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ABSTRACT

Continual Learning (CL) requires a model to learn multiple tasks in sequence while
maintaining both stability—preserving knowledge from previously learned tasks,
and plasticity—effectively learning new tasks. Gradient projection has emerged as
an effective and popular paradigm in CL, where it partitions the gradient space of
previously learned tasks into two orthogonal subspaces: a primary subspace and
a minor subspace. New tasks are learned effectively within the minor subspace,
thereby reducing interference with previously acquired knowledge. However, exist-
ing Gradient Projection methods struggle to achieve an optimal balance between
plasticity and stability, as it is hard to appropriately partition the gradient space. In
this work, we consider a continual learning paradigm based on Low-Rank Adap-
tation (LoRA), which has gained considerable attention due to its efficiency and
wide applicability, and propose a novel approach for continual learning, called
SplitLoRA. We first provide a theoretical analysis of how subspace partitioning
affects model stability and plasticity. Informed by this analysis, we then introduce
an effective method that derives the optimal partition of the gradient space for
previously learned tasks. This approach effectively balances stability and plasticity
in continual learning. Experimental results on multiple datasets demonstrate that
the proposed method achieves state-of-the-art performance. The code is available
at https://anonymous.4open.science/r/SplitLoRA-FB45.

1 INTRODUCTION

Continual Learning (CL) refers to a model’s ability to sequentially learn new tasks while retaining
knowledge from previously learned tasks (Parisi et al., 2019). This contrasts with traditional machine
learning paradigms, which assume that models are trained on a fixed dataset where all data is available
at once. In the CL setting, the challenge lies in maintaining performance on previous tasks while
adapting to new ones, necessitating a balance between stability and plasticity. In recent years,
orthogonal projection methods have demonstrated strong performance in continual learning tasks.
These methods require storing the subspace spanned by the gradients of previous tasks in memory.
During new task training, the gradient of the current task is projected onto the minor subspace of
the previous task’s gradient subspace, reducing the interference of new task updates with previously
learned knowledge.

Parameter-Efficient Fine-Tuning (PEFT) (Hu et al., 2022; Houlsby et al., 2019; Jia et al., 2022) enables
efficient fine-tuning for new tasks by keeping the pre-trained model parameters unchanged while
introducing a small subset of trainable parameters. Due to its advantages in computational efficiency
and performance, PEFT methods have gained increasing popularity in continual learning (Wang et al.,
2022b; Smith et al., 2023; Gao et al., 2023; Liang & Li, 2024; Lu et al., 2024). Combining orthogonal
projection with PEFT can better leverage the knowledge of the pre-trained model, allowing for faster
adaptation to new tasks.

However, existing methods (Liang & Li, 2024; Lu et al., 2024) typically determine the subspace
dimension for each module within the model by using a predefined threshold based on the cumulative
sum of squared singular values. This approach enforces a uniform partitioning rule across all modules,
ignoring the fact that different modules contribute unequally to knowledge retention (Jiang et al.,
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2024; Dai et al., 2021; Geva et al., 2020). As a result, it fails to achieve an optimal trade-off between
stability and plasticity.

In this paper, we theoretically analyze the relationship between the size of the minor gradient subspace
of previous tasks and the upper bound of loss increments across all tasks. Furthermore, we model its
impact on both stability and plasticity. In practice, we build upon the LoRA framework and propose
a novel method called SplitLoRA for CL tasks. Specifically, to minimize the upper bound of the
total task loss growth, we construct an optimization problem to determine the optimal size of minor
subspace and derive an approximate solution to balance stability and plasticity.

Our contributions are summarized as follows:

• We theoretically model the impact of the gradient subspace size of previous tasks on stability
and plasticity in orthogonal projection based continual learning in Theorem 4.2 and derive
an approximate optimal minor subspace in CL.

• We introduce SplitLoRA, a novel PEFT framework. By projecting the minor subspace onto
the LoRA dimension reduction matrix At via a random projection and optimizing only Bt,
SplitLoRA ensures that updates remain confined to the minor subspace, thereby achieving
an effective balance between stability and plasticity.

• Our method achieves state-of-the-art performance across multiple datasets, surpassing
existing CL methods by 2%–5% on different datasets.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING

Parameter-efficient fine-tuning modifies pre-trained models by introducing a small set of trainable
parameters while keeping the original model frozen, significantly reducing computational costs while
maintaining strong performance. Adapter (Houlsby et al., 2019) fine-tunes small modules added to
multiple layers, while Prompt-tuning (Lester et al., 2021) and Prefix-tuning (Li & Liang, 2021) inject
trainable tokens into Transformer layers. LoRA (Hu et al., 2022) decomposes weight updates into
low-rank matrices, tuning only these structures. Despite training fewer parameters, PEFT methods
often achieve comparable or superior performance (Zaken et al., 2022; Fu et al., 2022; Hu et al.,
2022; Mahabadi et al., 2021). Initially developed for NLP, PEFT has been extended to vision tasks,
with methods such as Visual Prompt Tuning (VPT) (Jia et al., 2022) and AdapterFormer (Chen et al.,
2022) achieving performance on par with full fine-tuning.

2.2 CONTINUAL LEARNING

Continual learning methods fall into three main categories: regularization-based, memory-based, and
expansion-based. Regularization-based approaches (Zenke et al., 2017; Jung et al., 2020; Aljundi
et al., 2018; Kirkpatrick et al., 2017) constrain significant changes to key parameters to mitigate
catastrophic forgetting. Memory-based methods (Aljundi et al., 2019a;b; Sun et al., 2022; Liang
& Li, 2023) retain prior task information in a buffer, allowing models to revisit past knowledge.
Expansion-based techniques (Rusu et al., 2016; Hung et al., 2019; Li et al., 2019) dynamically expand
the model architecture to accommodate new tasks while preserving learned representations.

Gradient Projection in CL. Gradient projection (Zeng et al., 2019; Farajtabar et al., 2020; Saha et al.,
2021) mitigates task interference by constraining updates to directions orthogonal to previous tasks.
Orthogonal Weight Modulation (Zeng et al., 2019) learns a projector matrix to prevent new gradients
from overwriting prior knowledge. Orthogonal Gradient Descent (Farajtabar et al., 2020) projects new
gradients onto the orthogonal complement of previous task gradients. Gradient Projection Memory
(GPM) (Saha et al., 2021) stores subspace bases of old task data and projects new gradients onto
their orthogonal complement. Trust Region Gradient (Lin et al., 2022) enhances forward knowledge
transfer by leveraging task-related representations.

PEFT in CL. With the rise of pre-trained models (He et al., 2022; Dosovitskiy et al., 2021; Devlin
et al., 2019), continual learning has shifted toward leveraging them rather than training from scratch.
While some approaches (Boschini et al., 2022; Zheng et al., 2023) fine-tune pre-trained models fully,
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Figure 1: An overview of our proposed SplitLoRA. During the learning of the t-th task, the gradient
space of tasks 1 to t− 1 is decomposed into major and minor subspaces. InfLoRA determines k∗
solely based on a predefined threshold, whereas SplitLoRA balances stability loss and plasticity loss
to determine k∗. Then the minor subspaces are randomly projected onto the low-dimensional matrix
A of LoRA and fixed, while only B is trained. Specifically, Wt−1 = W0 + Σt−1

i=1AiBi, where W0

represents the pre-trained model weights, and k denotes the size of the minor subspace.

this is often inefficient. To address this, PEFT methods have been explored in continual learning,
with studies (Smith et al., 2023; Wang et al., 2022b; Khan et al., 2023; Yu et al., 2024) integrating
prompt-tuning to improve class-incremental learning. A unified framework (Gao et al., 2023) further
combines various PEFT techniques, including prompt-tuning, LoRA, and Adapter, into continual
learning.

