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Abstract

Reinforcement Learning from Human Feedback (RLHF) has become the predom-
inant approach for aligning language models (LMs) to be more helpful and less
harmful. At its core, RLHF uses a margin-based loss for preference optimization,
which specifies the ideal LM behavior only in terms of the difference between
preferred and dispreferred responses. In this paper, we identify a common pitfall
of margin-based methods—the under-specification of ideal LM behavior on pre-
ferred and dispreferred responses individually, which results in two unintended
consequences as the margin increases: (1) The probability of dispreferred (e.g.,
unsafe) responses may increase, resulting in potential safety alignment failures. (2)
The probability of preferred responses may decrease, even when those responses
are ideal. We demystify the reasons behind these problematic behaviors: margin-
based losses couple the change in the preferred probability with the gradient of
the dispreferred one, and vice versa, often preventing the preferred probability
from increasing while the dispreferred one decreases, and thus causing a synchro-
nized increase or decrease in both probabilities. We term this effect, inherent in
margin-based objectives, gradient entanglement. Formally, we derive conditions
for general margin-based alignment objectives under which gradient entanglement
becomes concerning: the inner product between the gradient of preferred log-
probability and the gradient of dispreferred log-probability is large relative to the
individual gradient norms. We theoretically investigate why such inner products
can be large when aligning language models and empirically validate our findings.
Empirical implications of our framework further extend to explaining important
differences in the training dynamics of various preference optimization algorithms,
and suggesting potential algorithm designs to mitigate the under-specification issue
of margin-based methods and thereby improving language model alignment.3

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) has become a primary approach for aligning
Language Models (LMs) to improve their helpfulness and mitigate harmfulness [13, 2, 8]. This
pipeline typically consists of two stages: supervised fine-tuning (SFT), where demonstration data is
used to directly teach the model desirable behaviors, and the reinforcement learning (RL) stage, which
uses preference data—comparisons between different responses to the same prompt—to highlight the
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contrast between chosen and rejected responses, with the goal of helping the model learn distinctions
between good and bad behaviors.

Leveraging the structure of the RLHF problem, a recent line of work has combined these two steps
by directly optimizing the language model using a margin-based preference optimization loss of the
following general form [11, 1, 16, 4, 5, 9, 10, 18, 6, 19, 15]:4

ℓ(x, yw, yl; θ) = m(hw(log πθ(yw|x))− hl(log πθ(yl|x))), (1)

where for a language model πθ, log πθ(yw|x) specifies the log-probability of the chosen response
yw

5 and log πθ(yl|x) specifies that of the rejected response yl, given the same prompt x. Most of the
existing preference optimization losses can be interpreted as varying the scalar functions m,hw, hl

(Section B and Table 2). At the core, they all rely on the margin between the chosen log-probability
log πθ(yw|x) and the rejected log-probability log πθ(yl|x).
The training dynamics of these margin-based preference optimization is quite intriguing—the log
probabilities of the chosen and rejected responses often show a synchronized increase and decrease
(Figure 1).
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Figure 1: Training dynamics of the chosen and rejected log probabilities on the TL;DR dataset [13].
As the margin between the two increases, the chosen and rejected log probabilities exhibit synchro-
nized increases and decreases. In Figure 1a, both the chosen and rejected log probabilities increase in
the end, whereas in Figure 1b, both decrease in the end.

This synchronized log-probability change exposes a fundamental issue with using margin-based loss
for preference optimization in language model alignment: it only specifies the ideal behavior of
the margin but not the ideal behavior of individual terms. This under-specification may have two
problematic consequences:

• First, when the primary goal is to reduce the probability of generating rejected responses (e.g.,
in safety-related alignment tasks where certain undesirable responses should not be generated),
merely increasing the margin (i.e., ensuring that the chosen response is preferred over the rejected
one) does not guarantee that the log-probability of the rejected response is actually decreasing
(Figure 1a).

• Second, even when the log-probability of the rejected response does decrease, the current margin-
based losses often imply a simultaneous reduction in the log-probability of the chosen response
(Figure 1b). This becomes particularly concerning under some of the current fine-tuning practices
for LMs, where we want to retain or even increase the probability of generating the preferred
responses. In the original procedure of RLHF, both chosen and rejected samples are drawn from
models that require further training [13]. In such cases, the ideal behavior of the model on the
chosen samples is less clear—aside from being preferred over the rejected ones.

In this work, we dig into this phenomenon, identifying conditions under which the chosen and
rejected log-probability log πθ(yw|x), log πθ(yl|x) exhibits synchronized increase and decrease.
Our first key finding is that this synchronized change happens when the gradient inner product
⟨∇θ log πθ(yw|x),∇θ log πθ(yl|x)⟩ is “large” relative to their individual norms (Section 3.1). We
further investigate why the gradient inner product can be relative large to individual norms when

4The reward modeling loss in vanilla RLHF is also an example of this general form.
5Subscript w in chosen response yw stands for “winner”, l in yl stands for “loser.”
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aligning a model using language data. In synthetic settings, we theoretically show that (1) as the
chosen and rejected responses share more similar tokens, their gradient inner product will increase,
and (2) while the sentence-level gradient inner product may be large and positive, individual token-
level inner products can be small and negative (Appendix A.1, A.2).

To summarize, our contributions are as follows:

• We identify a fundamental issue with margin-based preference optimization: it under-specifies the
ideal behavior of the LM on chosen and rejected responses individually, which often results in
synchronized increase/decrease in the chosen and rejected log-probabilities (Section 1);

• We uncover that gradient entanglement is the inherent cause of the pitfalls in margin-based objec-
tives, and provide a general gradient inner product condition that captures when the synchronized
movement of chosen and rejected log probabilities occurs (Section 3);

• We investigate the gradient inner product and explore when the condition may fail and the synchro-
nized movement occurs theoretically and experimentally (Appendix A).

• Using our framework, we outline two potential approaches to mitigate issues caused by gradient
entanglement: one based on normalized gradients (Section 4.1) and the other leveraging token-level
information (Section 4.2).

2 Background and Related Work

2.1 Preference optimization

We consider auto-regressive language models π(yt|x, y<t) that specify the distribution of the next
token yt at index t on a finite vocabulary set V , given the prefix tokens including the prompt x and
the partially generated responses y<t. In the context of LM alignment, there is a reference policy πref,
usually obtained by large-scale pre-training and supervised fine-tuning, and serves as the sampling
policy and start point of further alignment algorithms.

2.2 Existing methods

There have been plenty of works on the design of preference optimization losses, motivated by
various assumptions or considerations. Here we briefly review them and discuss their connection to
the probability margin:

Rafailov et al. [11] derive the DPO loss from the KL-constrained reward maximization problem:

max
θ

Ex∼X ,y∼πθ(·|x)[r(y;x)]− βEx∼X [KL(πθ(·|x)∥πref(·|x))].

