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Abstract

Modern deep learning models generalize remarkably well in-distribution, despite
being overparametrized and trained with little to no explicit regularization. In-
stead, current theory credits implicit regularization imposed by the choice of
architecture, hyperparameters and optimization procedure. However, deploying
deep learning models out-of-distribution, in sequential decision-making tasks, or
in safety-critical domains, necessitates reliable uncertainty quantification, not just
a point estimate. The machinery of modern approximate inference — Bayesian
deep learning — should answer the need for uncertainty quantification, but its ef-
fectiveness has been challenged by the associated computational burden and by
difficulties in defining useful explicit inductive biases through priors. Instead, in
this work we demonstrate, both theoretically and empirically, how to regularize a
variational deep network implicitly via the optimization procedure, just as for stan-
dard deep learning. We fully characterize the inductive bias of (stochastic) gradi-
ent descent in the case of an overparametrized linear model as generalized varia-
tional inference and demonstrate the importance of the choice of parametrization.
Finally, we show empirically that our approach achieves strong in- and out-of-
distribution performance without tuning of additional hyperparameters and with
minimal time and memory overhead over standard deep learning.

1 Introduction

The success of deep learning across many application domains is, on the surface, remarkable, given
that deep neural networks are usually overparameterized and trained with little to no explicit regular-
ization. The generalization properties observed in practice have been explained by implicit regular-
ization instead, resulting from the choice of architecture [1], hyperparameters [2, 3], and optimizer
[4-10]. Notably, the corresponding inductive biases often require no additional computation, in
contrast to enforcing a desired inductive bias through explicit regularization.

In the last two decades, there has been an increasing focus on improving the reliability and robust-
ness of deep learning models via (approximately) Bayesian approaches [1 1] to improve performance
on out-of-distribution data [12], in continual learning [13] and sequential decision-making [14].
However, despite its promise, in practice, Bayesian deep learning can suffer from issues with prior
elicitation [15], can be challenging to scale [16], and explicit regularization from the prior combined
with approximate inference may result in pathological inductive biases and uncertainty [17-20].

In this work, we demonstrate both theoretically and empirically how to exploit the implicit bias of
optimization for approximate inference in probabilistic neural networks, thus regularizing training
implicitly rather than explicitly via the prior. This not only narrows the gap to how standard neural
networks are trained, but also reduces the computational overhead of training compared to varia-
tional inference. More specifically, we propose to learn a variational distribution over the weights
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(a) Implicit regularization. (b) Explicit regularization.

Figure 1: Variational deep learning via implicit regularization. Neural networks generalize well
without explicit regularization due to implicit regularization from the architecture and optimization.
We can exploit this implicit bias for variational deep learning, removing the computational overhead
of explicit regularization and narrowing the gap to deep learning practice. As illustrated for a two-
hidden layer MLP and proven rigorously for overparametrized linear models in Theorems 1 and 2,
the implicit bias of (S)GD in variational networks (see (a)) can be understood as generalized vari-
ational inference with a 2-Wasserstein regularizer (see (b)). This differs from the standard ELBO
objective with a KL divergence to the prior as used for example in mean-field VI (see (b)).

of a deep neural network by maximizing the expected log-likelihood in analogy to training via max-
imum likelihood in the standard case. However, in contrast to variational Bayes, there is no explicit
regularization via a Kullback-Leibler divergence to the prior. Surprisingly, we show theoretically
and empirically that training this way does not cause uncertainty to collapse away from the training
data, if initialized and parametrized correctly. More so, for overparametrized linear models we rigor-
ously characterize the implicit bias of SGD as generalized variational inference with a 2-Wasserstein
regularizer penalizing deviations from the prior. Figure 1 illustrates our approach on a toy example.

Contributions In this work, we propose a new approach to uncertainty quantification in deep
learning that exploits the implicit regularization of (stochastic) gradient descent. We precisely char-
acterize this implicit bias for regression (Theorem 1) and binary classification (Theorem 2) in over-
parameterized linear models, generalizing results for non-probabilistic models and drawing a rig-
orous connection to generalized Bayesian inference. We also demonstrate the importance of the
parametrization for the inductive bias and its impact on hyperparameter choice. In several bench-
marks, we demonstrate competitive performance to state-of-the-art baselines for Bayesian deep
learning, at minimal computational overhead compared to standard neural networks. Finally, we
provide an open-source implementation of our approach in a standalone library: inferno.

2 Background

Given a training dataset (X ,y) = {(x,,y»)}._, of input-output pairs, supervised learning seeks a
model f,, () to predict the corresponding output y(z) for a test input . The parameters w € R”
of the model are typically trained via empirical risk minimization, i.e.

w, € argmin {g(w) with lr(w) = L(y, fuw(X)) + AR(w), (1)

where the loss ¢(y, fu (X)) encourages fitting the training data and the regularizer R(w), given
some A > 0, discourages overfitting, which can lead to poor generalization on test data.

Implicit Bias of Optimization One of the remarkable observations in deep learning is that train-
ing overparametrized models (P > N) with gradient descent without explicit regularization can
nonetheless lead to good generalization [21] because the optimizer, initialization, and parametriza-
tion implicitly regularize the optimization problem arg min,, ¢(y, f,,(X)) [e.g. 4,5, 7,22, 23].

Variational Inference Bayesian inference quantifies uncertainty in the parameters, and conse-
quently predictions, by the posterior distribution p(w | X, vy) x p(y | X, w)p(w), which depends
on the choice of a prior belief p(w) and a likelihood p(y | w). Approximating the posterior with
go ~ p(w | X,y) by maximizing a lower bound to the log-evidence leads to the following varia-
tional optimization problem [24]:

0, arg;nin(R(H) with  (p(0) = Eqy(w)(—logp(y | w)) + KL(gs(w) || p(w)). (2)
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Equation (2) is an instance of the optimization problem in Equation (1) where the optimization is
over the variational parameters 0 of the posterior approximation gg(w). In the case of a potentially
misspecified prior or likelihood, the variational formulation (2) can be generalized to arbitrary loss
functions ¢ and statistical distances D to the prior [25-27], such that

(r(0) = Egp(w) (U(y, fu(X))) + AD(qe, p). 3)

3 Variational Deep Learning via Implicit Regularization

Our goal is to learn a variational distribution gg(w) for the parameters w of a neural network,
as in a Bayesian neural network. However, in contrast to training with (generalized) variational
inference, which has an explicit regularization term defined via the prior to avoid overfitting, we will
demonstrate how to perform variational inference over the weights of a deep neural network purely
via implicit regularization, removing the need to store and compute quantities involving the prior
entirely. We will see that this approach inherits the well-established optimization toolkit from deep
learning seamlessly, while providing uncertainty quantification at minimal overhead.

3.1 Training via the Expected Loss

Rather than performing variational inference by explicitly regularizing the variational distribution to
remain close to the prior, we propose to train by minimizing the expected loss £(0) in analogy to how
deep neural networks are usually trained. Therefore, the optimal variational parameters are given by

6. € arg min By o) ((y, (X)) +irr @

Practically, this means we do not need to compute the regularization term and its gradient during
training and we do not need to allocate additional memory for the prior hyperparameters.! However,
at first glance modifying the variational objective in Eq. (2) by removing the divergence term seems
to defeat the purpose of a Bayesian approach entirely. We are completely omitting the prior from the
training loss. Why should the uncertainty over the weights not collapse? How does this incorporate
any prior information?

3.2 Implicit Bias of (S)GD as Generalized Variational Inference

Unexpectedly, training via the expected loss achieves regularization to the prior solely by initializing
(stochastic) gradient descent to the prior, as we will prove in Section 4 for an overparametrized
linear model. Moreover, we can characterize this implicit regularization exactly. (S)GD converges
to a global minimum @SP € argmin £(0) of the training loss, given an appropriate learning rate
sequence. But among the global minima, if (S)GD is initialized to the parameters of the prior and
the Gaussian variational family is parametrized appropriately, then the solution identified by (S)GD
minimizes the 2-Wasserstein distance to the prior, i.e.

. 2
gooo =  argmin  W3(qe,p) -
de _

s.t. @carg min £(0)

This equation shows that the implicit bias of (S)GD is such that it converges to a generalized varia-
tional posterior, minimizing Eq. (3) for a certain regularization strength, but with a regularizer that
is not a KL divergence as it would be for standard variational inference, but rather a 2-Wasserstein
distance to the prior. Given this characterization, we call our method Implicit Bias V1.

Section 4 provides a detailed version of the regression results introduced here and proves a similar
result for binary classification. Our experiments in Section 5 focus on the application to deep neural
networks. Since training via the expected loss can achieve zero loss in overparameterized models,
we expect our approach to mimic vanilla deep networks closely in-distribution, while falling back
to the prior out-of-distribution, as enforced by the 2-Wasserstein regularizer.

'We only need them to initialize the optimizer after which we can free up the memory.
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3.3 Computational Efficiency

In practice, we minibatch the expected loss both over training data and parameter samples w,,, drawn
from the variational distribution gg(w) such that

N, M

£(6) = By (w1 Fu 30D = 57 D D U fan, (X)), 0

n=1m=1

The training cost is primarily determined by two factors. The number of parameter samples M we
draw for each evaluation of the objective, and the variational family, which determines the number
of additional parameters of the model and the cost for sampling a set of parameters in each forward
pass. We wish to keep the overhead compared to a vanilla deep neural network as small as possible.

Training With A Single Parameter Sample (M = 1) When SGD
drawing fewer parameter samples w,,, the training objective in 0.10
Eq. (5) becomes noisier in the same way a smaller batch size im-
pacts the loss. This is concerning since the optimization proce-
dure may not converge given this additional noise. However, one
can train with a single parameter sample only, simply by reduc-
ing the learning rate appropriately, as we show experimentally in 0.00 —sr——rrrmr——rrrr
Figure 2 and Section S3.2. Therefore given a set of sampled pa-

rameters, the cost of a forward and backward pass is identical to 0.10
a standard neural network (up to the overhead of the covariance
parameters). In analogy to the previously observed relationship
[e.g., 28-30] between the optimal batch size N, learning rate n
and momentum -, when optimizing the expected loss we con-
jecture the following scaling law for the optimal batch size IV, 0.00 ~h—r—rrrrr—r—rrrrrm
and number of parameter samples M: 100 10! 102

Ny M o L. (6) Parameter Samples
1=y

0.05 A

Test Error |

SGD + Momentum

0.05 A

Test Error |

oo SNomme

Figure 2 illustrates this. When using fewer parameter samples in Figure 2:  Training with a
the expected loss, training is unstable unless the learning rate is  single parameter sample given
chosen sufficiently small. For a fixed number of optimizer steps a small enough learning rate.
this decreases performance, but either training for more steps, Lighter color shades correspond
or using momentum closes this gap. As predicted by Eq. (6), to smaller learning rates. See
momentum requires a smaller learning rate than vanilla SGD. also Section S3.2.

