
Consecutive Batch Model Editing with HooK Layers

Anonymous ACL submission

Abstract

As the typical retraining paradigm is unac-001
ceptably time- and resource-consuming, re-002
searchers are turning to model editing to find003
an effective way that supports both consec-004
utive and batch scenarios to edit the model005
behavior directly. Despite all these practical006
expectations, existing model editing methods007
fail to realize all of them. Furthermore, the008
memory demands for such sequential model009
editing approaches tend to be prohibitive, fre-010
quently necessitating an external memory that011
grows incrementally over time. To cope with012
these challenges, we propose CoachHooK, a013
model editing method that simultaneously sup-014
ports sequential and batch editing. CoachHooK015
is memory-friendly as it only needs a small016
amount of it to store several hook layers whose017
size remains unchanged over time. Experi-018
mental results demonstrate the superiority of019
our method over other batch-supportive model020
editing methods under both single-round and021
consecutive batch editing scenarios. Extensive022
analyses of CoachHooK have been conducted023
to verify the stability of our method over 1) the024
number of consecutive steps and 2) the number025
of editing instances. Our code will be released026
via https://github.com/anonymous.027

1 Introduction028

Large Language Models (LLMs) (Chung et al.,029

2022; OpenAI, 2023; Black et al., 2022; Touvron030

et al., 2023) have been demonstrated to be capable031

of recalling factual knowledge about the real world032

(Brown et al., 2020; Petroni et al., 2020). Neverthe-033

less, researchers also reveal that LLMs often fail034

to recall the most up-to-date knowledge or infor-035

mation and some specialized knowledge if they are036

not periodically updated (Liska et al., 2022; Agar-037

wal and Nenkova, 2022; Lazaridou et al., 2021).038

Despite the fact that fresh and customizable knowl-039

edge is highly desired in many areas, such as text040

generation, question-answering, reasoning, etc.,041

updating the model via retraining is both time- 042

and resource-consuming. Additionally, researchers 043

have uncovered that well-trained LLMs do make 044

mistakes. One popular sort of mistake is called hal- 045

lucination (Tonmoy et al., 2024), which means that 046

LLMs generate text based on "hallucinated" fake 047

knowledge. Although many researchers have tried 048

to mitigate this issue (Qiu et al., 2023; Mündler 049

et al., 2023; Kang et al., 2023; Varshney et al., 050

2023), the strategy to fix this bug remains unclear. 051

Therefore, researchers have started to seek an effi- 052

cient approach that could edit LLMs in a customiz- 053

able, cost-effective way. 054

To this end, recent years have witnessed many ef- 055

forts in investigating the model-editing techniques 056

to bypass the retraining paradigm and edit the 057

LLMs directly (Meng et al., 2022; Hartvigsen et al., 058

2022; Li et al., 2023; Mitchell et al., 2022a,b). Ac- 059

cordingly, several new datasets (e.g., ZsRE (Levy 060

et al., 2017) and COUNTERFACT (Meng et al., 061

2023)) and corresponding metrics (e.g., reliability, 062

generality, locality, portability (Yao et al., 2023)) 063

are proposed to facilitate the development in this 064

field. However, these methods either require ex- 065

tra expensive training of a meta-network (Mitchell 066

et al., 2022a; De Cao et al., 2021), or a classifier 067

(Mitchell et al., 2022b), which causes time and re- 068

sources overhead, or demands an external memory 069

of explicit edit instances for reference (Mitchell 070

et al., 2022b; Hartvigsen et al., 2022), which in- 071

evitably escalates the memory requirement. Fur- 072

ther, most of existing methods are only evaluated 073

on single-round editing, where the model is rolled 074

back to the initial state after each edit step. This 075

deviates from the application scenario in reality 076

since most users anticipate an editing approach that 077

allows sequential and batch editing. 078

In light of these issues, we propose a novel 079

method, named CoachHooK, which performs 080

Consecutive Batch Model Editing with HooK lay- 081

ers. Specifically, CoachHooK supports consecu- 082

1

https://github.com/anonymous

tive batch editing and utilizes the hook layers to083

separate weight change from the original model084

weight. CoachHook does not need any training on085

parameters or large explicit external memory that086

stores editing instances. It only needs a reasonable087

amount of memory to collect the optimized weight088

in the hook layer. To achieve this, we propose089

a new transformer memory updating mechanism090

that supports consecutive batch editing settings and091

design a simple yet effective local editing scope092

identification technique used in the hook layer that093

can accurately detect the inputs in the local editing094

scope. We demonstrate the effectiveness of our095

method via extensive experiments on ZsRE and096

COUNTERFACT datasets using two popular au-097

toregressive language models, GPT2-XL and GPT-098

J (6B). Both the single-round batch settings and099

consecutive batch settings are included, with the100

total number of editing instances ranging from 1k101

to 10k. An analysis of the editing scope identi-102

fication has also been conducted to validate the103

method. Beyond all these, we implement compre-104

hensive ablation studies to verify the validity of105

each component and discuss the optimal hyperpa-106

rameter settings in the method.107

2 Preliminaries of Model Editing108

As defined by Yao et al. (2023), the task of model109

editing is to efficiently modify an initial base model110

fθ into an edited model fθ′ whose responses to a111

particular set of input instances Xt are adjusted112

as desired without affecting the responses of the113

model to other instances. The intended edit de-114

scriptor is denoted as (xt, yt), where xt ∈ Xt and115

fθ(xt) ̸= yt. The post-edit model fθ′ is supposed116

to produce the expected output to an intended edit117

instance xt, while preserving the original output to118

other instances:119

fθ′(x) =

{
yt if x ∈ Xt

fθ(x) if x /∈ Xt
(1)120

In particular, there are three standard criteria for121

model editing, namely Reliability, Generality, and122

Locality (Yao et al., 2023; Mitchell et al., 2022a,b).123

Suppose the prediction of the original model to124

the prompt "What is the native language of Joe125

Biden?" is "French", and the expected post-edit126

model prediction is "English". To verify the Relia-127

bility, we use the same original prompt as input and128

then assess whether the post-edit model predicts129

"English" as desired. For Generality, a rephrased130

prompt "The mother tongue of Joe Biden is" could 131

be inputted into the edited model to assess whether 132

the output of the model remains as "English". Lo- 133

cality suggests that the model output of an irrele- 134

vant prompt like "What is the native language of 135

Donald Trump?" should remain unaffected, which 136

means that the post-edit model should output what- 137

ever the initial model output to this prompt. 138

The current problem settings of model editing 139

can be generally categorized into three groups (Yao 140

et al., 2023): 141

1) Single instance Editing evaluates the post-edit 142

model performance when only one single knowl- 143

edge update is performed: 144

θ′ ← argminθ(∥ fθ(xt)− yt ∥) (2) 145

2) Batch Editing evaluates the post-edit model per- 146

formance in a more realistic scenario where multi- 147

ple knowledge pieces are modified simultaneously: 148

θ′ ← argminθ
∑n

t=1
(∥ fθ(xt)− yt ∥) (3) 149

where n ≤| Xt | is the batch size and it varies 150

for different methods (Meng et al., 2023; Mitchell 151

et al., 2022a,b; Meng et al., 2022). 152

3) Sequential Editing requires every single edit to 153

be performed successively, and evaluation has to 154

be conducted after a series of knowledge updates 155

(Hartvigsen et al., 2022): 156

θ|Xt|
′ ← argminθt

∑|Xt|

t=1
(∥ fθt(xt)− yt ∥) (4) 157

In this work, we investigate a new and more prac- 158

tical setting for model editing, namely Consecutive 159

Batch Editing, which aims at executing the editing 160

in a consecutive batch editing way: 161

θ⌈|Xt|/n⌉
′ ← argmin

θs

⌈|Xt|/n⌉∑
s=0

min((s+1)×n,|Xt|)∑
t=s×n

(∥ fθs(xt)− yt ∥)

(5) 162

where s represents the consecutive editing step. 163

3 Method 164

We first discuss our method under the single-layer 165

consecutive batch editing setting. Explicitly, we 166

first discuss the process of extending the single- 167

layer updating mechanism in MEMIT (Meng et al., 168

2023) from a scenario of single-round batch editing 169

to consecutive batch editing. Then, we introduce 170

the hook layer and the local editing scope identifi- 171

cation operation employed in the hook layer. The 172

practicality of the operation is also clarified. Fi- 173

nally, we broadening the method from single-layer 174

to multi-layer scenarios. 175

2

3.1 Single-Layer Consecutive Batch Editing176

3.1.1 Batch Editing Menchanism177

Meng et al. (2023) demonstrate an effective single-178

layer editing method using minimal squared er-179

ror. Although it supports multiple edits on a single180

round, the updates do not account for scenarios181

involving consecutive updates. In this section, we182

extend this approach to include consecutive sce-183

narios. Following (Meng et al., 2023, 2022), we184

analyse the model layer weights W0 as a linear185

associative memory (Kohonen, 1972; Anderson,186

1972) that stores associations between a set of keys187

ki and values vi using minimal squared error:188

W0 = argminW
∑n

i=1
∥Wki − vi∥2 (6)189

In this work, W0 is the weight of the second layer190

of the model’s FFN part (denoted as W l
proj). For191

simplicity, we stack keys and values into matrices192

K0 = [k1|k2|...|kn] and V0 = [v1|v2|...|vn], then193

Eq.6 can be optimized by solving (Strang, 2022):194

W0K0K
T
0 = V0K

T
0 (7)195

Thanks to the well-conducted pre-training proce-196

dure for most of the available LLMs, we can as-197

sume that the pre-trained weight W0 satisfies Eq.7,198

i.e., serves as the optimal solution for Eq.6.199

Unlike Meng et al. (2023), we define a succes-200

sive mass-editing objective:201

Ŵ1 = argminW (
∑r

i=1
∥Wki − vi∥2

+
∑r+u

i=r+1
∥Wki − vi∥2)

