second term, using the same argument793

as in Equation (S42), we derive that794

η
∑
n/∈S

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xT
nrt ≤ O

(
1

tκ

)
. (S66)

For the third item, from Eq. (S41) and Eq. (S43), we have that ∥PSrt∥ ≥ ϵ1 implies that795

η
∑
n∈S

[
−1

t
exp

(
−µ̃Txn

)
+ exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)]
xT
nrt ≤ 0. (S67)

The first result follows from combining the above three inequalities.796

Next, if ∥PSrt∥ < ϵ1, by defining B := ∥S0∥2F , following the steps in Eq. (S37), we have that797

η
∑
n/∈S

exp

(
−µT

t xn +
1

2
xT
nStS

T
t xn

)
xT
nrt ≤ η|S|

(
exp

(
B

2

)
− 1

)
B

2
, (S68)

and hence, combining this with Assumption 2 which implies that rt is bounded as in Eq. (S47), one798

can find a constant C such that799

(rt+1 − rt)
T
rt ≤ C. (S69)

800

Proof of Theorem 2801

Proof. As in the simple version of the proof, we begin by considering the convergence behavior of802

the mean parameter µt.803

Mean parameter Our goal is again to show that ∥rt∥ is bounded. To that end, we will provide an804

upper bound to the following equation805

∥rt+1∥2 = ∥rt+1 − rt∥2 + 2 (rt+1 − rt)
T
rt + ∥rt∥2 (S70)

First, consider the first term in the above equation:806

∥rt+1 − rt∥2

= ∥µt+1 − µ̂ log(t+ 1)− µ̃− µt + µ̂ log(t) + µ̃∥2

= ∥ − η∇µℓ̄(µt,St)− µ̂ log(1 + t−1)]∥2

≤ 2
[
η2∥∇µℓ̄(µt,St)∥2 + ∥µ̂∥2 log2(1 + t−1)

]
≤ 2
[
η2∥∇µℓ̄(µt,St)∥2 + ∥µ̂∥2t−2

]
(S71)
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where in the first inequality we used the standard inequality that (x+ y)2 ≤ 2(x2 + y2), and in the807

second inequality we used the fact that log(1 + x) ≤ x for x ≥ 0. Now, from Lemma S3 and the808

fact that t−2 is summable, we conclude that there exists C1 < ∞ such that809

∞∑
t=1

∥rt+1 − rt∥2 ≤ C1 < ∞. (S72)

Next, for the second term, recall that in Lemma S4 we showed that if ∥PSrt∥ ≥ ϵ1, then, for some810

constants C2, C3 < ∞, we have that, eventually811

(rt+1 − rt)
T
rt ≤ C2

1

tκ
+ C3

1

t2
∥rt∥, (S73)

and that if ∥PSrt∥ < ϵ1, then there exists a constant C4 < ∞ such that812

(rt+1 − rt)
T
rt ≤ C4. (S74)

We will show that when ∥PSrt∥ < ϵ1, the residual rt is contained in a compact set, and when813

∥PSrt∥ ≥ ϵ1, the residual rt can’t escape to infinity. We now formally show this claim.814

Let S1 be the frst time such that ∥PSrt∥ ≥ ϵ1, if such a time does not exist, we are done since the815

support vectors span the data and hence ∥rt∥ is bounded. Now, let T1 be the first time after S1 such816

that ∥PSrt∥ < ϵ1, where we allow T1 = ∞ if such a time does not exist. Continuing in this manner,817

we define the sequences S1 < T1 < S2 < T2 < . . ., where we allow Ti = ∞ for some i.818

We prooced by showing that ∥rt∥ is uniformly bounded on each of the intervals [Si, Ti). To that819

end, note that for t ∈ [Si, Ti), we have that820

∥rt+1∥2 − ∥rt∥2 ≤ 2C2
1

tκ
+ 2C3

1

t2
∥rt∥+ ∥rt+1 − rt∥2, (S75)

and hence, using the fact that κ > 1, by the discrete version of Grönwall’s lemma, that821

max
t∈[Si,Ti)

(∥rt∥2 − ∥rSi
∥2) ≤ K, (S76)

for some constant K < ∞ independent of i. Furthemore, we also know from Eq. (S74) that822

∥rSi∥ ≤ ϵ1 + 2C4 + ∥rSi − rSi−1∥2 ≤ ϵ1 + 2C4 +max
t≥0

∥rt+1 − rt∥2 < ∞, (S77)

showing that the first jump outisde the ϵ1-ball is bounded. Combining the two results, we conclude823

that ∥rt∥ is uniformly bounded on each of the intervals [Si, Ti).824

Finally, by noting that the support vectors span the data, we have that ∥rt∥ is uniformly bounded825

on each of the intervals [Ti, Si+1). Combining the two results, we conclude that ∥rt∥ is uniformly826

bounded for all t ≥ 0 and hence we have that827

lim
t→∞

µt

∥µt∥
=

µ̂

∥µ̂∥
(S78)

and the following lemma.828

Lemma S5829

For the mean parameter µt, we have that830

µt = log(t)µ̂+O(1). (S79)

Proof. This follows immediately from the definition of the residual in Equation (S24):831

µt = µ̂ log t+ rt + µ̃t,

and the fact that rt and µ̃t are bounded as we showed above.832

We continue with the analysis of the covariance parameter over optimization iterations.833
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Covariance parameter As before, let ∆t = tr(PSStS
T
t PS) be the trace of the projection of the834

covariance parameter on the space of support vectors in S . By following the ideas from the gradient835

flow case, we have the following dynamics:836

∆t+1 = tr(PS (I − ηAt)StS
T
t (I − ηAt)

T
PS)

