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Abstract: Coordinated multi-robot navigation is essential for robots to operate as a
team in diverse environments. During navigation, robot teams usually need to main-
tain specific formations, such as circular formations to protect human teammates at
the center. However, in complex scenarios such as narrow corridors, rigidly preserv-
ing predefined formations can become infeasible. Therefore, robot teams must be
capable of dynamically splitting into smaller subteams and adaptively controlling
the subteams to navigate through such scenarios while preserving formations. To
enable this capability, we introduce a novel method for SubTeaming and Adaptive
Formation (STAF), which is built upon a unified hierarchical learning framework:
(1) high-level deep graph cut for team splitting, (2) intermediate-level graph learn-
ing for facilitating coordinated navigation among subteams, and (3) low-level
policy learning for controlling individual mobile robots to reach their goal positions
while avoiding collisions. To evaluate STAF, we conducted extensive experiments
in both indoor and outdoor environments using robotics simulations and physical
robot teams. Experimental results show that STAF enables the novel capability for
subteaming and adaptive formation control, and achieves promising performance
in coordinated multi-robot navigation through challenging scenarios. More details
are available on the project website: https://hcrlab.gitlab.io/project/STAF.
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1 Introduction

Multi-robot systems have attracted growing at-
tention due to their advantages, such as redun-
dancy [1], parallelism [2], and scalability [3].
Coordinated multi-robot navigation is a funda-
mental capability that allows teams of robots to
traverse environments in a synchronized manner
and reach goal positions collectively [4]. This
capability is crucial in real-world applications,
such as search and rescue [5, 6, 7], space explo-
ration [8, 9], and transportation [10, 11].

During coordinated navigation, robots are often
required to maintain mission-specific formation,
such as circular formations for protection or line
formations for coverage. However, rigid adher-
ence to predefined formations can hinder effec-

Figure 1: When a robot team in circular formation
encounters a bridge that is too narrow for the entire
team to cross at once. The robots must divide into
subteams, adapt their formations to navigate the
bridge, and recovery the full team after crossing.

tive navigation in certain scenarios. For instance, Figure 1 depicts a team of ten robots in a circular
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formation encountering a corridor too narrow for the entire team to pass through. Thus, the team must
be capable of dynamically dividing into smaller units that operate both independently and cohesively
(i.e., subteaming) and controlling the subteams to pass through the narrow corridor while adaptively
maintaining a specific formation (i.e., adaptive formation control).

The importance of coordinated multi-robot navigation has driven the development of various tech-
niques. Traditional approaches, including classical planning methods [12], game-theoretic methods
[13, 14], and optimization-based methods [15], often face high computational costs. Recently,
learning-based methods like deep neural networks [16, 17] and multi-agent reinforcement learning
[18, 19] have been used for modeling, coordination, and navigation. However, these methods have
not addressed adaptive formation control, which is critical for narrow corridor traversal. Subteaming
methods, such as graph cuts for team division [20, 21] and mixed-integer programming for task
allocation [1, 22, 23], focus on team division alone and lack control over subteams or individual
robots, which limits their effectiveness for coordinated navigation.

To address the challenges above and enable effective coordinated multi-robot navigation in complex
scenarios where the entire robot team cannot pass through, we introduce a novel approach called
SubTeaming and Adaptive Formation (STAF), which offers new capabilities for subteam division,
formation adaptation, and team recovery. Specifically, we design a graph representation to encode a
team of robots, where each node represents a robot along with its associated attributes, such as its
position, velocity, goal, and distance to obstacles, and each edge represents the spatial relationships
between pairs of robots. Our STAF approach integrates three levels of robot learning into a hierarchical
framework. At the high level, given the graph representation of a robot team, STAF performs deep
graph cuts to divide the entire robot team into subteams. The intermediate level of STAF focuses
on learning the coordination of these robot subteams for navigation, which develops a graph neural
network with learnable message sharing to coordinate robots within a subteam, while generating
graph embeddings to encode the subteam context. Finally, at the low level, given these embeddings,
STAF employs reinforcement learning to learn a navigation policy that controls each individual robot
to adaptively maintain subteam formation, reach the goal position, and avoid collisions.

Our primary contribution is the introduction of the novel STAF method to enable a new multi-robot
navigation capability of subteaming and formation adaptation. The specific novelties include:

* This work introduces one of the first problem formulations and learning-based solutions
for subteaming and formation adaptation in multi-robot coordinated navigation. It enables
new multi-robot capabilities, including subteam division, formation adaptation, and team
recovery, allowing a team of robots to navigate complex environments in a coordinated
manner, particularly narrow corridors where maintaining original formation is infeasible.

