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Abstract

A fundamental challenge in graph-level anomaly
detection (GLAD) is the scarcity of anomalous
graph data, as the training dataset typically con-
tains only normal graphs or very few anoma-
lies. This imbalance hinders the development
of robust detection models. In this paper, we
propose Anomalous Graph Diffusion (AGDiff),
a framework that explores the potential of dif-
fusion models in generating pseudo-anomalous
graphs for GLAD. Unlike existing diffusion-
based methods that focus on modeling data nor-
mality, AGDiff leverages the latent diffusion
framework to incorporate subtle perturbations into
graph representations, thereby generating pseudo-
anomalous graphs that closely resemble normal
ones. By jointly training a classifier to distin-
guish these generated graph anomalies from nor-
mal graphs, AGDiff learns more discriminative
decision boundaries. The shift from solely model-
ing normality to explicitly generating and learning
from pseudo graph anomalies enables AGDIff to
effectively identify complex anomalous patterns
that other approaches might overlook. Compre-
hensive experimental results demonstrate that the
proposed AGDiff significantly outperforms sev-
eral state-of-the-art GLAD baselines.

1. Introduction

Graph-level anomaly detection (GLAD) (Akoglu et al.,
2015; Qiao et al., 2024a; Liu et al., 2024b; Cai et al., 2024d)
focuses on the fundamental challenge of identifying irregu-
larities in graph-level data, where anomalous graphs signifi-
cantly deviate from the normal graph distribution. GLAD is
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crucial across numerous domains, from detecting abnormal
patterns in social networks (Yu et al., 2016; Zhang et al.,
2025; Qiao & Pang, 2023) to identifying anomalous pro-
teins in biological systems (Li et al., 2022). Unlike node- or
edge-level anomaly detection (Duan et al., 2023; Qiao et al.,
2024a;b; Pan et al., 2025), GLAD poses unique challenges
as it requires modeling complex topological and geometric
structures at the entire graph level.

The evolution of GLAD methods has witnessed several key
developments. Classical graph kernel methods, such as
the Weisfeiler-Lehman kernel (Shervashidze et al., 2011),
random walk kernel (Vishwanathan et al., 2010), have estab-
lished a foundation for GLAD by computing graph similar-
ity matrices based on structural features. These approaches
excel at capturing local topological patterns, but typically
struggle with computational complexity. Recent deep learn-
ing based GLAD methods have emerged in both unsuper-
vised and semi-supervised paradigms. Unsupervised meth-
ods typically employ graph neural networks (GNNs) (Kipf
& Welling, 2017; Xu et al., 2019; Huang et al., 2023; Wan
et al., 2024; Tu et al., 2025) to learn graph-level features for
anomaly detection, with techniques such as one-class clas-
sification (Ruff et al., 2018; Qiu et al., 2022; Zhang et al.,
2024), information bottleneck (Liu et al., 2023a), knowledge
distillation (Ma et al., 2022), and graph reconstruction (Kim
et al., 2024) to learn normality patterns without labeled
anomalies. Semi-supervised approaches (Zhang et al., 2022;
Xu et al., 2024) generally leverage limited graph anomalies
to train a classifier as the anomaly detector. Even though
only a small fraction of labeled anomalies are available,
semi-supervised approaches have demonstrated remarkable
performance improvement in detecting graph anomalies.

Despite these advancements, several critical limitations per-
sist in existing approaches. Unsupervised methods focus on
modeling normal graph distributions, they generally strug-
gle to distinguish intricate or subtle anomalies, especially
those near the boundaries of normal graphs, due to the
lack of explicit supervised information. On the other hand,
semi-supervised approaches can leverage limited labeled
anomalies to enhance decision boundary learning. How-
ever, their effectiveness is constrained by the scarcity and
diversity of labeled anomalous graphs, which limits their
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Figure 1. An illustration of the proposed AGDiff framework. The framework consists of three main components: (1) Pre-training, (2)
Latent diffusion-based pseudo-anomalous graph generation, and (3) Anomaly detector. The pre-training phase learns a structured latent
space via a reconstruction model. The latent diffusion process generates pseudo-anomalous graphs by perturbing latent embeddings
through a forward diffusion process and a reverse denoising process. Finally, the anomaly detector distinguishes between normal and

generated pseudo-anomalous graphs through joint training.

generalizability to rare or unseen anomaly types.

To address these challenges, we propose Anomalous Graph
Diffusion (AGDiff), a novel framework (see Figure 1) that
leverages the generative capabilities of diffusion models to
generate diverse pseudo-anomalous graphs for GLAD. By
introducing a conditioned latent diffusion process within a
well-trained graph representation learning model, AGDiff
ensures the preservation of essential graph properties while
imposing controllable perturbations in the latent space. Ad-
ditionally, AGDiff employs a joint training paradigm that
simultaneously optimizes pseudo-anomalous graph gener-
ation and anomaly detection. Our algorithm analysis (in
Appendix A) highlights the advantages of AGDiff over
traditional reconstruction-based methods by demonstrating
that leveraging diverse pseudo-anomalous graphs enables
a more robust and refined decision boundary for anomaly
detection. By bridging the gap between generative modeling
and discriminative learning, AGDIff offers a generalizable
solution to the fundamental challenges of GLAD.

The primary contributions of this work are as follows:

1. We propose AGDiIff, the first framework that explores
the potential of diffusion models to mitigate the anomaly
scarcity challenge in GLAD.

2. We propose a latent diffusion process with perturbation
conditions to generate pseudo-anomalous graphs without
relying on any labeled anomalies for improving decision
boundary learning.

3. We demonstrate the superiority of AGDiff across exten-
sive comparisons with state-of-the-art GLAD baselines on
diverse graph benchmarks.

2. Related Work

2.1. Graph-level Anomaly Detection

Graph-level anomaly detection (GLAD) (Akoglu et al.,
2015; Qiao et al., 2024a; Cai et al., 2024b) aims to identify
graphs whose structural or attribute patterns deviate from the
majority, with widespread real-world applications in fraud
detection, bioinformatics, and cybersecurity. Traditional
approaches, such as graph kernels (Borgwardt & Kriegel,
2005; Vishwanathan et al., 2010; Shervashidze et al., 2011),
struggle to model the intricate dependencies within graph
data due to their reliance on hand-crafted features. In recent
years, the emergence of GNNs (Kipf & Welling, 2017; Xu
et al., 2019; Li et al., 2023; Liu et al., 2023b; Cai et al.,
2024a;c) has substantially advanced GLAD via their ex-
pressive graph representation learning capabilities. Latest
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GLAD approaches have explored knowledge distillation
for global-local anomaly identification (Ma et al., 2022),
graph transformation learning to mitigate representation col-
lapse (Qiu et al., 2022), counterfactual graph generation for
robust detection (Xiao et al., 2024a), spectral analysis to
capture global graph anomaly properties (Dong et al., 2024),
and explainable learning for interpretable anomaly detec-
tion (Liu et al., 2023a), etc. Additionally, semi-supervised
learning (Zhang et al., 2022) is also studied to alleviate the
data imbalance problem in GLAD.