= tr(PSStS
T
t PS)− 2η tr(PSStS

T
t AtPS) + η2 tr(PSAtStS

T
t AtPS)

≤ ∆t −
2η

t
Cσmin tr(PSStS

T
t PS) +O

(
1

tκ

)
+O

(
1

t2

)
= ∆t −

2η

t
Cσmin∆t +O

(
1

tκ

)
+O

(
1

t2

)
,

(S80)

where we used the same arguments as in Equation (S52) to derive the last inequality, in addition to837

noting that λmax(A
2
t ) ≤ O

(
1
t2

)
in order to bound the last term. Hence, we can write838

∆t+1 −∆t ≤ −2η

t
Cσmin∆t +O

(
1

tκ

)
+O

(
1

t2

)
. (S81)

Again, by the discrete version of Grönwall’s lemma, we derive the equivalent result to Eq. (S53).839

Now, noting that
∑

t
1
t diverges, the fact that κ > 1 and ηCσmin > 0, we conclude that ∆t converges840

to zero. This implies that the covariance parameter converges to zero in the span of the support841

vectors, i.e.842

∀n ∈ S : lim
t→∞

xT
nStS

T
t xn = 0, (S82)

as desired.843

Characterization as Generalized Variational Inference As a final step we need to show that844

the solution identified by gradient descent if appropriately transformed identifies the minimum 2-845

Wasserstein solution in the feasible set. Define the feasible set846

Θ⋆ = {(µ,S) | PSµ = µ̂ and ∀n ∈ S : Varqθ (fw(xn)) = 0} (S83)

= {(µ,S) | PSµ = µ̂ and ∀n ∈ S : xT
nSS

Txn = 0} (S84)

and the variational parameters identified by rescaled gradient descent as847

θrGD
⋆ = lim

t→∞
θrGD
t = lim

t→∞

(
1

log(t)
µt + Pnull(X)µ0,St

)
. (S85)

It holds by Lemma S5 that848

PSµ
rGD
⋆ = PS

(
lim
t→∞

1

log(t)
µt

)
+ 0 = PSµ̂ = µ̂ (S86)

and additionally by Equation (S82) we have for all n ∈ S that849

xT
nS

rGD
⋆ (SrGD

⋆ )Txn = lim
t→∞

xT
nSt(St)

Txn = 0. (S87)

Therefore the limit point θrGD
⋆ of rescaled gradient descent is in the feasible set. It remains to show850

that it is also a minimizer of the 2-Wasserstein distance to the prior / initialization. We will first851

show a more general result that does not require Assumption 2.852

To that end define
(
VS VX⊥S Vnull(X)

)
∈ RP×P where VS ∈ RP×PS is an orthonormal basis853

of the span of the support vectors range(XT
S ), VX⊥S ∈ RP×(N−PS) an orthonormal basis of its854

orthogonal complement in range(XT) and Vnull(X) ∈ RP×(P−N) the corresponding orthonormal855

basis of the null space null(X) of the data. Let V =
(
VS Vnull(X)

)
∈ RP×(P−N+PS) and define856

the projected variational distribution and prior onto the span of the support vectors and the null space857

of the data as858

qproj
θ (w̃) = N

(
w̃;PV µ,PV ΣP T

V

)
= N

(
w̃; µ̃, Σ̃

)
(S88)

pproj(w̃) = N
(
w̃;PV µ0,PV Σ0P

T
V

)
= N

(
w̃; µ̃0, Σ̃0

)
(S89)
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where w̃ ∈ RP−N+PS . Now earlier we showed that the limit point of rescaled gradient descent is859

in the feasible set, defined in Equation (S85), and thus the same holds for the projected limit point860

of rescaled gradient descent, i.e.861

(µ̃rGD
⋆ , S̃rGD

⋆ ) ∈ Θ⋆ (S90)

in particular862

PSµ̃
rGD
⋆ = PSµ

rGD
⋆ = µ̂, (S91)

∀n ∈ S : xT
nS̃

rGD
⋆ (S̃rGD

⋆ )Txn = xT
nS

rGD
⋆ (SrGD

⋆ )Txn = 0. (S92)

Therefore we have for all n ∈ S that863

0 = xT
nS̃

rGD
⋆ (S̃rGD

⋆ )Txn = ∥(S̃rGD
⋆ )Txn∥22 ⇐⇒ (S̃rGD

⋆ )Txn = 0 (S93)

⇐⇒ (S̃rGD
⋆ )TVS = 0 (S94)

and thus V T
S S̃rGD

⋆ (S̃rGD
⋆ )TVS = 0. Therefore by Lemma S1 it holds for the squared 2-Wasserstein864

distance between the projected limit point of rescaled gradient descent and the projected prior that865

W2
2

(
qproj
θ∗

, pproj
)

+c
=
∥∥V T

S µ̃− V T
S µ̃0

∥∥2
2
+W2

2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N
(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
=

∥∥∥∥(V T
S µ̃− V T

S µ̃0

0

)∥∥∥∥2
2

+W2
2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N
(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
=

∥∥∥∥V (V T
S µ̃− V T

S µ̃0

0

)∥∥∥∥2
2

+W2
2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N
(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
= ∥PSµ̃− PSµ̃0∥22 +W2

2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N
(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
= ∥µ̂− PSµ̃0∥22 +W2

2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N
(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
+c
= W2

2

(
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(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N
(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
where we used that PSµ̃ = µ̂ for any (µ̃, S̃) in the feasible set Θ⋆. Therefore it suffices to show866

that the projected solution θ̃rGD
⋆ minimizes867

W2
2

(
N
(
V T

nullµ̃,V
T

nullΣ̃Vnull

)
,N
(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
≥ 0. (S95)