Variational Family and Covariance Structure We choose a Gaussian variational distribution
go(w) over (a subset of the) weights of the neural network. While at first glance this may seem
restrictive, there is ample evidence that variational families in deep neural networks do not need to
be complex to be expressive [31, 32]. In fact, in analogy to deep feedforward NNs with ReLU acti-
vations being universal approximators [33], one can show that Bayesian neural networks with ReLU
activations and at least one Gaussian hidden layer are universal conditional distribution approxima-
tors, meaning they can approximate any continuous conditional distribution arbitrarily well [32]. As
we show in Section 4, training an overparametrized linear model with SGD via the expected loss
amounts to generalized variational inference if the covariance is factorized, i.e. ¥ = SST where
S € RP*E is a dense matrix with rank R < P. Note that this (low-rank) parametrization of a
covariance is non-standard in the sense that the implicit regularization result does not hold in the
same form for a Cholesky factorization! Motivated by the theoretical observation of the implicit
bias in Theorem 1, we use Gaussian layers with factorized covariances for all architectures.

3.4 Related Work

Variational inference in the context of Bayesian deep learning has seen rapid development in recent
years [34-39]. Using a Wasserstein regularizer [27] in the context of generalized VI [26] is arguably
most related to our work, given our theoretical results. Structure in the variational parameters has al-
ways played an important role for computational reasons [31, 40, 41] and often only a few layers are
treated probabilistically [32], with some methods only considering the last layer, effectively treat-
ing the neural network as a feature extractor [42, 43]. The Laplace approximation if applied in the
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last-layer also falls under this category, which has the advantage that it can be applied post-hoc [13,
44-51]. Deep ensembles repeat the standard training process using multiple random initializations
[52, 53] and have been linked to Bayesian methods [54, 55] with certain caveats [56, 57]. While we
use SGD only to optimize the variational parameters and arguably average over samples by using
momentum, SGD has also been used widely to directly approximate samples from a target distri-
bution [54, 58-60]. Our theoretical analysis extends recent developments on the implicit bias of
overparameterized linear models [4, 5, 7] to the probabilistic setting. For classification, works have
focused on convergence rates [6], SGD [7], SGD with momentum [8], and the multiclass setting
[10]. Results on the implicit bias of neural network training [22] often assume large widths [9, 61—
64] allowing similar arguments as for linear models. The former is exemplified by the neural tangent
parametrization, under which neural networks behave like kernel methods in the infinite width limit
[65]. Yang et al. [63, 64, 66, 67] developed an alternative parameterization that still admits feature
learning in the infinite width limit, which we extended to the case of variational networks.

4 Theoretical Analysis

Consider an overparameterized linear model with a Gaussian prior, which is trained via maximum
expected log-likelihood using (stochastic) gradient descent. We will show that, in both regression
(Theorem 1) and binary classification (Theorem 2), our approach can be understood as generalized
variational inference with a 2-Wasserstein regularizer, which penalizes deviation from the prior.
These theoretical results directly recover analogous results for non-probabilistic models [4, 5].

4.1 Linear Regression

Theorem 1 (Implicit Bias in Regression)
Let fu(x) = x"w be an overparametrized linear model with P > N. Define a Gaussian prior
p(w) = N(w; 1o, SOSJ) and likelihood p(y | w) = ./\/(y; fw(X),cr2I) and assume a varia-
tional family qg(w) = N(w; u, SST) with @ = (u, S) such that p € RY and S € RP*E ywhere
R < P. If the learning rate sequence (1) is chosen such that the limit point 6S° = lim;_, ., P
identified by gradient descent, initialized at 6y = (o, So), is a (global) minimizer of the expected
log-likelihood £(0), then

0P ¢ argmin  W3(qe,p). (7

0=(n,S) _
s.t. @€arg min £(0)

Further, this also holds in the case of stochastic gradient descent and when using momentum.
Proof. See Section S1.1.1. O

Theorem 1 states that, among those variational parameters which minimize the expected loss, SGD
(with momentum) converges to the unique variational distribution which is closest in 2-Wasserstein
distance to the prior. This characterization of the implicit regularization of SGD as generalized varia-
tional inference differs from a standard ELBO objective (2) in VI via the choice of regularizer. Since
the variational parameters minimize the expected loss in Equation (7), all samples from the predic-
tive distribution interpolate the training data (see Figure 1(b), right panel), the same way a standard
neural network would. In contrast, when training with a KL regularizer, the uncertainty does not
collapse at the training data (see Figure 1(b), left panel), in fact a KL regularizer would diverge to
infinity for a Gaussian with vanishing variance. Now, for test points that are increasingly out-of-
distribution, i.e. less aligned with the span of the training data, the variational predictive matches the
prior predictive more closely. Next, we will prove a similar result for binary classification.

4.2 Binary Classification of Linearly Separable Data

Consider a binary classification problem with labels y,, € {—1,1}, a linear model f,,(z) = = w

and a variational distribution gg(w) with variational parameters 6. The expected empirical loss
is £(0) = S0 Eyyw) (Lynzlaw)) . We assume without loss of generality that all labels are

n=1
positive,? such that y,, = 1, and that the dataset is linearly separable.

2This is not a restriction since we can always absorb the sign into the inputs, such that &/, ‘= y,@,.
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Assumption 1 The dataset is linearly separable: 3w € R” such that Vn : w'z,, > 0.
Define fi to be the Lo max margin vector, i.e. the solution to the hard margin SVM:

fo=argmin ||p|3 st plz, >1, 8)
HERP

and the set of support vectors S = arg min,, ¢y x) {1 indexing those data points that lie on the
margin. We adapt the following additional assumption from Nacson, Srebro, and Soudry [7], which
can be omitted at expense of simplicity as we show in Section S1.2.

Assumption 2 The SVM support vectors span the dataset: span({Z, }ne[n]) = span({Z, fnes)-

We can now characterize the implicit bias in the case of binary classification.

Theorem 2 (Implicit Bias in Binary Classification)

Let fu,(z) = xTw be an (overparametrized) linear model and define a Gaussian prior p(w) =
N('w; Ko, SOS(T). Assume a variational distribution qg(w) = N (w; , SST) over the weights
w € RY with variational parameters @ = (p, S) such that S € RY*% and R < P. Assume we
are using the exponential loss {(u) = exp(—u) and optimize the expected empirical loss ¢(0) via
gradient descent initialized at the prior; i.e. 0y = (o, So), with a sufficiently small learning rate 1.
Then for almost any dataset which is linearly separable (Assumption 1) and for which the support
vectors span the data (Assumption 2), the rescaled gradient descent iterates (rGD)

H;GD = (.U/EGDv SgGD) = (10;(,5) H’SD + Pnull(X)u’Oa S?D) 9
converge to a limit point "°P = lim;_, ., 6:°P for which it holds that
0"°° ¢ arg min W3 (qe, p) - (10)
0=(p,S)
5.1. €O,

where the feasible set ©, = {(1, S) | Pange(xT)lt = ft  and n : Varg, (fw(x,)) = 0} consists
of mean parameters which, if projected onto the training data, are equivalent to the Lo max margin
vector and covariance parameters such that there is no uncertainty at training data.

Proof. See Section S1.2. O

Theorem 2 states that the mean parameters g, converge to the Ly max-margin vector f in the span
of the training data, i.e. the data manifold, and there uncertainty collapses to zero. This is analogous
to the regression case, where zero training loss enforces interpolation of the training data. In the
null space of the training data, i.e. off of the data manifold, the model falls back on the prior as
enforced by the 2-Wasserstein distance. The assumption of an exponential loss is standard in the
literature and we expect this to extend to (binary) cross-entropy in the same way it does in results
for standard neural networks [4, 6—8, 10]. Similarly, we conjecture that Theorem 2 can be extended
to SGD with momentum [cf. 7, 8]. While Theorem 2 is similar to Theorem 1, there are some subtle
differences. First, the feasible set for the minimization problem in Equation (10) is not the set of
minima of the expected loss. This is because the exponential function does not have an optimum
in contrast to a quadratic function. However, the sequence of variational parameters identified by
gradient descent still satisfies lim; . £(6;) = 0. Second, without transformation of the mean
parameters, the exponential loss results in the mean parameters being unbounded. This necessitates
the transformation in Equation (9) as we explain in detail in Section S1.3.

S Experiments

We benchmark the generalization and robustness of our approach, Implicit Bias VI (IBVI), against
standard neural networks and several baselines for uncertainty quantification, namely Temperature
Scaling (TS) [68], & [44, 45, 49], Weight-Space VI
(WSVI) [34, 35], [69] and Deep Ensembles (DE) [52], on a set of standard
benchmark datasets for image classification and robustness to input corruptions. We use a convo-
lutional architecture (either LeNet5 [70] or ResNet34 [71]) throughout, which, for all datasets but
MNIST, is initialized with pretrained weights in all layers except for the input and output layer.
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Figure 3: In-distribution generalization and uncertainty quantification. Implicit Bias VI (IBVI) has
similar test error to other Bayesian deep learning approaches and achieves competitive uncertainty
quantification on in-distribution data. While ensembles have improved accuracy, they come at an
additional memory overhead. Training a probabilistic model via IBVI has only a minor computa-
tional overhead during training, both in time and memory, over standard deep learning.

All models were trained with SGD with momentum v = 0.9 and a batch size of N, = 128 for
200 epochs in single precision on an NVIDIA GH200 GPU. Results shown are averaged across five
random seeds. A detailed description of the datasets, metrics, models and training can be found in
Section S3. An implementation of our method is contained in the supplementary material and will
be open-sourced upon publication.

In-Distribution Generalization and Uncertainty Quantification In order to assess the in-
distribution generalization, we measure the test error, negative log-likelihood (NLL) and calibra-
tion error (ECE) on MNIST, CIFAR10, CIFAR100 and TinyImageNet. As Figure 3 shows for CI-
FAR100, and Figure S11 for all datasets, the test error for post-hoc methods (TS, s )
is unchanged. As expected, and IBVI perform similarly with only Ensembles providing an
increase in accuracy, but at substantial memory overhead compared to most other approaches. In-
distribution uncertainty quantification measured in terms of NLL is improved substantially by TS,
DE and IBVI with only and WSVI showing occasional worsening of NLL compared to the base
model. The full results in Figure S11 show that TS, DE and IBVI consistently are also the best cali-
brated. As described in Section 3.3, for IBVI we train with a single sample only and a probabilistic
input and output layer with low-rank covariance, reducing the computational overhead compared
to a standard neural network to as little as &~ 10% both in time and memory (see Figure 3). See
Section S3.3.2 for the full experimental results including different parametrizations (SP vs pP).