They further derive the DPO loss for any triplet (x, yw, yl) where the yw, yl are the chosen and
rejected response, respectively:

ℓDPO(x, yw, yl; θ;πref) := − log σ

(
β

[
log

(
πθ(yw|x)
πref(yw|x)

)
− log

(
πθ(yl|x)
πref(yl|x)

)])
. (2)

Motivated by non-transitive human preference and language model calibration respectively, Azar
et al. [1] and Zhao et al. [19] propose IPO and SlicHF loss with similar forms that solely depend on
the margin log πθ(yw|x)− log πθ(yl|x).
Due to the length bias observed in practice, Park et al. [10] propose to add a length penalty term in the
BT preference model, but the gradient still relies on the margin log πθ(yw|x)− log πθ(yl|x). Meng
et al. [6] and Yuan et al. [18] consider the setting of average rewards and derive a loss dependent on
the length-normalized margin 1

|yw| log πθ(yw|x)− 1
|yl| log πθ(yl|x).

3 Gradient Entanglement

Margin-based preference optimization often results in synchronized increase/decrease in chosen and
rejected log-probabilities (Section 1). Our key finding is that the synchronized change is caused by
an effect we term as gradient entanglement. Starting with a case study on DPO in Section 3.1, we
formally define the gradient entanglement effect, from the definition we will see the entanglement is
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passed through the inner product between chosen and rejected gradients. We derive conditions on
such inner product under which the gradient entanglement causes concerning synchronized change.
We validate our findings empirically in Section 3.2.

3.1 Case study: gradient entanglement in DPO

Let us start with deriving the gradient of the DPO objective (2). To simplify the formula of DPO
gradient, we define the implicit reward r̂θ(x, y) := β log πθ(y|x)

πref (y|x) (which is a scalar) and introduce
the notations:
log πw(θ) := log πθ(yw|x), log πl(θ) := log πθ(yl|x), c(θ) := σ (r̂θ (x, yl)− r̂θ (x, yw)) > 0.

Then considering a single sample (x, yw, yl), the DPO gradient can be rewritten as6

∇θℓDPO = −βc(θ) · (∇θ log πw(θ)−∇θ log πl(θ)). (3)

Suppose η > 0 is the step size for minimizing the DPO objective and let C = ηβc(θ). After one
step gradient descent with (3), a simple analysis of the log-probability change in chosen and rejected
responses uncovers the intriguing gradient entanglement effect as follows:

Gradient Entanglement (DPO)

The chosen log-probability change ∆ log πw depends on the rejected gradient ∇ log πl,
and similarly, the rejected log-probability change ∆ log πl depends on the chosen gradient
∇ log πw:

∆ log πw ≈ C ·
(
∥∇ log πw∥2 − ⟨∇ log πw,∇ log πl⟩

)
, (4)

∆ log πl ≈ C ·
(
⟨∇ log πw,∇ log πl⟩ − ∥∇ log πl∥2

)
. (5)

(4) and (5) are derived by approximating ∆ log πw and ∆ log πl with first-order Taylor expansion
(Appendix C.1). Beyond the DPO objective, the gradient entanglement effect is an inherent char-
acteristic of margin-based objectives as the chosen and rejected log-probability are coupled in the
definition of “margin.” In Appendix B, we will formally derive gradient entanglement for general
margin-based objectives for preference optimization. From the above definition, we can see that the
entanglement effect is passed through the inner product ⟨∇ log πw,∇ log πl⟩ between chosen and
rejected gradients. In the absence of ⟨∇ log πw,∇ log πl⟩, the log-probability changes ∆ log πw and
∆ log πl will not depend on each other. In the sequel, we will derive conditions on this inner product
under which the gradient entanglement will have concerning effects.

3.1.1 When will the gradient entanglement be concerning?

If we measure the change in the margin between log πw and log πl, i.e., the quantitiy ∆(log πw −
log πl), then the Cauchy–Schwarz inequality ensures:

∆(log πw − log πl) ≈ C · (∥∇ log πw∥2 − 2⟨∇ log πw,∇ log πl⟩+ ∥∇ log πl∥2) ≥ 0,

which fulfills the contrastive goal of the DPO loss: enlarging the difference between the chosen
log-probability log πw and rejected log-probability log πl. However, due to the gradient entanglement
effect, to individually ensure the increment of log πw and the decrement of log πl, the inner product
between chosen and rejected gradient should satisfy conditions listed in Condition 1. We will refer to
Condition 1 as “gradient condition" as it is imposed on the inner product of gradients.
Condition 1 (Gradient condition for DPO). In DPO, to increase log πw and decrease log πl individ-
ually, (4) and (5) imply the following conditions:

⟨∇ log πw,∇ log πl⟩ ≤ ∥∇ log πw∥2 ⇐⇒ ∆ log πw ≥ 0, log πw increases;

⟨∇ log πw,∇ log πl⟩ ≤ ∥∇ log πl∥2 ⇐⇒ ∆ log πl ≤ 0, log πl decreases.

Based on the two conditions above, in Table 1 we summarize three cases that depict all pos-
sible changes on the chosen and rejected log-probabilities and are categorized by the value of
⟨∇ log πw,∇ log πl⟩.

6When the context is clear, we omit θ and just use log πw, log πl and ∇.
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Case ∆log πw,∆log πl log πw, log πl Condition

1 ∆log πw ≥ 0 ≥ ∆log πl log πw ↑ log πl ↓ ⟨∇ log πw,∇ log πl⟩ ≤ min(∥∇ log πw∥2, ∥∇ log πl∥2)

2 0 ≥ ∆log πw ≥ ∆log πl log πw ↓ log πl ↓ ∥∇ log πw∥2 ≤ ⟨∇ log πw,∇ log πl⟩ ≤ ∥∇ log πl∥2

3 ∆log πw ≥ ∆log πl ≥ 0 log πw ↑ log πl ↑ ∥∇ log πl∥2 ≤ ⟨∇ log πw,∇ log πl⟩ ≤ ∥∇ log πw∥2

Table 1: Three possible cases of the changes on chosen and rejected log-probabilities in DPO. ↑ and
↓ indicate increase and decrease. Case 1 (Ideal): log πw increases and log πl decreases; Case 2:
log πw and log πl both decreases but log πl decreases more; Case 3: log πw and log πl both increases
but log πw increases more.

In Appendix B, we show for other margin-based preference optimization loss, a similar condition on
⟨∇ log πw,∇ log πl⟩ can be derived, but the condition could be more lenient than that of DPO for
some specific losses, explaining why the training dynamics of those methods may differ from DPO.

3.2 Empirical observations

We conduct experiments on the TL;DR dataset [13] to showcase the widely-existing phenomenon that
the chosen and rejected log-probabilities have synchronized changes during preference optimization.
In addition, Figure 1 depicts how different margin-based preference optimization algorithms influence
the log-probability of chosen and rejected responses.
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Figure 2: Training dynamics of the chosen and rejected log-probabilities on the TL;DR dataset for
different algorithms trained on Mistral 7B. The corresponding plot for Llama3 8B is in Figure 5
(Appendix E.5). For SimPO and IPO, the log-probabilities are normalized by the response length,
while in the other plots, the log-probabilities are of entire responses. All algorithms exhibit synchro-
nized increases and decreases in the chosen and rejected log-probabilities. We also provide the cosine
similarity plots between ∇θ log πw and ∇θ log πl in Appendix E.5 (Figure 6).