We have using the definition of the iterates in Equation (9) that868

V T
nullµ̃

rGD
⋆ = V T

nullPV

(
lim
t→∞

1

log(t)
µt + Pnull(X)µ0

)
(S96)

= V T
null(µ̂+ Pnull(X)µ0) = V T

nullµ0 (S97)

where we used µ̂ ∈ range(XT
S ). Further, it holds for the gradient of the expected loss (S23) with

respect to the covariance factor parameters that869

V T
nullS̃

rGD
⋆ = V T

nullPV SrGD
⋆ = V T

nullS
rGD
⋆ = V T

null

(
S0 −

∞∑
t=1

ηt∇S ℓ̄(µt,St)

∈range(XT)

)
(S98)

= V T
nullS0 = V T

nullPV S0 = V T
nullS̃0. (S99)

Therefore we have that870

W2
2

(
N
(
V T

nullµ̃
rGD
⋆ ,V T

nullΣ̃
rGD
⋆ Vnull

)
,N
(
V T

nullµ̃0,V
T

nullΣ̃0Vnull

))
= 0 (S100)

and thus the projected variational parameters θ̃rGD
⋆ are both feasible (S90) and minimize the squared871

2-Wasserstein distance to the projected initialization / prior (S95). This completes the proof for the872

generalized version of Theorem 2 without Assumption 2, which we state here for convenience.873
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Lemma S6874

Given the assumptions of Theorem 2, except for Assumption 2 meaning the support vectors XS do875

not necessarily span the data, it holds for the limit point of rescaled gradient descent that876

θrGD
⋆ ∈ argmin

θ=(µ,S)
s.t. θ∈Θ⋆

W2
2

(
qproj
θ , pproj

)
. (S101)

If in addition Assumption 2 holds, i.e. the support vectors span the training data X , such that877

span({xn}n∈[N ]) = span({xn}n∈S), (S102)

then the orthogonal complement of the support vectors in range(XT) has dimension N − PS = 0878

and thus the projection PV = IP×P is the identity and therefore879

qproj
θ = qθ and pproj = p. (S103)

This completes the proof of Theorem 2.880

881

S1.3 NLL Overfitting and the Need for (Temperature) Scaling882

In Theorem 2, we assume we rescale the mean parameters. This is because the exponential loss can883

be made arbitrarily small for a mean vector that is aligned with the L2 max-margin vector simply884

by increasing its magnitude. In fact, the sequence of mean parameters identified by gradient descent885

diverges to infinity at a logarithmic rate µGD
t ≈ log(t)µ̂ as we show3 in Lemma S5 and illustrate in886

Figure S2 (right panel).887
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Figure S2: NLL overfitting in classification due to implicit bias of the mean parameters. As shown
here for a two-hidden layer neural network on synthetic data, when training with vanilla SGD the
mean parameters diverge to infinity ∥µt∥2 ≈ O(log(t)) (right) and thus the classifier will eventually
overfit in terms of negative log-likelihood (left and middle). Rescaling the GD iterates as in Theo-
rem 2 or using temperature scaling [68] avoids overfitting.

This bias of the mean parameters towards the max-margin solution does not impact the train loss or888

validation error, but leads to overfitting in terms of validation NLL (see Figure S2) as long as there889

is at least one misclassified datapoint x, since then the (average) validation NLL is given by890

ℓ̄(θGD
t ) = Eq

θGD
t

(w)

(
exp(−yxTw)

)
= exp(xTµGD

t + 1
2x

TSGD
t (SGD

t )Tx)

≈ exp(log(t)xTµ̂+ 1
2x

TSGD
t (SGD

t )Tx) → ∞ as t → ∞.
(S104)

However, by rescaling the mean parameters as we do in Theorem 2, this can be prevented as Fig-891

ure S2 (middle panel) illustrates for a two-hidden layer neural network on synthetic data. Such892

overfitting in terms of NLL has been studied extensively empirically with the perhaps most com-893

mon remedy being Temperature Scaling (TS) [68]. As we show empirically in Figure S2, instead894

3This has been observed previously in the deterministic case (see Theorem 3 of Soudry et al. [4]) and thus
naturally also appears in our probabilistic extension.
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of using the theoretical rescaling, using temperature scaling performs very well, especially in the895

non-asymptotic regime, which is why we also adopt it for our experiments in Section 5.896

The aforementioned divergence of the mean parameters to infinity also explains the need for the pro-897

jection of the prior mean parameters in Equation (9), since any bias from the initialization vanishes898

in the limit of infinite training. At first glance the additional projection seems computationally pro-899

hibitive for anything but a zero mean prior, but close inspection of the implicit bias of the covariance900

parameters S in Theorem 2 shows that at convergence901

∀n : Varqθ (fw(xn)) = xT
nSS

Txn = 0 =⇒ range(S) ⊂ null(X) (S105)

Meaning we can approximate a basis of the null space of the training data by computing a QR902

decomposition of the covariance factor in O
(
PR2

)
once at the end of training. For R = P the903

inclusion becomes an equality and the projection can be computed exactly.904

S2 Parametrization, Feature Learning and Hyperparameter Transfer905

The inductive bias of SGD in the variational setting is determined by the initialization and varia-906

tional parametrization, and is formalized in Theorem 1. What is not covered, but not unusual in907

practice, are layer-specific learning rates. Luckily, these can be absorbed into the weights of the908

model and the initialization, resulting in a single global learning rate [Lemma J.1, 67]. We refer909

to this set of choices — initialization, (variational) parameters and layer-specific learning rates —910

as the parametrization of a variational neural network in analogy to how the term is used in deep911

learning. While parameterization is well-studied for non-probabilistic deep learning, it has been912

identified as one of the “grand challenges of Bayesian computation” [80].913

The “standard parameterization” (SP) initializes the weights of a neural network randomly from a914

distribution with variance ∝ 1/fan in (e.g., as in Kaiming initialization, the PyTorch default) and915

makes no further adjustments to the forward pass or learning rate. In contrast, the maximal update916

parametrization (µP) [66] ensures feature learning even as the width of the network tends to infinity.917