Robustness to Input Corruptions We evaluate the robustness of the different models on
MNISTC [72], CIFAR10C, CIFAR100C and TinylmageNetC [73]. These are corrupted versions
of the original datasets, where the images are modified via a set of 15 corruptions, such as impulse
noise, blur, pixelation etc. We selected the maximum severity for each corruption and averaged
the performance across all. As expected, the performance of all models drops compared to the in-
distribution performance measured on the standard test sets as Figure 4 shows. Besides DE which
consistently show lower test error, also IBVI shows improved accuracy on corrupted data compared
to all other approaches. When using the maximal update parametrization, shows good ac-
curacy on the two larger datasets (see Figure S13). TS, DE and IBVI perform consistently well in
terms of uncertainty quantification (both for NLL and ECE) across all datasets, with being
somewhat competitive in terms of NLL. However, compared to the in-distribution setting IBVI has
better uncertainty quantification than the Ensembles across all datasets.

Limitations Compared to standard neural networks, when training via Implicit Bias VI, we ob-
served that often lower learning rates were necessary due to the additional stochasticity in the ob-
jective (see also Section 3.3). While this does not have a significant impact on generalization, the
models sometimes require slightly more epochs to achieve similar in-distribution performance to
standard neural networks. Effectively, in the beginning of training it takes a bit more time for IBVI
to become sufficiently certain about those features which are critical for in-distribution performance.
This also means that folk knowledge on learning rate settings for specific architectures may not im-
mediately transfer. In the experiments we train models with probabilistic in- and output layers with
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Figure 4: Generalization on robustness benchmark problems. When comparing different methods
for Bayesian deep learning with regards to robustness to 15 different input corruptions, our approach,
Implicit Bias VI, consistently has competitive uncertainty quantification across different datasets and
metrics without sacrificing accuracy compared to a non-probabilistic network.

our approach, but we have so far not explored other covariance structures or where in the network
probabilistic layers are most beneficial. While there is some theoretical evidence this may be suf-
ficient [32], we believe there is potential for improvement. Beyond the prior induced by a choice
of parametrization, we did not experiment with more informative or learned priors, which could
potentially give significant performance improvements on certain tasks [15].

6 Conclusion

In this paper, we demonstrated how to exploit the implicit regularization of (stochastic) gradient
descent for variational deep learning, as opposed to relying on explicit regularization. We rigorously
characterized this implicit bias for an overparametrized linear model and showed that our approach is
equivalent to generalized variational inference with a 2-Wasserstein regularizer at reduced computa-
tional cost. thus conferring desirable properties such as learning rate transfer. Lastly, we empirically
demonstrated competitive performance with state-of-the-art methods for Bayesian deep learning on
a set of in- and out-of-distribution benchmarks with minimal computational overhead over standard
deep learning. In principle, our approach is not restricted to Gaussian variational families and should
seemlessly extend to location-scale families, which could further improve performance. Finally, it
would be interesting to explore connections between Implicit Bias VI and Bayesian deep learning
in function-space [e.g., 27, 51, 74-76].
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S1 Theoretical Results

Lemma S1

Let q(w) = N(w;pu, X), p(w) = N(w; po, Xo) such that p, py € RY, 3,35 € RFXF posi-
tive semi-definite and let Vy € RP*N | Vg € RPX(P=N) be matrices with pairwise orthonormal
columns that together define an orthonormal basis of RY, i.e. for V.= [V4 Vg] it holds that
VVT = VTV = I and span(V) = RE. Assume further that

VIiZV, =0, (S11)
then the squared 2-Wasserstein distance is given by
2
Wi(a.p) = VA r — Vipo||, + Wo (N (V5 1, VEEVE), N (V5 o, V5 Z0VE)) + C, (S12)

where the constant C is independent of (p, X).

Proof. Consider the matrix

0 VIZV,
VTEV — NXxN A B .
[Vg TV, VISV

Since VTEV is symmetric positive semi-definite, its off-diagonal block V] £V satisfies
(I-00HV/EVp =0 < V/ZVz=0
by Boyd and Vandenberghe [AS.5, 77]. Therefore, we have

T _[Oonxn  VIiZVE] [ Onxn Onx(P—n)
Vv = [VBTEVA VISVe| = [0p_nyun  VIEVs | (S13)
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sz The squared 2-Wasserstein distance between ¢(w) and p(w) is given by
W30, ) = [l = poll3 + tr(Z = 2(S2 2 E2)% + 3).

603 For the squared norm term it holds by unitary invariance of ||-||2 that

i)

2
= |V = VI ol + | Vi 1 = Vi o5
2

e — poll2 = IV (4t — pro) |3 = \

604 Now for the trace term we have that

tr(VVT(E - 2(T72087)7 + %))

=tr(VTZV) = 2te(VT(Z22X2)7 V) + tr(VTE, V)
tr(VIZVa) + tr(VEEVE) + tr(VIS0Va) + tr(VE S Vi) — 2t2(VT (222, 27)
L tr(VISVE) + tr(VaSeVa) — 2t (VT (B28,22)2 V)

Nl

V)

(S14)
605 where we used Eq. (S11) and £ denotes equality up to constants independent of (n, X).

606 Now by Eq. (S13), we have that ¥ = V3 MV, for M = V] £V and its unique principal square
607 oot is given by ¥ =VgM %VBT since
(VEM3V])(VEMEV]) = VBM%I(PfN)x(PfN)M%Vg =X
608 It also holds that the unique principal square root
(BE508%)% = Vg(M:VI S,V M?):Vy
609 since direct calculation gives
(VB(M?2 VSV M?)2 V) (Ve(M? VIS5,V M?)* V)
= VEM2VIS\VM3V] = 535,53,

610 Therefore we have that

tr(VT(228022)2V) = tr(VT V(M3 V3 SV M?): VI V) = tr(M2 Vi S0V M?)7).
611 Putting it all together we obtain

1

W3(q.p) = |Vip — VATuon +||Vep - Vg#o”i +tr(VAEVE) + tr(VAZgVp) - 2tr(VT (22 5,22)7V)
= |IVT = Vo2 + Va1 = Vo2 + te(VES V) + tr(VA Vi) — 2tr((M 3 VIS,V M) )
=[|Vip - V,IHOHE + W3 (N (VE i, VE BVi), N (V5 o, V5 Zo V)

612 which completes the proof. O

613 S1.1 Overparametrized Linear Regression

614 S1.1.1 Characterization of Implicit Bias (Proof of Theorem 1)

615  Theorem 1 (Implicit Bias in Regression)
616 Let fu,(x) = T w be an overparametrized linear model with P > N. Define a Gaussian prior
617 p(w) = N(w; po, SoS] ) and likelihood p(y | w) = N (y; fuw(X),0%I) and assume a varia-
618 tional family qo(w) = N(w; u, SST) with @ = (u, S) such that p € RY and S € RF*E where
619 R < P. If the learning rate sequence (1) is chosen such that the limit point 6S° = lim,_, ., OSP
620 identified by gradient descent, initialized at 0y = (o, So), is a (global) minimizer of the expected
21 log-likelihood £(0), then

0 ¢ argmin  W3(ge,p). (7

0=(u,S) _
s.t. @€arg min £(0)

622 Further, this also holds in the case of stochastic gradient descent and when using momentum.
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(a) NN trained with no explicit regularization. (b) BNN trained with no explicit regularization.

Figure S1: Implicit regularization in standard neural networks versus in probabilistic networks. Left
panels: A neural network trained without explicit regularization can converge to different global
minima of the loss. Optimization of the weights will implicitly regularize towards one or the other.
Right panels: Analogously, there are multiple distributions over neural networks that are global min-
ima of the expected loss. Optimization of the distribution over the weights will implicitly regularize
towards one or the other. Our approach uses this implicit regularization instead of an explicit regu-
larization to a prior.

Proof. Let 0, = (4, Sy) be a minimizer of £(0). By assumption it holds that the expected negative
log-likelihood is equal to the following non-negative loss function up to an additive constant:

U(8) = Egg w) (LY, fuo(X))) = Egg ) (— logp(y | w))

1
= 202 E%(w) (”y - X'w”%)

1
= 53 (ly = Xull3 + x(XEXT)) >0,

where ¥ = SST and non-negativity follows from 3 being symmetric positive semi-definite. There-
fore any (global) minimizer 6, = (p., 3,) necessarily satisfies

ly — XI5 =0, (S15)
tr(XZ,XT) =0. (S16)
Let V. = [Vimge Vaun] € RPXF be the orthonormal matrix of right singular vectors of X =

UAVT, where Viange € RPXN and Vy € REXP-N) | Since X € RY*F and we are in the
overparametrized regime, i.e. P > N, the optimal mean parameter decomposes into the least-
squares solution and a null space contribution

Hx = ‘/;angeu* + Viuz = XTy + Vaunz. (S17)

Furthermore, it holds for positive semi-definite & € R”>*¥ that

0<tr(XEXT) =tr(UAV'EVAU") = tr(AVEZVA)

.
=tr([Anxn O] [Vfﬁngefvrange :] [AJ\(f)xN])

= tI‘(ANXNVT E‘/rangeANXN)

range
N

_ E 2 T .

- )‘z [‘/rangez‘/;aﬂge]”
i=1

where A\? > 0 are the squared singular values of X, which are strictly positive since rank(X) = N.

Therefore using Equation (S16) any global minimizer necessarily satisfies [VrLgeE*Vrange]ii =0

fori € {1,...,N}. Now since Vr;geE*V}ange is symmetric positive semi-definite and its diagonal
is zero, so is its trace and therefore the sum of its non-negative eigenvalues is necessarily zero. Thus

all eigenvalues are zero and therefore
Ve S Viange = 0. (S18)

range
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Now by Lemma S1 we have that the squared 2-Wasserstein distance between gg, (w) =
N (w; py, 2y) and the initialization p(w) = N (w; o, Xo) is given up to a constant independent
of (1, Xy) by

qe* 7p || rangeu'* rangetu'o H + W2 (N(‘/;]ullll'*7 ‘/;1?1—112*‘/;11111) ) N(Vrl—lll—lll‘l’()? ‘/;11—1120 ‘/;11111))
= || X"y - V;;geHOH + W (N (Ve VB Vaun), N (Vo Vo Zo Vaurr))
= W% (N (‘/nu]l#'*a nuu2 VLuu) N (V;quJ«Oa ‘/;mllzo‘/null))

Therefore among variational distributions gg, with parameters 6, that minimize the expected loss
£(0), any such 8, that minimizes the squared 2-Wasserstein distance to the prior satisfies

(\V;Iult*f anInE*VnullJ) = (Vo k0, Vaon Zo Vaun)- (S19)
=z =M

(Stochastic) Gradient Descent It remains to show that (stochastic) gradient descent identifies a
minimum of the expected loss £(0), such that the above holds. By assumption we have for the loss
on a batch X of data that

U(8) = Egg w) (Y1, fo(Xb))) = Egg ) (— log (s | w))

¢ 1
= @(Hyb - Xpp3 + tr( X2 X)),

Therefore, at convergence of (stochastic) gradient descent the variational parameters 0., =
(Moo, Soo) are given by

too =0 — Y Vuls(0r 1) = po+ %Xg(yb = Xppi—1)

t=1 t=1

as well as

Soo=S0— Y mVsly(0i1)=So— %XJXbStq

t=1 t=1

and therefore

UiV
Zoo = nulllJ‘OC = nullHO + Z null Xb (Yo — XI)N:&—I)J = VnIuHO
=17

€range(X])

7It T T
nullS = nullSO E : null Xb XpSi-1 = nullSO
(I

columns €range(X])
where we used continuity of linear maps between finite-dimensional spaces. It follows that

T T T T T T
M, = Voo Viul = VouiiSoo Soo Vaul = ViunSoSo Vaur = Voun o Vaul-

Therefore any limit point of (stochastic) gradient descent that minimizes the expected log-likelihood
also minimizes the 2-Wasserstein distance to the prior, since 8, satisfies Equation (S19).