For DPO and R-DPO, both the chosen and rejected log-probabilities tend to decrease simultaneously.
This behavior proofs the existence of gradient entanglement, showing that methods purely dependent
on the margin might result in both terms decreasing, with the rejected log-probability decreasing
more significantly. This leads to an increase in the margin, which is the original learning objective,
but not necessarily an increase in the chosen log-probability.

SPPO demonstrates a distinct trend where the log-probability of the chosen responses increases,
while the log-probability of the rejected responses decreases. This matches the theoretical intuition
obtained from the specialized gradient conditions for SPPO in Appendix B.
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For CPO, DPOP, RRHF, and Slic-HF, algorithms with explicit regularization on the chosen log-
probability, we observe a consistent increase in the log-probability of the chosen responses. This
behavior reflects the effect of explicit regularizations in increasing the chosen log-probability, which
also aligns with the conditions discussed in Appendix B.

SimPO and IPO7 in Figure 1 report the average log-probability of responses. The simultaneous
decrease in both the (average) chosen and rejected log-probabilities is expected, because the loss only
depends on the length-normalized margin, 1

|yw| log πθ(yw|x)− 1
|yl| log πθ(yl|x). Again, an increase

in the margin is guaranteed, but not necessarily an increase in the average chosen log-probability due
to the gradient entanglement effect.

Overall, experimental results on various margin-based losses closely align with our analysis on
the gradient entanglement and the gradient conditions outlined in Appendix B, demonstrating how
loss structures, explicit regularization, length-normalization and other design choices influence the
dynamics of preference optimization.

4 Empirical Implications: Algorithmic Design and More

Using our insights from the gradient inner product conditions (Section 3) and our investigation on
when such conditions may be violated (Appendix A), we present two potential ways to mitigate
gradient entanglement, thus allowing the chosen and rejected probability to change in different
directions simultaneously.

4.1 Design 1: pairwise normalized gradient descent

As discussed in Section 3, to specify an increasing log-probability of the chosen response and a
decreasing log-probability of the rejected response, we can set dw/dl = ∥∇ log πl∥/∥∇ log πw∥ so
that (12) and (13) will hold simultaneously. This leads to the following gradient update rule:

∇θℓ := C

(
∇θ log πw

∥∇θ log πw∥
− ∇θ log πl

∥∇θ log πl∥

)
,

where C is a quantity relying on the specific preference optimization loss design. This update rule
turns out to be the normalized gradient for the chosen and rejected responses respectively. For
example, we can modify the gradient update for the DPO loss as:

∇θℓDPO⋆ (θ) := −βσ (r̂θ (x, yl)− r̂θ (x, yw))

[
∇θ log πθ (yw | x)

∥∇θ log πθ (yw | x) ∥
− ∇θ log πθ (yl | x)

∥∇θ log πθ (yl | x) ∥

]
,

and adjust the learning rate accordingly.

4.2 Design 2: sparsity regularized token masking

An alternative approach to reduce gradient entanglement is by designing a fine-grained margin-based
loss that only contrasts significant tokens, as suggested in Section A.3. For example, the following
loss design could be a potential good candidate for adapting the original DPO objective in this
direction:

ℓ (θ, uw, ul) =− log σ

(
L∑

i=1

I{ui
w ≥ r} log πθ(y

i
w|x, y<i

w )

πref(yiw|x, y<i
w )

− I{ui
l ≥ r} log πθ(y

i
l |x, y<i

w )

πref(yil |x, y
<i
l )

)
+ η (∥I{uw ≥ r}∥1 + ∥I{ul ≥ r}∥1) ,

where η ∈ R+, r ∈ R are hyper-parameters and uw ∈ RL, ul ∈ RL are learnable weights depending
on (x, y<i

w ), (x, y<i
l ) respectively, interpreted as the confidence in considering token i significant. In

practice, we can approximate the indicator I{ui ≥ r} with the sigmoid function σ(k · (ui − r)) for
large k > 0. The loss is inspired by sparsity-related ideas (e.g., LASSO [14]), where the learnable
masks I{ui ≥ r} ideally pick out the significant tokens in each response that enlarge the margin.
The ℓ1 regularizer on the token-wise mask imposes sparsity on it. Other variants of preference
optimization objectives may also adopt similar sparsity-related adaptations to leverage token-wise
information in obtaining the margin.

7In their original paper, Azar et al. [1] proposed the IPO loss without average log-probability. The authors
later claimed using average log-probability with IPO yields improved performance.
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4.3 Further Discussion

In this paper, we touch upon a common pitfall of margin-based preference optimization methods
in language alignment: it under-specifies the ideal behavior of the LM on the chosen and rejected
responses individually. Due to the gradient entanglement effect, our gradient inner product condition
suggests that when the chosen and rejected gradients are highly correlated, their log probabilities
will exhibit synchronized increases/decreases. Beyond explaining differences in existing variants
of margin-based methods and proposing new algorithmic designs to address gradient entanglement,
our framework of gradient entanglement offers a fresh perspective to understand existing avenues of
RLHF methods:

1. The first group of methods implicitly adjust the criterion on the maximum size of the gradient
inner product under which the synchronized changes do not occur, without directly modifying the
gradient inner product, as seen in the works listed in Table 2. Our proposal in Section 4.1 falls
under this category.

2. The second group of methods modifies the inner product of interest directly. As discussed in
Appendix A, while the sentence-level gradient inner product may be large, the token-level inner
product can be small. A line of research, such as advantage-based methods [7, 12, 17], exploiting
token-level contrasts to improve RLHF falls under the second category, and so does our proposal
in Section 4.2.

3. For the RLHF procedure that involves reward modeling and policy optimization as separate stages,
the objectives for reward model learning also suffer from under-specification due to gradient
entanglement. However, there is a key difference: LM is not directly updated based on preference
samples. Instead, we use on-policy samples from the LM to perform policy optimization, where
responses with positive rewards are not necessarily the ones we want to increase or maintain the
LM’s probability on. A precise characterization of how the under-specification manifests in this
procedure will be the subject of future investigation.

Finally, at a high level, our work also highlights the need to reconsider the current margin-based
preference optimization paradigm in language model alignment. While this approach enjoys high
simplicity and enables language models to learn contrasts between good and bad responses, it may
not be well-suited for scenarios where the focus the behavior of LM on either rejected or chosen
samples—such as in safety-critical alignment tasks or when distilling from a strong model.
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A Investigation on Gradient Inner Product

Section 3 reveals that the gradient entanglement effect is driven by the key quantity: the inner product
⟨∇θ log πw,∇θ log πl⟩ between chosen and rejected log-probabilities (Condition 1, 2: gradient
condition). As demonstrated in Section 3.2 and widely observed in practice, margin-based objectives
are often triggered to not behave in the ideal way, suggesting that the gradient condition is violated
due to a large gradient inner product. Therefore, in this section, we investigate into such inner product
to understand why it can be large when aligning language models. Our investigation focuses on the
representative margin-based objective DPO.