3 PRELIMINARY

3.1 CONTINUAL LEARNING FORMULATION

In CL, there are T tasks T1, ..., TT , each task includes data: Dt = {(xt
i, y

t
i)}

nt
i=1, where xt

i ∈ Rd is
the input and yti ∈ R is the label. The goal of CL is to achieve an overall optimal performance across
all tasks. Let WT represent the model parameters after training on the last task T . The loss on task
t, denoted as Lt(WT ), measures the performance of WT on task t. Let W∗

T represent the optimal
parameters. Then, the objective is to minimize the total loss across all tasks:

W∗
T = argmin

WT

Lall(WT ) = argmin
WT

T∑
t=1

Lt(WT ). (1)

3.2 LORA-BASED CONTINUAL LEARNING

LoRA (Hu et al., 2022) is a low-rank based PEFT method that reduces the number of parameters
by decomposing the weight matrix into the product of two low-rank matrices. Specifically, for a
linear layer, the extra weight matrix ∆W is decomposed into two low-rank matrices A and B as
: ∆W = AB, where A ∈ Rd1×r and B ∈ Rr×d2 , and r is the dimension of the low-rank. In this
way, the number of parameters of the weight matrix is reduced from d1d2 to 2dr. During training,
we learn A and B by minimizing the loss function of the current task. During testing, we recover
W = W0 +AB and use it for forward propagation.

CL generally initializes an additional LoRA for the new task t, while the LoRA of old tasks also
participates in the forward process (Liang & Li, 2024; Wang et al., 2023b). In the current task t, the
forward process of the linear layer is

Y = WtX = (Wt−1 +AtBt)X, (2)

and only At and Bt are trained during training.
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4 SPLITLORA

In this section, we introduce SplitLoRA, a PEFT method for CL that mitigates catastrophic forgetting
by partitioning the gradient space. Unlike existing Gradient Projection-based methods (Liang & Li,
2024; Lu et al., 2024; Jin et al., 2021), which typically define the minor subspace solely based on
the sum of squared singular values being below a predefined threshold, SplitLoRA determines the
optimal subspace size by analyzing the impact of the minor subspace on stability loss and plasticity
loss. We first introduce gradient projection, then model the effect of subspace partitioning on learning
dynamics and formulate an optimization problem to derive the approximate optimal size of the minor
subspace. Finally, we present how to construct the low-rank projection matrix within this subspace to
enhance CL. The entire process of SplitLoRA is illustrated in Figure 1.

4.1 ORTHOGONAL DECOMPOSITION BASED GRADIENT PROJECTION

Empirically, training on new tasks often leads to performance degradation on previously learned tasks
due to interference between the gradients of new and old tasks, resulting in stability loss. To address
this issue, GPM (Saha et al., 2021) orthogonally decomposes the gradient space of previous tasks into
a major subspace and a minor subspace, and constrains the update direction of the new task within
the minor subspace. Our work is also built upon orthogonal decomposition.

In CL, we aim to maintain an average gradient space Gold for all previous tasks. Specifically, after
training the task t− 1, we re-feed the data from this task into the model and calculate the average
gradient Gnew

t−1 of W throughout this process. Finally, we compute the average gradient space Gold
t

for the previous t− 1 tasks:

Gold
t =

1

t− 1
((t− 2)Gold

t−1 +Gnew
t−1). (3)

For the first task, Gold
1 is equal to zero. Next, we receive the data from task t. We perform a Singular

Value Decomposition (SVD) on the gradient Gold
t . Larger singular values correspond to singular

vectors that dominate in describing the vector’s importance. We select the last k left singular vectors
of Ût as the minor subspace:

Ût, Σ̂t, V̂
⊤
t = SVD(Gold

t ), Ûk
t = Ût

[
:, −k :

]
. (4)

The gradient of previous tasks has a much smaller component in the minor subspace compared to
the major subspace. Therefore, projecting the gradient of the new task onto the minor subspace will
result in minimal interference.

A common projection method is to construct a projection transformation matrix. For simplicity, we
consider a linear layer W in a model. As the model update ∆W is determined by the gradient,
projecting the model update onto the minor subspace is equivalent to constraining the gradient
direction, which helps mitigate interference. Specifically, we project the model update ∆W onto the
minor subspace. The projection result is given by:

∆Ŵ = projcol(Ûk
t )
(∆W) = Ûk

t Û
k⊤
t ∆W, (5)

where Ûk
t is the projection subspace. Since the gradients of previous tasks are distributed primarily

in the major subspace, therefore the projection ensures that the updates primarily benefit the new task
while minimally affecting the performance of old tasks.

4.2 MINOR SPACE SETTING FOR OLD TASKS

Projecting the gradient onto the minor subspace can mitigate interference with previous tasks. And
the larger the minor subspace size k, the larger the learning space for the new task, leading to better
plasticity. However, as the gradient components of previous tasks in the minor subspace increase,
stability deteriorates.

Previous methods (Jin et al., 2021; Lin et al., 2022; Liang & Li, 2024; Lu et al., 2024) compute the
sum of the squared singular values corresponding to the minor subspace, ensuring that it remains
below a predefined threshold τ . Among all values of k that satisfy this condition, they select the
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largest one:

k∗ = max

{
k|
∑d−k

i=1 σ2
i∑

σ2
< τ

}
. (6)

The size of the minor subspace, denoted as k, is a crucial parameter that affects both model stability
and plasticity. However, previous methods determine k based on a predefined threshold τ , which is
merely a hyperparameter and does not effectively balance stability and plasticity. Thus, we proceed
to analyze how subspace selection impacts the loss across all tasks. Based on the smoothness of the
loss function L, we can derive an upper bound on the loss incurred due to parameter updates in CL.
Proposition 4.1 (Upper Bound on Loss Increase). Consider a model with a linear layer updated
from Wt−1 to Wt = Wt−1 +∆Wt. Assume the loss function is L-smooth and that the first t−1
tasks were trained with updates constrained to be orthogonal to the gradients of previous tasks. Then,
the total loss change over tasks 1, . . . , t is bounded by:

t∑
i=1

(Li(Wt)− Li(Wt−1)) ≤ −(t−1)
〈
∆Wt,G

old
t

〉︸ ︷︷ ︸
Stability Loss

−⟨∆Wt,Gt⟩︸ ︷︷ ︸
Plasticity Loss

+
(t−1)L

2
∥∆Wt∥2F , (7)

where Gt = ∇Lt(Wt) is the gradient for task t, and Gold
t = 1

t−1

∑t−1
i=1 Gi is the average gradient

of previous tasks. ⟨·, ·⟩ denotes the Frobenius inner product.

This result shows that parameter updates affect both the current and past tasks. The term ⟨∆Wt,G
old
t ⟩

captures interference with past tasks (stability loss), while ⟨∆Wt,Gt⟩ reflects progress on the current
task (plasticity gain). The squared norm ∥∆Wt∥2F acts as a regularization term controlled by the
smoothness constant L.