Momentum In case we are using (stochastic) gradient descent with momentum, the updates are
given by ~

M1 = e+ e Ape — eVl (0 + iy AO;) (S20)
Sir1 = Si + A8, — i Vsly(6; + ; AB;)

where

AG, — (ﬁg,:) —0,-0,,. A8 —o0.

for parameters v;, o, > 0, which includes Nesterov’s acceleration (v; = ay) [78] and heavy ball
momentum (a; = 0) [79].
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To prove that the updates of the variational parameters are always orthogonal to the null space of X,
we proceed by induction. The base case is trivial since A@y = 0. Assume now that V.I. Ay, = 0

null

and V.T  AS, = 0, then by Equation (S20), we have
Vol = V(e — o) = % VauA e — 1V Viulo (0: + 0, A6;) = 0
V;IHASI‘/—H = V;Iu(st-irl - St) = ’YtV;lIllASt - Ut‘/;aLlVSZb(Ot + OétAgt) =0

where we used the induction hypothesis and the fact that the gradients are orthogonal to the null
space as shown earlier.

Therefore by the same argument as above we have that 8., computed via (stochastic) gradient
descent with momentum satisfies Equation (S19), which directly implies Theorem 1. O

S1.1.2 Connection to Ensembles

Proposition S1 (Connection to Ensembles)

Consider an ensemble of overparametrized linear models f.,(x) = x'w initialized with weights
drawn from the prior 'wél) ~N ('w; Mo, SOS(T ) Assume each model is trained independently to
convergence via (S)GD such that w,"”’ = argming, £(y, fuw(X)). Then the distribution over the
weights of the trained ensemble qg.s(w) is equal to the variational approximation qg_(w) learned
via (S)GD initialized at the prior hyperparameters 6y = (o, So), i.e.

QEns (’UJ) = qegD (w) (SZ])

T

Proof. The parameters wg;) of the (independently) trained ensemble members identified via
(stochastic) gradient descent are given by

wgi) = arg min||w — w(()i)Hg
we

where F' = {w € RF | f,,(X) = Xw = y} is the set of interpolating solutions [3, Sec. 2.1]. Since
we can write F' equivalently via the minimum norm solution and an arbitrary null space contribution,
st. F={w= X"y + wy | wa € null(X)} we have

= X'y + argmin [lwnuan — (w(()i) — XTy)Hg
Wy €Enull(X)

= XT?J + projnull(X) w(()Z) - XTy
I
€range(XT)

where we used the characterization of an orthogonal projection onto a linear subspace as the (unique)
closest point in the subspace. Finally, we use that the minimum norm solution is in the range space
of the data and rewrite the projection in matrix form, s.t.

= XTy + Pnullw(()i).
Therefore the distribution over the parameters w((f;) of the ensemble members computed via (S)GD

with initial parameters wo ~ N (w; po, SoS{ ) is given by

QEns (’U}) = N wj FXTy + Pnul]HOF anuHSOJ SE)rPr;lr;ll
=HMEns =Skns

Now the expected negative log-likelihood of the distribution over the parameters of the trained en-
semble members ggns (w) with hyperparameters @gns = (fEns, SEns) 1S

- .1
£(Okns) = 252 (”y - X“Ens”g + tr(XSEnSngXT)) =0
and therefore g, is a minimizer of the expected log-likelihood. Further it holds that

z = ‘/;]Ill(Pnully'O) = ‘/;1?1—11/1’0

18



680

682
683

684

685
686
687
688
689
690
691
692
693
694
695
696

697

698
699
700

701

702

704

705

706

707
708

710
71

M = V.11 (PouinS0)(PauSo) " Vil = Vig1S0S¢8 Vaunt = Vi Zo Vaunl

and thus by Equation (S19), the distribution of the trained ensemble parameters minimizes the 2-
Wasserstein distance to the prior distribution, i.e.

Gens =  argmin Wg(q(w),/\/(w; o, 20)) -
q(w)=N(w;p,=)

Combining this with the characterization of the variational posterior in Theorem 1 proves the claim.
O

S1.2 Binary Classification of Linearly Separable Data

In this subsection we provide proofs of claims from Section 4.2. We begin with presenting some
preliminary results from Soudry et al. [4] which will be used throughout the proof. Next, we will
analyze the gradient flow of the expected loss. We extend the results for the gradient flow to gradient
descent and derive the characterization of the implicit bias, completing the proof of Theorem 2.

Theorem 2 (Implicit Bias in Binary Classification)

Let fo(x) = x"w be an (overparametrized) linear model and define a Gaussian prior p(w) =
N(w; Ko, SOSJ). Assume a variational distribution qg(w) = N('w; W, SST) over the weights
w € RY with variational parameters @ = (u, S) such that S € RY*% and R < P. Assume we
are using the exponential loss {(u) = exp(—u) and optimize the expected empirical loss ¢(0) via
gradient descent initialized at the prior, i.e. 6y = (o, So), with a sufficiently small learning rate 1.
Then for almost any dataset which is linearly separable (Assumption 1) and for which the support
vectors span the data (Assumption 2), the rescaled gradient descent iterates (rGD)

agGD = (H;GD7 S;GD) = (logl(t) H?D + Pnull(X)lJ/Oa StGD) (9)
converge to a limit point "°P = lim;_, ., 6:°P for which it holds that
6"°° ¢ argmin W2 (qe, p) . (10)
0=(u,S)
s.t. 0€O,

where the feasible set O, = { (1, S) | Punge(xT)it = ft and Vn : Vary,(fw(Tn,)) = 0} consists
of mean parameters which, if projected onto the training data, are equivalent to the Ly max margin
vector and covariance parameters such that there is no uncertainty at training data.

S1.2.1 Preliminaries

Recall that the expected loss is given by

7 N
6(0) = anl qu(w) (Z(yn:c;w)) y (522)
and specifically, for the exponential loss, we have
00) =i(p,8) =" exp (—xfp+ L2l SSTx,,) . (S23)
Throughout these proofs, for any mean parameter iterate p;, we define the residual as
Ty = pe — frlogt — f1 (524)
where 1 is the solution to the hard margin SVM, and g is the vector which satisfies
Vn €S :nexp (—wlﬂ) = ap, (825)
where weights ., are defined through the KKT conditions on the hard margin SVM problem, i.e.
a=3 anz,. (S26)
nes

In Lemma 12 (Appendix B) of Soudry et al. [4], it is shown that, for almost any dataset, there are no
more than P support vectors and av, # 0,Vn € S. Furthermore, we denote the minimum margin to
a non-support vector as:
. T~
= > 1. S27

K {Lrggl T, [ (S27)
Finally, we define Ps € RP*? as the orthogonal projection matrix to the subspace spanned by the
support vectors, and Ps = I — Ps as the complementary projection.
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712 S1.2.2 Gradient Flow for the Expected Loss

713 Similar as in Soudry et al. [4], we begin by studying the gradient flow dynamics, i.e. taking the
714 continuous time limit of gradient descent:

6, = —VI(8,), (S28)
715 which can be written componentwise as:
1
= —Vul(pe, Se) = Zexp ( i Ty + 2mTStSTmn) ., (S29)
T L P T
S, = ~Vsl(ps, S) = Z exp (—ut x, + §wnStSt wn) TnT, S (S30)

716 We begin by showing that the total uncertainty, as measured by the Frobenius norm of the covariance
717 factor, is bounded during the gradient flow dynamics. To that end, we derive the following dynamics:

1
dt 5 ||St||F =tr(S]S,) = Z exp <—utTa:n + QmIStStT:rn> ] S:||? <0, (S31)

71¢  and therefore
ISel1% < 11Soll%- (S32)
719 Finally, by Cauchy-Schwarz inequality, we have that
1S:S7 ll7 < 118l < [1Soll%- ($33)

720 We continue by studying the convergence behavior of the mean parameter pi;.

721 Mean parameter Our goal is to show that ||| is bounded. Equation (S24) implies that
1. 1
=i — Pl ~Vul(pe, Sp) — *# (S34)

722 This in turn implies that

N
1.
= Z exp (—utT:cn + 2scIStSTscn> xlr — ngrt

1 1
= Z exp (— log(t)ju" @, — ", + anStSTmn — w;';rt> xlr, — EﬂTrt
nes
1 S35
Z exp ( log(t p, €, — ﬁTCIJn + 5331&5333” — wlrt> wlrt (535)
n¢S

1
[ Z exp ,u x, (exp ( wlrt + QwZStSJmn> - 1) wlrt]

nes

T
1\#* *n 1
S () e (it + JalsisTen ) e (o) w] |

n¢S

+

723 where in last line we used the fact that i@, = 1forn € S, and that >, _g exp(—x} )z, = fi.
724 We begin by examining the first bracket studylng three possible cases for each of the summands.
725 First, note that if @] r, < 0, then since £ S;S] x,, > 0, we have that

(eXp ( x! nTt + 2$IStST:rn> - 1) :cln <0. (S36)
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Next, by defining B := ||So||%,if 0 < & r; < £, we have that

(exp( x’ Wt + ;wIStS wn) — 1) T, T < <exp (g) — 1> g, (837)

and if a:lrt > g, we have that

1
(Cxp <—mlrt + 5::;1&53 azn) - 1) x'r, <0. (S38)

Finally, for arbitrary € > max{B, 1}, if |x[r;| > ¢, we have that

B
(exp ( x! ot + anStSTwn) — 1) T, < (exp (—2) — 1) € <0, (839)

Furthermore, let v, = min,cs fi' T, and v* = max,cs ft' €,. Now, by taking € > max{B,1}
large enugh such that

mm—vﬂ(wp(—§>—1>ezLﬂmm@wa<wp<§)—1>§, (540)

if there exists a support vector n € S such that |z r;| > ¢, then

- Zexp u x, (exp ( x! nTt + anStSTa:n> — 1) wlrt <0. (841
nGS

On the other hand, for the second bracket in Eq. (S35), note that for n ¢ S, we have that (B;I; o>k
and hence

~T
1 K Tn 1
Z (t) exp <_ﬁTmn + QmZStS;r:cn> exp (—zpre) Th Ty
n¢s (S42)
1 1 1

< = Z exp (—ﬂTa:n + QwIStStTwn> = O(t“)’
where in the last line we used that ze=* < 1,Vz € R and fact that ||S; S] || r < ||So||% < .
We will now combine the results from above to show that the residual 7, is bounded in the following

way if there exists a support vector n € S such that |z]7;| > € for big enough ¢ > 0, then