Feature learning is at the core of the modern deep learning pipeline, permitting foundation models to918

extract features from large datasets that are then fine-tuned. Additionally, under µP, hyperparameters919

like the learning rate, can be tuned on a small model and transferred to a large-scale model [67].920

Given our interpretation of training via the expected loss as generalized variational inference with921

a prior that is implied by the parametrization, a natural question is whether we can extend µP to922

the variational setting and thus inherit its inductive bias. In the probabilistic setting, feature learning923

now occurs when the distribution over hidden units changes from initialization. At any point during924

training, the ith hidden unit in layer l is a function of four random variables: the variational mean925

and covariance parameters (µ,S), Gaussian noise z, and the previous layer hidden units:926

h
(l)
i (x) = Wih

(l−1)(x) = (µi + Siz)h
(l−1)(x). (S106)

The parameters are random because of the stochasticity in the initialization and/or optimization927

procedure, while the noise is randomly drawn during each forward pass. Since the Siz term is a928

sum over R terms, where R is the rank of S ∈ RP×R, applying the central limit theorem we propose929

scaling this term by R−1/2 and then applying µP to the mean and covariance parameters. In practice,930

we implement the scaling via an adjustment to the covariance initialization and learning rate.931

In this section we discuss the role of parameterization at initialization, feature learning in the last932

hidden layer as the width is increased, and how parameterization can enable hyperparameter transfer.933

Notation For this section we need a more detailed neural network notation. Denote an L-hidden934

layer, width-D feedforward neural network by f(x) ∈ RD
out, with inputs x ∈ RDin , weights W (l),935

pre-activations h(l)(x) ∈ RD(l)

, and post-activations (or “features”) g(l)(x) ∈ RD(l)

. That is,936

h(1)(x) = W (1)x and, for l ∈ 1, . . . , L− 1,937

g(l)(x) = ϕ
(
h(l)(x)

)
, h(l+1)(x) = W (l+1)g(l)(x),

and the network output is given by f(x) = W (L+1)g(L)(x), where ϕ (•) is an activation function.938

For convenience, we may abuse notation and write h(0)(x) = x and h(L+1)(x) = f(x). Through-939

out we use •(l) to indicate the layer, subscript •t to indicate the training time (i.e., epoch),940
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∆•t = •t − •0 to indicate the change since initialization, and [•]i, [•]ij to indicate the compo-941

nent within a vector or matrix.942

S2.1 Definitions of Stability and Feature Learning943

The following definitions extend those of Yang and Hu [66] to the variational setting.944

Definition S1 (bc scaling)945

In layer l, the variational parameters are initialized as946

[µ
(l)
0 ]i ∼ N

(
0, D−2b(l)

)
, [S

(l)
0 ]ij ∼ N

(
0, D−2b̃(l)

)
and the learning rates for the mean and covariance parameters, respectively, are set to947

η(l) = ηD−c(l) , η̃(l) = ηD−c̃(l) .

The hyperparameter η represents a global learning rate that can be tuned, as for example in the948

hyperparameter transfer experiment from Section S2.4.949

For the next two definitions, let mr (X) = Ez((X − Ez(X))r) denote the rth central moment950

moment of a random variable X with respect to z, which represents all reparameterization noise in951

the random variable X . All Landau notation in Section S2 refers to asymptotic behavior in width D952

in probability over reparameterization noise z. We say that a vector sequence {vD}∞D=1, where each953

vD ∈ RD, is O(D−a) if the scalar sequence {
√

1
D∥vD∥2}∞D=1 = {RMSE(vD)}∞D=1 is O(D−a).954

Definition S2 (Stability of Moment r)955

A neural network is stable in moment r, if all of the following hold for all x and l ∈ {1, . . . , L}.956

1. At initialization (t = 0):957

(a) The pre- and post-activations are Θ(1):958

mr(h
(l)
0 (x)),mr(g

(l)
0 (x)) = Θ(1)

(b) The function is O(1):959

mr(f0(x)) = O(1)

2. At any point during training t > 0:960

(a) The change from initialization in the pre- and post-activations are O(1):961

∆mr(h
(l)
t (x)),∆mr(g

(l)
t (x)) = O(1)

(b) The function is O(1):962

mr(ft(x)) = O(1)

Definition S3 (Feature Learning of Moment r)963

Feature learning occurs in moment r in layer l if, for any t > 0, the change from initialization is964

Ω(1):965

∆mr

(
g
(l)
t (x)

)
= Ω(1).

As we will see later, Figure S5 and Figure S6 investigate feature learning for the first two moments.966

S2.2 Initialization Scaling for a Linear Network967

In this section we illustrate how the initialization scaling {(b(l), b̃(l))} can be chosen for stability.968

For simplicity, we consider a linear feedforward network of width D evaluated on a single input969

x ∈ RD
in . We assume a Gaussian variational family that factorizes across layers. This implies the970

hidden units evolve as h(l+1)
t = W

(l+1)
t h

(l)
t and the weights are linked to the variational parameters971

by vec(W
(l)
t ) = µ

(l)
t + S

(l)
t z.972
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Therefore, the mean and variance of the ith component hidden units in layer l ∈ {1, . . . , L + 1},973

where i ∈ 1 . . . , D(l), are given by974

Ez

(
[h

(l)
t ]i

)
= [µ

(l)
t ]TI Ez

(
h
(l−1)
t

)
Varz

(
[h

(l)
t ]i

)
= [µ

(l)
t ]TIC

(l−1)
t [µ(l)]I + tr([S

(l)
t ]TI,:A

(l−1)
t [S

(l)
t ]I,:),

where I = {iD(l−1), . . . , (i+1)D(l−1)} and the second moment of and covariance of layer-l hidden975

units are denoted by976

A
(l)
t = Ez

(
h
(l)
t h

((l))T
t

)
C

(l)
t = A

(l)
t − Ez

(
h
(l)
t

)
Ez

(
h
(l)
t

)T
.