Next, we discuss how to choose the minor subspace in gradient projection to minimize the combined
stability and plasticity losses. Building on Proposition 1, we can theoretically analyze how stability
loss and plasticity loss vary as a function of k. From Eq. (7), after replacing ∆Wt with ∆Ŵt, where
∆Ŵt = Uk

tU
k⊤
t ∆Wt is the projected update onto the minor subspace, we can express the stability

loss LS
t (Wt) and the plasticity loss LP

t (Wt) as follows:

LS
t (Wt) = −(t− 1)

〈
∆Ŵt,G

old
t

〉
, (8)

LP
t (Wt) = −

〈
∆Ŵt,Gt

〉
. (9)

The stability loss is proportional to the alignment between the projected update ∆Ŵt and the gradient
of old tasks Gold

t , while the plasticity loss depends on the alignment of ∆Ŵt with the gradient of the
new task Gt. Then we define the error function ϵ(k), which quantifies the proportion of these minor
directions and is given by:

ϵ(k) =

∑d
i=d−k+1 σi∑d

i=1 σi

. (10)

ϵ(k) measures the interference error caused by updating the model within the minor subspace.

To analyze the effect of subspace partitioning, we need to handle the fact that the new task’s update
direction ∆Wt is unpredictable. Since we have no prior knowledge about its distribution, we adopt a
neutral assumption: ∆Wt is treated as having equal expected projection across all feature directions
of Gt. This assumption does not imply that gradients are truly uniform in practice, but rather provides
a distribution-free baseline that allows us to derive general bounds. Under the above assumption, we
obtain the following theorem:
Theorem 4.2. Let Wt−1 denote the weight matrix of a linear layer in the model, updated as
Wt = Wt−1 +∆Ŵt = Wt−1 +Uk

tU
k⊤
t ∆Wt. We provide the expected values of the stability

loss :

E[LS
t (Wt)] = −(t− 1)ϵt(kt)

〈
∆Wt,G

old
t

〉
, (11)

and the plasticity loss:

E[LP
t (Wt)] = −kt

d
⟨∆Wt,Gt⟩ . (12)
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Algorithm 1 SplitLoRA
1: Input: Datasets Dt = {(xt

i, y
t
i)}

nt
i=1, for T tasks T1, ..., TT , a pre-trained ViT model fΘ(·) with

l layers.
2: Output: The optimized Wl

T for each layer l.
3: Initialization: Gold

1 = 0
4: for t = 1 to T do
5: if t > 1 then
6: Compute kt using Eq. (15) for each LoRA module
7: Initialize At using Eq. (17) for each LoRA module
8: end if
9: Train LoRA on task Tt using dataset Dt

10: Update Gold
t using Eq. (3) for each layer

11: end for

The proof of this theorem can be found in Appendix A.3. Therefore, achieving an optimal balance
between these two objectives requires solving the following optimization problem:

k∗t = argmin
k

(
E[LF

t (Wt)] + E[LP
t (Wt)]

)
. (13)

Noting that ∆Wt and Gt gradually change as training progresses, solving this optimization problem
is challenging. To simplify this, we introduce a ratio parameter α:

α = − ⟨∆Wt,Gt⟩
⟨∆Wt,G

old
t ⟩

. (14)

This substitution reformulates the optimization problem into the following form:

k∗t = argmin
k

(
(t− 1)ϵt(kt)− α

kt
d

)
. (15)

Since ∆Wt benefits new tasks, it often interferes with previous task knowledge, leading to:

⟨∆Wt,Gt⟩ > 0, ⟨∆Wt, Ĝt⟩ < 0. (16)

From Eq. (15), it is evident that increasing kt leads to higher ϵt(kt), which increases stability loss
LF
t , while expanding the learning space and thus reducing plasticity loss LP

t . However, since both
∆Wt and Gt evolve during training, the ratio α in Eq. (14) also varies dynamically, whereas the
update subspace must be determined before training begins for task t. Therefore, we explicitly treat
α as a fixed hyperparameter, serving as a strategic control knob for the stability–plasticity trade-off.
Importantly, our experiments (Tab. 5, Fig. 3) demonstrate that SplitLoRA is highly robust to the
choice of α; performance remains consistently superior to baselines across a wide range of values.

In the simplified optimization problem of Eq.(15), the parameter kt is restricted to integer values
within the range [1, d]. The optimal solution to this equation can be obtained by evaluating the
objective function for all possible values of kt and selecting the one that minimizes it as k∗t . For
example, in ViT-B/16 (Dosovitskiy et al., 2021), embedding dimension is 768 , and k can be selected
as any integer between 1 and 768. It is worth noting that we compute k separately for each LoRA
module, as weights at different layers and positions capture substantially different knowledge. A
fixed threshold, as used in InfLoRA (Liang & Li, 2024), cannot effectively account for such variation
across modules.

4.3 LORA UPDATES IN THE MINOR SUBSPACE

To ensure LoRA updates remain within the minor subspace, we fix the projection matrix At and
only optimize Bt. LoRA parameterizes the weight update as: ∆Wt = AtBt. When At is fixed, the
update is confined to its column space (Liang & Li, 2024; Wang et al., 2023b). To restrict this space
to the minor subspace of previous tasks, we construct

At = Ûk
tR, (17)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: We present FAA (%) and CAA(%) on ImageNet-R under three incremental learning settings:
“5-task,” “10-task,” and “20-task.” All backbone networks are pre-trained on ImageNet-21K.

Method Pub.
5-task 10-task 20-task

FAA (↑) CAA (↑) FAA (↑) CAA (↑) FAA (↑) CAA (↑)
Upper-bound – 84.09 ± 0.21 – 84.09 ± 0.21 – 84.09 ± 0.21 –
FT – 18.74 ± 0.44 48.39 ± 0.58 10.12 ± 0.51 35.23 ± 0.92 4.75 ± 0.40 22.8 ± 0.37
FT++ – 60.42 ± 0.87 71.59 ± 0.50 48.93 ± 1.15 66.79 ± 0.92 35.98 ± 1.38 59.68 ± 0.95
L2P++ (Wang et al., 2022b) CVPR22 70.83 ± 0.58 78.34 ± 0.47 69.29 ± 0.73 78.30 ± 0.69 65.89 ± 1.30 77.15 ± 0.65
Deep L2P++ (Wang et al., 2022b) CVPR22 73.93 ± 0.37 80.14 ± 0.54 71.66 ± 0.64 79.63 ± 0.90 68.42 ± 1.20 78.68 ± 1.03
DualPrompt (Wang et al., 2022a) ECCV22 73.05 ± 0.50 79.47 ± 0.40 71.32 ± 0.62 78.94 ± 0.72 67.87 ± 1.39 77.42 ± 0.80
CODA-P (Smith et al., 2023) CVPR23 76.51 ± 0.38 82.04 ± 0.54 75.45 ± 0.56 81.59 ± 0.82 72.37 ± 1.19 79.88 ± 1.06
HiDe-Prompt (Wang et al., 2023a) NeurIPS23 76.29 ± 0.10 78.77 ± 0.11 76.74 ± 0.18 78.76 ± 0.11 76.46 ± 0.06 78.76 ± 0.11
EvoPrompt (Kurniawan et al., 2024) AAAI24 77.16 ± 0.18 82.22 ± 0.54 76.83 ± 0.08 82.09 ± 0.68 74.41 ± 0.23 80.96 ± 1.42
InfLoRA (Liang & Li, 2024) CVPR24 79.82 ± 0.27 84.07 ± 0.48 78.10 ± 0.43 83.47 ± 1.23 73.81 ± 0.47 81.02 ± 0.56
VQ-Prompt (Jiao et al., 2024) NeurIPS24 79.23 ± 0.29 82.96 ± 0.50 78.71 ± 0.22 83.24 ± 0.68 78.10 ± 0.22 82.70 ± 1.16
VPT-NSP2 (Lu et al., 2024) NeurIPS24 79.71 ± 0.22 84.54 ± 0.68 79.35 ± 0.19 84.92 ± 0.41 76.72 ± 0.44 82.91 ± 0.60
S-LoRA (Yichen et al., 2025) ICLR25 79.15 ± 0.20 83.01 ± 0.42 77.34 ± 0.35 82.04 ± 0.24 75.26 ± 0.37 80.22 ± 0.72
SplitLoRA This work 81.92 ± 0.29 85.83 ± 0.55 81.00 ± 0.17 85.84 ± 0.62 78.82 ± 0.28 84.57 ± 0.44
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Figure 2: Variation of the performance of different methods during the learning of ImageNet-R.