34 Llry||> = O(t*). If such a support vector does not exist at time ¢, we will show that 7; is
containted inside a compact set. To that end, if HPgrt | > €1, we have that

max\as " > ywn Psry|” = HXS Psry|” > (Xs)ei, (843)
ISI S|

|S| mln

where in the first 1nequa11ty we used the fact that PS x, = x, forn € S§. Hence by choosing ¢;
such that 02, (Xs)e?/|S| = €2, where the € is chosen in Eq. (S40), we have that

1d B
1Psrell > e1 = o —[lme]> = O(t™). (S44)

On the other hand, if || Ps7|| < €1, recall that

re = (pe — po) + po — frlogt — f, (545)
and since all updates to the mean parameter are in the space spanned by the support vectors (As-
sumption 2), we have that ~ ~ ~

Psr, = Pspo — Psju. (S46)
We can now conclude that
|Psri]| < e = rell < || Psvell + | Psril| < 2 + | Pspoll + | Psiall < 00 (S47)
Finally, combining the results from Eq. (S42) and Eq. (S47), recalling that x > 1, we have that ||r||
is bounded for all ¢ > 0. This completes the first part of the proof and shows that

pe = frlogt + i+ 7y = fulogt + O(1), (548)
and in particular
lim Pt — _#_ (S49)
t=oo [lpel| [/

We proceed by showing that the limit covariance parameter vanishes in the span of the support
vectors.
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Covariance parameter We begin by plugging the definition of residual r, (Equation (S24)) into
the dynamics of S;:

1
S = —V5£ [Jt, St Z exp (—[,L;rﬁﬂn + 23:15}523:”) xanSt

1 . 1
= — Z 7 eXP (—quﬂn - rtTa:n) exp <2wZStS;rwn> x xS, (S50)
nes
1) = 1
- Z (t) exp (—[LTscn - rtTmn) exp (2:1115,53;:%) z,x) S,
n¢S

where we used that ] i = 1 forn € S. Also, we know that ||r;| is bounded from the previous
part. Hence, let

C— i’ 71*Tn>0' SSl
nrg[ljg]rggeXp( pla, —r/a,) (S51)

Furthermore, let o,y be the smallest non-zero eigenvalue of the matrix cs TnT Fmally, we
define
A, = tr(PsS,S] Ps)

to be the trace of the projection of the covariance parameter to the space of support vectors in S. We
compute its derivative over time and plug in the dynamics of .S;:

thAt —tr(PSStS PS)

1 1
=~ Z exp (@' ®, — ] ®,) exp <2m;stsjm"> tr(Psx,x S;S] Ps)

1 T, [ 1
_ Z () exp (_ﬂT;En — rtTa:n) exp (Q:BIStStT:Bn> tr(Psx x| S, S Ps)

1 5 1 1
= exp (—p"x, — 7] x,) exp <2mIStS;ra:n> tr(Psz,x, S: S| Ps) + O(t“)

C 1
<-— > tr(Psmn) S, ST Ps) + O <w>

nes

C 1
=— <P5 (Z mmT> sts,TP5> + o(tm)

nes
Camin

1
< - ; tr(PSStS,gTPS)JrO(tK)

CUmin 1
S A -
7 t+0<tm),

(S52)

where the first inequality follows from Eq. (S51), and the second from the definition of o,,;,. By
Gronwall’s lemma, we have that there exists a constant ' > 0 such that, for some fixed tg > 0,

7200’min K

M ToPr— D> ¢, (S53)

Ay < Ay, (%)

Finally, since |S| Comin > 0 and x > 1, we conclude that A; — 0 as ¢ — oo. This implies that the
covariance parameter converges to zero in the span of the support vectors, i.e.

Vn €S lim xS, Sz, =0, (S54)

as desired. O
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S1.2.3 Complete Proof of Theorem 2

We will now extend the results for the gradient flow to gradient descent and then use these results to
characterize the implicit bias of gradient descent as generalized variational inference.

Throughout this proof, let

N
1
A; = Z exp (—utT:cn + QwZStStTwn> aznwl (855)
n=1

be a positive definite matrix at iteration ¢. We begin the section with a few lemmata which will be
used throughout the proof.

Lemma S2
Suppose that we start gradient descent from (g, So). If 1 < Amax(Ao) ™", then for the gradient
descent iterates

Siy1 =5 — ﬁvsg(ﬂu St), (556)
we have that ||St||r < ||Sol|F for all t > 0.

Proof. First, note that the gradient descent update for the covariance factor is given by
Si11 =8I —nAy), (S57)
and hence we have that
[St11llr = [1Se(I = nAd)|F < (ISt p[I(T — nA)]2. (S58)
Now, since 17 < Amax(A0) ™ < Amax(Ay) ™! for all ¢ > 0 and noting that A; = 0, we have that
(I —nA)ll2 <1, (S59)

and therefore
[St+1llr < [|Sellr- (560)

Finally, we can conclude that ||S;||r < ||Sp||r for all ¢ > 0, as required.
O

Lemma S3
Suppose that we start gradient descent from (19, S0). If 1 < Amax(Ao) ™%, then for the gradient
descent iterates

Bt =ty — 0V l(pe, Sy), (S61)

we have that Y IV l(ppu, SW)|? < oo Consequently, we also have that
hmf_,eo ||VIL£(Hf7 Sf)||2 = 0

Proof. Note that our loss function is not globally smooth in p. However, if we initialize at (g, So),
the gradient descent iterates with 7 < Apax(Ao) ! maintain bounded local smoothness. The state-
ment now follows directly from Lemma 10 in Soudry et al. [4]. O

Lemma S4
By choosing €1 as in Eq. (S44), if || Psr¢|| > €1, we have that

1 1
(o1 — 1) 7 < (9<tﬁ> —|—(’)<t2>|rt|. (S62)
If | Psr:|| < €1, there exists a constant C such that

(P —7) 1 < C. (S63)
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Proof. We follow similar steps as in the gradient flow case. It holds that
("’t+1 - Tt)TTt
N T
= (=nVulpe, St) — p(log(t +1) —log(t))) " 7
N
1
=n Z exp <—NtTa’»‘n + 25315}535%) zore — o rylog(1+¢71)
n=1 (S64)
N _ _ 1
=a'r(t 7 —log(14+t71) + 1 Z exp (—u;r:cn + 2€Blst5;r$n> xr,
n¢S
1 N 1
0 Y [Lexp (<) +exp (—ulw, + Lol SiSTa, )| @lre
nes t 2

where in the last equality we used Equation (S26) to expand fi"r;. Furthermore, we can bound all
four terms as follows, beginning with the first term:

1
atry (™ —log(1+t71)) < ||rt|(9<t2>, (S65)

where we used that log(1 +¢~1) = ¢! + O(tfz). For the second term, using the same argument
as in Equation (S42), we derive that

1 1
n Z exp (—/J,tTa:n + QwIStStTa:n) :clrt < O(t") (S66)
n¢S

For the third item, from Eq. (S41) and Eq. (S43), we have that || Psr;|| > €; implies that

1 1
n Z [_t exp (—ﬂT:l':n) + exp <—utT:cn + 2:1:15}53:%)} xlr, <O0. (S67)
nes

The first result follows from combining the above three inequalities.

Next, if | Psr¢|| < €1, by defining B := ||So||%, following the steps in Eq. (S37), we have that

1 B B
] Z €xp <HtT$n + lests;rmn> x, 7 < nlS| (exp <2) - 1) 5 (568)
n¢S

and hence, combining this with Assumption 2 which implies that r; is bounded as in Eq. (S47), one
can find a constant C' such that .

(Tt+1 - T't) Tt S C. (S69)

O

Proof of Theorem 2

Proof. As in the simple version of the proof, we begin by considering the convergence behavior of
the mean parameter fi;.

Mean parameter Our goal is again to show that ||r,|| is bounded. To that end, we will provide an
upper bound to the following equation

el = rers — 7el? + 2 (repr — 70) T e + 172 (570)
First, consider the first term in the above equation:

[7es1 — el

= |1 — plog(t+1) — o — py + falog(t) + alf

T i A —1\11|2

= || nvug(,“h St) NIOg(l +1 )]H (S71)

< 22UVl SOI? + 3] 2 log® (1 +¢71)]

< 2PV ullpae, S|P + 1l 2]
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where in the first inequality we used the standard inequality that (x + y)? < 2(2? + y?), and in the
second inequality we used the fact that log(1 + x) < x for > 0. Now, from Lemma S3 and the
fact that —2 is summable, we conclude that there exists C; < oo such that

> e —mel? < €1 < o (S72)

t=1

Next, for the second term, recall that in Lemma S4 we showed that if || Ps7;|| > €;, then, for some
constants Cy, C's < 0o, we have that, eventually

1 1
(repr =) e < Cor o Ca i) (S73)

and that if || Psr¢|| < €1, then there exists a constant Cy < oo such that

(reg1— 7)) 7 < Cy. (S74)

We will show that when || Psr|| < €1, the residual r, is contained in a compact set, and when
|[Psr:|| > €1, the residual 7 can’t escape to infinity. We now formally show this claim.

Let Sp be the frst time such that | Psr:|| > €1, if such a time does not exist, we are done since the
support vectors span the data and hence |7 || is bounded. Now, let T} be the first time after S; such
that | Psr|| < €1, where we allow T} = oo if such a time does not exist. Continuing in this manner,
we define the sequences 51 < 171 < Sy < T3 < ..., where we allow T; = oo for some 7.

We prooced by showing that ||7¢|| is uniformly bounded on each of the intervals [S;,T;). To that
end, note that for ¢ € [S;, T;), we have that

1 1
e l” = [lre? < 2025 + 2035 llrell + Iress — 74|, (875)

and hence, using the fact that £ > 1, by the discrete version of Gronwall’s lemma, that

2 _2<K S76
e (el = s ) < K, (876)

for some constant K < oo independent of 7. Furthemore, we also know from Eq. (S74) that

Irs, |l < e14+2Cs+ s, —rg,—1l)* < &1 +2Cs + I?§§||7°t+1 —7¢|]* < o0, (S77)

showing that the first jump outisde the €;-ball is bounded. Combining the two results, we conclude
that ||r|| is uniformly bounded on each of the intervals [S;, 7).