(8)202

Following Eq.7, we conclude that Eq.8 can be opti-203

mized if we can solve:204

Ŵ1[K1K2][K1K2]
T = [V1 V2][K1K2]

T (9)205

where K1 = [k1|k2| . . . |kr](r ≥ n) and V1 =206

[v1|v2| . . . |vr] is the set of key-value pairs that have207

been updated and K2 = [kr+1|kr+2|...|kr+u] and208

V2 = [vr+1|vr+2|...|vr+u] is the set of key-values209

that are going to be edited. Therefore, the objective210

(Eq.8) indicates that we want an optimal Ŵ1 that211

successfully updates the new associations while212

maintaining the old key-value pairs.213

Further expanding Eq.9:214

(W1 +∆)(K1K
T
1 +K2K

T
2) = (V1K

T
1 + V2K

T
2)

(10)
215

W1K1K
T
1 +∆K1K

T
1 +W1K2K

T
2

+∆K2K
T
2 = V1K

T
1 + V2K

T
2

(11)216

The ∆ means the desired weight change to update 217

the new associations K2, V2 and W1 is the weight 218

that has been updated for the associations K1, V1 219

(Note that W1 = W0 if and only if r = n). In a 220

real consecutive editing scenario, r increases and 221

starts with n, and each batch-editing iteration is 222

optimized through the objective (Eq.8). Hence, we 223

can conclude that W1K1K
T
1 = V1K

T
1 . Subtract- 224

ing it from Eq.11, we get: 225

∆K1K
T
1 +W1K2K

T
2 +∆K2K

T
2 = V2K

T
2 (12) 226

Further rearranging it, we have: 227

∆ = RKT
2 C

−1
accu (13) 228

where R = (V2 − W1K2) is the residual error 229

evaluated on the most recent updated weights. 230

Caccu = (K1K
T
1 + K2K

T
2) is the accumulation 231

sum of editing keys’ outer product, and we have 232

K1K
T
1 = K0K

T
0 +K ′K ′T (14) 233

where K0 is the set of pre-training keys that have 234

been contained in the pre-training weight, K ′ = 235

[kn+1|kn+2|...|kr] denotes the updated keys pro- 236

ceeding to current editing step. We follow (Meng 237

et al., 2023) to model K0K
T
0 as the uncentered 238

covariance of some randomly sampled inputs: 239

K0K
T
0 = λE[kkT] (15) 240

Note that the λ represents a factor that balances 241

the pre-trained and the whole updated associations. 242

We follow the definitions of keys and values in 243

(Meng et al., 2023, 2022), where keys are the acti- 244

vations at the last token of the subject (such as "Joe 245

Biden" for example provided in §1) and values are 246

gradient-descent optimized vectors that maximize 247

the model’s prediction for the target object. 248

3.1.2 Hook Layer 249

Yao et al. (2023) demonstrate that those editing 250

methods that directly modify the model parameter 251

in place struggle with sequential editing. Specif- 252

ically, the locality decreases drastically when the 253

number of iterations increases. Meanwhile, those 254

methods that freeze the model parameters show 255

more stable performance over iterations. This indi- 256

cates that it might be helpful to separate the editing 257

change from the model itself. However, directly ap- 258

plying an external memory (Mitchell et al., 2022b; 259

Hartvigsen et al., 2022) that grows over time for a 260

consecutive batch editing scenario is too memory- 261

costly. Therefore, we aim to seek an approach that 262

3

𝑾𝒑𝒓𝒐𝒋
𝒍𝑾𝒇𝒄

𝒍Attention 𝒉𝒍𝒉𝒍−𝟏

𝑾𝒉𝒌
𝒍

𝑷𝒍

𝑶𝒍

#

𝑴𝒍 = 𝑷𝒍 − 𝑶𝒍

𝒁𝒍 = Τ(𝑴𝒍 − 𝝁) 𝝈

𝒉𝒊
𝒍 = ൝

𝑶𝒊
𝒍, 𝒁𝒊

𝒍 ≥ 𝜶

𝑷𝒊
𝒍, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

൝

𝒉𝒍 = 𝑶𝒍

After Updating:
Validated hook
layer

During Updating:
Temporary hook
layer

𝒉𝒍−𝟏, 𝒉𝒍, 𝑷𝒍, 𝑶𝒍 ∈ 𝑹𝒎×𝒏

𝒌𝒊, 𝒗𝒊, 𝒉𝒊
𝒍 ∈ 𝑹𝒎

𝑴𝒍, 𝒁𝒍 ∈ 𝑹𝒏

∆= (𝒗𝒊 − 𝒉𝒊
𝒍)𝒌𝒊

𝑻𝑪𝒂𝒄𝒄𝒖
−𝟏

Hook layer
𝒌𝒊 𝒗𝒊

Figure 1: Single layer update with hook layer (residual
connections are omitted). ∥ . ∥ means calculate the L2-
norm over the keys’ dimension (m). During updating
the weights, the temporary hook layer is used to ensure
∆ is computed based on W l

hk. After the weights update,
the validated hook layer is applied to determine whether
to use the original layer or hook layer for each token.

could store associations without regularly increas-263

ing external memory while preserving the original264

model parameters.265

In light of these motivations, we introduce the266

hook layer (Fig.1), which takes the original model267

layer weights as the weight initialization and is re-268

sponsible for all editing weight alteration in the269

whole editing process of CoachHooK. It is similar270

to the forward hook function defined in popular ML271

libraries like PyTorch, which adjusts the original272

forward layer output based on predefined criteria.273

Theoretically, the hook layer can be hung on any274

target linear layer in the transformer. Nevertheless,275

we mainly focus on the critical path identified in276

(Meng et al., 2023, 2022) as they are verified to277

be crucial for fact association storage in the autore-278

gressive language model.279

As shown in Fig.1, there are generally two sorts280

of hook layers in this work, namely, the Tempo-281

rary hook layer and the Validated hook layer.282

The temporary hook layer is temporarily applied283

during the weight updating process. It replaces the284

original output with the output from the hook layer285

so that the residual is computed on the basis of286

the hook layer weight. The hook layer weights are287

then updated (Eq.13) using the calculated residual288

and the accumulated sum of the keys’ outer prod-289

uct. Validated hook layers are employed after the290

weight updating process at the layer, and inherit the291

updated weights from the temporary hook layer.292

3.1.3 Local Editing Scope Identification293

Outlier Detection Given the original outputs pro-294

duced by the model layer weights and the edited295

outputs generated by hook layer weights, we need296

to decide when and which part of the original out- 297

puts to swap over. The ideal solution is only to 298

switch those parts of outputs whose keys have 299

been updated to the hook layer weights and leave 300

other parts unchanged. To this end, we first de- 301

tect the output parts that have their keys updated. 302

Suppose ki ∈ K1, vi ∈ V1 is an association 303

that has been updated to W1, and kj /∈ K1 is 304

a key that is not included in the updated associ- 305

ations. We show empirically in section 4.4 that 306

∥ W1ki −W0ki ∥≫∥ W1kj −W0kj ∥ holds. 307

This implies that when the hook layer with updated 308

weight Wh receives an input K̂ ∈ Rm×n (batch di- 309

mension is ignored for simplicity) that contains an 310

edited key ki ∈ K̂ ∩K1, ki ∈ Rm, then we should 311

have ∥ Whki −W0ki ∥≫∥ Whkj −W0kj ∥ 312

for all kj ∈ K̂ − K̂ ∩ K1, which means that 313

∥ Whki −W0ki ∥ would be outliers among {∥ 314

Whkx −W0kx ∥: ∀kx ∈ K̂}. Hence, detecting 315

outputs of the updated keys can be transferred to 316

detecting the outliers in the L2-norm distribution of 317

inputs. We used the standardization to find the out- 318

liers (Fig.1), which applies the standardization tech- 319

nique to L2-norm vectors of inputs and determines 320

outliers via a predefined threshold α. Concretely, 321

for the inputs K̂, we first compute the L2-norm 322

vector M l ∈ Rn: 323

P l = W0K̂ Ol = WhK̂ (16) 324

M l =∥ (Ol − P l) ∥ (17) 325

Note that ∥ . ∥ here means computing the L2-norm 326

for each vector over the keys’ dimension (m). Then, 327

we standardize M l to get the z-score vector Z l and 328

select the swap location by comparing it with α. 329

The details of choosing α are discussed in the next 330

paragraph. Specifically, we do: 331

hli =

{
Ol

i if Z l
i ≥ α,

P l
i ortherwise.