where Ûk
t ∈ Rd×k is an orthonormal basis of the minor subspace and R ∈ Rk×r is a random Gaussian

matrix. Importantly, this constraint only holds if At remains fixed during training, otherwise, the
update direction may drift out of the subspace. Fortunately, prior works (Zhang et al., 2023b; Liang
& Li, 2024) verify that fixing At maintains sufficient model capacity while controlling interference.
This design ensures that task updates are constrained to low-interference directions Ûk

t , balancing
stability and plasticity without additional memory or computational cost. The full procedure of
SplitLoRA is summarized in Algorithm 1.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Datasets. We conducted experiments on three standard datasets: ImageNet-R Hendrycks et al.
(2021a), CIFAR-100 Krizhevsky (2009), and DomainNet Peng et al. (2019). ImageNet-R is a
variant of ImageNet with 200 classes. CIFAR-100 consists of 100 classes, each containing 600
images. DomainNet contains images from diverse domains, posing a challenge for cross-domain
generalization. Following Gao et al. (2023); Wang et al. (2022b); Liang & Li (2024), we divided
ImageNet-R into 5, 10, and 20 tasks, with each task comprising 40, 20, and 10 classes, respectively.
CIFAR-100 was split into 10 tasks, each containing 10 classes, while DomainNet was uniformly
partitioned into 5 tasks.

Baselines and Evaluation Metrics. We compare our method with several state-of-the-art continual
learning approaches, including L2P++ (Wang et al., 2022b), Deep L2P++ (Wang et al., 2022b),
DualPrompt (Wang et al., 2022a), CODA-P (Smith et al., 2023), HiDe-Prompt (Wang et al., 2023a),
EvoPrompt (Kurniawan et al., 2024), VQ-Prompt (Jiao et al., 2024), VPT-NSP2, and InfLoRA (Liang
& Li, 2024). The “Upper bound” represents the performance achieved by jointly training on all
classes in one go. Results are averaged over three runs with different random seeds. Following Jiao
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Table 2: We present FAA (%) and CAA(%) on CIFAR100: 10 tasks and DomainNet: 5 tasks. We
report results over 3 trials. All backbone networks are pre-trained on ImageNet-21K.

Method Pub. CIFAR100 DomainNet
FAA (↑) CAA (↑) FAA (↑) CAA (↑)

Upper-bound – 91.92 ± 0.05 – 90.12 ± 0.13 –
DualPrompt Wang et al. (2022a) ECCV22 84.42 ± 0.30 90.06 ± 0.07 72.14 ± 0.05 77.71 ± 0.06
CODA-Prompt Smith et al. (2023) CVPR23 86.62 ± 0.11 91.08 ± 0.28 73.23 ± 0.13 78.72 ± 0.07
LAE Gao et al. (2023) ICCV23 84.15 ± 0.16 89.84 ± 0.03 66.85 ± 0.40 75.01 ± 0.17
C-LoRA Smith et al. (2024) TMLR24 82.97 ± 0.47 88.81 ± 0.34 69.34 ± 0.16 75.25 ± 0.11
InfLoRA Liang & Li (2024) CVPR24 87.06 ± 0.25 91.59 ± 1.43 78.26 ± 0.50 78.82 ± 0.34
VPT-NSP2 (Lu et al., 2024) NeurIPS24 88.04 ± 0.11 92.25 ± 0.80 83.83 ± 0.19 88.63 ± 0.10
CoSO (Cheng et al., 2025) 2025 88.76 ± 0.16 92.99 ± 0.23 74.27 ± 0.07 80.05 ± 0.04
SplitLoRA This work 90.33 ± 0.73 93.70 ± 0.32 84.31 ± 0.23 88.99 ± 0.57

et al. (2024), we report Final Average Accuracy (FAA) and Cumulative Average Accuracy (CAA).
For details, please refer to the appendix A.4.

Implementation Details. As the mainstream of recent continual learning research has primarily
centered on parameter-efficient fine-tuning with pre-trained ViT models, we also adopt this setting
for our experiments. We follow prior works (Wang et al., 2022b;a; Smith et al., 2023; Wang et al.,
2023a; Zhang et al., 2023a; Kurniawan et al., 2024) and adopt ViT-Base (Dosovitskiy et al., 2021)
pre-trained on ImageNet-21K (Ridnik et al., 2021) as the backbone. The LoRA rank is set to 10,
and the embedding dimension is D=768, matching the feature dimension of ViT-BaseDosovitskiy
et al. (2021). Following Liang & Li (2024), we insert SplitLoRA modules into the key and value
projections in multi-head attention. Our method is optimized using AdamW (Loshchilov & Hutter,
2018) with an initial learning rate of 1e−3 for LoRA and 1e−2 for the classification head. We use
a batch size of 256 across all datasets, and each task is trained for 10 epochs. All experiments are
conducted on a single NVIDIA GeForce L40S GPU. All results are reported as mean ± standard
deviation over three random seeds.

5.2 EXPERIMENTAL RESULTS

Results on ImageNet-R, CIFAR100 and Domainet. Table 1 presents the results of different methods
evaluated on ImageNet-R with varying numbers of tasks. It highlights how our proposed method,
SplitLoRA, achieves consistently higher accuracy compared to existing continual learning methods
across different task setups. Additionally, Table 2 shows the results of these methods on CIFAR100
and DomainNet datasets. Across both tables, SplitLoRA outperforms other methods in FAA and
CAA. Figure 2 shows the accuracy trends of various CL methods on ImageNet-R. Our method
achieves the highest accuracy at the end and outperforms others throughout the learning curve.

Initialization strategies of At. Table 3 compares different initialization strategies for At. SplitLoRA
achieves consistently better performance across task splits, demonstrating the effectiveness of using
projected minor subspace over random or InfLoRA.

Table 3: Impact of different At initialization
strategies on ImageNet-R.

Init of At 5 tasks 10 tasks 20 tasks

Random 76.57 76.13 72.30
InfLoRA 78.92 78.10 73.81
SplitLoRA 81.92 81.00 78.82

Table 4: Efficiency of LoRA variants on ImageNet-
R (10 tasks).