* We introduce a novel hierarchical robot learning method that simultaneously integrates
high-level deep graph cut for subteaming, intermediate-level graph learning for subteam
coordination and adaptive formation control, and low-level individual robot control for
collision-free navigation in complex environments.

2 Related Work

Hierarchical Learning for Robotics Hierarchical learning has shown promise in complex multi-
robot tasks by providing a structured problem formulation that better aligns with multi-objective goals.
It also enhances modularity in model design, which improves interpretability and enables clearer
evaluation of each level. Applications include task allocation [24], maintaining communication [25],
path planning [26, 27], and consensus reaching [28]. Typically, the lower level handles individual
control tasks such as obstacle avoidance [29, 30]. The upper level focuses on team planning and
coordination [31, 32, 33, 18]. However, applying hierarchical learning to formation adaptation
and subteaming remains challenging due to the need for scalable team representations, dynamic
adaptation, and efficient integration of formation control with flexible team reconfiguration.
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Figure 2: Overview of STAF, which integrates three levels of robot learning within a unified hierar-
chical learning framework to enable coordinated multi-robot navigation.

Coordinated Multi-Robot Navigation Learning-free methods rely on predefined formation strate-
gies, such as leader-follower [15, 4, 34, 35] and virtual region methods [36, 37, 38, 39]. However,
these rigid formations lack adaptability to environmental changes. Learning-based methods, such
as reinforcement learning (RL) [40, 41, 18, 19, 42, 41], address this limitation by optimizing ac-
tions through environmental feedback. Graph neural networks (GNNs) enhance team coordination
and communication [43, 17], enabling decentralized decision-making [16, 44]. These approaches
have been applied in areas such as connected autonomous driving [45, 8], area coverage [46], and
search-and-rescue missions [5]. However, none of these methods effectively address subteaming and
formation adaptation in coordinated navigation, particularly in complex narrow corridors.

Subteaming in Multi-Robot Navigation and Task Allocation Subteaming increases the complexity
of coordinated multi-robot navigation as it involves splitting, merging, and reformation based on tasks
or environments. Graph-based methods [20, 21, 47, 1] use graph partitioning and cutting to determine
team division and merging, but often rely on explicit connectivity constraints. Leader-follower
methods [48, 49, 15] apply predefined hierarchy-based strategies but lack flexibility in dynamic
environments. Optimization-based approaches [50, 22, 23, 51] compute optimal assignments via
mixed-integer programming. Heuristic-based methods [52, 53] use problem-specific heuristics to
determine team formation and coordination strategies. However, these methods focus on team
division alone and lack control over subteams or individual robots. See Appendix A for details .

3 Approach

Problem Definition We discuss our STAF method that enables new multi-robot capabilities of
subteaming and formation adaptation for coordinated multi-robot navigation. An overview of STAF
is illustrated in Figure 2. We represent a team of n robots using an undirected graph G = {V, E}.
In the node set V = {vq,va,...,Vv,}, each node v; = {p;,8;,q;} consists of the attributes of
the i-th robot, where p; = [p?, p!] denotes its position, g; = [¢¥, g¢] denotes its goal position,
and q; = [¢¥, ¢]] denotes its velocities along x and y directions. The edge matrix E = {a; ;}"*"
represents the spatial adjacency of the robots, where a; ; = 1, if the i-th robot and the j-th robot are
within a radius; otherwise a; ; = 0. We further define the state of the i-th robot s; = [p;, 8, q;, ¢;]
as the concatenation of the robot’s attributes and the distance c¢; between the robot and its closest
obstacle. We define the action of the i-th robot as a; = [vF, v}], where v¥ and v} denote the robot’s
velocities in the x and y directions, respectively.

Our objective is to address the problems of subteaming and formation adaptation in the context of
coordinated multi-robot navigation:

!The appendix is available at our project website.



* Formation Adaptation: The capability of a robot team or subteam to maintain a desired
formation while dynamically adjusting their relative positions to safely and efficiently
navigate through the unstructured environment toward their goal positions, particularly in
challenging scenarios such as narrow corridors.

* Subteaming: The capability of a robot team with a specific formation to autonomously
divide into subteams with the same formation type when navigating environments too narrow
for the entire robot team. After successfully passing through, the subteams must merge back
into the full team, restoring the original formation.