(18) 332

where i is the index over tokens. 333

Threshold α Determination We denote Z l
i = 334

max((M l − µ)/σ) as the maximum z-score entry 335

of an input K̂. Since the Z l
i varies for different 336

instances (§4.4) and is likely to shift as the consec- 337

utive editing steps grow, it is unreasonable to set 338

α as a fixed real number. Therefore, we determine 339

the α dynamically during the editing process: 340

αs =

{
αz if s = 1,

min(αc, αs−1) otherwise
(19) 341

4

𝑾𝒑𝒓𝒐𝒋
𝒍−𝟑 hl-2hl-3

𝑾𝒉𝒌
𝒍−𝟑

Pl-3

Ol-3

𝑾𝒑𝒓𝒐𝒋
𝒍−𝟐

𝑾𝒉𝒌
𝒍−𝟐

Pl-2

Ol-2

hl-1 𝑾𝒑𝒓𝒐𝒋
𝒍−𝟏

𝑾𝒉𝒌
𝒍−𝟏

Pl-1

Ol-1

hl

𝑾𝒑𝒓𝒐𝒋
𝒍−𝟑 hl-2hl-3

𝑾𝒉𝒌
𝒍−𝟑

Pl-3

Ol-3

𝑾𝒑𝒓𝒐𝒋
𝒍−𝟐

𝑾𝒉𝒌
𝒍−𝟐

Pl-2

Ol-2

hl-1 𝑾𝒑𝒓𝒐𝒋
𝒍−𝟏

𝑾𝒉𝒌
𝒍−𝟏

Pl-1

Ol-1

hl

𝑾𝒑𝒓𝒐𝒋
𝒍−𝟑 hl-2hl-3

𝑾𝒉𝒌
𝒍−𝟑

Pl-3

Ol-3

𝑾𝒑𝒓𝒐𝒋
𝒍−𝟐

𝑾𝒉𝒌
𝒍−𝟐

Pl-2

Ol-2

hl-1 𝑾𝒑𝒓𝒐𝒋
𝒍−𝟏

𝑾𝒉𝒌
𝒍−𝟏

Pl-1

Ol-1

hl

𝑾𝒑𝒓𝒐𝒋
𝒍−𝟑 hl-2hl-3

𝑾𝒉𝒌
𝒍−𝟑

Pl-3

Ol-3

𝑾𝒑𝒓𝒐𝒋
𝒍−𝟐

𝑾𝒉𝒌
𝒍−𝟐

Pl-2

Ol-2

hl-1 𝑾𝒑𝒓𝒐𝒋
𝒍−𝟏

𝑾𝒉𝒌
𝒍−𝟏

Pl-1

Ol-1

hl

𝑾𝒉𝒌
𝒍 𝑾𝒉𝒌

𝒍Validated hook layer: Temporary hook layer:

𝒗𝒊

𝒗𝒊

𝒗𝒊

𝒗𝒊

𝑹𝒍−𝟑 =
𝒗𝒊 − 𝒉𝒊

𝒍

𝟑I) Add ∆𝒍−𝟑

𝑹𝒍−𝟐 =
𝒗𝒊 − 𝒉𝒊

𝒍

𝟐II) Add ∆𝒍−𝟐

𝑹𝒍−𝟏 = 𝒗𝒊 − 𝒉𝒊
𝒍

III) Add ∆𝒍−𝟏

2.

1.

3.

Figure 2: Multiple layer update with hook layer (Atten-
tion module and the first layer of FFN are omitted). The
value vector vi is first computed at the last editing layer,
and then we iteratively insert a fraction of the residual to
each editing layer (I, II, III) using Eq.13. Since chang-
ing one layer would affect the activations of downstream
layers, recollection of the activations is conducted after
each iteration. At the beginning, temporary hook layers
are initialized to all editing layers. Once the hook layer
weight is updated, it is replaced by the validated hook
layer (1, 2, 3).

where s ≥ 1. Specifically, the α is first initialized342

to a pre-selected value αz . At each consecutive343

editing step s, for the batch of inputs in this step,344

we calculate Z l
i (the maximal z-score entry) for345

each single instance and select the minimal Z l
i in346

the batch (i.e., the supremum) as the candidate αc.347

The αs is finally determined to be the minimum348

between the candidate αc and the previous value349

αs−1. In practice, we set αz = 2.2.350

3.2 Multiple-layer Consecutive Batch Editing351

Given the designed single-layer editing procedure,352

there exists a risk that the single-layer hook fails353

to detect the updated keys. Suppose ki is an up-354

dated key; failure to detect ki indicates that the355

output corresponds to ki at this single layer would356

be the same as the original output Wprojki, which357

consequently leads to the failure update for ki. To358

tackle this issue, one potential solution is to apply359

the hook to multiple model layers rather than a360

single model layer because the latter layer grasps361

the chance to capture the edited keys missed by362

proceeding layers. Furthermore, (Zhu et al., 2020)363

showcased that minimizing the magnitude of pa-364

rameter change is helpful for improving the robust-365

ness of the model. Thus, we expand our work to366

multiple layers (Fig.2).367

We first find the desired object vector vi fol-368

lowing a similar procedure in (Meng et al., 2023).369

However, the optimization is not based on the orig-370

inal model, but the model hung with the validated371

hook that inherits the most recently updated hook372

weights from the previous editing step. After vi is 373

found, the hook weight is updated at each layer. 374

At each batch editing step, all the hook layers 375

are initialized to temporary hook layers, which sub- 376

stitute the entire original output to output from 377

hook layers. The purpose of doing this is to ensure 378

that the residual regarding the hook layer weights 379

rather than the original model weights are calcu- 380

lated. Then, the residual is distributed evenly to 381

each layer, and the alteration ∆l to the parameter 382

at each layer is found in a layer-increasing iterative 383

manner with keys and residuals recomputed at each 384

iteration (Fig.2). The reason for the recomputation 385

of keys and residuals is that the layer-increasing al- 386

teration approach will affect the keys and residuals 387

in the latter layer. For each layer, once the hook 388

layer weight is updated, the hook layer is changed 389

from a temporary hook layer to a validated hook 390

layer to facilitate the computation of the keys and 391

residuals in the latter layer. After the whole edit- 392

ing process is completed, the validated hook layers 393

with the ultimately updated weights are hung on 394

the model to shape the final edited model. 395

4 Experiments 396

4.1 Experiment Setups 397

Datasets & Evaluation Metrics We use the 398

ZsRE (Levy et al., 2017) and COUNTERFACT 399

(Meng et al., 2023) datasets with the split provided 400

in EasyEdit1 for evaluation. We employ three popu- 401

lar editing evaluation metrics defined in (Yao et al., 402

2023; Huang et al., 2023; Cao et al., 2021), i.e., 403

Reliability, Generality, and Locality, as well as the 404

average scores2 over the three metrics. Further 405

details are provided in Appendix A. 406

Baselines & Implementation Details For base- 407

lines, we adopt several batch-supportive edit- 408

ing methods, including LoRA (Hu et al., 2022), 409

SERAC (Mitchell et al., 2022b), MEND (Mitchell 410

et al., 2022a), MEMIT (Meng et al., 2023) and 411

fine-tuning with specific layer (FT-L) technique 412

used in (Meng et al., 2022; Yao et al., 2023), which 413

only fine-tune a specific layer identified by Rome 414

(Meng et al., 2022) instead of all layers to ensure a 415

fair comparison. We also include a small variation 416

of FT-L called FT-M and a sequential supportive 417

editing method GRACE (Hartvigsen et al., 2022). 418

We choose large autoregressive language models 419

1https://github.com/zjunlp/EasyEdit/tree/main
2Most of the application scenarios of model editing require

good performance in all three metrics.

5

https://github.com/zjunlp/EasyEdit/tree/main

Method Model ZsRE COUNTERFACT

Reliability Generality Locality Average Reliability Generality Locality Average

FT-L (Meng et al., 2022)

GPT2-XL

16.85 16.34 71.55 34.91 0.27 0.34 85.18 28.60
FT-M 17.95 17.32 71.26 35.51 0.36 0.42 82.81 27.86
LoRA (Hu et al., 2022) 30.10 29.08 80.54 46.57 5.64 3.46 69.45 26.18
MEND (Mitchell et al., 2022a) 2.16 2.11 20.34 8.20 0.13 0.03 4.22 1.46
SERAC (Mitchell et al., 2022b) 98.64 48.12 35.68 60.81 17.88 14.55 82.25 38.23
MEMIT (Meng et al., 2023) 61.19 49.97 97.51 69.56 81.01 27.67 95.80 68.16
CoachHooK 82.21 66.61 99.40 82.74 88.28 40.38 97.66 75.44

FT-L (Meng et al., 2022)

GPT-J

22.57 21.77 99.19 47.84 0.37 0.34 99.57 33.43
FT-M 99.96 80.31 43.35 74.54 99.99 35.29 17.04 50.77
LoRA (Hu et al., 2022) 99.97 83.20 17.64 66.93 99.87 53.10 2.50 51.82
SERAC (Mitchell et al., 2022b) 87.46 63.64 77.35 76.15 16.67 15.93 99.99 44.20
MEMIT (Meng et al., 2023) 93.40 70.45 96.47 86.77 99.57 42.29 95.25 79.04
CoachHooK 97.59 72.41 99.10 89.70 87.94 42.76 98.17 76.29

Table 1: Single round batch editing results. The best two average scores are highlighted.