Method Extra Fwd Mem Time

LoRA None 22.80 GB 1h 37m
InfLoRA 2/task 23.06 GB 1h 48m
SplitLoRA 1/task 23.03 GB 1h 43m

Memory and Time Cost. Table 4 shows that SplitLoRA achieves a favorable trade-off between
performance and efficiency. It introduces only 1 extra forward pass per task while maintaining similar
memory and runtime overheads compared to InfLoRA, and its memory cost remains fixed without
growing with the number of tasks.
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Table 5: Evaluation of model performance under different values of α on ImageNet-R. A higher α
may improve plasticity but could impact stability.

Method
5-task 10-task 20-task

FAA (↑) CAA (↑) FAA (↑) CAA (↑) FAA (↑) CAA (↑)

InfLoRA 79.82 84.07 78.10 83.47 73.81 81.02
SplitLoRA(α = 30) 82.15 85.60 81.03 85.56 78.73 84.06
SplitLoRA(α = 20) 81.92 85.83 81.00 85.84 78.82 84.57
SplitLoRA(α = 10) 82.35 85.82 81.03 85.67 77.89 83.27
SplitLoRA(α = 5) 82.52 85.89 81.38 85.89 78.15 84.19
SplitLoRA(α = 1) 82.40 85.86 80.89 85.22 78.59 84.20
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Figure 3: The impact of α on the stability and plasticity of the model in continual learning. As α
increases, stability decreases (higher forgetting) while plasticity improves, illustrating the trade-off
between retaining past knowledge and adapting to new tasks.

5.3 HYPERPARAMETER ANALYSIS AND DISCUSSION

We study the effect of the hyperparameter α on continual learning performance. As shown in Table 5,
changing α has limited impact on final accuracy, and all settings consistently outperform InfLoRA.
Model stability is measured by forgetting, defined as the average gap between each task’s best
historical accuracy and its current accuracy. Lower forgetting indicates better knowledge retention.
For clarity, we define relative forgetting as the difference from the setting where α = 1. Plasticity is
evaluated by the model’s accuracy on the current task. Similarly, relative plasticity is defined as the
difference from the plasticity when α = 1.

Figure 3 presents results on 5-, 10-, and 20-task splits of ImageNet-R. As α increases, forgetting
grows (lower stability) while plasticity improves. These results show that α effectively controls the
trade-off between retaining past knowledge and adapting to new tasks, while consistently maintaining
better performance than InfLoRA across all settings.

6 CONCLUSION

In this paper, we investigate the problem of continual learning based on pre-trained ViT models and
propose a novel method, SplitLoRA. Specifically, we analyze the gradient space of previously learned
tasks and partition it into two complementary components: a major subspace, which captures the
most informative and stable directions, and a minor subspace, which contains the remaining, less
significant directions. We then provide a theoretical formulation to model the effect of the minor
subspace size on the trade-off between stability (the ability to retain past knowledge) and plasticity
(the ability to acquire new knowledge). To make the method efficient and scalable, we employ
random projection to map the minor subspace onto the low-dimensional matrices of LoRA. Extensive
experiments on multiple benchmark datasets demonstrate that our approach achieves state-of-the-art
performance, highlighting both its theoretical soundness and practical effectiveness.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In ECCV, pp. 139–154, 2018.

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. In Advances
in Neural Information Processing Systems, pp. 11849–11860, 2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems, pp. 11816–
11825, 2019b.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits
of object recognition models. NeurIPS, 2019.

Matteo Boschini, Lorenzo Bonicelli, Angelo Porrello, Giovanni Bellitto, Matteo Pennisi, Simone
Palazzo, Concetto Spampinato, and Simone Calderara. Transfer without forgetting. In Proceedings
of the European Conference on Computer Vision, pp. 692–709, 2022.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 9650–9660, 2021.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems, pp. 16664–16678, 2022.

Quan Cheng, Yuanyu Wan, Lingyu Wu, Chenping Hou, and Lijun Zhang. Continuous subspace
optimization for continual learning. arXiv preprint arXiv:2505.11816, 2025.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics, pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2021.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In AISTATS, pp. 3762–3773, 2020.

Chin-Lun Fu, Zih-Ching Chen, Yun-Ru Lee, and Hung-Yi Lee. Adapterbias: Parameter-efficient
token-dependent representation shift for adapters in nlp tasks. In Findings of the Association for
Computational Linguistics, pp. 2608–2621, 2022.

Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A
unified continual learning framework with general parameter-efficient tuning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 11449–11459, 2023.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16000–16009, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340–8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adver-
sarial examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15262–15271, 2021b.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In Proceedings of the International Conference on Machine Learning, pp. 2790–2799, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Steven C. Y. Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song
Chen. Compacting, picking and growing for unforgetting continual learning. In Advances in
Neural Information Processing Systems, pp. 13647–13657, 2019.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge J. Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In Proceedings of the European Conference on Computer
Vision, pp. 709–727, 2022.

Shuyang Jiang, Yusheng Liao, Ya Zhang, Yanfeng Wang, and Yu Wang. Taia: Large language models
are out-of-distribution data learners. arXiv preprint arXiv:2405.20192, 2024.

Li Jiao, Qiuxia Lai, Yu Li, and Qiang Xu. Vector quantization prompting for continual learning.
arXiv preprint arXiv:2410.20444, 2024.

Xisen Jin, Arka Sadhu, Junyi Du, and Xiang Ren. Gradient-based editing of memory examples for
online task-free continual learning. NeurIPS, 34:29193–29205, 2021.

Dahuin Jung, Dongyoon Han, Jihwan Bang, and Hwanjun Song. Generating instance-level prompts
for rehearsal-free continual learning. In ICCV, pp. 11847–11857, 2023.

Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-
importance based adaptive group sparse regularization. Advances in Neural Information Processing
Systems, pp. 3647–3658, 2020.

Muhammad Gul Zain Ali Khan, Muhammad Ferjad Naeem, Luc Van Gool, Didier Stricker, Federico
Tombari, and Muhammad Zeshan Afzal. Introducing language guidance in prompt-based continual
learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
11463–11473, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. PNAS, 114(13):3521–3526, 2017.

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Tront, 2009.

Muhammad Rifki Kurniawan, Xiang Song, Zhiheng Ma, Yuhang He, Yihong Gong, Yang Qi, and
Xing Wei. Evolving parameterized prompt memory for continual learning. In AAAI, volume 38,
pp. 13301–13309, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 3045–
3059, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp.
4582–4597, 2021.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In Proceedings of the
International Conference on Machine Learning, pp. 3925–3934, 2019.

Yan-Shuo Liang and Wu-Jun Li. Loss decoupling for task-agnostic continual learning. In Alice
Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems, 2023.

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
23638–23647, 2024.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
continual learning. arXiv preprint arXiv:2202.02931, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2018.

Yue Lu, Shizhou Zhang, De Cheng, Yinghui Xing, Nannan Wang, Peng Wang, and Yanning Zhang.
Visual prompt tuning in null space for continual learning. arXiv preprint arXiv:2406.05658, 2024.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-
rank hypercomplex adapter layers. In Advances in Neural Information Processing Systems, pp.
1022–1035, 2021.

Mark D McDonnell, Dong Gong, Amin Parveneh, Ehsan Abbasnejad, and Anton van den Hengel.
Ranpac: Random projections and pre-trained models for continual learning. arXiv preprint
arXiv:2307.02251, 2023.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1406–1415, 2019.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. In NeurIPS, 2021.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
ICLR, 2021.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
attention-based prompting for rehearsal-free continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11909–11919, 2023.