High-Level Deep Graph Cut for Subteaming Given the graph G as the representation of the robot
team, we introduce a new deep graph cut approach at the high level of STAF to enable subteaming.
We compute the embedding of the robot graph as H = {h;} = w(G), where h; is the embedding of
the i-th robot and w is a graph attention network [54]. We project each node into a representation
space by calculating m; = W"p;, where m; denotes the projected feature vector of the ¢-th node,

and W" denotes the weight matrix. Then, we compute the attention «; ; from the j-th node to
exp(ReLu([W“m;||W“m;]))
2 ken () exp(ReLu([Wem; [[Wemy]

unit activation function, N (i) represents the set of adjacent nodes of the i-th node, || denotes the
concatenation operation, and W represents the weight matrix. The attention «; ; is obtained by
computing the similarity of the ¢-th node with its j-th adjacent nodes, followed by the SoftMax
normalization. Then, the final embedding h; for the i-th node is computed through aggregating
the embeddings of all its adjacent nodes as h; = Whm,; + Zje/\/(i) ozm-Whmj, where WP is the
weight matrix. We further utilize a multi-head mechanism [54] after the attention layers to enable the
network to capture a richer embedding representation.

the i-th node as «; ; =

L where ReLu denotes the rectified linear

Given H = {h;}, we formulate subteaming as a graph cut problem, which partitions the entire
graph (representing the full team) into m subgraphs (representing subteams). In order to compute
team division, we develop a classifier network 7(#) consisting of two fully connected linear layers
followed by a SoftMax function, which outputs the team division results as Y = 7(H) = {y; ; }"*™,
where y; ; is the probability of the -th robot belonging to the j-th subteam, and m < n.

To ensure that robots within the same subteam group together, i.e., each robot is adjacent to its
teammates within the same subteam, we define a loss function that maximizes the adjacency of
robots within each subteam as Y (1 — Y)TE, where Y(1 — Y) T calculates the probability that a
pair of robots belong to different subteams, and E encodes the adjacency of the robots. In addition,
we aim to maintain balance in the sizes of robot subteams, encouraging each subteam to have
the same or a similar number of robots. It can be mathematically modeled by a loss function
Z;’;l (Z?:l Yij — %) The term ;- calculates the optimal size of balanced subteams (e.g., when
n = 10 and m = 2, each subteam would consist of 5 robots). Furthermore, we model the mission
objective of reaching the goal position by minimizing the overall distance between the subteams

and their respective goal positions. It can be mathematically defined as ) ;11 ||7Ziil y‘pr‘ -
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denotes the center position of the goal for the subteam.

The high-level component of STAF performs an unsupervised graph cut to enable team division for
subteaming by minimizing the following objective function:

Subteam balance Subteam-goals distance
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Intermediate-Level Graph Learning for Multi-robot Formation Adaptation To enable adaptive
multi-robot formation control, we develop a graph learning approach at the intermediate level of
STAF, which coordinates multiple robots to maintain a specific formation while adapting it based



on the surrounding environment. Given G that represents a team (or subteam) of robots along with
the state s; for each robot i, we develop a graph network ¢ to compute the embedding f; = ¢(s;, G)
of the team state with respect to the i-th robot, which encodes the spatial relationships between the
i-th robot with others in the team. The network ¢ uses a linear layer to project the robot state s; to
the individual embedding z; of the i-th robot by z; = W?*s;, where W~ is the weight matrix of the
linear layer. Then, for the i-th robot, ¢ aggregates individual state embeddings of all other teammates
through message passing to compute the team state embedding f; with respect to the i-th robot as
f; =W/lz, + ZjeN(i) W/ (z; — z;), where W/ is the weight matrix. The team state embedding
f; with respect to the i-th robot encodes not only its own states (captured in the first term), but also
the relative spatial relationships with other teammates (captured in the second term), which facilitates
the coordination of actions to maintain specific formations during multi-robot navigation.

Robot teams and subteams may encounter scenarios, such as narrow corridors, where rigidly maintain-
ing their formations prevents successful navigation. To enable formation adaptation, we implement
a spring-damper model [55, 56] that dynamically adjusts the shape of the formation within the
same type. This spring-damper model includes two components: (1) The spring component ensures
that robot pairs maintain a balance between staying close enough to navigate narrow corridors and
keeping a sufficient distance to prevent collisions, with the flexibility to adjust formation and enable
adaptation. This spring component is modeled as |d; ; — p;, ;|, where d; ; denotes the expected
distance in the original formation and p; ; represents the actual distance between the ¢-th and j-th
robots, computed as ||p; — p;||2- (2) The damper component prevents oscillation and overshooting
of each robot during navigation by smoothing the relative velocities between pairs of robots, which is
defined as ¢; ; = ||q; — q;|2. Combining these components, the spring-damper model for formation
adaptation is mathematically defined as R = )~ vyev —Aldij = pijl — (1= A)gi ;. where A
is a hyperparameter that balances the importance of the spring and damper components. R is
incorporated into the reward function, which is used to derive a loss function for training STAF.