Despite these advancements, existing GLAD methods still
face significant limitations. For example, the reconstruction
flip phenomenon identified by Kim et al. (2024) reveals
that the common assumption in existing approaches, i.e.,
anomalies necessarily exhibit higher reconstruction errors,
is not universally applicable. Moreover, existing approaches
are trained with only normal graph data or just a small
set of anomalies, which limits their generalizability to un-
seen anomalies. Consequently, in the proposed AGDiff
framework, we aim to adaptively generate diverse pseudo-
anomalous graphs to enhance the capacity to detect subtle
and complex anomalies while mitigating data imbalance
issues. Furthermore, the generative process inherently im-
proves interpretability by revealing how pseudo-anomalous
graphs are generated through controlled perturbations. Com-
pared to other approaches, our method delivers a robust and
interpretable solution for GLAD problems.

2.2. Diffusion Model

Diffusion models (Ho et al., 2020; Song et al., 2021; Yang
et al., 2023) have emerged as a new paradigm for generative
modeling, wherein data are gradually corrupted through
a diffusion forward process and subsequently denoised
through a learned reverse process. Early work by Ho et
al. (Ho et al., 2020) demonstrated that diffusion processes
could capture high-dimensional densities more effectively
than traditional architectures such as GANs (Goodfellow
et al., 2020; Wang et al., 2021; Cai et al., 2024¢e) and VAEs
(Kingma, 2013). In the context of image anomaly detec-
tion, diffusion-based methods have demonstrated impres-
sive capabilities in domains such as industrial defect in-
spection (Zhang et al., 2023; Tebbe & Tayyub, 2024) and
medical anomaly detection (Wolleb et al., 2022; Bercea
et al., 2024), as they excel by modeling intricate pixel-level
dependencies, thereby enabling the identification of subtle
deviations through the pixel-level reconstruction of images.
Recent advances have investigated the diffusion frameworks
for graph-structured data, demonstrating notable potential
for tasks such as graph generation (Kong et al., 2023), node
classification (Yang et al., 2024), and graph anomaly detec-
tion (Li et al., 2024; Liu et al., 2024a; Xiao et al., 2024b).

However, existing diffusion-based anomaly detection meth-

ods (Wolleb et al., 2022; Tebbe & Tayyub, 2024; Li et al.,
2024) primarily focus on modeling normality and expect
anomalies to emerge naturally as reconstruction outliers, pre-
supposing that anomalies deviate significantly in topology or
node features. Such an assumption falters when anomalies
are inherently subtle, especially in graphs where localized
irregularities can be easily “diluted” by global reconstruc-
tion. Different from the existing approaches, we propose
to leverage diffusion models as a pseudo-anomalous graph
generator through controlled perturbations introduced dur-
ing the diffusion process. We expect the generated pseudo
graphs to resemble the normal graphs, so that they can
provide explicit supervision for learning a robust anomaly
detection model.

3. Preliminary

The diffusion model, e.g., denoising diffusion probabilistic
model (DDPM) (Ho et al., 2020), is one of the generative
model families, which typically contains a forward diffusion
process that perturbs the original data x into a noisy sample
x¢ by progressively adding Gaussian noise over 7' time steps,
and a reverse denoising process that attempts to recover X
from x; by removing the noise step-by-step. Specifically,
the forward diffusion process is defined as:

Xt = \/@»txo + v 1- tht, €t ~ N(O;I) (l)

Here, @; = [['_, ai = [I'_,(1 — B;), where 8; denotes
the noise variance schedule that imposed at each time step.
The reverse denoising process can be understood as a series
of learned denoising steps to recover the original data x,
from the noise sample x;. At each time step ¢, x;_1 is
reconstructed by:

! b'e 1 - (x4, 1)
- S S
Va\' vi—a o

where €9(xX¢,t) is a learnable noise predict function, B =
1_2“1 ,and z ~ N(0,1) is sampled from a normal Gaus-
sian distribution. The training of diffusion models revolves
around learning the reverse process that can accurately re-
cover data from the noisy representation, where the objective

can be expressed as:

Xt—1 =

> + Bz, (2)

min Ey1, 1) xoma(xo)enn (0 | € = eo(xe D)) - 3)

After training the model, the original data x( can be recon-
structed by iteratively removing predicted noise €g(x¢, t)
from x;.

4. Methodology

4.1. Problem Formulation

Let G = (V, ) denote a graph where V represents the set
of vertices and £ C V x V represents the set of edges.
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Each graph G is characterized by its adjacency matrix A €
{0, 1}™*™ and node feature matrix X € R™*?, where n =
|V is the number of nodes and d is the dimension of node
features. In an unsupervised GLAD problem (Akoglu et al.,
2015; Qiao et al., 2024a), given a normal graph set G =
{G1,Gs,...,G N} is given by sampling from an unknown
normal graph distribution Pyrma. Our goal is to learn an
anomaly detection function f : G — R that identifies
graphs deviating from Ppomar- Specifically, for a test graph
Glest, WE aim to estimate:

f(Gtest) = P(Gtest ¢ 7)normall(;lest)~ (4)

While some semi-supervised methods (Zhang et al., 2022)
attempt to introduce a small fraction of real anomalies into
training a classifier as the anomaly detector, the scarcity
and limited diversity of anomalies make it challenging to
generalize to unseen anomalous patterns. Therefore, we
are curious whether the normality induced by normal graph
distribution can be leveraged as a special kind of “super-
vised information” to facilitate the training of a more robust
graph anomaly detector. In this work, we aim to generate
a set of pseudo-anomaly graphs by introducing controlled
perturbations for normal graphs under a latent diffusion
framework. Then, we jointly train a graph anomaly detector
with the generation framework so that the decision boundary
learning and the pseudo-anomalous graph generation can
be mutually refined. We will describe the details of our
framework in the following sections.

4.2. Modeling Normality via Variational Inference

In the context of graph-level anomaly detection, one of the
foundational challenges is the modeling of the normal graph
distribution, as anomalies are typically defined as deviations
from the normality learned from a given normal graph set
Ghormal- To achieve this, we first pre-train a graph represen-
tation learning model aiming at capturing the normality of
graphs. Particularly, we leverage variational inference to
learn a probabilistic mapping from graph space to continu-
ous latent space, as it naturally provides a well-regularized
manifold for subsequent perturbation-based anomaly gen-
eration. For a given graph set G = {A, X}, we approxi-
mate the posterior distribution over the latent representation
Z € R™"*d= ag:

9(ZIX, A) = [ e(=]X, A),
i=1 (5)

w.rt q(zi|X, A) = N(z;|p;, diag(o?)),

where p and o are parameterized by . = GNN (X, A)
and logo = GNN, (X, A), respectively. By using the
reparameterization trick to enable gradient propagation, we
sample Z = p+0o ©7, where 7 ~ N(0,I). The reconstruc-
tion process involves recovering both structural (denoted by

A) and attribute (denoted by X) information for graphs:

A=T(2Z"), X=D(z), ©
where 7 () denotes a Sigmoid transformation function,
and D(-) represents an MLP-based decoder for attribute
reconstruction. The model is optimized by minimizing:

attr edge
£prelrain :Er + ér ¢ + ZKL

N
:Z(Hxi — X%+ H(A, Ay) @)
=1

— KL(q(Z;|Xi, A))|P(Z))),

where (-) denotes the binary cross-entropy loss for edge
reconstruction, and the KL divergence term regularizes the
learned distribution towards a prior P(Z) =[], N(z;|0,1),
which encourages a smooth and well-structured latent space
and prevents the model from overfitting to a narrow or de-
generate latent manifold (Kipf & Welling, 2016).