GPT2-XL and GPT-J (6B) as our base models. Fur-420

ther details of the baselines and implementation are421

given in the Appendix B.422

4.2 Evaluation on Single-round Batch Editing423

We first test the effectiveness of our method under424

basic single-round batch editing settings with batch425

size 30, i.e., the model is rolled back to the initial426

state after each batch editing. Both MEMIT and427

CoachHooK need to set the parameter λ, the bal-428

ance factor between pre-trained and newly updated429

associations. According to (Meng et al., 2023),430

higher λ helps preserve the original model behav-431

ior (locality) but could harm reliability and gener-432

ality, and the best overall performance is found at433

around λ = 104. However, with the intent to ver-434

ify whether our method comprehensively improves435

the editing, that is, could accept lower λ to assign436

higher weight for new associations while not sacri-437

ficing the locality, we deliberately set λ = 5× 103438

for CoachHooK and keep it as the optimized value439

for MEMIT, which are 2× 104 and 1.5× 104 for440

GPT2-XL and GPT-J respectively.441

The evaluation results are shown in Table 1. For442

GPT2-XL, our method has the best result in almost443

every metric. Specifically, despite the relatively444

low λ, our method overwhelms other baselines in445

generality metrics while maintaining a better lo-446

cality. This indicates that lowering λ or, in other447

words, increasing the weight of the new associa-448

tions does not sacrifice the locality in CoachHooK.449

The improvement in GPT-J is less compared with450

that in GPT2-XL. However, our method still has451

the best average score for the ZsRE dataset and452

a comparable average score with the best in the453

COUNTERFACT dataset.454

4.3 Evaluation on Consecutive Batch Editing 455

We evaluate our method’s capability on 1k samples 456

from both datasets for consecutive batch editing, 457

i.e., there is no roll-back. The evaluation is con- 458

ducted after the end of the whole consecutive batch 459

editing process. We set λ to 15, 000 as the scenario 460

now is consecutive batch editing. 461

Results in Table 2 show that most of the methods 462

suffer from a great performance drop contrasted to 463

editing in a single round. Although our method’s 464

performance experiences a decrease as well, it sur- 465

passes other methods in 100 consecutive steps with 466

an even larger improvement margin for almost all 467

the metrics compared to the single-round batch edit- 468

ing. This demonstrates that our method does not 469

depend on simple regurgitation of the editing sam- 470

ples nor rely heavily on the trade-offs of lowering 471

the balancing factor λ to increase the reliability and 472

locality. An interesting point is that the GRACE 473

performs perfectly in reliability and locality but 474

poorly in generality. As expected, GRACE is supe- 475

rior in reliability since it maintains a codebook to 476

memorize the encountered editing instances. How- 477

ever, its inferiority in generality indicates that it 478

suffers from the problem of regurgitation. 479

We extend the data scale of the consecutive batch 480

editing experiment to 10k (1k consecutive steps) 481

to explore the limit of our method. Results can be 482

found in Fig.6. Surprisingly, the locality experi- 483

ences a great fall from 100 to 200 steps but remains 484

steady from 200 to 1k editing steps, which proves 485

that the hook layer stably obstructs the out-scope 486

samples. Reliability and generality consistently fall 487

as the consecutive steps grow, indicating that there 488

is still room for improvement in this field. 489

6

Method Model ZsRE COUNTERFACT

Reliability Generality Locality Average Reliability Generality Locality Average

FT-L (Meng et al., 2022)

GPT2-XL

3.79 2.48 6.60 4.29 1.00 1.00 6.00 2.67
FT-M 8.92 8.41 6.22 7.85 4.00 3.50 5.50 4.33
LoRA (Hu et al., 2022) 0.96 1.29 0.03 0.76 0.50 0.02 0.50 0.34
MEND (Mitchell et al., 2022a) 20.95 18.29 93.69 47.01 0.01 0.00 0.08 0.03
SERAC (Mitchell et al., 2022b) 100 36.03 35.95 57.33 15.41 12.96 81.00 36.46
GRACE (Hartvigsen et al., 2022) 100 0.04 100 66.68 100 0.40 100 66.80
MEMIT (Meng et al., 2023) 34.88 32.96 70.74 46.19 56.00 37.00 31.00 41.33
CoachHooK 66.91 56.11 97.23 73.42 86.00 38.00 59.00 61.00

FT-L (Meng et al., 2022)

GPT-J

23.53 21.70 55.27 33.5 2.00 2.00 72.00 25.33
FT-M 64.33 55.63 17.59 45.85 25.50 5.00 2.00 10.83
LoRA (Hu et al., 2022) 1.43 1.39 0.02 0.95 0.50 0.50 0.10 0.37
SERAC (Mitchell et al., 2022b) 86.91 55.36 79.07 73.78 18.49 14.56 98.89 43.98
GRACE (Hartvigsen et al., 2022) 100 0.04 100 66.68 100 0.50 100 66.83
MEMIT (Meng et al., 2023) 63.36 48.90 74.80 62.35 75.00 45.00 42.00 54.00
CoachHooK 79.89 61.29 96.52 79.23 95.00 41.00 80.00 72.00

Table 2: Consecutive batch editing results.

0 20 40 60 80 100

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
COUNTERFACT Reliability samples

0 20 40 60 80 100

0

1

2

3

4

COUNTERFACT Generality samples

Z-score entry corresponds to updated key Average of the overall z-score vector

Figure 3: Difference between the z-score entry to the
updated key Zl

key and average of Zl. The x-axis repre-
sents the sample index.

4.4 Validation of Local Editing Scope490

Given an updated hook layer with the weight Wh,491

the original model weight W0, an updated key ki,492

and an out-of-scope key kj , we conduct experi-493

ments to verify whether ∥ Whki −W0ki ∥≫∥494

Whkj −W0kj ∥ holds. We select 100 samples495

from the COUNTERFACT dataset to edit GPT2-496

XL using CoachHooK, then apply the edited model497

to these 100 samples and record the z-score entries498

of the L2-norm of the difference vector between499

update keys’ response from the last hook layer and500

original model layer, namely, z-score entries of501

∥Whki −W0ki ∥. Both reliability and generality502

prompts are included for comprehensiveness.503

The result is shown in Fig.3. Almost all the z-504

scores of the responses from updated keys exhibit a505

great margin from the mean value, with the lowest506

around 1.5 in reliability samples and 2 in generality507

samples. The discriminative z-score demonstrates508

that the identification technique (section 3.1.3) can509

effectively filter editing-irrelevant instances and510

accept editing-relevant instances, which validates511

the local editing scope.512

200 400 600 800 1000
0.40

0.45

0.50

0.55

0.60

0.65

0.70
ZsRE Reliability

200 400 600 800 1000

0.40

0.45

0.50

0.55

ZsRE Generality

200 400 600 800 1000
0.70

0.75

0.80

0.85

0.90

0.95

ZsRE Locality

200 400 600 800 1000

0.6

0.7

0.8

0.9
COUNTERFACT Reliability

200 400 600 800 1000

x - the number of samples

0.30

0.35

0.40

0.45

COUNTERFACT Generality

200 400 600 800 1000

0.3

0.4

0.5

0.6

0.7
COUNTERFACT Locality

CoachHooK w/o HK CoachHooK MEMIT

Figure 4: Ablation study.

4.5 Detailed Analysis and Discussions 513

Ablation Study of Update mechanism and Hook 514

layers The effectiveness of the derived consecu- 515

tive updating mechanism and the hook layers are 516

discussed in this part. We run three cases using 517

GPT2-XL, namely, MEMIT (no consecutive up- 518

dating mechanism, no hook layers), CoachHooK 519

without hook (CoachHooK w/o HK), and Coach- 520

HooK for consecutive batch editing on 1k samples 521

from both ZsRE and COUNTERFACT datasets. 522

The results are demonstrated in Fig.4. In almost 523

all metrics of the two datasets except the generality 524

of COUNTERFACT, the CoachHooK w/o the hook 525

performs better than the vanilla MEMIT, and the 526

margin tends to increase as the consecutive steps as- 527

cend. This certifies the effectiveness of our derived 528

consecutive updating mechanism in consecutive 529

batch editing scenarios. For the ZsRE dataset, the 530

method with hook layers considerably outperforms 531

the one without hook in the locality without sacrific- 532

ing reliability and generality. This verifies that the 533

7

250 500 750 10000.600

0.625

0.650

0.675

0.700

0.725

0.750 ZsRE Reliability

250 500 750 1000
x - the number of samples

0.450

0.475

0.500

0.525

0.550

0.575
ZsRE Generality

250 500 750 1000

0.90

0.92

0.94

0.96

ZsRE Locality

=20,000
=15,000

=10,000
=5,000

=1,000

Figure 5: Performance comparisons on initial five dif-
ferent values of λ.

2000 4000 6000 8000 10000

0.3

0.4

0.5

0.6

0.7
ZsRE Reliability

2000 4000 6000 8000 10000
x - the number of samples

0.3

0.4

0.5

ZsRE Generality

2000 4000 6000 8000 10000
0.6

0.7

0.8

0.9

ZsRE Locality

=15,000 =10,000 =5,000

Figure 6: Extension on the best three values of λ.