Mean We start with the mean of the hidden units, which conveniently depends only on the mean977

variational parameters and the previous layer hidden units.978

Ez

(
[h

(l)
0 ]i

)
=

D(l−1)∑
j=1

[µ
(l)
0 ]Ij Ez

(
[h

(l−1)
0 ]j

)
= O

(√
D(l−1) ·D−b(l) · 1

)
=


O
(
D−b(1)

)
l = 1

O
(
D−(b(l)− 1

2 )

)
l ∈ {2, . . . , L+ 1}

.

Therefore, we require b(1) ≥ 0 and b(l) ≥ 1
2 for l ∈ {2, . . . , L+ 1}.979

Variance Next we examine the variance of hidden units. Consider the first term, which represents980

the contribution of the mean parameters.981

[µ
(l)
0 ]TIC

(l−1)
0 [µ(l)]I =

D(l−1)∑
j=1

[µ
(l)
0 ]2Ij [C

(l−1)
0 ]j,j +

D(l−1)∑
j ̸=j′

[µ
(l)
0 ]Ij [C

(l−1)
0 ]j,j′ [µ

(l)
0 ]Ij′

= O
(
D(l−1) ·D−2b(l) · 1

)
+O

(√
D(l−1)(D(l−1) − 1) ·D−b(l) · 1 ·D−b(l)

)
= O

(
D(l−1) ·D−2b(l)

)
=

O
(
D−2b(1)

)
l = 1

O
(
D−(2b(l)−1)

)
l ∈ l ∈ {2, . . . , L+ 1}.

Therefore, we require b(1) ≥ 0 and b(l) ≥ 1
2 for l ∈ {2, . . . , L + 1}. Notice these are the same982

requirements as above for the mean of the hidden units. We summarize the scaling for the mean983

parameters as984

b(l) ≥
{
0 l = 1
1
2 l ∈ {2, . . . , L+ 1}. (S107)

Now consider the second term in the variance of the hidden units. Assume the rank scales with the985

input and output dimension of a layer as R(l) = (D(l−1)D(l))p
(l)

, where p(l) ∈ [0, 1].986

tr([S
(l)
0 ]TI,:A

(l−1)
0 [S

(l)
0 ]I,:) =

R(l)∑
r=1

[S
(l)
0 ]TI,rA

(l−1)
0 [S

(l)
0 ]I,r

=

R(l)∑
r=1

D(l−1)∑
j=1

[S
(l)
0 ]2Ij ,r[A

(l−1)
0 ]j,j +

D(l−1)∑
j ̸=j′

[S
(l)
0 ]Ij ,r[A

(l−1)
0 ]j,j′ [S

(l)
0 ]Ij′ ,r


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= O
(
R(l)D(l−1) ·D−2b̃(l) · 1

)
+O

(√
R(l)D(l−1)(D(l−1) − 1) ·D−b̃(l) · 1 ·D−b̃(l)

)
= O

(
R(l)D(l−1)D−2b̃(l)

)

=


O
(
D−(2b̃(1)−p(1))

)
l = 1

O
(
D−(2b̃(l)−1−2p(l))

)
l ∈ {2, . . . , L}

O
(
D−(2b̃(L+1)−1−p(L+1))

)
l = L+ 1.

Therefore we require b̃(0) ≥ p(1)

2 , b̃(l) ≥ 1
2 + p(l) for l ∈ {2, . . . , L}, and b̃(L+1) ≥ 1

2 + p(L+1)

2 .987

Notice we can write these conditions in terms of the mean scaling as988

b̃(l) ≥ b(l) +


p(l)

2 l = 1

p(l) l ∈ {2, . . . , L}
p(l)

2 l = L+ 1.

(S108)

S2.3 Proposed Scaling989

The previous section derives the necessary conditions for stability at initialization. Recall we pro-990

pose scaling the contribution of the covariance parameters to the forward pass, i.e. the Sz term, by991

R−1/2 since each element in the term is a sum over R random variables, where R is the rank of992

S. In the more detailed notation of this section, the proposed scaling implies the forward pass in a993

linear layer is given by994

[h
(l)
t ]i = [Wt]:,ih

(l−1)
t =

(
[µ

(l)
t ]I +R−1/2[S

(l)
t ]Iz

(l)
)
h
(l−1)
t . (S109)

In practice, rather than scaling [S
(l)
t ]Iz

(l) by R−1/2 in the forward pass, we apply Lemma J.1 from995

Yang et al. [67] to instead scale the initialization by R−1/2 and, in SGD, the learning rate by R−1.996

Scaling by the rank allows treating the mean and covariance parameters as if they were weights997

parameterized by µP in a non-probabilistic network, inheriting any scaling that has already been998

derived for that architecture.999

From Table 3 of Yang et al. [67], we therefore scale the mean parameters as1000

b(l) =


0 l = 1

1/2 l ∈ {2, . . . , L}
1 l = L+ 1

and c(l) =


−1 l = 1

0 l ∈ {2, . . . , L}
1 l = L+ 1.