4.3. Generating Anomalous Graphs via Latent Diffusion

Building on a well-structured latent space that effectively
captures normal graph patterns, we propose a novel ap-
proach that utilizes latent diffusion models to generate
pseudo-anomalous graphs. This approach represents a
substantial departure from conventional diffusion-based
anomaly detection methods, which typically aim to model
the normality of data via diffusion models. Instead, we
exploit the generative power of diffusion models to gener-
ate diverse pseudo-anomalous graphs by introducing con-
trolled perturbations during the latent diffusion process. The
smooth and continuous geometry of the latent space pro-
vides a foundation for this process, enabling the preservation
of critical structural properties and meaningful deviations
from normality. Our key insights are: (1) the continuous na-
ture of the latent space makes it particularly suitable for the
diffusion process, and (2) the asymptotic nature of the diffu-
sion process allows fine-grained control over the deviation
from normality.

Given a normal graph set G = {X, A}, we first obtain its
latent representation Z = £(X, A) through the pre-trained
model. To generate controlled perturbations, we design a
conditional latent diffusion process that consists of two key
components: a forward process that gradually adds noise to
the latent representation, and a reverse process that learns to
denoise while preserving essential graph properties. The for-
ward process progressively corrupts the latent representation
by injecting Gaussian noise over 7' time steps:

Zy =V uZo + V1 — Qe

where z( is initialized by Z, and a; = szlai =

Hle(l — B;) determines the noise schedule through ;.

€t NN(OaI)a (8)
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This schedule is crucial as it determines the degree of per-
turbation at each step.

A key challenge in generating pseudo-anomalous graphs is
maintaining the balance between structural preservation and
anomaly injection. To address this, we design a conditional
reverse process:

1 1— Qi
Va <Zt V-
where €g(z¢,t, c) is our conditional noise prediction net-
work, 3 = 1_27:*1 and v ~ N(0,I). The condition vector
c is obtained via a perturbation condition model 7, to add
auxiliary noise information to the generation process:

¢ = Tu(20) = 0(We(zo + 1) + be), (10)

where n ~ A(0, I) is a Gaussian noise vector that intro-
duces perturbations to the initial latent representation, and
the learnable weight matrix W and bias vector b, trans-
form the perturbed representation to a more expressive fea-
ture space through a non-linear activation function o (-). The
condition vector c is concatenated with the latent variable
z; at each denoising step to introduce controlled variations
during the diffusion process.

Zi—1 =

€0 (Ztv ta C)) + va (9)

The condition vector c is crucial for guaranteeing the gen-
eration quality of pseudo graph anomalies. If we directly
use the perturbed normal data (e.g., via random noise 7)
as pseudo anomalies, it would constrain the diversity of
anomalous patterns the model encounters, as such pertur-
bations are static and lack adaptability during training. In
contrast, we propose to perturb the initial latent embedding
through a learnable perturbation transformation ¢, which
injects additional variability into the latent diffusion process.
The perturbations are learnable and dynamically adjusted
during joint training with the anomaly detector. As the
anomaly detector improves, the perturbation mechanism
evolves and generates increasingly sophisticated and diverse
pseudo anomalies to refine the decision boundary. This en-
sures that the denoising network is conditioned to deviate
from purely “normal” reconstructions and allows the model
to be exposed to a broader spectrum of potential anomalies,
thereby enhancing its robustness and generalization. The
latent diffusion model is then optimized by minimizing:

Laitt = By erc [l€ — €0(ze,t,€)|13] - (11)

Through the conditional diffusion process, we can iteratively
generate perturbed latent features zg, i.e., z; — Z;—1 —
- -+ — 7 for each graph. Therefore, the pseudo-anomalous
graphs can be obtained through the pre-trained decoder via:

A= T(ZZT) and X = 'D(Z), where Z = {Zéi) 1?\7:1.

4.4. Detecting Anomalies from Subtle Deviations

Conventional semi-supervised GLAD approaches generally
struggle in scenarios where real anomalous samples are very

Algorithm 1 AGDiff
Input: Input graph set G, number of GIN layers K, learn-
ing rate p, diffusion time steps 7', training epochs
FEpochs.
Output: The anomaly detection scores.
1: Initialize the network parameters;
2: Pre-train the representation learning model by minimiz-
ing Eq. (7);
Freeze the network parameters of the pre-trained model;
for epoch = 1 to Epochs do
Sample a mini-batch of graphs from graph dataset G;
Obtain latent embeddings Z from the pre-trained en-
coder;
Perform forward diffusion process on Z via Eq. (8);
Obtain the condition vector via Eq. (10);
9:  Generate pseudo-anomalous embeddings Z through
the reverse diffusion process via Eq. (9);
10:  Decode Z via pre-trained decoder to generate pseudo-
anomalous graphs set ,C'; ;
11:  Predict scores for the normal and generated pseudo-
anomalous graphs via Eq. (12);
12:  Jointly update the parameters of the latent diffusion
model and anomaly detector by minimizing Eq. (14);
13: end for
14: Compute anomaly detection scores for test graphs via
the trained classifier fy;
15: Return: The anomaly detection scores.

AN AN

%

rare or even unavailable, as their reliance on labeled anoma-
lies limits their capacity to generalize to unseen abnormal
patterns. This challenge becomes particularly pronounced
in real-world scenarios, where anomalies are inherently rare
and diverse. To overcome this limitation, we propose a
joint learning framework that leverages generated pseudo-
anomalous graphs to facilitate the training of the anomaly
detector. These pseudo-anomalous graphs serve as proxies
for real anomalies, which enables the model to learn more
robust, adaptive decision boundaries that capture subtle de-
viations from normality.