Low-Level Individual Robot Control for Navigation At the low-level of STAF, we introduce a
navigation control network that outputs velocity commands as actions for each robot to reach its goal.
Given the state s; for the i-th robot, we compute its state embedding f;. We design the network ),
which consists of two linear layers followed by the ReLU activation function, maps this embedding
to an action as a; = ¢(f;). The network ¢ is a part of the control policy 7y (a;|s;), parameterized by
6, which is trained using the framework of reinforcement learning. To enable each robot to move
toward its target position and reach the navigational goal, we design a reward function based upon the
distance between the current positions of the robot and its goal position. To enable obstacle avoidance
for safe navigation, we implement a reward function that imposes a penalty when a robot comes too
close to nearby obstacles or other robots in the team. When robots are divided into subteams, and
once all subteams pass through the narrow corridor into an open area that is large enough for the full
team, the goal position of each individual robot is updated to align with the full team’s goal, thereby
recovering the subteams back into the full team with the original formation.

See Appendix B for details on STAF Training and Execution with their time complexity analysis.

4 Experiments

Experimental Setups We comprehensively evaluate our STAF approach across three setups: (1) a
standard Gazebo simulation in ROS1, (2) a high-fidelity Unity-based 3D multi-robot simulator in
ROSI1, and (3) physical robot teams running ROS2. Each setup involves different numbers and types
of robots arranged in formations such as circle, wedge, and line. In all scenarios, the environment
includes narrow corridors, which require the full robot team to divide into subteams that adapt their
formation to pass through. Afterward, the subteams regroup into the original full-team formation. In
simulation, robot poses and obstacles are obtained from Gazebo and Unity. In real-world experiments,
robots use a SLAM approach [57] for state estimation and mapping. See Appendix C for details on
approach implementation and training. All video demonstrations are available on our project website.



Table 1: Quantitative comparison of STAF and Previous Methods from Gazebo simulations in ROS1.

Method Circle Formation [ Wedge Formation [ Line Formation |
SR ([T 0o < 0.5[c < 0.1]o < 0-0LSR(B[TT (ed)o < 0-5]o < 0.1[o < 0-01SR (B)TT Geo)[o < 0.5]o < 0.1[c < 0.01]

[DGNN 18] 100.00] 68.70 | 6041 | 5891 | 5891 [100.00] 82.70 | 4785 | 4233 | 4192 [100.00] 72.61 | 27.90 | 20.16 | 20.16 |

[C&F15] | 40.00 | 2740 | 6728 | 6454 | 62.60 | 7000 | 2650 | 69.70 | 6211 | 5947 | 60.00 | 30.10 | 63.76 | 5589 | 5589 |
[STAF-full [100.00] 102.10 | 87.79 | 80.12 | 80.12_[100.00] 6930 | 8052 | 8051 | 8050 [100.00] (11.50] 91.45 | 80.06 | 7893
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Figure 3: Qualitative results from Gazebo simulations on subteaming and formation adaptation.
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Figure 4: Movement trajectories of ten robots navigating a narrow corridor with different formations.
In Figure 4(a) to 4(c), the first subfigure displays two subteams (red and blue) during team division,
navigation with formation adaptation, and regrouping. The second and third subfigures show subteam
trajectories, with each robot’s path in a distinct color and gray dashed lines indicating obstacles.

We implement the complete STAF approach referred to as STAF-full. The full team divides into
subteams to navigate through narrow environments, and after passing through, the subteams regroup
into the full team to its original formation. To analyze the performance of the subteams, we refer
to the subteams as STAF-sub#, e.g., STAF-subl and STAF-sub2. For comparison with STAF, we
further implement two previous methods for multi-robot coordinated navigation, including: (1) A
Leader and Follower method (L&F) [15] that one of the robots is designated as the “leader robot”
that leads the movements of the other “follower robots” in the team while maintaining the formation.
(2) Decentralized GNN (DGNN) [18] that built upon a hierarchical learning framework to generate
velocity controls for each individual robot for navigation, without considering team-level formations.