To build our theoretical intuition, we use synthetic toy settings to analyze the gradient inner product
and the changes in log-probabilities. Our theory offers explanations from two perspectives: (1) when
the gradient condition holds and which factors do not contribute to enlarging the gradient inner
product (Theorem 1, Corollary 2) and (2) when the gradient condition is violated and which factors
do cause the gradient inner product to grow, leading to a decrease in the chosen log-probability
(Theorem 3). All proofs are provided in Appendix D and we empirically verify our theoretical
insights in Section A.3.

A.1 Positive result: when the gradient condition holds

We first provide a positive result on when the gradient inner product is small, thus Condition 1 holds
and DPO exhibits the ideal behavior that pushes up the log-probability of the chosen response and
pushes down the log-probability of the rejected one. In the first synthetic setting, we analyze DPO for
optimizing an LM with a learnable last linear layer in a single-token prediction task.
Model Setup 1 (LM with learnable last linear layer). Let V = |V| be the vocabulary size. We
assume for prompt x and response y, at any index i ∈ [L], the LM outputs:

πθ(y
i | x, y<i) = s(h⊤

i θ)[y
i],

where L = |y|, θ ∈ Rd×V is the learnable parameter, hi ∈ Rd is the hidden state for the i-th token
in response y and s : RV → ∆V

8 denotes the softmax function. The hidden states are assumed as
frozen during DPO.

Data Setup 1. Both chosen and rejected responses contain only one token under the prompt x. That
is, yw, yl ∈ V1, and yw[1] ̸= yl[1]

9.

Theorem 1. Under Model Setup 1 and Data Setup 1, assume after the SFT stage, given prompt x,
the model prediction on the first token in response is uniformly concentrated on M ≤ V tokens in the
vocabulary V , then we have

⟨∇ log πw,∇ log πl⟩ = − 1

M
∥h∥2, ∥∇ log πw∥2 = ∥∇ log πl∥2 =

M − 1

M
∥h∥2,

with h being the hidden state of the last token in prompt x. Thus, both parts of Condition 1 hold,
resulting in log πw increases and log πl decreases.

Theorem 1 shows that for single-token prediction, ⟨∇ log πw,∇ log πl⟩ < 0. This suggests that the
gradient descent steps of DPO ensures log πw increases and log πl decreases. This result can be
easily extended to the data setup where the chosen and rejected responses have multiple tokens but
only differ at the last one, i.e., yw[1 : L− 1] = yl[1 : L− 1], yw[L] ̸= yl[L] with L being the length
of yw and yl. In this case, up to the L-th token where chosen and rejected differ, the hidden states are
the same for the two responses. This is true because for yw[1 : L− 1] = yl[1 : L− 1], we have that
hi = hi,w = hi,l for i ∈ [L].
Corollary 2. Under Model Setup 1, the chosen and rejected responses only differ at their last token,
assume after SFT the model prediction on the L-th token in response is uniformly concentrated on
M ≤ V tokens in the vocabulary, we have

⟨∇ log πw,∇ log πl⟩ ≤ ∥∇ log πw∥2 = ∥∇ log πl∥2,

and thus log πw increases and log πl decreases.
8Here, ∆ denote the probability simplex.
9For a vector y, we use y[i] to denote its i-th entry and use y[i1 : i2] to denote its entry from i1 to i2.
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A.2 Negative result: when the gradient condition is violated

From the previous results, we can see that the gradient inner product condition is not violated and
DPO has the ideal behavior when the chosen and rejected responses differ only at the last token. To
gain theoretical insights on what causes the violation of the condition, we level up our previous data
setup to the following.
Data Setup 2. Chosen and rejected responses have an edit distance 1 and the difference appears
in the middle of a response, i.e., the chosen and rejected responses yw ∈ VL and yl ∈ VL satisfy
yw[1 : m− 1] = yl[1 : m− 1], yw[m] ̸= yl[m], yw[m+ 1 : L] = yl[m+ 1 : L] for 1 ≤ m < L.

To analyze the optimization steps of DPO under this data setup, we adopt a simpler setting for
parameterizing the LM, where the LM has learnable logits.
Model Setup 2 (LM with learnable logits). We first consider the setting where the LM output
follows the structure: For index i ∈ [L],

πθ(·|x, y<i
w ) = sw,i, πθ(·|x, y<i

l ) = sl,i,

where sw,i, sl,i ∈ ∆V are the probability distributions of the chosen and rejected response at token i,
respectively. The vectors sw,i and sl,i are configured as variables to optimize in the model and to
which we take the derivative of chosen and rejected log probability.

Because yw[1 : m− 1] = yl[1 : m− 1], we have that si = sw,i = sl,i for i ∈ [m]. Since sw,i and
sl,i are predicted by a shared model, they are not independent and one may impose assumptions to
characterize the relationship between them. We denote for i ∈ [m+ 1 : L], j∗i to be the vocabulary
index of token appearing at yw[i] and yl[i]. As in Pal et al. [9], we assume that sw,i[j

∗
i ] ≥ sl,i[j

∗
i ]

and sw,i[j] ≤ sl,i[j] for j ̸= j∗i . Under this assumption, Theorem 3 shows that in this case the
log-probability of the chosen and rejected will likely both decrease after one DPO gradient descent
step.
Theorem 3. Under Model Setup 2 and Data Setup 2, after one DPO step, the per-token log-
probability change in chosen response yw can be characterized with first-order Taylor expansion: for
i ∈ [1 : m− 1], the per-token chosen log-probability before the differing token stays unchanged:

∆ log π(yiw | x, y<i
w ) ≈ 0. (6)

For i = m, the chosen log-probability at the differing position will increase: suppose j∗ and k∗ are
the indices of yw[m] and yl[m] in the vocabulary V ,

∆ log π(ymw | x, y<m
w ) ≈ 1 + (sw,m[j∗]− sw,m[k∗]) ≥ 0. (7)

For i ∈ [m+ 1 : L], the chosen log-probability at these positions will decrease:

∆ log π(yiw | x, y<i
w ) ≈ (1− sw,i[j

∗
i ])(sl,i[j

∗
i ]− sw,i[j

∗
i ])−

∑
j ̸=j∗i

sw,i[j](sl,i[j]− sw,i[j]) ≤ 0,

(8)

since sl,i[j
∗
i ] − sw,i[j

∗
i ] ≤ 0 and sl,i[j] − sw,i[j] ≥ 0. Given the change in sentence-wise log-

probability of chosen is the summation of the per-token changes specified in (6), (7) and (8), as the
same suffix following the differing tokens gets longer, log πw decreases more.
Remark 4. While Theorem 3 adopts the same assumptions made in Pal et al. [9], we precisely
characterize the per-token log-probability changes based on the first-order approximation, and
explicitly break down the sentence-wise probability change for chosen into 3 parts: before/at/after
the differing position. Therefore, the analysis in Theorem 3 captures the varying probability change
directions at different positions, uncovering the underlying dynamic behind the overall decreased
chosen probability observed in experiments (Figure 3).