In practice, we employ a GIN-based anomaly detector
hg(-) to distinguish between normal graphs and pseudo-
anomalous graphs, which is defined by:

hs(G) = MLP(GIN(X, A)), (12)

where hy(-) parameterized by ¢ is comprised of a GIN-
based backbone network GIN(+) and an MLP-based projec-
tor MLP(-). We employ a following binary cross-entropy
loss L to train the anomaly detector:

1
e (yG log hy(G)
Gudl Gezgug (13)

+ (1 —ya)log(1l — he(@))),

cls —
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where G and Q denote the normal and pseudo-anomalous
graph sets, respectively. Note that we set yo = 1,VG € G,
and yo = 0,VG € C; to train the anomaly detector. In
particular, we jointly train the latent diffusion model and the
anomaly detector by minimizing:

L = Leos + A\Laise (14)

where ) is the hyper-parameter that controls the trade-off
between two objectives. Lgir guides the generation of
pseudo graph anomalies, and L. enhances the discrim-
inative power of the anomaly detector. In the inference
phase, we can obtain the anomaly score of each test graph
sample via the trained anomaly detector. Algorithm 1 sum-
marizes the training procedure of AGDiff. The joint learning
framework offers several unique advantages:

1. The latent diffusion model learns to generate increasingly
challenging pseudo-anomalies that explore the decision
boundary of the anomaly detector.

2. The gradient of the detector directs the diffusion process
toward generating more informative pseudo-anomalous
samples.

3. The iterative refinement between generation and detec-
tion leads to a more robust anomaly detector.
4.5. Computational Complexity Analysis

For a dataset of IV graphs, each with an average of m nodes
(feature dimension d), |E| edges, and latent dimension d,
the AGDiff framework operates in three phases:

1. Pre-training: An L-layer GIN is employed as the back-
bone network in the pre-training, where the overall com-
plexity is O(N L(|E|d+md?)) due to the message aggre-
gation (O(|E|d)) and feature transformation (O(md?)).

2. Pseudo Anomaly Generation: This phase involves the
computation of conditional vector (O(Nd?)) and a T-
step latent diffusion process (O(NTmd?)) across all
graphs.

3. Decoding and Anomaly Detection: Decoding involves
the computation of node attributes and adjacency matri-
ces from latent embeddings, which results in time com-
plexity of O(N|E|d,) when we apply a negative sam-
pling strategy in practice. The computational complexity
of the anomaly detector is similar to the pre-training
stage, i.e., (O(NL(|E|d + md?))), due to their similar
network structure.

Therefore, the overall computational complexity of AGDiff
is approximately O(NL(|E|d + md?®) + N(T'm + 1)d2 +
N|E|d), which is comparable with other state-of-the-art

baselines such as SIGNET, MUSE, DO2HSC. In addition,
potential optimizations such as using parallel computation
further enhance efficiency.

5. Experiments
5.1. Experimental Setup

Datasets. We conduct experiments with two types of
graph benchmarks, including

e Moderate-Scale Datasets: MUTAG, DD, COX2, and
ER_MD. These datasets primarily consist of molecular
graphs and bioinformatics networks, where nodes and
edges represent molecular structures or protein interac-
tions.

e Large-Scale Imbalanced Datasets: SW-620, MOLT-4,
PC-3, and MCF-7. Each graph in these datasets represents
a chemical compound, with labels indicating whether it
exhibits anti-cancer activity. The datasets are highly im-
balanced as active compounds form only a small fraction
of the total samples, which makes them well-suited for
evaluating the robustness of anomaly detection methods
in real-world, unbalanced settings.

We describe the details about the datasets and their charac-
teristics in Appendix B. Note that we follow the settings in
existing works (Ma et al., 2022; Zhang et al., 2022; Liu et al.,
2023a) to treat the minority class as the anomalous class
to better align with real-world scenarios where anomalies
often correspond to rare events or unusual patterns.

Implementation Details. Due to the length limitation of
the paper, please refer to Appendix C for the implemen-
tation details of the experiment, including the data split,
network architecture, hyper-parameter setting, baseline set-
ting, and computing resources.

Compared Baselines. To evaluate the effectiveness of the
proposed AGDiff method, we compared it with two types
of GLAD baselines, including: (1) Graph Kernel Meth-
ods: Short-Path (SP) kernel (Borgwardt & Kriegel, 2005),
Weisfeiler-Lehman (WL) kernel (Shervashidze et al., 2011),
NH (Hido & Kashima, 2009), Random Walk (RW) ker-
nel (Vishwanathan et al., 2010), and (2) GNN-based GLAD
Methods: OCGIN (Zhao & Akoglu, 2023), OCGTL (Qiu
et al., 2022), GLocalKD (Ma et al., 2022), iGAD (Zhang
etal., 2022), SIGNET (Liu et al., 2023a), MUSE (Kim et al.,
2024), DO2HSC (Zhang et al., 2024).

Evaluation Metrics. To evaluate the anomaly detection
performance of each method, we utilize two widely adopted
metrics: Area Under the Curve (AUC) and F1-Score. The
experimental results are reported as the mean values and
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Table 1. Average AUCs and F1-Scores with standard deviation (10 trials) on four small and moderated graph datasets. The best results are

marked in bold, and “OM” denotes out-of-memory.

Method \ MUTAG \ DD \ Cox2 \ ER_MD
| AuC Fl-Score | AUC | FlScore | AUC Fl-Score |  AUC F1-Score

SP (Borgwardt & Kriegel, 2005) | 67.5240.00 | 60.00£0.00 | 82.73+0.00 | 76.0940.00 | 54.08:£0.00 | 49.3240.00 | 40.9240.00 | 37.74:£0.00
WL (Shervashidze et al., 2011) | 60.0040.00 | 89.12-0.00 | 81.574+0.00 | 74.64+0.00 | 49.32-£0.00 | 50.194+0.00 | 37.74-0.00 | 45.71-0.00
NH (Hido & Kashima, 2009) 79.97+0.40 | 76.00£0.00 | 81.6120.32 | 73.91+0.65 | 61.41+0.82 | 56.44-£1.03 | 51.55+2.00 | 50.1940.92
RW (Vishwanathan et al., 2010) | 86.9840.00 | 83.33+0.00 oM oM 52.43£0.00 | 30.0020.00 | 78.94:£0.00 | 65.96:0.00
OCGIN (Zhao & Akoglu, 2023) | 74.66+£1.68 | 62.95+£0.00 | 66.59+4.44 | 56.1240.00 | 59.64:£5.78 | 47.95+0.00 | 47.63£3.59 | 50.94+1.89
OCGTL (Qiu et al., 2022) 87.04+1.74 | 80.0040.00 | 77.52:£0.43 | 71.65+0.73 | 60.4240.90 | 55.62£5.24 | 72.67+0.20 | 67.1740.92
GLocalKD (Ma et al., 2022) 90.59+0.61 | 86.174+0.91 | 80.59+0.00 | 73.48+0.57 | 51.4240.66 | 51.24-0.60 | 78.94+0.00 | 70.2140.00
iGAD (Zhang et al., 2022) 92.58£1.25 | 85.2042.30 | 74.8322.30 | 70.39+2.60 | 72.0942.29 | 61.94-1.09 | 80.56+2.57 | 74.574+2.45
SIGNET (Liu et al., 2023a) 87.7342.45 | 73.0744.11 | 59.5343.45 | 56.76+3.47 | 52.8042.53 | 20.24£4.92 | 77.02+1.07 | 77.06+=1.70
MUSE (Kim et al., 2024) 83.8145.17 | 75.3645.02 | 61.06+£3.03 | 58.324+3.08 | 54.1443.23 | 52.14+3.49 | 31.07+4.58 | 35.67+4.68
DO2HSC (Zhang etal., 2024) | 88.834£6.58 | 86.80-£6.21 | 77.124+2.15 | 70.8742.73 | 63.16:£3.36 | 58.36+2.95 | 68.314+4.31 | 66.63+£3.04
AGDiff 95.83+2.15 | 89.45+1.37 | 88.23::0.67 | 84.06::0.59 | 77.59+3.39 | 68.15+1.49 | 91.21+1.84 | 86.04+2.26