hook layer can efficiently and accurately block the534

out-scope instances from the input without fraudu-535

lently missing in-scope instances. For the COUN-536

TERFACT dataset, the reliability of CoachHooK537

is consistently higher than the other two, and the538

generality surpasses that of MEMIT after 80 edit-539

ing steps. Besides, the hook layer causes some side540

effects in the locality of COUNTERFACT, but this541

circumstance is not found in the ZsRE dataset. It542

is worth noting that CoachHooK shows the most543

stable performance as the number of consecutive544

editing steps grows, showing the great potential of545

our method for consecutive editing.546

Effect of the Balance Factor λ We test the ef-547

fect of different λ, the balance factor between548

pre-training and newly updated associations. We549

first evaluate the CoachHooK with different λ on550

1k samples from ZsRE (Fig.5). It seems that a551

small value of λ = 1, 000 would cause signifi-552

cant damage to all three metrics, especially the553

reliability and generality, since they experience a554

great drop as the consecutive steps increase. This555

may result from the overly high magnitude of the556

weight change caused by the low value of λ, which557

severely distorts the previously updated associa-558

tions. Meanwhile, a too-high value of λ = 20, 000559

also seems not to be a good choice, which gives rise560

to an overly small magnitude of the weight change561

so that it fails to deliver the new optimized values562

for keys. The cases of λ = 5000, 10000, 15000563

do not show an apparent difference, so we extend564

further the sample size to 10k (Fig.6).565

Extended results show that 5000 is not a good566

choice for large-consecutive editing steps, though567

it performs no worse than the other two in early 1k 568

samples. The case of λ = 15, 000 ranks first in reli- 569

ability and generality. Although it performs worse 570

in locality compared to λ = 10, 000, the margin 571

between them gradually narrows as the consecutive 572

steps rise. Overall, we conclude that 15,000 would 573

be a reasonable selection. 574

More Analyses Other detailed analyses of hy- 575

perparameters and inference time of the proposed 576

method are presented in Appendix C 577

5 Related Work 578

Recent years have witnessed prosperous develop- 579

ment in the field of model editing. According to 580

(Yao et al., 2023), the proposed methods so far can 581

be generally classified into two groups, i.e., modify 582

the model’s weight or not. The methods that do 583

not directly alter the model weights generally fol- 584

low two directions: they either employ an external 585

memory or introduce additional adjustable parame- 586

ters. Methods like T-Patcher (Huang et al., 2023) 587

and CaliNET (Dong et al., 2022) apply new neu- 588

rons that are responsible for specific mistakes in the 589

last layer of the FFN model. GRACE (Hartvigsen 590

et al., 2022) introduces a timely adjusted code book 591

to edit the model’s behavior. Another group of 592

methods like (Mitchell et al., 2022b) integrates an 593

explicit external memory as edit descriptors to help 594

editing scope recognition. On the other hand, those 595

directly altering the model’s weight either train a 596

hyper-network to predict the change required by the 597

edits (Mitchell et al., 2022a; De Cao et al., 2021) 598

or first locate corresponding parameters that are 599

responsible for specific knowledge and then edit 600

the located parameters (Meng et al., 2023, 2022; Li 601

et al., 2023; Dai et al., 2022). 602

6 Conclusion 603

This work introduces a novel model editing method, 604

CoachHooK, which advocates the more practical 605

consecutive batch model editing. CoachHooK uses 606

an expanded editing mechanism to support con- 607

secutive editing and newly proposed hook layers 608

to identify the editing scope. Compared to exist- 609

ing model editing methods, CoachHooK does not 610

require large external memory nor extra training 611

for meta-networks or classifiers. Instead, it adopts 612

hook layers whose size remains fixed over time for 613

storing associations. Comprehensive experiments 614

are conducted to verify the method’s effectiveness 615

over single-round and consecutive batch editing. 616

8

Limitations617

Several aspects remain to be further investigated.618

Other types of tasks Notably, model editing619

techniques could be applied to various types of620

tasks. Specifically, besides factual knowledge edit-621

ing, it can be applied to erase hallucinations, biases,622

privacy information, etc. However, the concentra-623

tion of this paper is to explore the practicability624

of expanding the model editing application sce-625

nario to consecutive batch editing and investigate626

the potential bottleneck of corresponding methods627

under this scenario. Therefore, our experiment fo-628

cuses on varying the scale of editing samples in629

factual knowledge editing tasks, as it is a relatively630

well-studied and universal evaluation task in model631

editing.632

Model scale and architecture Due to the lim-633

ited computational resources, we cannot verify our634

method’s effectiveness in larger LLMs such as635

Llama-2 (Touvron et al., 2023), and GPT-NEOX-636

20B (Black et al., 2022). We focus on the decoder-637

only autoregressive models and do not include638

encoder-decoder structure models, as the autore-639

gressive structures are the mainstream architecture640

nowadays (OpenAI, 2023; Touvron et al., 2023).641

Further, as stated by Yao et al. (2023), the weight642

matrix in some models like OPT-13B (Zhang et al.,643

2022) is not invertible. However, such an issue644

can be relieved by adding a term βI to the Eq.14,645

where β is a scalar expected to be small and I is646

the identity matrix.647

The shrink of α As more and more associations648

are integrated into the hook layer, the dynamically649

determined hyperparameter α will gradually shrink,650

meaning that an increasing number of vector entries651

in the original layer output will be swapped by652

the output from the hook layer, which is likely to653

lead the drop in locality . Nevertheless, such a654

problem can be alleviated by the newly designed655

updated mechanism (Eq.13), which considers both656

previously updated and newly updated keys.657

References658

Oshin Agarwal and Ani Nenkova. 2022. Temporal ef-659
fects on pre-trained models for language processing660
tasks. Trans. Assoc. Comput. Linguistics, 10:904–661
921.662

James A Anderson. 1972. A simple neural network663

generating an interactive memory. Mathematical 664
biosciences, 14(3-4):197–220. 665

Sid Black, Stella Biderman, Eric Hallahan, Quentin 666
Anthony, Leo Gao, Laurence Golding, Horace 667
He, Connor Leahy, Kyle McDonell, Jason Phang, 668
Michael Pieler, USVSN Sai Prashanth, Shivanshu 669
Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, 670
and Samuel Weinbach. 2022. Gpt-neox-20b: An 671
open-source autoregressive language model. CoRR, 672
abs/2204.06745. 673

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 674
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 675
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 676
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 677
Gretchen Krueger, Tom Henighan, Rewon Child, 678
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 679
Clemens Winter, Christopher Hesse, Mark Chen, Eric 680
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 681
Jack Clark, Christopher Berner, Sam McCandlish, 682
Alec Radford, Ilya Sutskever, and Dario Amodei. 683
2020. Language models are few-shot learners. In Ad- 684
vances in Neural Information Processing Systems 33: 685
Annual Conference on Neural Information Process- 686
ing Systems 2020, NeurIPS 2020, December 6-12, 687
2020, virtual. 688

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 689
ing factual knowledge in language models. In Pro- 690
ceedings of the 2021 Conference on Empirical Meth- 691
ods in Natural Language Processing, EMNLP 2021, 692
Virtual Event / Punta Cana, Dominican Republic, 7- 693
11 November, 2021, pages 6491–6506. Association 694
for Computational Linguistics. 695

Siyuan Cheng, Bozhong Tian, Qingbin Liu, Xi Chen, 696
Yongheng Wang, Huajun Chen, and Ningyu Zhang. 697
2023. Can we edit multimodal large language mod- 698
els? arXiv preprint arXiv:2310.08475. 699

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 700
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, 701
Mostafa Dehghani, Siddhartha Brahma, Albert Web- 702
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz- 703
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan 704
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao, 705
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav 706
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam 707
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. 708
2022. Scaling instruction-finetuned language models. 709
CoRR, abs/2210.11416. 710

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao 711
Chang, and Furu Wei. 2022. Knowledge neurons in 712
pretrained transformers. In Proceedings of the 60th 713
Annual Meeting of the Association for Computational 714
Linguistics (Volume 1: Long Papers), pages 8493– 715
8502, Dublin, Ireland. Association for Computational 716
Linguistics. 717

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 718
ing factual knowledge in language models. In Pro- 719
ceedings of the 2021 Conference on Empirical Meth- 720
ods in Natural Language Processing, pages 6491– 721

9

https://transacl.org/ojs/index.php/tacl/article/view/3863
https://transacl.org/ojs/index.php/tacl/article/view/3863
https://transacl.org/ojs/index.php/tacl/article/view/3863
https://transacl.org/ojs/index.php/tacl/article/view/3863
https://transacl.org/ojs/index.php/tacl/article/view/3863
https://doi.org/10.48550/ARXIV.2204.06745
https://doi.org/10.48550/ARXIV.2204.06745
https://doi.org/10.48550/ARXIV.2204.06745
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.522
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.522
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.522
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522

6506, Online and Punta Cana, Dominican Republic.722
Association for Computational Linguistics.723

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,724
Zhifang Sui, and Lei Li. 2022. Calibrating factual725
knowledge in pretrained language models. In Find-726
ings of the Association for Computational Linguistics:727
EMNLP 2022, Abu Dhabi, United Arab Emirates, De-728
cember 7-11, 2022, pages 5937–5947. Association729
for Computational Linguistics.730

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid731
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2022.732
Aging with GRACE: lifelong model editing with dis-733
crete key-value adaptors. CoRR, abs/2211.11031.734

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan735
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and736
Weizhu Chen. 2022. Lora: Low-rank adaptation of737
large language models. In The Tenth International738
Conference on Learning Representations, ICLR 2022,739
Virtual Event, April 25-29, 2022. OpenReview.net.740

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,741
Wenge Rong, and Zhang Xiong. 2023. Transformer-742
patcher: One mistake worth one neuron. In The743
Eleventh International Conference on Learning Rep-744
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,745
2023. OpenReview.net.746

Haoqiang Kang, Juntong Ni, and Huaxiu Yao. 2023.747
Ever: Mitigating hallucination in large language mod-748
els through real-time verification and rectification.749
CoRR, abs/2311.09114.750

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A751
method for stochastic optimization. In 3rd Inter-752
national Conference on Learning Representations,753
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,754
Conference Track Proceedings.755

Teuvo Kohonen. 1972. Correlation matrix memories.756
IEEE Trans. Computers, 21(4):353–359.757

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gri-758
bovskaya, Devang Agrawal, Adam Liska, Tayfun759
Terzi, Mai Gimenez, Cyprien de Masson d’Autume,760
Tomás Kociský, Sebastian Ruder, Dani Yogatama,761
Kris Cao, Susannah Young, and Phil Blunsom. 2021.762
Mind the gap: Assessing temporal generalization763
in neural language models. In Advances in Neural764
Information Processing Systems 34: Annual Confer-765
ence on Neural Information Processing Systems 2021,766
NeurIPS 2021, December 6-14, 2021, virtual, pages767
29348–29363.768