It is worth mentioning that Theorem 3 explicitly presents the size of probability changes. The same
conclusion on the change direction can also be derived with a per-token gradient inner product
condition similar to Condition 1, see Appendix D.2. The increase of chosen presented in (7) follows
the same intuition in Theorem 1 that if two contrastive tokens are picked by chosen and rejected
responses under a similar context, then the chosen token probability will increase while the rejected
decreases. An intuitive explanation of what causes the decrease of both the chosen and rejected in
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(8) could be that the chosen and rejected gradients are highly correlated as they pick the same token
under a similar context. Mathematically, the assumption we adopted implies that the gradient inner
product between chosen and rejected can be lower bounded.

Combining our insights gained in Section A.1 and A.2, we find that the gradient inner product
increases as the chosen and rejected responses share more similar tokens. Additionally, the sentence-
wise gradient inner product and their change in log probability may not necessarily reflect the
individual token-wise gradient inner product and their probability changes.10 Below we verify our
theoretical findings empirically.

A.3 Empirical observations

We empirically verify our theoretical intuition regarding when the gradient condition may be held or
violated, by aligning GPT-2 small to a curated sentiment preference dataset.

The preference dataset is curated from mteb/tweet_sentiment_extraction: for a data point
(x, yw, yl), prompt x is a statement, e.g., “1 week to my Birthday!” The chosen response yw reflects
the true sentiment label of x. We filter statements in the original dataset and only retain those with
binary sentiments: “positive” or “negative”, and set the rejected response yl to reflect the flipped
wrong sentiment label of x. We curate four datasets with the following styles of responses:

• single token (Data Setup 1): yw: Positive. yl: Negative.
• short suffix: yw: Positive sentiment. yl: Negative sentiment.
• long suffix: yw: Positive sentiment based on my judgement. yl: Negative sentiment based on my

judgment.
• prefix+suffix (Data Setup 2): yw: It has a positive sentiment based on my judgement. yl: It has a

negative sentiment based on my judgment.

Our theoretical results suggest: (1) in the single token case, the chosen and rejected gradients will
have negative inner product and thus DPO will allow the chosen log-probability to increase while the
rejected to decrease (Theorem 1). (2) For the short suffix and long suffix cases, we expect DPO to
reduce the chosen log probability more for the latter, as responses in long suffix contain more tokens
following the differing spot, leading to more chosen tokens with decreasing log probability (Theorem
3). Additionally, (3) for the differing token (“positive” or “negative”), the token-wise gradient inner
product would be negative, while for other identical tokens, the token-wise gradient inner product
would be positive.

0 200 400
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-20
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Long Suffix

lo
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chosen

rejected

Figure 3: Training dynamics of the chosen and rejected log probabilities for sentiment tasks.

The three implications obtained from our theorems are validated by empirical observation. First,
the chosen log probability increases only in the single token case, and the short suffix chosen log
probability decreases less than that of the long suffix, aligning with our theoretical results (Figure 3).
Second, the gradient cosine similarity in the single token case quickly declines and stays negative
during training, while that in the short suffix and long suffix is positive and increases as the suffix
length (i.e., the number of identical tokens after the difference) grows (Figure 4a). This aligns
with our gradient condition (Condition 1), where the drop in chosen log probability depends on the
magnitude of the gradient inner product. Finally, we inspect the token-wise gradient inner product
for the prefix+suffix case. From the heat map of token-wise gradient similarities (Figure 4b), we
observe that on the diagonal, the inner product between the gradients on the tokens “positive” and

10To be specific, by token-wise gradient, we mean ∇θ log πθ(y
i|x, y<i).
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“negative” is below 0, whereas for other identical tokens in the two responses, the gradient cosine
similarities are significantly higher and close to 1 for some tokens.

Our theoretical and empirical investigation into the token-level gradient inner product suggests
broader implications for general alignment tasks. Significant tokens (e.g., “positive”/“negative”)
contrasting the chosen and rejected responses the most, exhibit negative gradient correlation and
prevent gradient entanglement. Meanwhile, those non-contrastive insignificant tokens (e.g., identical
tokens) cause gradient entanglement due to the high similarity in their gradients.

This insight highlights the importance of token-level gradient dynamics and their contribution to the
entanglement effect, motivating a fine-grained alignment method that contrasts only the significant
tokens in the chosen/rejected response pair. This approach retains the simplicity of margin-based
methods while potentially reducing the gradient entanglement effect in margin-based losses. Further
details on the potential algorithm design are discussed in Section 4.2.
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Figure 4: Gradient cosine similarity behaviors on the sentence-level and token-level for sentiment
tasks. Figure 4a gives the cosine similarity between ∇θ log πw and ∇θ log πl for DPO on single
token, short suffix and long suffix datasets, defined as: ⟨∇θ log πw,∇θ log πl⟩

∥∇θ log πw∥∥∇θ log πl∥ . Figure 4b shows the
token-wise gradient similarity for an instance in the prefix+suffix task.

B General gradient entanglement effect

We now move on to the general margin-based loss (1). Here, we additionally consider regularizers
used in these losses:

ℓ(θ) = −
(
m(hw(log πw)− hl(log πl)) + Λ(log πw)

)
, (9)

where Λ(log πθ(yw|x)) is a scalar regularizer depending on the chosen log-probability. We instantiate
popular preference optimization methods from this general form in Table 2, where we denote
cwref := log πref(yw|x), clref := log πref(yl|x), cref := cwref − clref. Terms that only depend on πref(y|x)
shall be viewed as constant, independent of θ.

m(a) hw(a) hl(a) Λ(a)

DPO [Rafailov et al.] log σ(a − cref) βa βa —
R-DPO [Park et al.] log σ(a − (cref + α(|yw| − |yl|))) βa βa —
SimPO [Meng et al.] log σ(a − γ) β

|yw|a
β

|yl|
a —

IPO [Azar et al.] (a − (cref +
1
2β

))2 a a —

RRHF [Yuan et al.] min(0, a) 1
|yw|a

1
|yl|

a λa

SlicHF [Zhao et al.] min(0, a − δ) a a λa
CPO [Xu et al.] log σ(a) βa βa λa
DPOP [Pal et al.] log σ(a − cref) βa − λmax(0, log cwref − a) βa —
KTO [Ethayarajh et al.] a λwσ(βa − (log cwref + zref)) λlσ((log clref + zref) − a) —
SPPO [Wu et al.] a (a − β−1)2 (a + β−1)2 —

Table 2: Instantiation of margin-based preference optimization losses. Constants satisfy
β, γ, δ, λw, λl > 0.
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Based on this unified formulation of preference optimization objectives (9), we derive general gradient
entanglement for all margin-based losses (derivations in Appendix C.1):

Gradient Entanglement (General)

The chosen log-probability change depends on the rejected gradient, and vice versa. The
mutual dependency is characterized by:

∆ log πw ≈ η
(
dw∥∇ log πw∥2 − dl⟨∇ log πw,∇ log πl⟩

)
,

∆ log πl ≈ η
(
dw⟨∇ log πw,∇ log πl⟩ − dl∥∇ log πl∥2

)
.