(S110)

Assuming R(l) = (D(l−1)D(l))p
(l)

as before, where p(l) ∈ [0, 1], we the scale the covariance1001

parameters as1002

b̃(l) = b(l) +


p(l)

2 l = 1

p(l) l ∈ {2, . . . , L}
p(l)

2 l = L+ 1

and c̃(l) = c(l) +


p(l) l = 1

2p(l) l ∈ {2, . . . , L}
p(l) l = L+ 1.

(S111)

By comparing to Equations S107 and S108, we see the mean and covariance parameters in all but1003

the output layer are initialized as large as possible while still maintaining stability. The output layer1004

parameters scale to zero faster, since, as in µP for the weights of non-probabilistic networks, we set1005

b(L+1) to 1 instead of 1/2.1006

Note that in Section S2.2 we did not consider input and output dimensions that scaled with the width1007

D for simplicity. For our experiments, we take the exact µP initialization and learning rate scaling1008

from Yang et al. [67] — which includes, for example, a 1/fan in scaling in the input layer — for1009

the means and then make the rank adjustment for the covariance parameters as described above.1010

We investigate the proposed scaling in Figures S4 and S5. We train two-hidden-layer (L = 2) MLPs1011

of hidden sizes 8, 16, 32, and 64 on a single observation (x, y) = (1, 1) using a squared error loss.1012
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We use SGD with a learning rate of 0.05. For the variational networks, we assume a multivariate1013

Gaussian variational family with a full rank covariance.1014

Figures S3 and S4 show the RMSE of the change in the hidden units from initialization, ∆g
(l)
t (x) =1015

g
(l)
t (x) − g

(l)
0 (x), as a function of the hidden size. The RMSE of the hidden units at initialization,1016

g
(l)
0 is also shown in blue. Each panel corresponds to a layer of the network, so the first two panels1017

correspond to features g
(1)
t (x) and g

(2)
t (x), respectively, while the third panel corresponds to the1018

output of the network, g(3)
t (x) = ft(x). The difference between the figures is the paramaterization.1019

Figure S3 uses standard parameterization (SP) while Figure S4 uses maximal update parametrization1020

(µP). We observe that (a) the features change more under µP than SP and (b) training is more stable1021

across hidden sizes under µP than SP, especially for smaller networks.1022

Figures S5 and S6 show the analogous results for a variational network. The top row shows the1023

change in the mean of the hidden units, while the bottom row shows the change in the standard1024

deviation. As in the non-probabilistic case, we observe that (a) both the mean and standard deviation1025

of the features change more under µP than SP and (b) training is more stable across hidden sizes1026

under µP than SP, especially for smaller networks.1027
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Figure S3: MLP, Standard Parameterization. RMSE of the change in the hidden units and, in blue,
their initial values. Shaded region represents 95% confidence interval over 5 random initializations.
The MLP is trained under SP.
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Figure S4: MLP, Maximal Update Parameterization. RMSE of the change in the hidden units
and, in blue, their initial values. Shaded region represents 95% confidence interval over 5 random
initializations. The MLP is trained under µP.
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Figure S5: Variational MLP, Standard Parameterization. RMSE of the change in the hidden units
and, in blue, their initial values. Shaded region represents 95% confidence interval over 5 random
initializations. The variational MLP is trained under SP with a full rank covariance in each layer.

S2.4 Hyperparameter Transfer Experiment1028

Figure S7 demonstrates that our proposed maximal update parametrization enables hyperparameter1029

transfer in a probabilistic model. We train two-hidden-layer MLPs on CIFAR10, using a low rank1030

covariance in the final two layers. Under standard parametrization (left panel), the learning rate1031

that results in the smallest training loss decreases with hidden size. In contrast, under µP (middle1032

panel), it remains the same across hidden sizes. The right panel of Fig. S7 demonstrates the practical1033

implications for model selection. For each parametrization and each hidden size D, we select the1034

learning rate based on a grid search. In “transferred grid search” we do a grid search using the1035

smallest model (hidden size 128) and transfer the best validating learning rate to the hidden size D1036

model, whereas in “grid search” we perform the grid search on the hidden size D model. Relative1037

to the test accuracy of the best performing model across learning rate and parametrization, we see1038

that (a) µP outperforms SP, though the gap decreases with hidden size, and (b) the transfer strategy1039

works well for µP but poorly for SP once the hidden size exceeds 256.1040

The µP parametrization ensures stability and feature learning. Since we interpret the initialization1041

as a prior, which we emphasize is fully theoretically justified in the case of a linear model, this1042

suggests a new approach to designing priors over neural networks. Instead of eliciting beliefs about1043

the relative likelihood of weights or functions, consider how the optimization process evolves the1044

initial parameters and whether desirable properties, like feature learning, will be preserved.1045

Details on Hyperparameter Transfer Experiment We train two-hidden-layer MLPs of width1046

128, 256, 512, 1024, and 2048 on CIFAR-10. For comparability to Figure 3 in Tensor Programs1047

V [67] we use the same hyperparameters but applied to the mean parameters.4 For the input layer,1048

we scale the mean parameters at initialization by a factor of 16 and in the forward pass by a factor1049

of 1/16. For the output layer, we scale the mean parameters by 0.0 at initialization and by 32.0 in1050

4Specifically, we used the hyperparameters as indicated here: https://github.com/microsoft/mup/
blob/main/examples/MLP/demo.ipynb
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Figure S6: Variational MLP, Maximal Update Parametrization. RMSE of the change in the hidden
units and, in blue, their initial values. Shaded region represents 95% confidence interval over 5
random initializations. The variational MLP is trained under µP with a full rank covariance in each
layer.

the forward pass. We use 20 epochs, batch size 64, and a grid of global learning rates ranging from1051