To quantitatively evaluate and compare with other methods, we employ three metrics, including: (1)
Successful Rate (SR) is defined as the proportion of the robots within the full team that successfully
reach goal positions without collisions. (2) Travel Time (TT) is defined as the total time used by
the full team to reach the goal position. (3) Contextual Formation Integrity (CFI) is defined as the
real-time adherence of the robots to their designated formation, given a shape threshold o that defines
the strictness of the formation. The CFI € [0, 1] evaluates how effectively a robot team utilizes the
corridor gap and maintains formation, with smaller o indicating stricter formation requirements. See
Appendix D for details on CFI and its calculation of different formations.

Results in Multi-Robot Simulations The qualitative results in the Gazebo simulation are shown
in Figure 3. L&F gets stuck in the narrow corridor due to the lack of subteaming and formation
adaptation. In contrast, our method autonomously divides the team, enabling each subteam to adapt
formations and reach the goal; the first subteam starts moving, followed by the second, and they
eventually merge into the full formation. Notably, for wedge formations, team division prioritizes
goal-distance objectives instead of maximizing connectivity, resulting in more compact subteams.

We visualize the trajectories of a team of 10 robots navigating in different formations, as shown in
Figure 4. The visualization reveals subteaming behaviors (indicated by subteams in red and blue
colors), including team division and regrouping. Additionally, formation adaptation of each subteam



occurs when navigating through narrow corridors (indicated by the individual robot trajectories).
These results show the effectiveness of STAF in enabling both subteaming and formation adaptation.

The quantitative results are shown in Table 1. DGNN Table 2: Quantitative results of two sub-
performs the worst, particularly in the CFI metrics, as teams from Gazebo simulations in ROSI.
it lacks formation control. L&F uses formation control I |~ S
| o (sec)jo < 0.5|c < 0.1jc < 0.01
gnd per.forms .bcj,tter but htas only a 40% success rate, as TR T e T
it considers rigid formation control. Our method out- [STAF-subl| Wedge |100.00| 58.80 | 77.22 | 71.79 | 69.86
. .. . . Line [100.00| 78.51 | 91.13 79.53 77.43
performs both by addressing these limitations, which Circle [100.00] 5950 | 87.72 | 82.67 | 80.11
achieves a 100% success rate. Although STAF yields [T Vedee |100.001 4080 1 8050 1 800> | a0
slightly longer travel times, this is expected due to its
more complex navigation strategy. Subteam performance in Table 2 shows a 100% success rate across
all formations. STAF maintains formation integrity above 87%, 80%, and 91% under the threshold
o < 0.5 for circle, wedge, and line formations, respectively. These results highlight the effectiveness
of STAF in enabling coordinated navigation through subteaming and adaptive formation control.
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Figure 5: Qualitative results from Unity3D simulations in ROS1 using varying numbers of differential-
drive Warthog robots in three formations while navigating a long, unstructured field environment.

uneven terrain, using varying numbers of Limo robots running ROS2 and communicating via Wi-Fi.

Beyond the Gazebo simulation, we further use a high-fidelity Unity3D simulator in ROS1, which
simulates outdoor field environments with narrow pathways and bridges. Instead of using holonomic
robots as shown in the Gazebo simulation, we use differential-drive Warthog robots and convert
the linear velocity in the action a; into wheel velocities to follow the same trajectory. This setting
introduces new challenges, which require the robot team to navigate long curved paths that demand
continuous formation adjustments. As illustrated in Figures 5, our STAF approach successfully
addresses these challenges by dividing a full team into subteams, adapting actions of differential-drive
subteams to navigate, and regroup after subteam traversal. For line formation with 9 robots, STAF
can divide into three subteams to navigate a corridor too narrow for groups larger than 3.

Case Study on Physical Robot Teams We validate STAF on real-world case studies using differential-
drive Limo robots with caterpillar tracks, each equipped with an onboard Intel NCU i7 and running
ROS2 with Wi-Fi-based team communication. The real-world experiments are conducted both
indoors and outdoors, as shown in Figure 6. Our method enables teams of 6 to 8 robots to divide into
subteams and adapt formations to smoothly navigate narrow indoor spaces. In outdoor experiments
on unstructured terrain, the results demonstrate the strong adaptability of our approach to unknown
environments. Subteaming and formation adaptation are effectively performed even on snowy and
uneven terrain, where wheel slippage introduces significant action uncertainty. Additional Unity3D
and real-world qualitative results with more timesteps are provided in the Appendix E.