Finally, by noting that the support vectors span the data, we have that ||r;|| is uniformly bounded
on each of the intervals [T}, S;+1). Combining the two results, we conclude that ||, is uniformly
bounded for all £ > 0 and hence we have that

lim 2 — ¥ (S78)
t=oo [l [l
and the following lemma.
Lemma S5
For the mean parameter ., we have that
i = log(t)js + O(1). (579)
Proof. This follows immediately from the definition of the residual in Equation (S24):
e = plogt +re + g,
and the fact that r; and fi; are bounded as we showed above. O

We continue with the analysis of the covariance parameter over optimization iterations.
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Covariance parameter As before, let A; = tr(PsS; S;r Ps) be the trace of the projection of the
covariance parameter on the space of support vectors in S. By following the ideas from the gradient
flow case, we have the following dynamics:

A1 = tr(Ps (I — nAy) S, 8] (I —nA,)" Ps)
= tr(PsS;S] Ps) — 2ntr(PsS;S] A Ps) + n° tr(PsA;S; S A; Ps)

2 1 1

< A~ 2100, 1(PsS,STPs) + O(t) n O(t?) (580)
% 1 1

= At - TCUminAt + O(t") + O(ﬁ)’

where we used the same arguments as in Equation (S52) to derive the last inequality, in addition to
noting that Apax(A?) < O(45) in order to bound the last term. Hence, we can write

2 1 1
A1‘,—‘1—1 - At S *TUOO'minAt + O(t“) + O(tQ) . (881)

Again, by the discrete version of Gronwall’s lemma, we derive the equivalent result to Eq. (S53).
Now, noting that Zt % diverges, the fact that x > 1 and nC'o,;, > 0, we conclude that A, converges
to zero. This implies that the covariance parameter converges to zero in the span of the support
vectors, i.e.
VneS: lim wZStStTwn =0, (S82)
t—o00

as desired.
Characterization as Generalized Variational Inference As a final step we need to show that

the solution identified by gradient descent if appropriately transformed identifies the minimum 2-
Wasserstein solution in the feasible set. Define the feasible set

O, ={(,S) | Psp=f and Vn e S: Vary (fu(x,)) =0} (S83)
={(,8) | Psp=f and VneS:x'SSTx, =0} (S84)

and the variational parameters identified by rescaled gradient descent as

. . 1
0P = Jim 0P = Jim (log(t)Nt + Poun(x)Ho; St) : (S85)
It holds by Lemma S5 that
rGD : 1 ~ ~
Psp,™ =Ps | lim ——pu, | +0=Pspp = f1 (S86)
t—oo log(t)

and additionally by Equation (S82) we have for all n € S that

xS (8P Ty, = Jim xS,(S;)Tx, =0. (S87)

Therefore the limit point 8P of rescaled gradient descent is in the feasible set. It remains to show
that it is also a minimizer of the 2-Wasserstein distance to the prior / initialization. We will first
show a more general result that does not require Assumption 2.

To that end define (VS Vxis Vi X)) € RP*F where Vs € RP*Fs is an orthonormal basis
of the span of the support vectors range(XJ), Vx s € RPX(N=Fs) an orthonormal basis of its

orthogonal complement in range(X ") and Vai(x) € RP*(P=N) the corresponding orthonormal

basis of the null space null(X) of the data. Let V = (Vs Vnu"(x)) € RP*(P=N+Ps) and define
the projected variational distribution and prior onto the span of the support vectors and the null space
of the data as

qgroj(w) = N (w; Py, PySPy,) = N(ﬁ:;ﬁ, 53) (S88)
PP (@) = N (w; Py po, Py EoPy,) = /\/(u?;ﬂo,f?o> (589
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where w € RP=N*+Ps Now earlier we showed that the limit point of rescaled gradient descent is
in the feasible set, defined in Equation (S85), and thus the same holds for the projected limit point
of rescaled gradient descent, i.e.

(AP, S1°P) € o, (S90)
in particular
Pspi = Pspit® =, (S91)
VneS: xlSTCP(SCP) g, — & SCP (8P Ty, — 0. (S92)
Therefore we have for all n € S that
0=a! 8PS T, = |(S°P) T, |2 — (SC°)Tx, =0 (S93)
— (8 Tys=0 (S94)

and thus Vg 1P (S:9P)TVs = 0. Therefore by Lemma S1 it holds for the squared 2-Wasserstein
distance between the projected limit point of rescaled gradient descent and the projected prior that

Wg (qgrfj"pproj) = H /1 VS /'1’0 H2 + Wg (N(‘/I’lulll"l” Vullz‘/;lull) 7N(‘/;1—1[1-ll’107 ‘/nullzo‘/;lull))
~ ~ 2

- VSTH - VSTHO
0 2

- _ 2
— v VSTN*VSTMO
0 2

+W3 (N(annﬂ, Vnullzvnull> N(anuﬁm V;Iuiovnull))

= | Psji— Psiuoll3 + W3 (N (Vatusa, VabuEVaun ) N (Valfzo, Vil S Vaun ) )
= ||la — Psfio|; + W3 (N(‘/nullu” VnuuZVnuu) N(anuﬁm ‘/;11—1120‘/1111“)>
ﬂ‘ W2 <N< nullp'v ‘/LUHE‘/;UH) N(‘/;Ill[l’()? %11120%u11)>

where we used that Psfi = f for any (ft, 5’) in the feasible set O,. Therefore it suffices to show
that the projected solution 8°° minimizes

w3 (N<V;Illﬂa Wunzvnull)v-/v(‘/;luﬂoa VunEOVnuu)) > 0. (S95)
We have using the definition of the iterates in Equation (9) that
. 1
Vanit? = Vo Py (1m Togt )ut + Pnuu(x)uo> (S96)
= Vo (i + Puxyto) = Vanko (S97)

where we used 1 € range(Xg). Further, it holds for the gradient of the expected loss (S23) with
respect to the covariance factor parameters that

VoanSP = Vo Py S°%° = Vi S1%° = Vi (SO - Z Vs, St)) (598)

t=1
L 1

crange(XT)
= VuuSo = Vi Py So = V11 S0. (S99)

Therefore we have that

(N'(V;uuﬂiGD Wul]EiGD%ull)aN(V;Inﬂov K}I]liowmll)) =0 (S100)

and thus the projected variational parameters éiGD are both feasible (S90) and minimize the squared
2-Wasserstein distance to the projected initialization / prior (S95). This completes the proof for the
generalized version of Theorem 2 without Assumption 2, which we state here for convenience.
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Lemma S6
Given the assumptions of Theorem 2, except for Assumption 2 meaning the support vectors X s do
not necessarily span the data, it holds for the limit point of rescaled gradient descent that

6" € arg min W2 (qgroj,ppmj) . (S101)
R
8.1 *

If in addition Assumption 2 holds, i.e. the support vectors span the training data X, such that
Span({wn}nG[N]> = Span({wn}n63)7 (S102)

then the orthogonal complement of the support vectors in range(X ") has dimension N — Ps = 0
and thus the projection Py = Ip, p is the identity and therefore

qgroj = qe and pPTOj =np. (8103)

This completes the proof of Theorem 2.

O

S1.3 NLL Opverfitting and the Need for (Temperature) Scaling

In Theorem 2, we assume we rescale the mean parameters. This is because the exponential loss can
be made arbitrarily small for a mean vector that is aligned with the L, max-margin vector simply
by increasing its magnitude. In fact, the sequence of mean parameters identified by gradient descent
diverges to infinity at a logarithmic rate pu$® = log(t)ft as we show? in Lemma S5 and illustrate in
Figure S2 (right panel).
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Figure S2: NLL overfitting in classification due to implicit bias of the mean parameters. As shown
here for a two-hidden layer neural network on synthetic data, when training with vanilla SGD the
mean parameters diverge to infinity ||te+]|2 &~ O(log(t)) (right) and thus the classifier will eventually
overfit in terms of negative log-likelihood (left and middle). Rescaling the GD iterates as in Theo-
rem 2 or using temperature scaling [68] avoids overfitting.

This bias of the mean parameters towards the max-margin solution does not impact the train loss or
validation error, but leads to overfitting in terms of validation NLL (see Figure S2) as long as there
is at least one misclassified datapoint @, since then the (average) validation NLL is given by

™) = By (e0(42Tw) = cxp(@T® + JaT SO
~ exp(log(t)x"pu + 32T SFP(SFP)Tw) — 00 as ¢ — oo.

However, by rescaling the mean parameters as we do in Theorem 2, this can be prevented as Fig-
ure S2 (middle panel) illustrates for a two-hidden layer neural network on synthetic data. Such
overfitting in terms of NLL has been studied extensively empirically with the perhaps most com-
mon remedy being Temperature Scaling (TS) [68]. As we show empirically in Figure S2, instead

3This has been observed previously in the deterministic case (see Theorem 3 of Soudry et al. [4]) and thus
naturally also appears in our probabilistic extension.
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of using the theoretical rescaling, using temperature scaling performs very well, especially in the
non-asymptotic regime, which is why we also adopt it for our experiments in Section 5.

The aforementioned divergence of the mean parameters to infinity also explains the need for the pro-
jection of the prior mean parameters in Equation (9), since any bias from the initialization vanishes
in the limit of infinite training. At first glance the additional projection seems computationally pro-
hibitive for anything but a zero mean prior, but close inspection of the implicit bias of the covariance
parameters S in Theorem 2 shows that at convergence

Vn : Varg, (fuw(x,)) = 27 8STx, =0 = range(S) C null(X) (5105)

Meaning we can approximate a basis of the null space of the training data by computing a QR
decomposition of the covariance factor in O(PRQ) once at the end of training. For R = P the
inclusion becomes an equality and the projection can be computed exactly.

S2 Parametrization, Feature Learning and Hyperparameter Transfer

The inductive bias of SGD in the variational setting is determined by the initialization and varia-
tional parametrization, and is formalized in Theorem 1. What is not covered, but not unusual in
practice, are layer-specific learning rates. Luckily, these can be absorbed into the weights of the
model and the initialization, resulting in a single global learning rate [Lemma J.1, 67]. We refer
to this set of choices — initialization, (variational) parameters and layer-specific learning rates —
as the parametrization of a variational neural network in analogy to how the term is used in deep
learning. While parameterization is well-studied for non-probabilistic deep learning, it has been
identified as one of the “grand challenges of Bayesian computation” [80].

The “standard parameterization” (SP) initializes the weights of a neural network randomly from a
distribution with variance o< 1/fan_in (e.g., as in Kaiming initialization, the PyTorch default) and
makes no further adjustments to the forward pass or learning rate. In contrast, the maximal update
parametrization (uP) [66] ensures feature learning even as the width of the network tends to infinity.
Feature learning is at the core of the modern deep learning pipeline, permitting foundation models to
extract features from large datasets that are then fine-tuned. Additionally, under uP, hyperparameters
like the learning rate, can be tuned on a small model and transferred to a large-scale model [67].

Given our interpretation of training via the expected loss as generalized variational inference with
a prior that is implied by the parametrization, a natural question is whether we can extend pP to
the variational setting and thus inherit its inductive bias. In the probabilistic setting, feature learning
now occurs when the distribution over hidden units changes from initialization. At any point during
training, the 7th hidden unit in layer [ is a function of four random variables: the variational mean
and covariance parameters (u, S), Gaussian noise z, and the previous layer hidden units:

h (@) = Wih"D(@) = (i + Si2)h" "V (@). (5106)

The parameters are random because of the stochasticity in the initialization and/or optimization
procedure, while the noise is randomly drawn during each forward pass. Since the S;z term is a
sum over R terms, where R is the rank of § € R”*% applying the central limit theorem we propose
scaling this term by R~!/2 and then applying 1P to the mean and covariance parameters. In practice,
we implement the scaling via an adjustment to the covariance initialization and learning rate.