James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and Hongxia Jin.
Continual diffusion: Continual customization of text-to-image diffusion with c-lora. archiveEprint:
2304.06027, 2024. URL https://arxiv.org/abs/2304.06027.

Qing Sun, Fan Lyu, Fanhua Shang, Wei Feng, and Liang Wan. Exploring example influence in
continual learning. Advances in Neural Information Processing Systems, pp. 27075–27086, 2022.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

12

https://arxiv.org/abs/2304.06027


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical
decomposition of prompt-based continual learning: Rethinking obscured sub-optimality. arXiv
preprint arXiv:2310.07234, 2023a.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning. arXiv
preprint arXiv:2310.14152, 2023b. URL https://arxiv.org/abs/2310.14152.

Yabin Wang, Zhiheng Ma, Zhiwu Huang, Yaowei Wang, Zhou Su, and Xiaopeng Hong. Isolation
and impartial aggregation: A paradigm of incremental learning without interference. In AAAI,
volume 37, pp. 10209–10217, 2023c.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In ECCV, pp. 631–648, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022b.

Wu Yichen, Piao Hongming, Huang Long-Kai, Wang Renzhen, Li Wanhua, Pfister Hanspeter, Meng
Deyu, Ma Kede, and Ying Wei. S-lora: Scalable low-rank adaptation for class incremental learning.
Under review at International Conference on Learning Representations (ICLR), 2025. URL
https://openreview.net/forum?id=5U1rlpX68A.

Hao Yu, Xin Yang, Xin Gao, Yan Kang, Hao Wang, Junbo Zhang, and Tianrui Li. Personalized
federated continual learning via multi-granularity prompt. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4023–4034, 2024.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (Short Papers), pp. 1–9, 2022.

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent
processing in neural networks. Nature Machine Intelligence, 1(8):364–372, 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, pp. 3987–3995, 2017.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca: Slow learner
with classifier alignment for continual learning on a pre-trained model. In ICCV, 2023a.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023b. URL https://arxiv.org/abs/2308.03303.

Yuanhan Zhang, Zhenfei Yin, Jing Shao, and Ziwei Liu. Benchmarking omni-vision representation
through the lens of visual realms. In ECCV, pp. 594–611. Springer, 2022.

Junhao Zheng, Xidi Cai, Shengjie Qiu, and Qianli Ma. Spurious forgetting in continual learning of
language models. arXiv preprint arXiv:2501.13453, 2025.

Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing
zero-shot transfer degradation in continual learning of vision-language models. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 19068–19079, 2023.

Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental learn-
ing with pre-trained models: Generalizability and adaptivity are all you need. arXiv preprint
arXiv:2303.07338, 2023.

13

https://arxiv.org/abs/2310.14152
https://openreview.net/forum?id=5U1rlpX68A
https://arxiv.org/abs/2308.03303


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning with
pre-trained models: A survey. arXiv preprint arXiv:2401.16386, 2024a.

Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
pre-trained model-based class-incremental learning. In CVPR, 2024b.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. Image
bert pre-training with online tokenizer. In ICLR, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 AUTHOR CONTRIBUTIONS AND THE USE OF LARGE LANGUAGE MODELS

The authors confirm that all core research contributions, encompassing the conceptualization, method-
ology, data analysis, and derivation of scientific conclusions, were performed entirely by the human
authors without assistance from large language models. The fundamental intellectual content and
technical execution of this work are original human efforts. Large Language Models (LLMs) were
used only for editorial purposes to refine the presentation of the final manuscript, specifically for
improving the grammar, clarity, and flow of the written text.

A.2 PROOF OF PROPOSITION 4.1

Before proving Proposition 4.1, we first establish a supporting lemma.
Lemma A.1 (Gradient Preservation under Orthogonal Updates). Let Lj : Rd → R be a twice-
differentiable loss function corresponding to task j, and let Wj be the model parameters after
completing task j. Suppose at step t > j, the update direction g̃t for task t satisfies ⟨∇Lj(Wj), g̃t⟩ =
0. The updated parameter is given by: Wt = Wj − ηg̃t. Further assume that the second-order
term ηHj g̃t in the Taylor expansion of ∇Lj can be ignored. Then, the gradient of task j remains
unchanged:

∇Lj(Wt) = ∇Lj(Wj).

Proof. Since Lj is twice-differentiable, we apply the first-order Taylor expansion of the gradient at
point Wj in the direction of g̃t:

∇Lj(Wt) = ∇Lj(Wj − ηg̃t) = ∇Lj(Wj)− ηHj g̃t + o(η).

Now, under the assumption that ηHj g̃t is negligible (i.e., small learning rate and low curvature), we
ignore the second-order term:

∇Lj(Wt) = ∇Lj(Wj).

Based on the Lemma A.1, we denote ∇Li(Wj) as Gi. Next, we provide the proof of Proposition 4.1.

Proposition 4.1. Assume the loss Li(W) is L-smooth for all i ∈ {1, . . . , t}. Let the model update
be Wt = Wt−1 +∆Wt. Then:

t∑
i=1

(Li(Wt)− Li(Wt−1)) ≤ −(t−1)
〈
∆Wt,G

old
t

〉
− ⟨∆Wt,Gt⟩+

(t−1)L

2
∥∆Wt∥2F .

Proof. By L-smoothness of each Li, we have:

Li(Wt) ≤ Li(Wt−1) + ⟨∇Li(Wt−1),∆Wt⟩+
L

2
∥∆Wt∥2F .

Summing over i = 1 to t:
t∑

i=1

Li(Wt)−
t∑

i=1

Li(Wt−1) ≤
t∑

i=1

⟨∇Li(Wt−1),∆Wt⟩+
tL

2
∥∆Wt∥2F .

Let Gold
t = 1

t−1

∑t−1
i=1 ∇Li(Wt−1), then:

t−1∑
i=1

⟨∇Li(Wt−1),∆Wt⟩ = (t− 1)⟨Gold
t ,∆Wt⟩.

Substituting back gives:
t∑

i=1

(Li(Wt)− Li(Wt−1)) ≤ −(t−1)⟨∆Wt,G
old
t ⟩ − ⟨∆Wt,Gt⟩+

(t−1)L

2
∥∆Wt∥2F .
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A.3 PROOF OF THEOREM 4.2

Let Wt−1 denote the weight matrix of a linear layer in the model, updated as Wt = Wt−1+∆Ŵt =

Wt−1 +Uk
tU

k⊤
t ∆Wt. We provide the expected values of the stability loss :

E[LS
t (Wt)] = −(t− 1)ϵt(kt)

〈
∆Wt,G

old
t

〉
, (18)

and the plasticity loss:

E[LP
t (Wt)] = −kt

d
⟨∆Wt,Gt⟩ . (19)

Proof. Stability Loss:

By definition, the projected update is:

∆Ŵt = Uk
tU

k⊤
t ∆Wt.

Thus, the expected stability loss is:

E[LS
t ] = −(t−1)E[⟨∆Ŵt,G

old
t ⟩]

= −(t−1)E[⟨Uk
tU

k⊤
t ∆Wt,G

old
t ⟩]

= −(t−1)E[Tr(∆W⊤
t U

k
tU

k⊤
t Gold

t )].