Table 2. Average AUCs and F1-Scores with standard deviation (10 trials) on four large-scale imbalanced graph datasets. The best results

are marked in bold, and “N/A” denotes the result is unavailable.

Method \ SW-620 \ MOLT-4 \ PC-3 \ MCF-7
| Auc Fl-Score | AUC | FlScore | AUC Fl-Score | AUC F1-Score

OCGTL (Qiu et al., 2022) 67.69+0.02 | 27.014£0.90 | 57.4242.38 | 53.38+0.64 | 68.4241.73 | 27.03+0.42 | 64.9241.92 | 34.81+1.70
GLocalKD (Ma et al., 2022) | 64.1440.92 | 60.73+0.03 | 63.4341.26 | 60.7340.03 | 66.08-£0.04 | 43.1340.14 | 61.43+1.26 | 45.00+0.17
iGAD (Zhang et al., 2022) 85.8240.69 | 63.68£1.56 | 83.59+1.07 | 63.30+1.17 | 86.04+1.14 | 63.50+0.73 | 83.22+0.64 | 64.70+2.58
SIGNET (Liu et al., 2023a) | 39.32+0.77 | 75.40£0.19 | 44.2840.33 | 70.28+0.16 | 40.5643.05 | 76.17+0.31 | 40.2240.55 | 68.30+0.42
MUSE (Kim et al., 2024) N/A N/A N/A N/A 49.1842.42 | 76.60+0.71 | 48.78+2.01 | 68.8740.99
DO2HSC (Zhang et al., 2024) | 43.12+0.70 | 33.65+0.66 | 51.5142.39 | 42.30+1.34 | 52.2543.18 | 35.66+1.26 | 53.08£2.38 | 43.73+1.32

AGDiff | 91.60-£0.30 | 90.97:0.13 | 87.75+0.06

| 87.22+£0.01 | 94324219 | 93.1241.83 | 89.38::0.86 | 87.25:0.39

standard deviations, which are computed over 10 indepen-
dent runs of each algorithm to ensure reliable evaluation.

5.2. Comparison with State-of-the-arts Baselines
5.2.1. EXPERIMENT ON MODERATE-SCALE GLAD

Table 1 presents the experimental results of AGDiff and
other baseline methods on moderate-scale graph datasets,
where AGDIff consistently outperforms state-of-the-art
graph kernel and GNN-based GLAD methods across all
datasets. For instance, on the DD dataset, AGDiff achieves
a remarkable AUC of 88.23% and an F1-score of 84.06%,
significantly outperforming advanced baselines such as
SIGNET (AUC: 70.67%, F1-Score: 59.44%), MUSE (AUC:
61.06%, F1-Score: 58.32%), and DO2HSC (AUC: 66.04%,
F1-Score: 61.14%). While graph kernel methods, such as
RW, show promising results on certain datasets, they usually
suffer from scalability limitations, as seen with RW running
out of memory on DD. Moreover, we can observe that the
semi-supervised iGAD method generally achieves strong
performance compared to other baselines due to its access
to partially labeled data. Nevertheless, AGDiff, despite be-

ing unsupervised, demonstrates competitive performance
against iGAD. The superior performance of AGDiff can be
attributed to the leverage of a latent diffusion model, which
generates pseudo-anomalous graphs to enrich the training
process with diverse potential anomalous patterns. As a
result, AGDiff can learn fine-grained distinctions between
normal and anomalous graphs without relying on reconstruc-
tion or labeled data, making it a robust and scalable solution
for graph-level anomaly detection.

5.2.2. EXPERIMENT ON LARGE-SCALE IMBALANCED
GLAD

Table 2 presents the experimental results of AGDiff and
other baseline methods on large-scale imbalanced graph
datasets. A key observation from the results is the metric-
specific strengths of certain baseline methods. For ex-
ample, on SW-620, SIGNET achieves a high F1-Score
(75.40%) but a low AUC (39.32%), while OCGTL achieves
a high AUC (67.69%) but exhibits a relatively low F1-Score
(27.01%). In contrast, we can observe that AGDiff con-
sistently achieves superior performance on both metrics
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Figure 2. The scoring distribution of AGDiff on ER_.MD and PC-3.
The left and the right columns represent the results of the training
stage and testing stage, respectively. Note that the z-axis and
y-axis indicate the output scores and the number density of data
samples within a certain interval.

across all datasets. Additionally, we observe that the semi-
supervised method, iGAD, significantly outperforms other
baselines (e.g., 86.04% AUC on PC-3) as it leverages partial
real anomalies to refine its decision boundary. Nevertheless,
AGDiIfT still surpasses iGAD despite being an unsupervised
method across all datasets. For example, AGDiff achieves
AUC:s of 91.60% and 94.32% on SW-620 and PC-3, respec-
tively, which improves by 5.78% and 8.28% over iGAD.
The reason for this improvement is that although iGAD
utilizes a certain amount of labeled anomalies to enhance
the decision boundary learning, they may not be sufficiently
representative of real anomalies due to the limited availabil-
ity and diversity of anomalies in a large-scale imbalance
scenario. Different from semi-supervised iGAD, the di-
verse pseudo-anomalous graphs generated from AGDiff pro-
vide rich self-supervised signals for training. This enables
the anomaly detector to distinguish between normal and
anomalous graphs with subtle deviations, which effectively
overcomes the limited diversity of available anomalies in
imbalanced scenarios.

5.3. Scoring Distribution Analysis

To verify the effectiveness of the pseudo-anomalous graphs
generated by AGDIff in facilitating anomaly detection,
we analyze the scoring distributions of normal, pseudo-
anomalous, and real anomalous graphs on the ER_MD and
PC-3 datasets, as shown in Figure 2. In ER_MD, pseudo-
anomalous graphs exhibit a certain overlap with normal
graphs, which indicates that generated pseudo-graph anoma-
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Figure 3. Anomaly detection performance (AUC and F1-Score) on
MUTAG and ER_MD under different X values.

lies maintain structural similarities to normal graphs while
introducing subtle deviations via the latent diffusion pro-
cess. In contrast, real anomalous graphs are more distinctly
separated from normal graphs, which implies that incorpo-
rating pseudo-anomalous graphs during training improves
the discriminative ability of the anomaly detector to iden-
tify real anomalies. Moreover, in PC-3, we observe that
the scoring distribution of pseudo-anomalous graphs pri-
marily lies in a low-score region, whereas real anomalous
graphs remain well-separated from normal graphs in the test
stage. This separation highlights the role of AGDiff in mod-
eling the diversity of potential anomalies, which generates
pseudo-graph anomalies to provide rich anomalous signals
to facilitate robust decision boundary learning, particularly
in large-scale imbalanced scenarios.