5 Discussion

Ablation Study on Subteam Division We conduct an ablation study to evaluate the role of each
component in the objective function defined in Eq. (1) for team division. Figure 7(a) shows that
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Figure 7: Ablation study that analyzes the impact of subteam division components: subteam balance
(ST-B), subteam adjacency (ST-A), and subteam-goals distance (ST-G).
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Figure 8: Quantitative results indicate STAF’s generalizability to different team sizes. Figures (a)-(d)
show the trajectories of 4 to 8 robots in circle formations to navigate a narrow corridor. Figure (e)
presents the variation in CFI values across different team sizes and o values.

optimizing only the balance term evenly splits 12 robots into 3 subteams. Figure 7(b) shows that only
maximizing adjacency leads to all robots being assigned to the same subteam. Figure 7(c) shows that
only minimizing the goal-distance aligns subteams toward their goals (in the upper right). In addition,
we remove each component individually to assess its impact. Figure 7(d) shows unbalanced team
division without the balance term. Figure 7(e) results in uncompact subteams without the adjacency
term. Figure 7(f) shows subteams misaligned with goals, which leads to inefficient navigation. These
results further indicate the effectiveness and importance of enforcing subteam balance, maximizing
adjacency, and minimizing subteam-goals distance for robot team division.

Generalizability to Different Team Sizes We evaluate the generalizability of STAF to different
team sizes by varying the number of robots. Figures 8(a)-8(d) present the qualitative results on
formation adaptation for teams of 4, 6, 7, and 8 robots in circle formation, which validate STAF’s
generalizability across team sizes. Figure 8(e) presents the quantitative results using the CFI metric,
which shows 87% formation integrity for 4 robots under o < 0.03, and at least 80% for 8 robots.

Generalizability to Different Numbers of Sub- e &
teams We evaluate STAF’s generalizability in .- e “G .
dividing the team into varying numbers of sub- " o & »0
teams. As shown in Figure 9, STAF effectively - & &
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ure 5 contains a scenario where a nine-robot line  (a) 2 subteams  (b) 3 subteams  (c) 4 subteams

formation splits into three subteams to navigate Figure 9: Qualitative results indicate STAF’s gen-
a corridor too narrow for groups larger than four. eralizability to different numbers of subteams.

osition (m)

See Appendix F for STAF’s Robustness to Noise and Applicability to Different Robot Platforms.

6 Conclusion

In this paper, we propose STAF for coordinated multi-robot navigation in complex scenarios. STAF
is built upon a unified hierarchical learning framework, including a high-level deep graph cut for
dynamic team division, an intermediate-level graph learning for team coordination with adaptive
formation control, and a low-level RL policy for individual robot control. Results from comprehensive
experiments show that STAF enables new multi-robot capabilities for subteaming and formation
adaptation, and significantly outperforms existing methods on coordinated multi-robot navigation.



7 Limitations

Our approach presents several limitations that suggest directions for future research. First, although
STAF’s intermediate and low levels are executed in a decentralized fashion, STAF’s high level for
team division is executed in a centralized fashion. One direction for future research is to decentralize
the high-level team division, such as by replacing the current global graph cut optimization with
a distributed consensus algorithm (e.g., gossip [58] or max-consensus [59]). These decentralized
methods would enable each robot to determine its subteam based upon the information shared by its
teammates through broadcasting, and iteratively reach a consensus and converge to a stable subteam
assignment through negotiation. Second, the alternating training algorithm we use, which iteratively
trains the high-level and joint intermediate-low levels, is considered a limitation, as it may lead
to suboptimal integration of these levels and difficulties with training error propagation. In the
future, we plan to integrate the high-level graph cut together with the joint intermediate-low level
training into an end-to-end training algorithm, where the training error from the low level will be
propagated not only to the intermediate level but also to the high level, which enables updates to the
network parameters across all three levels. To achieve this, we will adopt a centralized training with
decentralized execution strategy, where all levels of the hierarchy can leverage global information
during training, while ensuring decentralized execution during deployment. The third limitation
is that the number of subteams, as a hyperparameter, is decided manually. A future direction is to
dynamically and adaptively determine this hyperparameter by selecting the minimum number of
subteams such that the smallest formation of each subteam can successfully navigate through the
narrowest corridor in the environment. The width of a corridor can be identified either by analyzing
the environment map (using a prior map or built by a SLAM method) or through real-time robotic
sensing.
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