Let Gold
t =

∑d
i=1 σiuiv

⊤
i be the SVD. Then,

Uk
tU

k⊤
t Gold

t =

d∑
i=d−kt+1

σiuiv
⊤
i .

So:

E[LS
t ] = −(t− 1)

d∑
i=d−kt+1

σi · E[⟨∆Wt,uiv
⊤
i ⟩F ].

Under the uniform distribution assumption, all expected projections are equal:

E[⟨∆Wt,uiv
⊤
i ⟩F ] = c, ∀i.

Then:

E[LS
t ] = −(t− 1) · c ·

d∑
i=d−kt+1

σi.

Also,

⟨∆Wt,G
old
t ⟩ =

d∑
i=1

σi · ⟨∆Wt,uiv
⊤
i ⟩F = c ·

d∑
i=1

σi,

so:

c =
⟨∆Wt,G

old
t ⟩∑d

i=1 σi

.

Thus,
E[LS

t ] = −(t− 1) · ϵt(kt) · ⟨∆Wt,G
old
t ⟩.

—

Plasticity Loss:

The plasticity loss is:

E[LP
t ] = −E[⟨∆Ŵt,Gt⟩] = −E[⟨Uk

tU
k⊤
t ∆Wt,Gt⟩].
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Let αi = ⟨∆Wt,ui⟩, βi = ⟨Gt,ui⟩. Then:

E[LP
t ] = −E

[
kt∑
i=1

αiβi

]
.

Under the uniform assumption, the expected contribution over any direction is 1
d , hence:

E[LP
t ] = −kt

d
· ⟨∆Wt,Gt⟩.

A.4 EVALUATION METRICS

To evaluate continual learning performance, we track the average classification accuracy over all
classes encountered so far at the end of each task’s training following (Jiao et al., 2024). We denote
by Aij the average accuracy on the i-th task after training the j-th task. Below, we provide formal
definitions for two key metrics: FAA and CAA.

(i) Final Average Accuracy (FAA). FAA measures the overall performance after learning all tasks,
defined as:

FAA =
1

T

T∑
i=1

AiT , (20)

where T is the total number of tasks and AiT is the accuracy for task i after completing task T . A
larger FAA indicates a stronger ability to learn while minimizing forgetting. In some literature, FAA
is also referred to as “Last-Acc.”

(ii) Cumulative Average Accuracy (CAA). CAA is the average of the FAA values computed after
each task is learned, given by:

CAA =
1

T

T∑
j=1

1

j

j∑
i=1

Aij . (21)

It captures the overall performance at every incremental step. This metric is sometimes referred to as
“Inc-Acc.”

A.5 EFFECTIVENESS OF OPTIMIZING SUBSPACE DIMENSIONS VS. THRESHOLD TUNING

A central question is whether introducing a new hyperparameter for optimization offers a real
advantage over directly tuning the threshold τ , as done in InfLoRA. Different layers in a model
serve distinct roles (Zheng et al., 2025). Prior methods such as InfLoRA employ a fixed empirical
threshold τ to determine subspace dimensions. However, this fails to accommodate the heterogeneous
learning needs across layers, often resulting in shallow layers being overly constrained and deep
layers retaining excessive capacity for past tasks.

Layer-wise Subspace Allocation. SplitLoRA replaces the single heuristic threshold with a princi-
pled optimization framework. Our objective function (Eq. 13) is derived from the total loss and allows
us to analytically compute an optimal subspace dimension for each LoRA module within each task.
This ensures that each layer selects a gradient space partitioning strategy that minimizes the overall
loss. To illustrate, Tab. 6 compares the subspace dimensions selected by InfLoRA and SplitLoRA on
the 10th task in the 20-task ImageNet-R setting. While InfLoRA under-allocates capacity in shallow
layers (layers 0–2), SplitLoRA learns to preserve significantly larger subspaces, implicitly protecting
critical shallow representations from catastrophic forgetting.

Strategy Transplantation. To validate this observation explicitly, we designed a strategy transplan-
tation experiment. In the 20-task ImageNet-R setting, we replaced the subspace selection strategy
of layer 0 in InfLoRA with that of SplitLoRA. This modification significantly improved InfLoRA’s
performance, particularly in terms of reduced forgetting. Nonetheless, the modified InfLoRA still
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Table 6: Comparison of major subspace dimensions selected at different layers on the 10th task
(ImageNet-R, 20-task setting).

Layer 0 1 2 6 9 11
InfLoRA 14 13 30 52 105 85

SplitLoRA 65 48 58 58 68 70

Table 7: Strategy transplantation results on ImageNet-R with 5, 10, and 20 tasks. Replacing layer-0
strategy of InfLoRA with SplitLoRA significantly improves performance, especially in reducing
forgetting.

Method
5-task 10-task 20-task

FAA (↑) CAA (↑) Forget. (↓) FAA (↑) CAA (↑) Forget. (↓) FAA (↑) CAA (↑) Forget. (↓)

InfLoRA 79.82 84.07 10.03 78.10 83.47 9.40 73.81 81.02 12.34
w/ layer0→SplitLoRA 81.59 85.57 4.00 80.35 84.68 4.11 76.68 82.39 5.48
SplitLoRA 81.92 85.83 4.45 81.00 85.84 4.68 78.82 84.57 4.66

lagged behind SplitLoRA in new-task performance, suggesting that managing knowledge retention in
shallow layers is a key factor, but not the sole determinant, of SplitLoRA’s superiority.

Tab. A.5 reports results across ImageNet-R benchmarks with 5, 10, and 20 tasks. Compared to
InfLoRA, transplanting only the layer-0 strategy from SplitLoRA already yields notable gains:
forgetting is halved (e.g., from 10.03 to 4.00 in 5-task setting) and both FAA and CAA improve
consistently. Nevertheless, SplitLoRA achieves the best overall balance between forward accuracy
and forgetting, highlighting that its advantage lies not only in shallow layer protection but also in its
holistic optimization framework.

These results clearly demonstrate that SplitLoRA’s learned subspace allocation strategy provides
substantial advantages over direct threshold tuning. Protecting shallow layers plays a pivotal role in
mitigating forgetting, while the full optimization framework ensures superior overall accuracy across
continual learning tasks.

A.6 THE SIZE OF MINOR SUBSPACE EVOLVES DURING TRAINING.

We tracked the evolution of the minor subspace size throughout training on ImageNet-R with 20
tasks. As shown in the Fig. 4, as the number of tasks increases, model stability becomes more critical,
leading to a progressively smaller minor subspace. Furthermore, when comparing different layers
of ViT, the minor subspace is larger in shallower layers and gradually decreases as the layer depth
increases. This suggests that changes in the deep-layer parameters have a greater impact on model
stability.

When the value of α changes, the learning space of the model varies significantly. Nevertheless, the
model is still able to learn tasks effectively under different settings of α. Furthermore, as the number
of tasks approaches infinity, the size of the minor subspace gradually shrinks toward zero, raising the
question of whether the model can still maintain its learning ability in this limit. To provide intuition,
we conduct a simple experiment to explain this phenomenon.