In the general form of gradient entanglement, dw and dl are scalars defined as

dw := m′(hw(log πw)− hl(log πl))h
′
w(log πw) + Λ′(log πw), (10)

dl := m′(hw(log πw)− hl(log πl))h
′
l(log πl). (11)

We derive a generalized version of DPO’s gradient condition (Condition 1) for general margin-based
losses.

Condition 2 (Gradient condition for general margin-based objectives). For margin-based preference
optimization objectives(9), the conditions for log πw to increase and for log πl to decrease are:

⟨∇ log πw,∇ log πl⟩ ≤
dw
dl

∥∇ log πw∥2 ⇐⇒ ∆ log πw ≥ 0, log πw increases; (12)

⟨∇ log πw,∇ log πl⟩ ≤
dl
dw

∥∇ log πl∥2 ⇐⇒ ∆ log πl ≤ 0, log πl decreases. (13)

Accordingly, we can instantiate Condition 2 for different algorithms by using their specialized
m,hw, hl,Λ in Table 2. Note that between conditions (12) and (13), for one condition to be more
lenient (e.g., if dw/dl > 1 in the chosen condition), the other condition becomes more strict (then
dl/dw < 1 in the rejected condition). When ∇ log πw and ∇ log πl have similar norms and are
positively correlated, it is likely that one of (12) and (13) holds while the other fails, explaining why
it is easy to observe a simultaneous increase or decrease in the probabilities of chosen and rejected
responses.

This general gradient inner product condition also suggests an interesting new algorithm to achieve
our ideal case: we can reweigh the chosen and rejected log-probabilities in the margin-based loss
such that dw/dl = ∥∇ log πl∥/∥∇ log πw∥, which ensures that both parts in Condition 2 are satisfied
at the same time. We provide more discussion on a potential algorithm design inspired by this
observation in Section 4.1.

B.1 How do other margin-based methods work differently from DPO?

Utilizing the gradient condition we derived, we provide in the following a brief discussion on some
existing preference optimization algorithms and explain why these algorithms may work differently
from DPO under certain settings.

• DPO: dw

dl
= dl

dw
= 1, reproducing the Condition 1.

• SPPO: dw

dl
= β−1−log πw

β−1+log πl
> 111, where β−1 is a large constant. Compared with DPO, SPPO loss

ensures that it is easier for log πw to increase based on (12) and harder for log πl to decrease due to
(13).

• KTO: dw

dl
∝ λw

λl
, where λw, λl are two hyperparameters in KTO, fine-tuned according to different

tasks and datasets. Thus no general conclusion on the chosen/rejected probability change can be
made from our conditions.

11See Section C.2 for the derivation.
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• Explicit regularization on chosen log-probability (CPO, DPOP12, RRHF and Slic-HF): Ac-
cording to the formulas of dw and dl in (10) and (11), the negative log-likelihood (NLL) regularizer
on chosen responses enlarges dw while having no influence on dl as Λ′ ≥ 0 and only appears in
(10). As a result, larger dw

dl
makes condition (12) more lenient and thus the chosen log-probability

is more likely to increase.

• Length-normalization (SimPO, RRHF and IPO): In SimPO, dw

dl
= |yl|

|yw| and condition (12) and
(13) can be rewritten as:〈

∇ log πw

|yw|
,
∇ log πl

|yl|

〉
≤

∥∥∥∥∇ log πw

|yw|

∥∥∥∥2

;

〈
∇ log πw

|yw|
,
∇ log πl

|yl|

〉
≤

∥∥∥∥∇ log πl

|yl|

∥∥∥∥2

. (14)

These conditions imply the following: to ensure increasing chosen log-probability while decreasing
rejected log-probability, (14) should hold. This is more lenient than the corresponding condition
posed for DPO that ⟨∇ log πw,∇ log πl⟩ ≤ min(∥∇ log πw∥2, ∥∇ log πl∥2), when the length of
chosen and rejected responses is biased, resulting in either the chosen or rejected gradient norm
being significantly higher than the other. Therefore, compared to DPO, SimPO leans towards
increasing the chosen probability and decreasing that of the rejected when the preference data
is heavily length-biased. The same reasoning also applies to RRHF and IPO13 for their length
normalization design.

C Derivations for gradient entanglement and conditions in Section 3

C.1 Derivation for gradient entanglement

DPO. After one step of gradient descent with step size η > 0 for decreasing the loss ℓDPO, the
change in the log-probability of the chosen response denoted by ∆ log πw, as well as the change in the
log-probability of the rejected response denoted by ∆ log πl, can be approximated by the first-order
Taylor expansion:

∆ log πw ≈ ⟨∇θ log πw, η∇θℓDPO⟩ = ηβc(θ) ·
(
∥∇ log πw∥2 − ⟨∇ log πw,∇ log πl⟩

)
∆ log πl ≈ ⟨∇θ log πl, η∇θℓDPO⟩ = ηβc(θ) ·

(
⟨∇ log πw,∇ log πl⟩ − ∥∇ log πl∥2

)
.

General Losses. First, the gradient of (9) can be written as

∇θℓ = dw∇θ log πw − dl∇θ log πl,

where dw and dl are scalars such that

dw := m′(hw(log πw)− hl(log πl))h
′
w(log πw) + Λ′(log πw),

dl := m′(hw(log πw)− hl(log πl))h
′
l(log πl).

After one step of gradient descend with step size η > 0 for decreasing the loss ℓ, the changes in
log-probabilities can be approximated by the first-order Taylor expansion:

∆ log πw ≈ ⟨∇θ log πw, η∇θℓ⟩ = η
(
dw∥∇θ log πw∥2 − dl⟨∇θ log πw,∇θ log πl⟩

)
,

∆ log πl ≈ ⟨∇θ log πl, η∇θℓ⟩ = η
(
dw⟨∇θ log πw,∇θ log πl⟩ − dl∥∇θ log πl∥2

)
.

C.2 Derivation for SPPO

Denote a = ∇θ log π(w) and b = ∇θ log π(l). For DPO, we see that the direction of winner and
loser is decided by ⟨a,a− b⟩ and ⟨b,a− b⟩.
Similarly, for any pairwise loss ℓ(log π(w)− log π(l)), the above statement still holds. Now we take
a look at non-pairwise loss ℓSPPO = (log π(w)− β−1)2 + (log π(l) + β−1)2. We have

dθ

dt
= −∇θℓSPPO = −(log π(w)− β−1)∇θ log π(w)− (log π(l) + β−1)∇θ log π(l).