2−8 to 20 with cosine annealing during training. For the grid search results shown in the right panel1052

of Figure S7, we use validation NLL for model selection and then evaluate the relative test error1053

compared to the best performing model for that width across parameterizations and learning rates.1054

S3 Experiments1055

This section outlines in more detail the experimental setup, including datasets (Section S3.1.1),1056

metrics (Section S3.1.2), architectures, the training setup and method details (Section S3.3.1). It also1057

contains additional experiments to the ones in the main paper (Sections S3.2, S3.3.2 and S3.3.3).1058

S3.1 Setup and Details1059

In all of our experiments we used the following datasets and metrics.1060
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Figure S7: Hyperparameter Transfer. When scaling the size of a neural network, one has to re-tune
the hyperparameters, such as the learning rate, when using the standard parametrization (SP). The
same is true for probabilistic networks as we show here on CIFAR-10 (left). However, when using
our proposed extension of the maximal update parametrization (µP) [67] to probabilistic networks,
one can tune the learning rate on a small model and achieve optimal generalization for larger models
by “transferring” the optimal learning rate from a smaller model (center and right).

S3.1.1 Datasets1061

Table S1: Benchmark datasets used in our experiments. All corrupted datasets are only intended for
evaluation and thus only have test sets consisting of 15 different corruptions of the original test set.

Dataset N Ntest Din C Train / Validation Split

MNIST [70] 60 000 10 000 28 × 28 10 (0.9, 0.1)
CIFAR-10 [81] 50 000 10 000 3 × 32 × 32 10 (0.9, 0.1)
CIFAR-100 [81] 50 000 10 000 3 × 32 × 32 100 (0.9, 0.1)
TinyImageNet [82] 100 000 10 000 3 × 64 × 64 200 (0.9, 0.1)

MNIST-C [72] - 150 000 28 × 28 10 -
CIFAR-10-C [73] - 150 000 3 × 32 × 32 10 -
CIFAR-100-C [73] - 150 000 3 × 32 × 32 100 -
TinyImageNet-C [73] - 150 000 3 × 64 × 64 200 -

S3.1.2 Metrics1062

Accuracy The (top-k) accuracy is defined as1063

Accuracyk(y, ŷ) =
1

Ntest

Ntest∑
n=1

1(yn∈ŷ1:k
n ). (S112)

Negative Log-Likelihood (NLL) The (normalized) negative log likelihood for classification is1064

given by1065

NLL(y, ŷ) = − 1

Ntest

Ntest∑
n=1

log p̂ŷn , (S113)

where p̂ŷn
is the probability a model assigns to the predicted class ŷn.1066

Expected Calibration Error (ECE) The expected calibration error measures how well a model1067

is calibrated, i.e. how closely the predicted class probability matches the accuracy of the model.1068

Assume the predicted probabilities of the model on the test set are binned into a given binning of the1069

unit interval. Compute the accuracy aj and average predicted probability p̂j of each bin, then the1070
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expected calibration error is given by1071

ECE =

J∑
j=1

bj |aj − p̂j |, (S114)

where bj is the fraction of datapoints in bin j ∈ {1, . . . , J}.1072

S3.2 Time and Memory-Efficient Training1073

To keep the time and memory overhead low during training, we would like to draw as few samples1074

of the parameters as possible to evaluate the training objective ℓ̄(θ). Drawing M parameter samples1075

for the loss increases the time and memory overhead of a forward and backward pass M times1076

(disregarding parallelism). Therefore it is paramount for efficiency to use as few parameter samples1077

as possible, ideally M = 1.1078

When drawing fewer samples from the variational distribution, the variance in the training loss and1079

gradients increases. In practice this means one has to potentially choose a smaller learning rate to1080

still achieve good performance. This is analogous to the previously observed linear relationship1081

Nb ∝ η between the optimal batch size Nb and learning rate η [e.g., 28–30]. Figure S8 shows this1082

relationship between the number of parameter samples used for training and the learning rate on1083

MNIST for a two-hidden layer MLP of width 128.1084
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Figure S8: Generalization versus number of parameter samples. For a fixed number of epochs and
batch size, fewer samples require a smaller learning rate. For a fixed learning rate, generalization
performance quickly plateaus with more parameter samples.

As Figure S9 shows, when using momentum, generalization performance tends to increase, but only1085

if either the number of samples is increased, or the learning rate is decreased accordingly. A similar1086

relationship between noise in the objective and the use of momentum has previously been observed1087

by Smith and Le [29], which propose and empirically verify a scaling law for the optimal batch size1088

Nb ∝ η
1−γ as a function of the momentum parameter γ > 0.1089

S3.3 In- and Out-of-distribution Generalization1090

This section recounts details of the methods we benchmark in Section 5, how they are trained and1091

additional experimental results.1092

S3.3.1 Architectures, Training, and Methods1093

Architectures We use convolutional architectures for all experiments in Section 5. For MNIST,1094

we use a standard LeNet-5 [70] with ReLU activations. For CIFAR-10, CIFAR-100 and TinyIm-1095

ageNet we use a ResNet-34 [71] where the first layer is a 2D convolution with kernel size=3,1096

stride=1 and padding=1 to account for the image resolution of CIFAR and TinyImageNet and1097

the normalization layers are GroupNorm layers. We use pretrained weights from ImageNet for all1098

but the first and last layer of the ResNets from torchvision [83] and fully finetune all parameters1099

during training.1100
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Figure S9: Generalization versus number of parameter samples when using momentum. Using mo-
mentum improves generalization performance, but when using fewer parameter samples, a smaller
learning rate is necessary than for vanilla SGD as predicted by Equation (6).
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Figure S10: Validation error during training for different numbers of parameter samples. The
difference in generalization error between different number of parameter samples vanishes with
more optimization steps both for SGD ( ) and when using momentum ( ), if the learning rate is
sufficiently small (in this example η = 0.003).