5.4. Parameter Analysis

To evaluate the impact of key hyper-parameters on the
anomaly detection performance of AGDiff, we conduct a
sensitivity analysis on hyper-parameter A, which balances
the contribution of the diffusion loss. Figure 3 shows the
trend of AUC and F1-Score under different values of A on
MUTAG and ER_MD. As shown in the figure, a moderate
A generally improves performance as it ensures AGDiff
generates informative pseudo-anomalous graphs, which in
turn enhances the discriminative ability of the model. How-
ever, excessively large A prioritizes diffusion modeling over
classification, which tends to make the generated pseudo-
anomalous graphs overly resemble normal graphs, thereby
increasing the difficulty of training the anomaly detector.
Conversely, a very small A can also degrade the anomaly
detection performance because it limits the diversity of the
generated pseudo anomalies.
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Table 3. Ablation study results on MUTAG and ER_MD.

Method | MUTAG | ER_MD

‘ AUC ‘ F1-Score ‘ AUC ‘ F1-Score
wlo Pre-train 71.76:£26.65 | 722242721 | 64.10+£9.87 | 61.494+9.54
wlo Condition 63.62:38.32 | 65.19437.44 | 68.40£0.21 | 65.1940.60
wlo Latent Diffusion | 48.1644.46 | 50.67£1.89 | 63.88+3.07 | 58.48+1.54

AGDiff | 95.83+2.15 | 89.45+137 | 91.21+1.84 | 86.04+2.26

5.5. Ablation Study

We conduct an ablation study to analyze the impact of each
component in AGDiff, including the pre-training strategy,
condition embedding, and the latent diffusion module. Par-
ticularly, we utilize the reconstruction error to detect anoma-
lies when we remove the conditioned latent diffusion mod-
ule, as pseudo-anomalous graphs are not available in this
variant. Table 3 presents the experimental results on MU-
TAG and ER_MD, where we can have the following ob-
servations. First, the significant performance degradation
when the pertaining strategy indicates the importance of pre-
training to our framework, as it provides a well-structured
latent space for modeling the normality, so that the model is
able to generate informative pseudo-anomalous graphs. Sec-
ond, we can observe that removing the condition embedding
also significantly degrades the anomaly detection perfor-
mance. This is because the condition embedding injects
additional variability via introducing a noise-augmented
condition vector, which encourages the model to generate
diverse pseudo-anomalous samples that better capture the
nuances of anomalous patterns. Otherwise, the generated
graphs may closely resemble normal graphs, which leads to
the difficulty of distinguishing them. Lastly, we observe the
most severe performance decline in the reconstruction-based
variants, which highlights the limitations of reconstruction-
based methods, which generally struggle to differentiate
between normal and anomalous graphs when structural de-
viations are subtle. In contrast, our approach leverages the la-
tent diffusion process to explicitly model pseudo-anomalous
variations, providing more robust and discriminative learn-
ing signals for training the anomaly detector.

5.6. More Experimental Analysis

We provide a more experimental analysis of the proposed
AGDiff method in the Appendix, such as the algorithm
analysis (Appendix A), visualization results (Appendix D),
more parameter analysis (Appendix E), and more ablation
study (Appendix F), etc.

6. Conclusion

In this work, we introduced Anomalous Graph Diffusion
(AGDiIff), a novel framework that addresses the scarcity

of anomalous data in graph-level anomaly detection. By
introducing a latent diffusion module to inject controlled
perturbations into graph representations, AGDiff is able to
generate diverse pseudo-anomalous graphs that closely re-
semble normal ones while exhibiting subtle deviations. A
GNN-based anomaly detector is then jointly trained with the
latent diffusion module to distinguish the pseudo-anomalous
and normal graphs. Moreover, we theoretically demon-
strated the effectiveness of these perturbed graphs generated
via AGDiff for facilitating the learning of a more robust
decision boundary. Empirical evaluations on multiple graph
benchmarks validate the superiority of AGDiff against state-
of-the-art GLAD baselines. Two limitations of this work are:
(1) It assumes a sufficiently representative distribution of
normal graphs, which may not hold in shifting or highly het-
erogeneous environments. (2) While AGDiff can generate
pseudo graph anomalies to enhance decision boundary train-
ing, it is currently limited to static graphs. Future research
can focus on exploring more flexible noise scheduling dif-
fusion approaches, as well as investigating the challenging
GLAD tasks in heterogeneous environments or dynamic
graph settings.
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A. Algorithm Analysis

Theoretical Analysis. Here we introduce two algorithms to achieve anomaly detection when given normal data. Specif-
ically, when given a normal dataset G"™, the algorithm .4; first generates a number of normal data Gen(G"™) with
some generation method Gen(-) (e.g., diffusion process) by the given normal data G"™ then whether a new dataset
G is anomalous is determined by the data divergence d(G, G™™). If d(G, G"™) > d(Gen(go™ma!), gromal) “then G is
classified as anomalous data. For the algorithm Ay, it first perturbs the normal dataset gromal o get a perturbed dataset
gromal then use the same generation method Gen(-) to generate a number of perturbed data Gen(G"™). This generated
perturbed data is regarded as auxiliary anomalous data, and finally A2 uses a classifier to obtain a decision boundary for
gromal and Gen(G"™). The criterion for A, becomes that if d(G, G™™) > d(G, Gen(G"™)), then G is classified as
anomalous data.

Notice that it is reasonable to assume under the same generation method Gen(+), the reconstruction error between the
original data and the generated data does not change, i.e., d(Gen(G"o™a), gromaly — g(gnomal Gen(g"o™al)), Therefore, if

d(gnormal’ Gen(gnormal)) > d(g, Gen(é’normal)),

then once A; successfully detects the anomalous data, .45 can also successfully detect the anomalous data, which implies
that A, is better than .4; in detecting the anomalous data.
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Figure 4. Empirical study results, including the reconstruction error trends and performance gap (both AUC and F1-Score) between .A;
and A2 on ER_MD dataset.