12For DPOP, the regularizer is included in its hw(a) term in Table 2, due to its design to turn on/off the
regularizer based on the value of chosen log-probability.

13In the TRL library, the implementation of IPO averages the log-probabilities by the number of tokens.
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Then
d

dt
log π(i) =

〈
∇θ log π(i),

dθ

dt

〉
= −(log π(w)− β−1)

〈
∇θ log π(i),∇θ log π(w)

〉
− (log π(l) + β−1)

〈
∇θ log π(i),∇θ log π(l)

〉
.

We have
d

dt
log π(w) ≈ −(log π(w)− β−1)⟨a,a⟩ − (log π(l) + β−1)⟨a,b⟩

which means if we want log π(w) to increase, we need

⟨a,b⟩
⟨a,a⟩

<
β−1 − log π(w)

β−1 + log π(l)
=: α.

Note that the inequality above implicitly assume that β−1 + log π(l) > 0. This is true in practice as
we set β−1 to be extremely large. Similarly, if we want log π(l) to decrease, we need

⟨a,b⟩
⟨b,b⟩

<
β−1 + log π(l)

β−1 − log π(w)
=: α−1.

We have α > 1. It seems SPPO can make sure that log π(w) goes up more easily but also make
log π(l) goes up more easily, compared to DPO.

D Proofs for the Gradient Inner product in Section A

D.1 LM with learnable last linear layer: Single Token Case

We prove Theorem 1 below. WLOG, assume Tw = Tl = L,

⟨∇ log πw,∇ log πl⟩ =
〈
∇θ log π(y

L
w | x, y<L

w ), ∇θ log π(y
L
l | x, y<L

l )
〉

θ ∈ Rd×V , hL ∈ Rd is the hidden state for predicting the L-th token, s(·) is the softmax function.

∇θ log π(y
L
w | x, y<L

w ) = ∇θ

(
log s(h⊤

Lθ)[y
L
w]
)

(15)

∇θ log π(y
L
l | x, y<L

l ) = ∇θ

(
log s(h⊤

Lθ)[y
L
l ]
)

(16)

Compute the gradient with chain rule,

∇θ log π
L
w = [−s(1)hL, · · · , (1− s(iw))hL, · · · ,−s(il)hL, · · · ,−s(V )hL] (17)

∇θ log π
L
l = [−s(1)hL, · · · ,−s(iw)hL, · · · , (1− s(il))hL, · · · ,−s(V )hL], (18)

iw, il are the index of token yLw and yLl in vocabulary, respectively. For any index i, s(iw) denote
LLM’s output logit for the i-th token in vocabulary.

Suppose at the initialization of θ, s(1) = · · · = s(iw) = · · · = s(il) = s(v) = 1
M for M entries and

the rest V −M entries have s(j) = 0. We note that the exact indices j of which s(j) = 1/M does
not matter as it would be the same index for both the chosen and rejected gradients.

∇ log πL
w = [− 1

M
hL, . . . ,

(
1− 1

M

)
hL︸ ︷︷ ︸

iw−th

, · · · − 1

M
hL︸ ︷︷ ︸

il−th

, · · · ,− 1

M
hL] (19)

∇ log πL
l = [− 1

M
hL, · · · ,−

1

M
hL︸ ︷︷ ︸

iw−th

, · · ·
(
1− 1

M

)
hL︸ ︷︷ ︸

il−th

, · · · − 1

M
hL] (20)

〈
∇ log πL

w,∇ log πL
l

〉
=

M − 2

M2
∥hL∥2 − 2 · 1

M
· M − 1

M
∥hL∥2 = − 1

M
∥hL∥2. (21)

15



〈
∇ log πL

w,∇ log πL
l

〉
is negative. While in comparison, the norm of ∇ log πL

w and ∇ log πL
l is large:

∥∇ log πL
w∥2 = ∥∇ log πL

l ∥2 =
M − 1

M2
∥hL∥2 +

(
1− 1

M

)2

∥hL∥2 =
M − 1

M
∥hL∥2.

Therefore, based on Condition 1:

⟨∇ log πw,∇ log πl⟩ = − 1

M
∥hL∥2,

∥∇ log πw∥2 = ∥∇ log πl∥2 =
M − 1

M
∥hL∥2,

log πwincreases and log πl decreases.

D.2 LM with learnable logits setting

We prove Theorem 3 below. We will set up some new notations first. First, we work with the case
where Tw = Tl = L is sentence length, V is the vocab size, yw[1 : m − 1] = yl[1 : m − 1],
yw[m] ̸= yl[m], and yw[m + 1 : L] = yl[m + 1 : L]. Note that for all i ∈ [L], the token
y[i] ∈ [V ] is an index, θw and θl are learnable logits in LM. Each row of the following matrix is
πθ(·|x, y<i) ∈ ∆[V ] where i is the row index. (Here, there is a slight abuse of notation: ∆ is the
probability simplex.) s : RV → ∆V is the softmax function.

[0, 1]
L×V ∋ πθ(x, yw) = s(θw) =



s(θw[1, :])
...

s(θw[m, :])
s(θw[m+ 1, :])

...
s(θw[L, :])


, πθ(x, yl) = s(θl) =



s(θl[1, :])
...

s(θl[m, :])
s(θl[m+ 1, :])

...
s(θl[L, :])


=



s(θw[1, :])
...

s(θw[m, :])
s(θl[m+ 1, :])

...
s(θl[L, :])


Each row s(θ[i, :]) ∈ ∆V . The first m rows are the same for θw and θl because the tokens up to row
m are the same between yw and yl. The index at row i corresponding to the selected token will be
denoted as j∗i , a generic vocab index is j. Note that, j∗i = j∗i,w = j∗i,l for i ̸= m, and j∗i,w ̸= j∗i,l for
i = m.

Next, the corresponding gradient matrices ∇ log s(θw),∇ log s(θl) can be specified by:

RL×V ∋ ∇θ log s(θw[i, j
∗
i+1]) =



0
...

∇θw[i,:] log s(θw[i, j
∗
i ])

...
0

 , ∇θ log s(θl) =



0
...

∇θl[i,:]
log s(θl[i, j

∗
i ])

...
0

 .

where

∇θ[i,:] log s(θ[i, j
∗
i ]) ∈ RV , and for j ∈ [V ],∇θ[i,:] log s(θ[i, j

∗
i ])[j] =

{
−s[i, j] if j ̸= j∗i
1− s[i, j] if j = j∗i

where s[i, j] = s(θ[i, :])[j], log s(θ[i, j∗i ]) is j∗i -th entry of log s(θ[i, :]), and ∇ log s(θ[i, j∗i ])[j] is
the j-th entry of the gradient of log s(θ[i, j∗i ]).
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The sentence-wise gradient is

RL×V ∋ ∇θL ∝



∇ log s(θw[1, j
∗
1 ])−∇ log s(θw[1, j

∗
1 ])

...
∇ log s(θw[m, j∗m,w])−∇ log s(θw[m, j∗m,l])

∇ log s(θw[m+ 1, j∗m+1])−∇ log s(θl[m+ 1, j∗m+1])
...