Training We train all models using SGD with momentum (γ = 0.9) with batch size Nb = 1281101

and learning rate η = 0.005 for 200 epochs. We do not use a learning rate scheduler since we found1102

that neither cosine annealing nor learning rate warm-up improved the results.1103

Temperature Scaling [68] For temperature scaling we optimize the scalar temperature param-1104

eter in the last layer on the validation set via the L-BFGS implementation in torch with an ini-1105

tial learning rate ηTS = 0.1, a maximum number of 100 iterations per optimization step and1106

history size=100.1107

Laplace Approximation (Last-Layer, GS + ML) [49] As recommended by Daxberger et al.1108

[49] we use a post-hoc KFAC last-layer Laplace approximation with a GGN approximation to the1109

Hessian. We tune the hyperparameters post-hoc using type-II maximum likelihood (ML). As an1110

alternative we also do a grid search (GS) for the prior scale, which we found to be somewhat more1111

robust in our experiments. Finally, we compute the predictive using an (extended) probit approxi-1112

mation. Our implementation of the Laplace approximation is a thin wrapper of laplace [49] and1113

we use its default hyperparameters throughout.1114

Weight-space VI (Mean-field) [34, 35] For variational inference, we used a mean-field variational1115

family and trained via an ELBO objective with a weighting of the Kullback-Leibler regularization1116

term to the prior. We chose a unit-variance Gaussian prior with mean that was set to the pretrained1117

weights, except for the in- and output layer which had zero mean. We found that using a KL weight1118

and more than a single sample (here M = 8) was necessary to achieve competitive performance.1119

The KL weight was chosen to be inversely proportional to the number of parameters of the model, for1120
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which we observed better performance than a KL weight that was independent of the architecture.1121

At test time we compute the predictive by averaging logits using 32 samples.1122

Implicit Bias VI [ours] For all architectures in Section 5 we use a Gaussian in- and output layer1123

with a low-rank covariance (R = 10, 20). We train with a single parameter sample M = 1 through-1124

out and do temperature scaling at the end of training on the validation set with the same settings as1125

when just performing temperature scaling. We do temperature scaling in classification due to the1126

specific form of the implicit bias in classification as described in Section S1.3. Since IBVI trains1127

by optimizing a minibatch approximation of the expected negative log-likelihood (an average over1128

log-probabilities with respect to parameter samples), we also average log-probabilities at test-time1129

to compute the predictive distribution over class probabilities. Although we did not see a significant1130

difference between averaging log-probabilities, probabilities or logits. Like for WSVI we use 321131

samples at test time.1132

SWAG [69] We used a slightly modified implementation of SWAG based on1133

torch-uncertainty and the original implementation by Maddox et al. [69]. The begin-1134

ning of the averaging cycle set to half the number of total epochs and a cycle length of one, i.e.1135

SWAG updates happen every epoch. For all other hyperparameters we use the default settings.1136

Deep Ensembles [52] We use five ensemble members initialized and trained independently. We1137

compute the predictive by averaging the predicted probabilities of the ensemble members in line with1138

standard practice [52]. We did not see a significant difference in performance between averaging1139

logits or averaging class probabilities.1140

S3.3.2 In-Distribution Generalization and Uncertainty Quantification1141

The full results from the in-distribution generalization experiment in Section 5 can be found in1142

Figure S11. The same experiment but done in the Maximal Update parametrization is depicted in1143

Figure S12. When finetuning a pretrained model, we found that on some datasets (CIFAR-100,1144

TinyImageNet) µP resulted in somewhat lower performance, contrary to the results in Section S2,1145

where we trained from scratch. This suggests that, when pretraining, there may be a modification to1146

the parametrization that could improve generalization.1147

0.01

0.02

Te
st

E
rr

or
↓

MNIST

0.075

0.100

0.125

CIFAR10

0.10

0.15

Te
st

To
p-

5
E

rr
or
↓ CIFAR100

0.15

0.20

O
O

M

TinyImageNet

0.05

0.10

Te
st

N
L

L
↓

0.5

1.0

1

2

2

3

O
O

M

10−2

10−1

Te
st

E
C

E
↓

0.0

0.5

0.0

0.5

0.0

0.5

O
O

M

Method
Standard
Temperature Scaling

Laplace (Last-layer, GS)
Laplace (Last-layer, ML)

Weight-space VI (Mean-field)
Implicit Bias VI (Low-rank)

SWAG
Ensemble

Figure S11: In-distribution generalization and uncertainty quantification (Standard parametriza-
tion).
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Figure S12: In-distribution generalization and uncertainty quantification (Maximal Update
parametrization).

S3.3.3 Robustness to Input Corruptions1148

Besides the benchmark in Figure S12, we also evaluated the models trained using the Maximal1149

Update parametrization on the corrupted datasets. The results can be found in Figure S13.1150

0.1

0.2

Te
st

E
rr

or
↓

MNISTC

0.25

0.30

CIFAR10C

0.3

0.4

Te
st

To
p-

5
E

rr
or
↓ CIFAR100C

0.6

0.8

O
O

M

TinyImageNetC

0.5

1.0

1.5

Te
st

N
L

L
↓

1

2

3

4

5

6

7
O

O
M

10−1

Te
st

E
C

E
↓

0.1

0.2

0.2

0.4

0.25

0.50

O
O

M

Method
Standard
Temperature Scaling

Laplace (Last-layer, GS)
Laplace (Last-layer, ML)

Weight-space VI (Mean-field)
Implicit Bias VI (Low-rank)

SWAG
Ensemble

Figure S13: Generalization on robustness benchmark problems (Maximal Update parametrization).
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