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke769
Zettlemoyer. 2017. Zero-shot relation extraction via770
reading comprehension. In Proceedings of the 21st771
Conference on Computational Natural Language772
Learning (CoNLL 2017), pages 333–342, Vancouver,773
Canada. Association for Computational Linguistics.774

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun775
Ma, and Jie Yu. 2023. PMET: precise model editing776
in a transformer. CoRR, abs/2308.08742.777

Adam Liska, Tomás Kociský, Elena Gribovskaya, Tay- 778
fun Terzi, Eren Sezener, Devang Agrawal, Cyprien 779
de Masson d’Autume, Tim Scholtes, Manzil Zaheer, 780
Susannah Young, Ellen Gilsenan-McMahon, Sophia 781
Austin, Phil Blunsom, and Angeliki Lazaridou. 2022. 782
Streamingqa: A benchmark for adaptation to new 783
knowledge over time in question answering models. 784
In International Conference on Machine Learning, 785
ICML 2022, 17-23 July 2022, Baltimore, Maryland, 786
USA, volume 162 of Proceedings of Machine Learn- 787
ing Research, pages 13604–13622. PMLR. 788

Shengyu Mao, Ningyu Zhang, Xiaohan Wang, Mengru 789
Wang, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei 790
Huang, and Huajun Chen. 2023. Editing personality 791
for llms. arXiv preprint arXiv:2310.02168. 792

Kevin Meng, David Bau, Alex Andonian, and Yonatan 793
Belinkov. 2022. Locating and editing factual associ- 794
ations in GPT. In Advances in Neural Information 795
Processing Systems 35: Annual Conference on Neu- 796
ral Information Processing Systems 2022, NeurIPS 797
2022, New Orleans, LA, USA, November 28 - Decem- 798
ber 9, 2022. 799

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, 800
Yonatan Belinkov, and David Bau. 2023. Mass- 801
editing memory in a transformer. In The Eleventh 802
International Conference on Learning Representa- 803
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. 804
OpenReview.net. 805

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 806
Finn, and Christopher D. Manning. 2022a. Fast 807
model editing at scale. In The Tenth International 808
Conference on Learning Representations, ICLR 2022, 809
Virtual Event, April 25-29, 2022. OpenReview.net. 810

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo- 811
pher D. Manning, and Chelsea Finn. 2022b. Memory- 812
based model editing at scale. In International Con- 813
ference on Machine Learning, ICML 2022, 17-23 814
July 2022, Baltimore, Maryland, USA, volume 162 of 815
Proceedings of Machine Learning Research, pages 816
15817–15831. PMLR. 817

Niels Mündler, Jingxuan He, Slobodan Jenko, and Mar- 818
tin T. Vechev. 2023. Self-contradictory hallucinations 819
of large language models: Evaluation, detection and 820
mitigation. CoRR, abs/2305.15852. 821

OpenAI. 2023. GPT-4 technical report. CoRR, 822
abs/2303.08774. 823

Fabio Petroni, Patrick S. H. Lewis, Aleksandra Piktus, 824
Tim Rocktäschel, Yuxiang Wu, Alexander H. Miller, 825
and Sebastian Riedel. 2020. How context affects 826
language models’ factual predictions. In Conference 827
on Automated Knowledge Base Construction, AKBC 828
2020, Virtual, June 22-24, 2020. 829

Yifu Qiu, Yftah Ziser, Anna Korhonen, Edoardo Maria 830
Ponti, and Shay B. Cohen. 2023. Detecting and miti- 831
gating hallucinations in multilingual summarisation. 832
In Proceedings of the 2023 Conference on Empirical 833
Methods in Natural Language Processing, EMNLP 834

10

https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.438
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.438
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.438
https://doi.org/10.48550/ARXIV.2211.11031
https://doi.org/10.48550/ARXIV.2211.11031
https://doi.org/10.48550/ARXIV.2211.11031
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/pdf?id=4oYUGeGBPm
https://openreview.net/pdf?id=4oYUGeGBPm
https://openreview.net/pdf?id=4oYUGeGBPm
https://doi.org/10.48550/ARXIV.2311.09114
https://doi.org/10.48550/ARXIV.2311.09114
https://doi.org/10.48550/ARXIV.2311.09114
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TC.1972.5008975
https://proceedings.neurips.cc/paper/2021/hash/f5bf0ba0a17ef18f9607774722f5698c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f5bf0ba0a17ef18f9607774722f5698c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f5bf0ba0a17ef18f9607774722f5698c-Abstract.html
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.48550/ARXIV.2308.08742
https://doi.org/10.48550/ARXIV.2308.08742
https://doi.org/10.48550/ARXIV.2308.08742
https://proceedings.mlr.press/v162/liska22a.html
https://proceedings.mlr.press/v162/liska22a.html
https://proceedings.mlr.press/v162/liska22a.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://doi.org/10.48550/ARXIV.2305.15852
https://doi.org/10.48550/ARXIV.2305.15852
https://doi.org/10.48550/ARXIV.2305.15852
https://doi.org/10.48550/ARXIV.2305.15852
https://doi.org/10.48550/ARXIV.2305.15852
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.24432/C5201W
https://doi.org/10.24432/C5201W
https://doi.org/10.24432/C5201W
https://aclanthology.org/2023.emnlp-main.551
https://aclanthology.org/2023.emnlp-main.551
https://aclanthology.org/2023.emnlp-main.551

2023, Singapore, December 6-10, 2023, pages 8914–835
8932. Association for Computational Linguistics.836

Victor Sanh, Lysandre Debut, Julien Chaumond, and837
Thomas Wolf. 2019. Distilbert, a distilled version838
of BERT: smaller, faster, cheaper and lighter. CoRR,839
abs/1910.01108.840

Gilbert Strang. 2022. Introduction to linear algebra.841
SIAM.842

S. M. Towhidul Islam Tonmoy, S. M. Mehedi Zaman,843
Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha,844
and Amitava Das. 2024. A comprehensive survey of845
hallucination mitigation techniques in large language846
models. CoRR, abs/2401.01313.847

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-848
bert, Amjad Almahairi, Yasmine Babaei, Nikolay849
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti850
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-851
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,852
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,853
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-854
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan855
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,856
Isabel Kloumann, Artem Korenev, Punit Singh Koura,857
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-858
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-859
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-860
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-861
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,862
Ruan Silva, Eric Michael Smith, Ranjan Subrama-863
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-864
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,865
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,866
Melanie Kambadur, Sharan Narang, Aurélien Ro-867
driguez, Robert Stojnic, Sergey Edunov, and Thomas868
Scialom. 2023. Llama 2: Open foundation and fine-869
tuned chat models. CoRR, abs/2307.09288.870

Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jian-871
shu Chen, and Dong Yu. 2023. A stitch in time saves872
nine: Detecting and mitigating hallucinations of llms873
by validating low-confidence generation. CoRR,874
abs/2307.03987.875

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao,876
Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan877
Cheng, Kangwei Liu, Guozhou Zheng, et al. 2023.878
Easyedit: An easy-to-use knowledge editing frame-879
work for large language models. arXiv preprint880
arXiv:2308.07269.881

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,882
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu883
Zhang. 2023. Editing large language models: Prob-884
lems, methods, and opportunities. In Proceedings885
of the 2023 Conference on Empirical Methods in886
Natural Language Processing, EMNLP 2023, Sin-887
gapore, December 6-10, 2023, pages 10222–10240.888
Association for Computational Linguistics.889

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,890
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu891

Mao, Jintian Zhang, Yuansheng Ni, et al. 2024. A 892
comprehensive study of knowledge editing for large 893
language models. arXiv preprint arXiv:2401.01286. 894

Ningyu Zhang, Jintian Zhang, Xiaohan Wang, Hong- 895
hao Gui, Kangwei Liu, Yinuo Jiang, Xiang Chen, 896
Shengyu Mao, Shuofei Qiao, Yuqi Zhu, Zhen Bi, 897
Jing Chen, Xiaozhuan Liang, Yixin Ou, Runnan 898
Fang, Zekun Xi, Xin Xu, Lei Li, Peng Wang, Men- 899
gru Wang, Yunzhi Yao, Bozhong Tian, Yin Fang, 900
Guozhou Zheng, and Huajun Chen. 2023. Knowlm 901
technical report. 902

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 903
Artetxe, Moya Chen, Shuohui Chen, Christopher 904
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, 905
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus- 906
ter, Daniel Simig, Punit Singh Koura, Anjali Srid- 907
har, Tianlu Wang, and Luke Zettlemoyer. 2022. 908
OPT: open pre-trained transformer language mod- 909
els. CoRR, abs/2205.01068. 910

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh 911
Bhojanapalli, Daliang Li, Felix X. Yu, and Sanjiv 912
Kumar. 2020. Modifying memories in transformer 913
models. CoRR, abs/2012.00363. 914

A Experiment Details 915

All baselines are implemented using the EasyEdit 916

(Yao et al., 2023; Zhang et al., 2024; Wang et al., 917

2023; Cheng et al., 2023; Mao et al., 2023; Zhang 918

et al., 2023) library. 919

Evaluation Metrics We employ three popular 920

editing evaluation metrics defined in (Yao et al., 921

2023; Huang et al., 2023; Cao et al., 2021), i.e., 922

reliability, generality, and locality. Given an initial 923

base model fθ, a post-edit model fθ′ , and a set of 924

edit instances {(xt, yt)}, the reliability is computed 925

as the average accuracy of the edit cases: 926

E(xt,yt)∈{(xt,yt)}{argmaxy fθ′(y|xt) = yt} .
(20) 927

The editing should also edit the equivalent neigh- 928

bor of the instance N(xt, yt) (e.g. rephrased de- 929

scriptions). This metric is named generality and is 930

evaluated by the average accuracy on the neighbors 931

of the edit cases: 932

E(x′
t,y

′
t)∈{N(xt,yt)}{argmaxy fθ′(y|x′t) = y′t} .