In this section we discuss the role of parameterization at initialization, feature learning in the last
hidden layer as the width is increased, and how parameterization can enable hyperparameter transfer.

Notation For this section we need a more detailed neural network notation. Denote an L-hidden
layer, width-D feedforward neural network by f(z) € RZ , with inputs € RPn, weights w,

out?
pre-activations h()(z) € RP" and post-activations (or “features”) g)(z) € RP". That is,
hW(x) = WMgand, forl €1,...,L -1,

9" (@) = ¢ (hV(@)), B (@) = W0 (@),
and the network output is given by f(z) = W (Lt g() (z), where ¢ (o) is an activation function.

For convenience, we may abuse notation and write h(?) (2) = & and h(Z*+1) (z) = f(a). Through-
out we use o) to indicate the layer, subscript e; to indicate the training time (i.e., epoch),
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Ae; = e, — o to indicate the change since initialization, and [e];, [e];; to indicate the compo-
nent within a vector or matrix.

S2.1 Definitions of Stability and Feature Learning

The following definitions extend those of Yang and Hu [66] to the variational setting.

Definition S1 (bc scaling)
In layer [, the variational parameters are initialized as

1 ~ N (0,072 ) (8] ~ N (0,072
and the learning rates for the mean and covariance parameters, respectively, are set to

77([) = 77D_C<l),ﬁ(l) = nD_E(l).

The hyperparameter 7 represents a global learning rate that can be tuned, as for example in the
hyperparameter transfer experiment from Section S2.4.

For the next two definitions, let m, (X) = E,((X —E.(X))") denote the rth central moment
moment of a random variable X with respect to z, which represents all reparameterization noise in
the random variable X . All Landau notation in Section S2 refers to asymptotic behavior in width D
in probability over reparameterization noise z. We say that a vector sequence {vp }5_,, where each

vp € RP,is O(D~?) if the scalar sequence {4/ 5 [|vp |2} 35_; = {RMSE(vp)}55_, is O(D~%).

Definition S2 (Stability of Moment r)
A neural network is stable in moment r, if all of the following hold for all x and [ € {1,...,L}.

1. At initialization (¢t = 0):

(a) The pre- and post-activations are O(1):

l l
m. (g (@), my (g5 (x)) = ©(1)

(b) The function is O(1):

mr(fo(x)) = O(1)

2. At any point during training ¢ > 0:

(a) The change from initialization in the pre- and post-activations are O(1):

l 1

Am, (b (@)), Am, (g, () = O(1)

(b) The function is O(1):

mr(fi(z)) = O(1)

Definition S3 (Feature Learning of Moment )
Feature learning occurs in moment r in layer [ if, for any ¢ > 0, the change from initialization is
Q(1):

1
am, (g (@)) = 0(1):
As we will see later, Figure S5 and Figure S6 investigate feature learning for the first two moments.

S2.2 Initialization Scaling for a Linear Network

In this section we illustrate how the initialization scaling {(b("), 5())} can be chosen for stability.
For simplicity, we consider a linear feedforward network of width D evaluated on a single input
x € RE. We assume a Gaussian variational family that factorizes across layers. This implies the

hidden units evolve as hilﬂ) = Wt(lﬂ)hil)
by vec(Wt(l)) = ugl) + St(l)z.

and the weights are linked to the variational parameters
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973 Therefore, the mean and variance of the ith component hidden units in layer I € {1,...,L + 1},
o74 wherei € 1...,D®, are given by

E. (1h"):) = "I E- (R{'")
Var. ([h{")) = (" 1FC V1] + (U7 AL VIS0,

o5 where I = {iD(!=V ... (i+1)D"=Y} and the second moment of and covariance of layer-/ hidden
976 units are denoted by

AW = (h” h(T )

) = A . (n) & (n)

977 Mean We start with the mean of the hidden units, which conveniently depends only on the mean
978 variational parameters and the previous layer hidden units.

(-1
E.([h);) = DZ 11, B ([R5 ]5)
j=1
:0( pi-1.p-¥ g )
o(p=+) =1

(9<D (b0 - >> lef{2,....L+1}
o79  Therefore, we require b(!) > 0 and b > 1 forl € {2,..., L +1}.

980 Variance Next we examine the variance of hidden units. Consider the first term, which represents
981 the contribution of the mean parameters.

p-1 pi-1
eV D), = Z[ B el 5+ D L 1es ),
= J#3’
= ( ). p=2Y ) + O<\/D(l1)(D(l1) —1.pt" . D—b“)

-0 D(z 1) . D—Qb(”)
o(D- 2b<” I=1
o(D- <2b“> 1>) lele{2,...,L+1).

982 Therefore, we require p1) > 0 and b > % forl € {2,...,L + 1}. Notice these are the same
983 requirements as above for the mean of the hidden units. We summarize the scaling for the mean
984 parameters as

0 1=1
b”)z{ (S107)
3 le{2,...,L+1}.

985 Now consider the second term in the variance of the hidden un(ilt)s. Assume the rank scales with the
ses input and output dimension of a layer as R() = (DU=Y D)™ where p¥) € [0, 1].

R(l)
l — l l l
tr([SS1T.AS V181 = U181, AL VISV
r=1
R(l) D(l—l) D(l—l)
l — l 1— l
=SS 893 AS s+ S S8 A8V S8
r=1 \ j=1 J#5’

31



= O(R(”D(H) .p~2Y. 1) + O<\/R(1)D(l—1)(p(z—1) —1).p% 1. D-W)

::o<Rm[w—nD7%m)
o D_(25<1>_p<1>)) 11

=10 IT*QH”*1*2“”>) le{2,...,L}
o D*ﬁ““h+wu“”) l=L+1.
(1)

987 Therefore we require b0 > b, b > % +pW forl € {2,...,L}, and pI+) > % +
988 Notice we can write these conditions in terms of the mean scaling as

pLFD
-

p(l)

~ 5 l = ].

p® > p® 4+ p(l) le{2,...,L} (S108)
pl I=L+1.

989 S2.3 Proposed Scaling

990 The previous section derives the necessary conditions for stability at initialization. Recall we pro-
991 pose scaling the contribution of the covariance parameters to the forward pass, i.e. the Sz term, by
92 R~1/2 gince each element in the term is a sum over R random variables, where R is the rank of
993 S. In the more detailed notation of this section, the proposed scaling implies the forward pass in a
994 linear layer is given by

o

(B = Wi~ = ([ + R72181020) w0, (5109)
995 In practice, rather than scaling [Sgl)] 1z by R=1/2 in the forward pass, we apply Lemma J.1 from
996 Yang et al. [67] to instead scale the initialization by R~'/2 and, in SGD, the learning rate by R~".
997 Scaling by the rank allows treating the mean and covariance parameters as if they were weights
998 parameterized by uP in a non-probabilistic network, inheriting any scaling that has already been
999 derived for that architecture.

1000 From Table 3 of Yang et al. [67], we therefore scale the mean parameters as

0 =1 -1 1=1
v ={1/2 1e{2,...,L} and D ={0 1e{2..., L} (S110)
1 I=L+1 1 I=L+1.

1001 Assuming RO = (D=1 D0y

1002 parameters as

as before, where p(!) € [0,1], we the scale the covariance

b =1 p  1=1
bW =pD +{p® 1e{2,... L} and D =cO4{2p® 1e{2,...,L}  (S111)
% I=L+1 p 1 =L+1.

1003 By comparing to Equations S107 and S108, we see the mean and covariance parameters in all but
1004 the output layer are initialized as large as possible while still maintaining stability. The output layer
1005 parameters scale to zero faster, since, as in uP for the weights of non-probabilistic networks, we set
1006 b(EHY) to 1 instead of 1/2.

1007 Note that in Section S2.2 we did not consider input and output dimensions that scaled with the width
1008 D for simplicity. For our experiments, we take the exact P initialization and learning rate scaling
1009 from Yang et al. [67] — which includes, for example, a 1/fan_in scaling in the input layer — for
1010 the means and then make the rank adjustment for the covariance parameters as described above.

1011 We investigate the proposed scaling in Figures S4 and S5. We train two-hidden-layer (L. = 2) MLPs
1012 of hidden sizes 8, 16, 32, and 64 on a single observation (z,y) = (1, 1) using a squared error loss.
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We use SGD with a learning rate of 0.05. For the variational networks, we assume a multivariate
Gaussian variational family with a full rank covariance.

Figures S3 and S4 show the RMSE of the change in the hidden units from initialization, Ag{" (z) =
g,gl) (x) — g(()l) (x), as a function of the hidden size. The RMSE of the hidden units az initialization,

gol is also shown in blue. Each panel corresponds to a layer of the network, so the first two panels
correspond to features g,gl)(:r:) and g§2)(at), respectively, while the third panel corresponds to the
output of the network, gﬁg) (x) = fi(z). The difference between the figures is the paramaterization.
Figure S3 uses standard parameterization (SP) while Figure S4 uses maximal update parametrization
(uP). We observe that (a) the features change more under P than SP and (b) training is more stable

across hidden sizes under pP than SP, especially for smaller networks.

Figures S5 and S6 show the analogous results for a variational network. The top row shows the
change in the mean of the hidden units, while the bottom row shows the change in the standard
deviation. As in the non-probabilistic case, we observe that (a) both the mean and standard deviation
of the features change more under uP than SP and (b) training is more stable across hidden sizes
under pP than SP, especially for smaller networks.
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Figure S3: MLP, Standard Parameterization. RMSE of the change in the hidden units and, in blue,
their initial values. Shaded region represents 95% confidence interval over 5 random initializations.
The MLP is trained under SP.
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Figure S4: MLP, Maximal Update Parameterization. RMSE of the change in the hidden units
and, in blue, their initial values. Shaded region represents 95% confidence interval over 5 random
initializations. The MLP is trained under pP.
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Figure S5: Variational MLP, Standard Parameterization. RMSE of the change in the hidden units
and, in blue, their initial values. Shaded region represents 95% confidence interval over 5 random
initializations. The variational MLP is trained under SP with a full rank covariance in each layer.