Table 8: Average accuracy of tasks 2–20 under different fine-tuning strategies.
Method Avg. Acc (Tasks 2–20)

Only head 66.08
Only head and the first task 74.75
SplitLoRA 81.47

As Tab. 8 shows, "Only head" means training only the classifier head for each task, which can be
regarded as the extreme case where the minor subspace is nearly zero. "Only head and the first task"
means training the first task’s LoRA together with the classifiers for all tasks. SplitLoRA is used for
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Table 9: We present FAA (%) and CAA(%) on ImageNet-R: 10-tasks. Backbones are with different
self-supervised pre-training paradigms: iBOT-1K and DINO-1K.

Method Pub. iBOT-1K DINO-1K
FAA ↑ CAA ↑ FAA ↑ CAA ↑

Upper-bound – 84.09 ± 0.21 – 81.98 ± 0.07 –
DualPrompt Wang et al. (2022a) ECCV22 61.51 ± 1.05 67.11 ± 0.08 58.57 ± 0.45 64.89 ± 0.15
CODA-Prompt Smith et al. (2023) CVPR23 66.56 ± 0.68 73.14 ± 0.57 63.15 ± 0.39 69.73 ± 0.25
HiDe-Prompt Wang et al. (2023a) NeurIPS23 71.33 ± 0.21 73.62 ± 0.13 68.11 ± 0.18 71.70 ± 0.01
InfLoRA Liang & Li (2024) CVPR24 71.84 ± 0.09 78.29 ± 0.09 68.31 ± 0.28 76.15 ± 0.05
VPT-NSP2 Lu et al. (2024) NeurIPS24 73.85 ± 0.23 80.34 ± 0.60 69.45 ± 0.74 76.38 ± 0.50
VQ-Prompt Jiao et al. (2024) NeurIPS24 71.68 ± 0.72 76.66 ± 0.40 68.42 ± 0.28 74.43 ± 0.58
SplitLoRA This work 74.58 ± 1.05 81.45 ± 1.72 70.49 ± 0.31 78.15 ± 1.13

comparison. It can be observed that even when the minor subspace is extremely small (or effectively
zero, as in the "Only head" setting), the model can still learn tasks to a reasonable extent. Moreover,
when subsequent tasks are fine-tuned on the first task’s LoRA, performance further improves. This
suggests that the knowledge contained in the pre-trained model and the beneficial knowledge retained
from old tasks provide sufficient support for learning new tasks, even under highly restricted learning
spaces.
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Figure 4: We recorded the evolution of the minor subspace size during training on ImageNet-R with
20 tasks.

A.7 VARIANT PRE-TRAINED MODELS.

Tab. 9 provides a summary of experimental results on the 10-task ImageNet-R dataset using different
self-supervised pre-training paradigms. Specifically, we evaluate our method with iBOT-1K (Zhou
et al., 2022) and DINO-1K (Caron et al., 2021) pre-training frameworks. These results clearly
demonstrate that SplitLoRA consistently outperforms state-of-the-art continual learning methods,
irrespective of the pre-training paradigm used. This robustness underscores the generalizability and
effectiveness of SplitLoRA in leveraging self-supervised pre-training for continual learning tasks.

A.8 MORE RESULTS ON OTHER BENCHMARK.

We follow (Zhou et al., 2024a) to evaluate the performance on CIFAR100 (Krizhevsky, 2009),
CUB200 (Wah et al., 2011), ImageNet-R (Hendrycks et al., 2021a), ImageNet-A (Hendrycks et al.,
2021b), ObjectNet (Barbu et al., 2019), Omnibenchmark (Zhang et al., 2022) and VTAB (Zhai
et al., 2019) comparing with nine methods: L2P (Wang et al., 2022b), DualPrompt (Wang et al.,
2022a), CODA-Prompt (Smith et al., 2023), DAP (Jung et al., 2023), SimpleCIL (Zhou et al.,
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Table 10: Comparison with state-of-the-art methods on multiple benchmarks. We report CAA and
FAA (%) on base and incremental sessions.

Method CIFAR B0 Inc5 CUB B0 Inc10 IN-R B0 Inc5 IN-A B0 Inc20 Obj B0 Inc10 Omni B0 Inc30 VTAB B0 Inc10 Average
L2P 85.94 / 79.93 67.05 / 56.25 66.53 / 59.22 49.39 / 41.71 63.78 / 52.19 73.36 / 64.69 77.11 / 77.10 65.30
DualPrompt 87.87 / 81.15 77.47 / 66.54 63.31 / 55.22 53.71 / 41.67 59.27 / 49.33 73.92 / 65.52 83.36 / 81.23 67.11
CODA-Prompt 89.11 / 81.96 84.00 / 73.37 64.42 / 55.08 53.54 / 42.73 66.07 / 53.29 77.03 / 68.09 83.90 / 83.02 69.68
DAP 94.54 / 90.62 94.76 / 94.63 80.61 / 74.76 54.39 / 46.32 72.08 / 59.51 86.44 / 80.65 84.65 / 84.64 78.47
DAP w/o BI 68.07 / 58.16 65.27 / 52.05 50.40 / 37.99 34.48 / 21.84 50.47 / 37.55 65.43 / 52.53 79.63 / 79.87 53.83
SimpleCIL 87.57 / 81.26 92.20 / 86.73 62.58 / 54.55 59.77 / 48.91 65.45 / 53.59 79.34 / 73.15 85.99 / 84.38 72.53
ADAM + VPT-D 88.46 / 82.17 91.02 / 84.99 68.79 / 60.48 58.48 / 48.52 67.83 / 54.65 81.05 / 74.47 86.59 / 83.06 73.61
ADAM + SSF 87.78 / 81.98 91.72 / 86.13 68.94 / 60.60 61.30 / 50.03 69.15 / 56.64 80.53 / 74.00 85.66 / 81.92 74.02
ADAM + Adapter 90.65 / 85.15 92.21 / 86.73 72.35 / 64.33 60.47 / 49.37 67.18 / 55.24 80.75 / 74.37 85.95 / 84.35 74.93
RanPAC 93.51 / 89.30 93.13 / 89.40 75.74 / 68.75 64.16 / 52.86 71.67 / 60.08 85.95 / 79.55 92.56 / 91.83 79.17
EASE 91.51 / 85.80 92.23 / 86.81 78.31 / 70.58 65.34 / 55.04 70.84 / 57.86 81.11 / 74.85 93.61 / 93.55 78.39
HiDe-Prompt 91.22 / 89.92 89.75 / 89.46 76.20 / 74.56 61.41 / 49.27 70.13 / 62.84 76.60 / 77.01 91.24 / 92.78 78.02
ESN 87.15 / 80.37 65.69 / 63.10 60.69 / 55.13 44.06 / 31.07 63.73 / 52.55 75.32 / 66.57 81.52 / 62.15 63.50

SplitLoRA 93.11 / 90.84 91.52 / 87.46 81.74 / 74.81 66.11 / 58.22 68.60 / 61.33 82.30 / 76.86 94.39 / 91.95 79.95

2023), ADAM (Zhou et al., 2023), RanPAC (McDonnell et al., 2023), EASE (Zhou et al., 2024b),
ESN (Wang et al., 2023c) and HiDe-Prompt (Wang et al., 2023a).

Tab. 10 compares SplitLoRA with state-of-the-art continual learning methods on seven benchmarks.
SplitLoRA achieves the best average performance (79.95%) and consistently ranks top in individual
tasks. In particular, it excels on ImageNet-R, Omni, and VTAB, demonstrating strong generalization
and knowledge retention. This confirms that SplitLoRA effectively balances stability and plasticity
across diverse scenarios.
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