(21) 933

Despite the editing, those instances that are irrel- 934

evant to the edit cases {O(xt, yt)} should not be 935

affected. This evaluation is called locality (also 936

known as specificity) and is measured by the pro- 937

portion of unchanged predictions between the ini- 938

tial model and the post-edit model: 939

E(x′
t,y

′
t)∈{O(xt,yt)}{fθ′(x

′
t) = fθ(x

′
t)} . (22) 940

11

https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://doi.org/10.48550/ARXIV.2401.01313
https://doi.org/10.48550/ARXIV.2401.01313
https://doi.org/10.48550/ARXIV.2401.01313
https://doi.org/10.48550/ARXIV.2401.01313
https://doi.org/10.48550/ARXIV.2401.01313
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.03987
https://doi.org/10.48550/ARXIV.2307.03987
https://doi.org/10.48550/ARXIV.2307.03987
https://doi.org/10.48550/ARXIV.2307.03987
https://doi.org/10.48550/ARXIV.2307.03987
https://aclanthology.org/2023.emnlp-main.632
https://aclanthology.org/2023.emnlp-main.632
https://aclanthology.org/2023.emnlp-main.632
http://knowlm.zjukg.cn/
http://knowlm.zjukg.cn/
http://knowlm.zjukg.cn/
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068
https://arxiv.org/abs/2012.00363
https://arxiv.org/abs/2012.00363
https://arxiv.org/abs/2012.00363

"subject": "Barbara Legrand",
"src": "What is Barbara Legrand's position on the field while
playing football?",
"pred": "midfielder",
"rephrase": "What is Barbara Legrand's position on the field
during the football match?",
"alt": "defender",
"answers": ["goalkeeper"],
"loc": "nq question: who played donna in 2 pints of lager",
"loc_ans": "Natalie Casey",
"cond": "midfielder >> defender || What is Barbara Legrand's
position on the field while playing football?"

Figure 7: A sample from ZsRE dataset.

"case_id": 0,
"prompt": "The mother tongue of Danielle Darrieux is",
"target_new": "English",
"subject": "Danielle Darrieux",
"ground_truth": "French",
"rephrase_prompt": "Where Danielle Darrieux is from, people
speak the language of",
"locality_prompt": "Michel Rocard is a native speaker of",
"locality_ground_truth": "French"

Figure 8: A sample from COUNTERFACT dataset.

Datasets ZsRE is a question-answering dataset941

that uses back-translation to generate equivalent942

neighborhoods. It is initially used in factual knowl-943

edge evaluation and later adopted in model editing944

by (Mitchell et al., 2022a). COUNTERFACT is945

a challenging dataset focusing on counterfactual946

information with a low prediction score compared947

to correct facts. It builds out-of-scope data by re-948

placing the subject entity with a similar description949

that shares the same predicate.950

Fig.7 shows an example from the ZsRE dataset.951

Each record in ZsRE contains the subject string,952

the factual prompt used for testing reliability, the953

rephrase prompt used for generality evaluation, and954

the locality prompt used for evaluating the locality.955

Note that what the locality demands the post-edit956

model does is not to predict the ground truth but957

whatever the initial base model predicts. Similarly,958

the fact, rephrase, and locality prompts of each959

record in COUNTERFACT are applied to the eval-960

uation of the three metrics respectively (Fig.8).961

B Baselines and Implementation Details962

For all consecutive editing experiments, the evalu-963

ation is conducted after the full set of consecutive964

steps are finished. For example, in Fig.4, we con-965

duct experiments for sample sizes 200, 400, 600,966

800, and 1000, so the evaluation is triggered right967

after the first 200, 400, 600, etc, samples are edited968

to the model. Unless specified, the batch size3 for 969

consecutive editing is selected to be 10. 970

Fine-tuning We implemented two fine-tuning 971

methods in the experiments. For FT-L, we fol- 972

low the procedure in (Meng et al., 2023, 2022) and 973

fine-tune the mlpproj parameter from layer 0 for 974

GPT2-XL and layer 21 for GPT-J since they are 975

found to have the optimal performance. FT-M4 is a 976

small variation of FT-L, and it uses a different loss 977

computation procedure to optimize the parameters. 978

For both models, we conduct 25 optimization steps 979

using Adam optimizer (Kingma and Ba, 2015) and 980

use learning rate 5e−4. All other parameters of 981

both models follow default settings. 982

LoRA Hu et al. (2022) proposed a parameter- 983

efficient fine-tuning method that decomposes the 984

update gradient matrix into two small rank-n matri- 985

ces, which reduces the required memory for LLM 986

training to a large extent. In all experiments, we set 987

the learning rate and the rank number to 1e−3 and 988

8, respectively. The α was chosen to be 32, and the 989

dropout rate was 0.1. The number of update steps 990

is 30 for GPT2-XL and 50 for GPT-J. 991

MEND MEND (Mitchell et al., 2022a) conducts 992

the editing by manipulating the language models’ 993

gradient. It trains a meta-network that employs a 994

rank-1 decomposition of the model gradients and 995

predicts a new rank-1 update to the corresponding 996

model weights. In this work, we train two meta- 997

networks using corresponding training split in the 998

ZsRE and COUNTERFACT datasets for GPT2- 999

XL following the default hyperparameter settings. 1000

Due to the large required computation resource 1001

for training GPT-J (6B) meta-network, we do not 1002

perform training for GPT-J. 1003

SERAC Mitchell et al. (2022b) designed a 1004

memory-augmented editing method, which re- 1005

quires an external cache to store explicit editing 1006

cases. It also adopts a scope classifier that deter- 1007

mines whether an input sample falls in the editing 1008

scope and a small counterfactual model for edit- 1009

ing the in-scope cases. For both GPT2-XL and 1010

GPT-J, we train two separate models for the two 1011

datasets, respectively. Following the original paper, 1012

we apply distilbert-base-cased (Sanh et al., 2019) 1013

for the scope classifier across all models. For the 1014

3Since GRACE (Hartvigsen et al., 2022) does not support
batch editing, we set the batch size to 1 for GRACE.

4https://github.com/zjunlp/EasyEdit/blob/main/
hparams/FT/gpt2-xl.yaml

12

https://github.com/zjunlp/EasyEdit/blob/main/hparams/FT/gpt2-xl.yaml
https://github.com/zjunlp/EasyEdit/blob/main/hparams/FT/gpt2-xl.yaml

small counterfactual model, we employ GPT2 for1015

GPT2-XL and gpt-j-tiny-random5 for GPT-J. All1016

hyperparameters follow default settings.1017

MEMIT MEMIT (Meng et al., 2023) treats the1018

feedforward layer of transform as a linear asso-1019

ciative memory and uses a minimum square error1020

optimization to add new key-value associations to1021

layer weights. We follow the original paper to edit1022

the layers in the identified critical path and set the1023

balance factor λ to the optimal value found in the1024

original work. Other parameters for the two models1025

are all set based on configurations in (Meng et al.,1026

2023, 2022).1027

GRACE Hartvigsen et al. (2022) proposed an1028

editing method that preserves the original model1029

parameters and adopts a codebook maintained by1030

adding, splitting, and expanding keys over time1031

to store relevant edits. We follow the optimized1032

settings in the original paper and set the value opti-1033

mizing learning rate to 1. The number of iterations1034

for optimizing the values is 100, and the initial ε1035

value is chosen to be 1. The codebook is employed1036

at layers 35 and 25, respectively.1037

CoachHooK CoachHooK expands the update1038

mechanism in MEMIT to consecutive cases and1039

applies hook layers to separate the weight change1040

from the original model layer. For both models, we1041

set λ = 15, 000, αz = 2.2 for consecutive batch1042

editing. Unless specified, we evaluate our method1043

on full critical path layers identified in (Meng et al.,1044

2023). We employ the same procedure in MEMIT1045

(Meng et al., 2023) to compute the updating keys1046

and the target values, except that the most recently1047

updated model during the process of consecutive1048

editing is applied for relevant computations. We1049

applied "torch.float16" for the GPT-J model for all1050

experiments.1051

C Detailed analysis and discussions1052

Effect of the Number of Editing Layers To in-1053

vestigate the necessity of applying the hook layer1054

onto multiple transformer layers, we conduct the1055

consecutive batch editing experiment on the ZsRE1056

dataset for GPT2-XL (Fig.9). As the effect of1057

choosing different layers has already been stud-1058

ied in (Meng et al., 2023), we focus only on the1059

effect of the number of layers. We selected the1060

last one, three, and all layers from the critical path1061

5https://huggingface.co/anton-l/gpt-j-tiny-random

200 400 600 800 1000
0.550

0.575

0.600

0.625

0.650

0.675

ZsRE Reliability

200 400 600 800 1000
0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58
ZsRE Generality

200 400 600 800 1000
0.88

0.90

0.92

0.94

0.96

0.98 ZsRE Locality

200 400 600 800 1000

0.60

0.65

0.70

0.75

0.80

0.85

0.90
COUNTERFACT Reliability

200 400 600 800 1000
x - the number of samples

0.20

0.25

0.30

0.35

0.40

COUNTERFACT Generality

200 400 600 800 1000

0.60

0.62

0.64

0.66

0.68

0.70

0.72
COUNTERFACT Locality

All layers Three layers One layer

Figure 9: Performance comparisons on the different
number of editing layers. Layers are selected from the
critical path identified in (Meng et al., 2023).