∇ log s(θw[L, j
∗
L])−∇ log s(θl[L, j

∗
L])



=



0
...

∇ log s(θw[m, j∗m,w])−∇ log s(θw[m, j∗m,l])

∇ log s(θw[m+ 1, j∗m+1])−∇ log s(θ[m+ 1, j∗m+1])
...

∇ log s(θw[L, j
∗
L])−∇ log s(θl[L, j

∗
L])


Now, let’s first derive the token-wise condition for the selected token (learning rate η = 1):
Chosen response: if i = m, we have

∆ log s(θw[i, j
∗
i,w]) ≈

L∑
i′=1

⟨∇ log s(θw[m, j∗m,w]),∇L[i′, :]⟩ = ⟨∇ log s(θw[m, j∗m,w]),∇L[m, :]⟩

=⟨∇ log s(θw[m, j∗m,w]),∇ log s(θw[m, j∗m,w])−∇ log s(θw[m, j∗m,l])⟩

=

 ∑
j′ ̸=j∗m,w

sw[m, j′]2

+ (1− sw[m, j∗m,w])
2

−

 ∑
j′ ̸=j∗m,w,j′ ̸=j∗m,l

sw[m, j′]2

+ sw[m, j∗m,w](1− sw[m, j∗m,w]) + sw[m, j∗m,l](1− sw[m, j∗m,l])

=1 + (sw[m, j∗m,l]− sw[m, j∗m,w]) ≥ 0, (22)

where the last inequality is true because s ∈ [0, 1]. Here, basically, this margin loss will just encourage
increase the chosen logP (and reduce the rejected one) for the selected token.

Chosen response: if i ̸= m, we have

∆ log s(θw[i, j
∗
i,w]) ≈

L∑
i′=1

⟨∇ log s(θw[i, j
∗
i ]),∇L[i′, :]⟩ = ⟨∇ log s(θw[i, j

∗
i ]),∇L[i, :]⟩

=⟨∇ log s(θw[i, j
∗
i ]),∇ log s(θw[i, j

∗
i ])−∇ log s(θl[i, j

∗
i ])⟩

=(1− sw[i, j
∗
i ])(sl[i, j

∗
i ]− sw[i, j

∗
i ])−

∑
j′ ̸=j∗i

sw[i, j
′](sl[i, j

′]− sw[i, j
′]) (23)

Here, basically, the loss can only pick one direction to change both chosen and rejected entry.

Connection to the derivation in Pal et al. [9]. The assumption in Pal et al. [9] mainly ensures the
sign of (23). Basically, smaug’s assumption ensures that for i ∈ [m+ 1, L], sw[i, j∗i ] ≥ sl[i, j

∗
i ] and

sw[i, j] ≤ sl[i, j] for j ̸= j∗i .

∇ log s(θw[i, j
∗
i ])−∇ log s(θl[i, j

∗
i ]) =


sl[i, 1]− sw[i, 1]

...
sl[i, j

∗
i ]− sw[i, j

∗
i ]

...
sl[i

′, V ]− sw[i
′, V ]

 =


≥ 0

...
≤ 0

...
≥ 0
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For (23), we have

(1− sw[i, j
∗
i ])(sl[i, j

∗
i ]− sw[i, j

∗
i ])−

∑
j′ ̸=j∗i

sw[i, j
′](sl[i, j

′]− sw[i, j
′]) ≤ 0.

This ensures the chosen token will have reduced logP.

Condition on chosen tokens increasing and rejected token decreasing at m, and on chosen and
rejected tokens decreasing after m+ 1:

(22) ≥ 0 always holds,
∀i ∈ [m+ 1, L], sw[i, j

∗
i ] ≥ sl[i, j

∗
i ], ∀j ̸= j∗i , sw[i, j] ≤ sl[i, j] =⇒ (23) ≤ 0

E Experiment details

E.1 Hardware and Software Setup

Our experiments were implemented using TRL version 0.11.0. The training was performed on a
hardware setup consisting of two NVIDIA H100 GPUs, providing substantial computational power
for the training process.

E.2 TL;DR Task Setup

For the TL;DR summarization task, we utilized the CarperAI/openai_summarize_comparisons dataset.
We employed two LLMs for this task:

• mistralai/Mistral-7B-Instruct-v0.3 (referred to as Mistral 7B)
• meta-llama/Meta-Llama-3-8B-Instruct (referred to as Llama-3 8B)

We did not perform any supervised fine-tuning step prior to the RLHF training for these models.

To optimize the training process, we applied Low-Rank Adaptation (LoRA) with a rank of 64 to both
models. The learning rate was set at 5× 10−6 for all RLHF training.

E.3 RLHF Algorithm Configurations

We implemented several RLHF algorithms, each with its own specific configurations:

• Direct Preference Optimization (DPO): β = 0.1

• Chosen NLL term (used in CPO, RRHF, and SLiC-HF): λ = 1

• SLiC-HF: δ = 1

• SimPO: γ = 0.5

• R-DPO: α = 0.2

• DPOP: λ = 50

E.4 Sentiment Analysis Task Setup

For the sentiment analysis task, we used a specially curated sentiment dataset. Unlike the TL;DR
task, we performed supervised fine-tuning on the GPT-2 model before proceeding with the RLHF
training. The learning rate for this RLHF training was also set to 5× 10−6.

E.5 Additional empirical results

18



-100

0
CPO DPO DPOP

-100

0
IPO R-DPO RRHF

0 2,000 4,000

-100

0
SPPO

0 2,000 4,000

SimPO

0 2,000 4,000

SlicHF

lo
g
P

Training Step

chosen

rejected

Figure 5: Training dynamics of the chosen and rejected log probabilities on the TL;DR dataset
for different preference optimization algorithms trained on Llama-3 8B. All algorithms exhibit
synchronized increases and decreases in the chosen and rejected log probabilities. Note: For SimPO
and IPO, the log probabilities are normalized, while in the other plots, they are the original log
probabilities.
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Figure 6: Cosine similarity between ∇θ log πw and ∇θ log πl on the TL;DR dataset for different
preference optimization algorithms trained on Llama-3 8B and Mistral 7B.
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Figure 7: Training dynamics of the chosen and rejected log probabilities on the UltraFeedback
dataset [3], with log probabilities reported on the evaluation set. As the margin between the two
increases, the chosen and rejected log-probabilities exhibit synchronized increases and decreases per
step. In Figure 7a and Figure 7b, both chosen and rejected log-probabilities have an overall trend of
increasing, especially towards the end of training.
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