S2.4 Hyperparameter Transfer Experiment

Figure S7 demonstrates that our proposed maximal update parametrization enables hyperparameter
transfer in a probabilistic model. We train two-hidden-layer MLPs on CIFAR10, using a low rank
covariance in the final two layers. Under standard parametrization (left panel), the learning rate
that results in the smallest training loss decreases with hidden size. In contrast, under uP (middle
panel), it remains the same across hidden sizes. The right panel of Fig. S7 demonstrates the practical
implications for model selection. For each parametrization and each hidden size D, we select the
learning rate based on a grid search. In “transferred grid search” we do a grid search using the
smallest model (hidden size 128) and transfer the best validating learning rate to the hidden size D
model, whereas in “grid search” we perform the grid search on the hidden size D model. Relative
to the test accuracy of the best performing model across learning rate and parametrization, we see
that (a) P outperforms SP, though the gap decreases with hidden size, and (b) the transfer strategy
works well for p.P but poorly for SP once the hidden size exceeds 256.

The P parametrization ensures stability and feature learning. Since we interpret the initialization
as a prior, which we emphasize is fully theoretically justified in the case of a linear model, this
suggests a new approach to designing priors over neural networks. Instead of eliciting beliefs about
the relative likelihood of weights or functions, consider how the optimization process evolves the
initial parameters and whether desirable properties, like feature learning, will be preserved.

Details on Hyperparameter Transfer Experiment We train two-hidden-layer MLPs of width
128, 256, 512, 1024, and 2048 on CIFAR-10. For comparability to Figure 3 in Tensor Programs
V [67] we use the same hyperparameters but applied to the mean parameters.* For the input layer,
we scale the mean parameters at initialization by a factor of 16 and in the forward pass by a factor
of 1/16. For the output layer, we scale the mean parameters by 0.0 at initialization and by 32.0 in

4Specifically, we used the hyperparameters as indicated here: https://github.com/microsoft/mup/
blob/main/examples/MLP/demo.ipynb
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Figure S6: Variational MLP, Maximal Update Parametrization. RMSE of the change in the hidden
units and, in blue, their initial values. Shaded region represents 95% confidence interval over 5
random initializations. The variational MLP is trained under uP with a full rank covariance in each

layer.

the forward pass. We use 20 epochs, batch size 64, and a grid of global learning rates ranging from
278 to 29 with cosine annealing during training. For the grid search results shown in the right panel
of Figure S7, we use validation NLL for model selection and then evaluate the relative test error
compared to the best performing model for that width across parameterizations and learning rates.

S3 Experiments

This section outlines in more detail the experimental setup, including datasets (Section S3.1.1),
metrics (Section S3.1.2), architectures, the training setup and method details (Section S3.3.1). It also
contains additional experiments to the ones in the main paper (Sections S3.2, S3.3.2 and S3.3.3).

S3.1 Setup and Details

In all of our experiments we used the following datasets and metrics.
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Figure S7: Hyperparameter Transfer. When scaling the size of a neural network, one has to re-tune
the hyperparameters, such as the learning rate, when using the standard parametrization (SP). The
same is true for probabilistic networks as we show here on CIFAR-10 (left). However, when using
our proposed extension of the maximal update parametrization (P) [67] to probabilistic networks,
one can tune the learning rate on a small model and achieve optimal generalization for larger models
by “transferring” the optimal learning rate from a smaller model (center and right).

S3.1.1 Datasets

Table S1: Benchmark datasets used in our experiments. All corrupted datasets are only intended for
evaluation and thus only have test sets consisting of 15 different corruptions of the original test set.

Dataset N Ntest Din C  Train / Validation Split
MNIST [70] 60000 10000 28 x 28 10 0.9,0.1)
CIFAR-10 [81] 50000 10000 3 x 32 x 32 10 0.9,0.1)
CIFAR-100 [81] 50000 10000 3 x32x32 100 0.9,0.1)
TinyImageNet [82] 100 000 10000 3 x 64 x 64 200 0.9,0.1)
MNIST-C [72] - 150000 28 x 28 10 -
CIFAR-10-C [73] - 150000 3 x32x32 10 -
CIFAR-100-C [73] - 150000 3 x32x32 100 -
TinyImageNet-C [73] - 150000 3 x64x64 200 -
S3.1.2 Metrics
Accuracy The (top-k) accuracy is defined as
1 Niest
Accuracy, (y, ) = N > gy egin- (S112)
n=1

Negative Log-Likelihood (NLL) The (normalized) negative log likelihood for classification is
given by
Niest

> logpy,,

n=1

NLL(y, §) = — (S113)

]V}est

where P, is the probability a model assigns to the predicted class ¥y,.

Expected Calibration Error (ECE) The expected calibration error measures how well a model
is calibrated, i.e. how closely the predicted class probability matches the accuracy of the model.
Assume the predicted probabilities of the model on the test set are binned into a given binning of the
unit interval. Compute the accuracy a; and average predicted probability p; of each bin, then the
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expected calibration error is given by

J
ECE =) bjla; — b, (S114)
j=1
where b; is the fraction of datapoints in bin j € {1,...,J}.

S3.2 Time and Memory-Efficient Training

To keep the time and memory overhead low during training, we would like to draw as few samples
of the parameters as possible to evaluate the training objective £(80). Drawing M parameter samples
for the loss increases the time and memory overhead of a forward and backward pass M times
(disregarding parallelism). Therefore it is paramount for efficiency to use as few parameter samples
as possible, ideally M = 1.

When drawing fewer samples from the variational distribution, the variance in the training loss and
gradients increases. In practice this means one has to potentially choose a smaller learning rate to
still achieve good performance. This is analogous to the previously observed linear relationship
N, o« n between the optimal batch size IV}, and learning rate 7 [e.g., 28—30]. Figure S8 shows this
relationship between the number of parameter samples used for training and the learning rate on
MNIST for a two-hidden layer MLP of width 128.
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Figure S8: Generalization versus number of parameter samples. For a fixed number of epochs and
batch size, fewer samples require a smaller learning rate. For a fixed learning rate, generalization
performance quickly plateaus with more parameter samples.

As Figure S9 shows, when using momentum, generalization performance tends to increase, but only
if either the number of samples is increased, or the learning rate is decreased accordingly. A similar
relationship between noise in the objective and the use of momentum has previously been observed
by Smith and Le [29], which propose and empirically verify a scaling law for the optimal batch size
Ny x ﬁ as a function of the momentum parameter v > 0.

S3.3 In- and Out-of-distribution Generalization

This section recounts details of the methods we benchmark in Section 5, how they are trained and
additional experimental results.

S3.3.1 Architectures, Training, and Methods

Architectures We use convolutional architectures for all experiments in Section 5. For MNIST,
we use a standard LeNet-5 [70] with ReLU activations. For CIFAR-10, CIFAR-100 and TinyIm-
ageNet we use a ResNet-34 [71] where the first layer is a 2D convolution with kernel _size=3,
stride=1 and padding=1 to account for the image resolution of CIFAR and TinyImageNet and
the normalization layers are GroupNorm layers. We use pretrained weights from ImageNet for all
but the first and last layer of the ResNets from torchvision [83] and fully finetune all parameters
during training.
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Figure S9: Generalization versus number of parameter samples when using momentum. Using mo-
mentum improves generalization performance, but when using fewer parameter samples, a smaller
learning rate is necessary than for vanilla SGD as predicted by Equation (6).
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Figure S10: Validation error during training for different numbers of parameter samples. The
difference in generalization error between different number of parameter samples vanishes with
more optimization steps both for SGD (—) and when using momentum (—), if the learning rate is
sufficiently small (in this example n = 0.003).

Training We train all models using SGD with momentum (y = 0.9) with batch size N, = 128
and learning rate n = 0.005 for 200 epochs. We do not use a learning rate scheduler since we found
that neither cosine annealing nor learning rate warm-up improved the results.

Temperature Scaling [68] For temperature scaling we optimize the scalar temperature param-
eter in the last layer on the validation set via the L-BFGS implementation in torch with an ini-
tial learning rate nrs = 0.1, a maximum number of 100 iterations per optimization step and
history_size=100.

[49] As recommended by Daxberger et al.
[49] we use a post-hoc KFAC last-layer Laplace approximation with a GGN approximation to the
Hessian. We tune the hyperparameters post-hoc using type-II maximum likelihood (ML). As an
alternative we also do a grid search (GS) for the prior scale, which we found to be somewhat more
robust in our experiments. Finally, we compute the predictive using an (extended) probit approxi-
mation. Our implementation of the Laplace approximation is a thin wrapper of laplace [49] and
we use its default hyperparameters throughout.

Weight-space VI (Mean-field) [34, 35] For variational inference, we used a mean-field variational
family and trained via an ELBO objective with a weighting of the Kullback-Leibler regularization
term to the prior. We chose a unit-variance Gaussian prior with mean that was set to the pretrained
weights, except for the in- and output layer which had zero mean. We found that using a KL weight
and more than a single sample (here M = 8) was necessary to achieve competitive performance.
The KL weight was chosen to be inversely proportional to the number of parameters of the model, for
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which we observed better performance than a KL weight that was independent of the architecture.
At test time we compute the predictive by averaging logits using 32 samples.

Implicit Bias VI [ours] For all architectures in Section 5 we use a Gaussian in- and output layer
with a low-rank covariance (R = 10, 20). We train with a single parameter sample M = 1 through-
out and do temperature scaling at the end of training on the validation set with the same settings as
when just performing temperature scaling. We do temperature scaling in classification due to the
specific form of the implicit bias in classification as described in Section S1.3. Since IBVI trains
by optimizing a minibatch approximation of the expected negative log-likelihood (an average over
log-probabilities with respect to parameter samples), we also average log-probabilities at test-time
to compute the predictive distribution over class probabilities. Although we did not see a significant
difference between averaging log-probabilities, probabilities or logits. Like for WSVI we use 32
samples at test time.

[69] We wused a slightly modified implementation of SWAG based on
torch-uncertainty and the original implementation by Maddox et al. [69]. The begin-
ning of the averaging cycle set to half the number of total epochs and a cycle length of one, i.e.
SWAG updates happen every epoch. For all other hyperparameters we use the default settings.

Deep Ensembles [52] We use five ensemble members initialized and trained independently. We
compute the predictive by averaging the predicted probabilities of the ensemble members in line with
standard practice [52]. We did not see a significant difference in performance between averaging
logits or averaging class probabilities.

S3.3.2 In-Distribution Generalization and Uncertainty Quantification

The full results from the in-distribution generalization experiment in Section 5 can be found in
Figure S11. The same experiment but done in the Maximal Update parametrization is depicted in
Figure S12. When finetuning a pretrained model, we found that on some datasets (CIFAR-100,
TinyImageNet) pP resulted in somewhat lower performance, contrary to the results in Section S2,
where we trained from scratch. This suggests that, when pretraining, there may be a modification to
the parametrization that could improve generalization.
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Figure S11: In-distribution generalization and uncertainty quantification (Standard parametriza-
tion).
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Figure S12: In-distribution generalization and uncertainty quantification (Maximal Update
parametrization).

1148 S3.3.3 Robustness to Input Corruptions
1149 Besides the benchmark in Figure S12, we also evaluated the models trained using the Maximal
1150 Update parametrization on the corrupted datasets. The results can be found in Figure S13.
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Figure S13: Generalization on robustness benchmark problems (Maximal Update parametrization).
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