200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

COUNTERFACT Reliability

200 400 600 800 1000
x - the number of samples

0.1

0.2

0.3

0.4

COUNTERFACT Generality

200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1.0
COUNTERFACT Locality

initial =1
initial =2
initial =3

initial =4
fixed =3

Figure 10: Performance comparisons on different αz .

identified in (Meng et al., 2023; Yao et al., 2023), 1062

respectively. 1063

As shown in Fig.9, the one-layer case signifi- 1064

cantly underperforms the other two cases in most 1065

of the metrics for the two datasets, which directly 1066

certifies the necessity of the expansion. In ZsRE, 1067

the difference between the performance for one 1068

layer and multiple layers tends to enlarge in reli- 1069

ability and generality as the consecutive editing 1070

steps increase. This may serve as evidence of our 1071

assumption in section 3.2, which mentions that the 1072

latter hook layer may capture the in-scope instances 1073

missed in former hook layers. Additionally, the all- 1074

layer case has slightly better generality than the 1075

three-layer case, and they do not show a remark- 1076

able difference in locality and reliability. A similar 1077

situation could be found in the reliability and gen- 1078

erality of the COUNTERFACT with an interesting 1079

exception in the locality, where an adverse perfor- 1080

mance order of the cases is shown. Nevertheless, 1081

the margin of the locality fall is not that manifest 1082

in contrast with the advancement in reliability and 1083

generality. 1084

13

Model Type Inference Time (s)

GPT2-XL
Pre-edit 0.1187
Post-edit 0.1297

GPT-J
Pre-edit 0.0762
Post-edit 0.0863

Table 3: Inference time analysis.

Model Granularity Instances

Reliability Generality Locality

GPT-J
Instances 99.00 97.50 -

Overall tokens 9.69 12.51 11.19
Unwanted tokens 0.38 0.13 11.19

Table 4: Percentage of instances/tokens that used the
hook layer.

Effect of the Initial Threshold αz αz is the ini-1085

tialization value of α used in the identification of1086

local editing scope (section 3.1.3). We study its in-1087

fluence in this part. According to Fig.10, although1088

the αz = 1 case ranks the highest in the first 601089

editing steps in generality, it consistently performs1090

the worst in locality, indicating that it fails to in-1091

tercept many out-scope inputs. This implies that 11092

may be too low for the initialization. Other cases do1093

not show noticeable differences in the three metrics1094

since αz is just the initial value and α is determined1095

dynamically. It seems that overly low αz would1096

damage the hook layer’s capacity to discriminate1097

in-scope and out-scope samples. Considering the1098

unpredictable consecutive steps that our method1099

may be applied, we select a relatively low value1100

between 2 and 3, namely, αz = 2.2.1101

To verify the significance of the dynamical deter-1102

mination process, we also test the fix α case. We1103

chose the value of 3, the standard threshold used in1104

standardization to detect outliers. The results reveal1105

a dramatic decline in reliability and generality and1106

perfect fulfillment in the locality, indicating that1107

almost all instances are indiscriminately obstructed1108

by the hook layers regardless of the editing scope.1109

Besides, choosing an optimal fixed α before edit-1110

ing is practically unrealistic. Therefore, it would1111

be more reasonable to decide α dynamically.1112

Effect of Editing Batch Size Does the batch size1113

parameter affect the performance of our method?1114

We investigate the effect of batch size by conduct-1115

ing single-round editing on 1k samples from ZsRE.1116

We tested batch sizes 10, 100, and 1000 (Fig.11).1117

Deferral
Radius

Model
COUNTERFACT

Reliability Generality Locality Average

ε = 1

GPT2-XL

100 0.40 100 66.80
ε = 3 100 0.42 100 66.81
ε = 5 100 0.65 99.50 66.72
ε = 10 100 1.80 93.70 65.17
ε = 20 100 18.30 56.60 58.30
ε = 30 100 83.90 7.40 63.77

ε = 1

GPT-J

100 0.50 100 66.83
ε = 3 100 0.54 100 66.85
ε = 5 100 0.57 100 66.86
ε = 10 100 0.68 99.60 66.76
ε = 20 100 5.00 93.20 66.07
ε = 30 100 31.30 58.90 63.40

Table 5: Results of GRACE with increased ε.

Reliability Generality locality0.4

0.6

0.8

1.0 GPT2-XL

Reliability Generality locality0.6

0.7

0.8

0.9

1.0 GPT-J

batch size 10 batch size 100 batch size 1000

Figure 11: Performance comparisons on different edit-
ing batch sizes.

The results show that while the three metrics 1118

decrease as the batch size rises, the margin could 1119

be negligible, denoting that our method possesses 1120

the mass-editing capacity. 1121

Investigation on hook layer employment Al- 1122

though the validation of the hook layer has been 1123

proved in section 4.4, we conducted extra experi- 1124

ments to survey how many entries that should apply 1125

the hook layer indeed use the hook layer and vice 1126

versa. We investigated three granularity: instances, 1127

overall tokens, and unwanted tokens (Table 4). Sup- 1128

pose the number of instances is A, the total number 1129

of tokens for the set of instances is T , and there are 1130

T ′ tokens that used the hook layer and A′ instances 1131

have their updated keys6 (the last subject token) 1132

use the hook layer. The instance granularity was 1133

measured by A′

A , the overall tokens granularity was 1134

calculated by T ′

T , and the unwanted tokens T ′−A′

T . 1135

The results show that almost all reliability and 1136

generality instances apply the hook layer, and few 1137

unwanted tokens mistakenly use the hook layer. 1138

This again demonstrates the effectiveness of our 1139

method’s editing scope identification. 1140

6Each instance only has one updated key.

14

GRACE with greater deferral radius Although1141

we followed the settings found in the original pa-1142

per of GRACE (Hartvigsen et al., 2022), one may1143

argue that the terrible generality performance of1144

GRACE in Table 2 is caused by the over small1145

deferral radius (ε) and increasing it may help the1146

model reach a better balance between generality1147

and locality, then resulting in an improved over-1148

all average. Therefore, we further conducted the1149

consecutive batch editing experiments for GRACE1150

with several increased ε on the COUNTERFACT1151

dataset, the result is shown in Table 5.1152

It is not hard to find from the results that, though1153

the results indeed show the trade-off between gen-1154

erality and locality, the average does not show great1155

improvement. This proves that merely increasing1156

the deferral radius for GRACE does not necessarily1157

improve its overall average performance.1158

Inference Time Analysis As our method will in-1159

troduce new hook layers to the model, we conduct1160

an experiment to investigate its influence on the1161

model inference. We run GPT2-XL on NVIDIA1162

Titan GPU and GPT-J on NVIDIA A6000. Table1163

3 shows the running result for the corresponding1164

pre-edit and post-edit models. The hook layers’1165

employment does not seem to delay the model in-1166

ference too much. This may result from the fact1167

that the hook layers are only introduced for the1168

small proportion of layers in the critical path, and1169

the computation implemented in the hook layers is1170

relatively simple.1171

Memory Analysis Unlike GRACE (Hartvigsen1172

et al., 2022), whose memory requirement grows1173

over time and SERAC (Mitchell et al., 2022b),1174

which needs extra memory for counterfactual1175

model and scope classifier, the memory require-1176

ment of our method remains unchanged over time.1177

Therefore, the final memory requirement is fixed no1178

matter how many edits you make to the model. The1179

initial memory requirement is acceptable since it is1180

at maximum the copy of the 6 to 7 FFN projection1181

layer weights in the model. Specifically, the hook1182

layers are only applied to a set of identified layers,1183

which usually accounts for a small proportion of1184

the whole layers. For example, the number of iden-1185

tified layers for GPT-J-6B is 6, which is [3, 4, 5,1186

6, 7, 8], and 5 for GPT2-XL, which is [13, 14, 15,1187

16, 17]. Furthermore, it is not compulsory to hang1188

hook layers to all the identified layers, user can1189

decide how many layers they want to edit. For con-1190

venience, we assume to use all the identified layers1191

here. Take the GPTJ-6B as an example, a projec- 1192

tion FFN layer weight dimension is 16384× 4096, 1193

assuming the data type is float32, then GPU mem- 1194

ory required by its hook layer (just a copy of itself) 1195

is approximately 16384×4096×4
10243

= 0.25GB (ignore 1196

the bias). Now, the identified layers in MEMIT for 1197

GPT-J-6B is [3,4,5,6,7,8], so the maximum mem- 1198

ory required is 0.25GB× 6 = 1.5GB. 1199

15

	Introduction
	Preliminaries of Model Editing
	Method
	Single-Layer Consecutive Batch Editing
	Batch Editing Menchanism
	Hook Layer
	Local Editing Scope Identification

	Multiple-layer Consecutive Batch Editing

	Experiments
	Experiment Setups
	Evaluation on Single-round Batch Editing
	Evaluation on Consecutive Batch Editing
	Validation of Local Editing Scope
	Detailed Analysis and Discussions

	Related Work
	Conclusion
	Experiment Details
	Baselines and Implementation Details
	Detailed analysis and discussions