Empirical Analysis. We empirically validate our theoretical analysis through comprehensive experiments on the ER_MD
dataset, examining both reconstruction error dynamics and anomaly detection performance over 100 training epochs. Our
evaluation metrics include reconstruction error, AUC, and F1-Score on the test set. Figure 4 presents the results of the test
set across training epochs for .A; and A, where we have the following key observations:

* The reconstruction error of .A; decreases in the early training stages while gradually increasing afterward. This trend
suggests overfitting to normal data, where A; effectively learns to reconstruct normal graphs, leading to a sharp reduction
in reconstruction error. This pattern indicates that while .A4; effectively learns to reconstruct normal graphs in early stages,
it subsequently overfits the training distribution, compromising its generalization capability on unseen test data, which can
be observed in the performance gap changes in AUC and F1-Score.

» Aj consistently exhibits a higher and fluctuating reconstruction error throughout training. This observation suggests that
the introduction of pseudo-anomalous graphs prevents overfitting to normal patterns, which makes the model learn a
more discriminative representation. Unlike .4; which primarily minimizes reconstruction loss, A, actively differentiates
between normal and anomalous graphs, as reflected in the AUC gap: while initially lagging behind A;, A, steadily
improves and eventually surpasses .4, as its classifier learns to leverage pseudo-anomalous data for decision boundary
refinement.

 Since anomalous graphs inherently exhibit higher reconstruction errors, an effective anomaly detection model should
maintain a sufficient error gap between normal and abnormal samples. This is validated by the AUC trends, where
As eventually surpasses A7, demonstrating that its classifier progressively refines its decision boundary by effectively
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incorporating pseudo-anomalous graphs. The stabilization of the AUC gap in later epochs suggests that .45 converges to a
robust and generalizable anomaly detection model, whereas .A; remains constrained by its reliance on reconstruction.

These empirical results validate our theoretical analysis that as the reconstruction error increases, our method becomes more
robust. Specifically, when the reconstruction error is small, both .4; and .45 achieve similar anomaly detection performance.
While as the reconstruction error increases, A, significantly outperforms .4;, which matches our theoretical results that
decision boundary learning via pseudo-anomalous graphs leads to superior anomaly detection. Compared to the purely
reconstruction-based strategy of A7, the explicit optimization of decision boundaries through pseudo-anomalous graphs in
As offers a more robust solution for graph-level anomaly detection.

B. Datasets

Table 4 presents the details of the graph datasets used in our experiments, including the number of graphs, average nodes,
average edges, node classes, and graph classes. Additionally, we also provide the anomaly ratio and data type of each dataset
in the table.

Table 4. Detailed information of the graph benchmark datasets.
Dataset Name  # Graphs # Average [V| # Average [E] # Node Classes # Graph Classes Anomalous Rate  Data Types

MUTAG 188 17.93 19.79 7 2 33.51% Molecule
COX2 467 41.22 43.45 8 2 21.84% Molecule
ER_MD 446 21.33 234.85 10 2 40.58% Molecule
DD 1,178 284.32 715.66 82 2 41.34% Biology
SW-620 40,532 26.06 28.09 65 2 5.95% Molecule
MOLT-4 39,765 26.10 28.14 64 2 7.90% Molecule
PC-3 27,509 26.36 28.49 45 2 9.34% Molecule
MCE-7 27,770 26.40 28.53 46 2 8.26% Molecule

C. Implementation Details

Here we provide the implementation details in our experiment, including the data split, network architecture, hyper-parameter
setting, baseline setting, and computing resources as follows:

» Data Split: For small to moderate-scale datasets, we follow the data split method used in (Zhang et al., 2024). Specifically,
80% of the normal data is used for training, while the test set combines the remaining normal samples with an equal or
smaller number of anomalies. For large-scale imbalanced datasets, 80% of the normal data is allocated for training, and
the test set includes the rest of the normal data along with all anomalies.

* Network Architecture: Following prior works (Ma et al., 2022; Zhang et al., 2024), we adopt the Graph Isomorphism
Network (GIN) (Xu et al., 2019) as the backbone. Both the pre-trained graph representation learning model and the
anomaly detector are constructed with 3 GIN layers. Additionally, we employ a 2-layer MLP for both the perturbation
condition model and the projector within the anomaly detector. The latent dimension is set to 16 for moderate-scale
datasets and 512 for large-scale datasets.

* Hyper-parameter Setting: We adopt Adam (Kingma & Ba, 2014) optimizer with fixed learning rate p = 0.001 for
both pre-training and training stages. We first pre-train the graph generator for 100 epochs, with the KL-divergence
loss coefficient set to 0.001. The diffusion process employs a fixed time step of 7" = 1, 000 for all datasets. In training,
we adopt a batch size of 16 for moderate-scale datasets and 512 for large-scale datasets. The full model is trained for
200 epochs. To balance the contribution of the diffusion loss, we tune the coefficient A via a grid search over the range
[0.0001, 1000] to achieve optimal performance. We also evaluate the impact of X in Section 5.4.

* Baseline Setting: We access the official codes of all graph kernel methods from the GraKel repository (Siglidis et al.,
2020), where we extract the kernel matrix on each dataset and apply OCSVM (via Scikit-learn (Pedregosa et al., 2011)) to
achieve anomaly detection. For the GNN-based GLAD baselines, we reproduce all the results of the compared method by
reproducing their officially released codes. Particularly, we employ the same architecture of the backbone network and the
data split strategy as the proposed AGDiff to ensure a fair comparison.

14



Leveraging Diffusion Model as Pseudo-Anomalous Graph Generator for Graph-Level Anomaly Detection

x10°

%108 x10°

10 2
5 0
0 -2 2
0
R 4 2 x10°
— - *T***,—fﬁj_**ﬁ,_iﬁj_ 4
><0109 ° Tos x10-§ ! ° ! 2
(b) GLocalKD (SC=0.13) (c) SIGNET (SC=0.01)
x10°
x10° °
! 0
0
-5
-1
, 2 0
2 o 0 x10% 410 0 1 0
x10° 2 4 2 173 2 x101°
(d) MUSE (SC=0.14) (e) DO2HSC (SC=0.08) (f) AGDiff (SC=0.61)
Figure 5. The t-SNE visualization comparison on ER_MD dataset, where the data points marked in , , and red represent training

normal graphs, testing normal graphs and anomalous graphs, respectively. SC denotes the Silhouette Coefficient metric, which is used for
evaluating.

* Computing Resources: All the experiments in this paper are performed on the NVIDIA Tesla H100 GPU (80GB) with
Intel Xeon Platinum 8480CL CPU.

D. Visualization Results

To analyze how different methods capture graph representations, we employ t-SNE (Van der Maaten & Hinton, 2008)
to visualize the latent embeddings of AGDiff and several baseline methods for comparison. As shown in Figure 5, we
can observe that the latent embeddings of AGDiff exhibit a more compact and well-separated structure, with normal and
anomalous graphs forming distinct regions in the latent space. This observation suggests that our model effectively simulates
subtle deviations from normality. Moreover, to quantitatively evaluate the effectiveness of the learned representations in
AGDiIff, we further calculate the Silhouette Score (SC) between normal and anomalous embeddings for each method. Note
that the value of SC ranges from [—1, 1], and a higher SC indicates a better separation. From this table, we can observe
that AGDiff achieves an SC of 0.61, which is significantly higher than state-of-the-art GLAD baselines such as MUSE
(SC = 0.14), DO2HSC (SC = 0.08), and SIGNET (SC = 0.01). This observation indicates a better separation between
normal and anomalous embeddings from a statistical perspective. These results highlight the effectiveness of our approach
in learning expressive and anomaly-aware graph representations for anomaly detection.

In order to more intuitively understanding the generated pseudo graphs, we randomly pick four pairs of generated pseudo
graphs and normal graphs to visualize their graph structures, as shown in Figure 6. These pseudo graphs exhibit noticeable
structural deviations from their normal counterparts, such as the varied density and sparser connections in different regions,
and modified local connectivity patterns around nodes. For example, some generated graphs exhibit sparser regions or
more peripheral nodes (e.g., the first and fourth pseudo graphs in the second row). These visual discrepancies are critical as
they empirically validate the rationale of these generated pseudo graph anomalies in helping train the anomaly detector. In
particular, we further utilize the normalized Laplacian spectral distance to quantify the discrepancy between the generated
anomalies and normal graphs. Specifically, we computed pair-wise spectral discrepancies between: (1) Generated pseudo-
anomalous graphs and normal graphs, which ranged in [0.17,1.12], and (2) Real anomalous graphs and normal graphs,
which ranged in [0.40, 5.12]. And the corresponding Laplacian spectral distances of the examples in Figure 6 are larger
than the minimum pair-wise discrepancy of real anomalies. While the range for pseudo anomalies is narrower compared to
real anomalies, this outcome aligns with our design intent. Rather than mimicking the extreme deviations observed in real
anomalies, we aimed to produce controlled yet challenging perturbations to enhance the decision boundary learning. These
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(b) Generated Pseudo Graph

Figure 6. The visual comparison of normal and generated pseudo graphs pairs on the ER_MD dataset. Note that the normalized Laplacian
spectral distances between each pair in this figure are 0.44, 0.43, 0.62, and 0.43, respectively.

results indicate that the generated pseudo anomalies exhibit a meaningful discrepancy from the normal graphs, providing
sufficient diversity to effectively challenge the model during training.

E. More Parameter Analysis

Effect of Different Noise Magnitudes 7. To evaluate the effect of the noise magnitude parameter 7 on the performance
of AGDiff, we conduct an experiment by varying it from a wide range [0, 100]. Table 5 presents the experimental results.
We can observe a performance degradation when this noise term is removed (i.e., n = 0) or set to an excessive value (e.g.,
n = 10). Our explanation for these observations is that (1) removing the noise term may lead to over-proximity between the
pseudo graph anomalies and the normal graph, thus making it difficult to train an anomaly detector. (2) While an excessively
high 7 can lead to pseudo anomalies that deviate too far from normal data, thus reducing the discriminative ability of the
anomaly detector. These findings highlight the importance of balancing 7 to ensure meaningful perturbation to the initial
latent representation.

Table 5. Anomaly detection performance of different noise magnitudes 7 on MUTAG and ER_MD. The best results are marked in bold.

Datasets  Metrics n=20 n =0.01 n=0.1 n=1 n =10 n =100

MUTAG AUC 93.20£2.64 92.64+0.32 92.404+0.08 95.83+2.15 92.00+£0.00 92.00+0.00
F1-Score 86.00£2.00 88.00+0.00 88.00+0.00 89.45+1.37 88.00+0.00 88.00+0.00

ER MD AUC 82.95+2.17 86.81+0.91 87.78+£1.07 91.21+1.84 82.084+0.52 81.76+0.59

F1-Score 77.36+1.89 80.194+2.83 85.09+0.94 86.04+2.26 71.70+0.00 72.644+0.94

Effect of Different Time Steps 7" in Diffusion Sampling. Here we also analyze the performance fluctuations when
setting different time steps 7' on the MUTAG and ER_MD datasets. It can be observed that the performance (e.g., on
MUTAG) generally improves from 7" = 250 (91.52% AUC) to T" = 750 (95.84% AUC) or T" = 1000 (95.83% AUC),
with performance plateauing or slightly declining when 7" > 1000. A trend was similarly observed on ER_MD, which
indicates that a low 7" may be insufficient to generate high-quality pseudo graphs. Nevertheless, a high 7" can also lead to
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over-diffusion, making the generated graphs excessively similar to normal graphs, which in turn diminishes the capability of
the anomaly detector to differentiate them and increases computational cost as well. These findings highlight the importance
of appropriately selecting 7" to balance the generation quality and computational cost.

Table 6. Anomaly detection performance (AUCs and F1-Scores) of different time steps 7" on MUTAG and ER_MD in diffusion sampling
process. The best results are marked in bold.

Datasets  Metrics T = 250 T =500 T =750 T = 1000 T = 1250 T = 1500

MUTAG AUC 91.52+7.84 9520+£3.20 95.84+3.84 95.83+2.15 92.00+£0.00 92.00+0.00
F1-Score 88.00£4.00 92.00+0.00 94.00+£2.00 89.45+1.37 87.00+0.00 87.00£0.00
ER_MD AUC 86.61+4.38 89.30+0.33 84.48+2.17 91.21+1.84 82.34+3.13 82.18+0.91

F1-Score 78.30+6.60 83.02+1.89 79.25+5.66 86.04+2.26 73.58+1.89 73.58+1.89

F. Ablation Study on the Number of Generated Graphs

In our initial experimental design, we set the number of generated pseudo-anomalous graphs equal to the number of normal
graphs. This choice was based on the rationale that a balanced data configuration would likely foster more stable training
dynamics and prevent the model from being biased towards the normal class. Here, we further conduct an ablation study
on the anomaly ratio r, which represents the proportion of generated pseudo graphs relative to the quantity of normal
graphs available in the training set. Table 7 shows the experimental results on the DD dataset, which offers a key insight
into our anomaly detection framework under an imbalanced setting (Fang et al., 2025). The results show that a balanced
data composition (i.e., » = 100%) is crucial for robust learning and yields the best performance. In addition, the observed
trend, where performance (AUC) and stability (represented by the standard deviation) are improved from 85.06 £ 3.42
(r = 30%) to 88.23 + 0.67 (r = 100%). This implies that the effective learning of the anomaly boundary heavily relies
on the richness and sufficiency of the pseudo-anomalous graphs. Insufficiently generated graphs (e.g., r < 60%) appear
to create an “information bottleneck”, which limits the ability of the model to generalize the concept of anomaly from an
undersampled and less diverse space.

Table 7. Anomaly detection performance under different anomaly ratios r. The best results are marked in bold.

Dataset Metrics r=30% r = 60% r = 90% r =100%

AUC 85.06£3.42 86.72+0.70 87.30+£0.49 88.23+0.67
F1-Score 80.78+4.48 83.23+1.45 84.03+£0.36 84.06+0.59

DD
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