
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEARCH SELF-PLAY: PUSHING THE FRONTIER OF
AGENT CAPABILITY WITHOUT SUPERVISION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has become the main-
stream technique for training LLM agents. However, RLVR highly depends on
well-crafted task queries and corresponding ground-truth answers to provide ac-
curate rewards, which requires massive human effort and hinders the RL scaling
processes, especially under agentic scenarios. Although a few recent works ex-
plore task synthesis methods, the difficulty of the synthetic agentic task can hardly
be controlled to provide effective RL training advantages. Towards more effective
agentic training, we explore self-play training for deep search agents, in which the
learning LLM utilizes multi-turn search engine calling and acts simultaneously as
a task proposer and a problem solver. The task proposer aims to generate deep
search queries with well-defined ground-truth answers and increasing task diffi-
culty. The problem solver tries to handle the generated search queries and predict
the correct ground-truth answer. To ensure each proposed search query has accu-
rate ground truth, we collect all the searching results from the proposer’s trajectory
as the external knowledge, then conduct retrieval-augmentation generation (RAG)
to test whether the proposed query can be correctly answered with all necessary
search documents provided. Within our search self-play (SSP) game, the proposer
and the solver co-evolve their agentic capabilities via both competition and coop-
eration. With substantial experimental results, we find that SSP can significantly
improve search agents’ performance uniformly on various benchmarks without
any supervision under both from-scratch and continuous RL training setups.

NQ

TriviaQA

PopQA

HotpotQA

2Wiki

MuSiQue

Bamboogle

54.8

73.451.8

51.8

38.8

21.2
54.4

Qwen2.5-7B-Instruct
+ SSP(Ours)

NQ

TriviaQA

PopQA

HotpotQA

2Wiki

MuSiQue

Bamboogle

57.8

78.058.4

60.4

45.6

30.6 59.2

Search-R1-7B
+ SSP(Ours)

NQ

TriviaQA

PopQA

HotpotQA

2Wiki

MuSiQue

Bamboogle

54.2

69.053.0

44.0

37.2 19.6 44.0

ZeroSearch-7B
+ SSP(Ours)

NQ

TriviaQA

PopQA

HotpotQA

2Wiki

MuSiQue

Bamboogle

52.4

74.256.8

54.2

58.0

31.4
55.2

R-Search-7B
+ SSP(Ours)

Figure 1: Performance gains of deep search agents continuously trained via our Search Self-play
(SSP) across various agentic benchmarks. Our SSP agents uniformly surpass several strong open-
source baselines without any agentic data annotation and additional supervision.

1 INTRODUCTION

The rapid evolution of large language models (LLMs) has culminated in systems with unprece-
dented reasoning capabilities. Recent breakthroughs, demonstrated by models like O1 (Jaech et al.,
2024) and DeepSeek-R1 (Guo et al., 2025a), have dramatically advanced the ability of AI to tackle
complex, multi-step problems. To translate these powerful capabilities into practical, real-world ap-
plications, the field has seen a surge in the development of sophisticated AI agents. A new wave of
systems, such as DeepResearch (OpenAI, 2025), Grok-3 (x.ai, 2025), and Kimi-Researcher (Moon-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

shot AI, 2025), now function as autonomous agents capable of performing complex, end-to-end
research tasks.

Central to the functionality of these advanced agents is their ability to perform deep, iterative in-
formation seeking. This is where Deep Search emerges as a critical reasoning paradigm for Large
Language Models (LLMs) to solve complicated questions. In this paradigm, models autonomously
explore vast knowledge bases, iteratively retrieving and reasoning over evidence to find accurate,
verifiable answers to complex, open-ended questions (Huang et al., 2025b). In contrast to tra-
ditional Retrieval-Augmented Generation (RAG), Deep Search employs multi-hop reasoning, dy-
namic query reformulation, and self-guided exploration to emulate a human-like investigative pro-
cess (Lewis et al., 2020; Xi et al., 2025). This set of capabilities is crucial for applications that
demand high precision and traceability, such as scientific literature review (OpenAI, 2025), legal
analysis (Li et al., 2024), and fact-checking (Wei et al., 2024).

Recent advances leverage reinforcement learning with verifiable rewards (RLVR) (Guo et al., 2025a)
to train LLM agents for Deep Search (Jin et al., 2025b;a; Chen et al., 2025b; Team, 2025a). In
this paradigm, the agent performs a rollout—a sequence of actions like querying a search engine
and navigating web pages—to arrive at an answer for a given question. This final answer is then
programmatically compared against a known ground-truth answer to assign a clear, verifiable reward
(e.g., 1 for correct, 0 for incorrect), which is used to optimize the agent’s policy. The primary
advantage of RLVR is that it provides a direct and unambiguous training signal, which is critical for
learning complex reasoning chains. By tying the reward to factual correctness, it mitigates the risk
of reward hacking common in systems that rely on proxy or estimated rewards, thus fostering more
reliable and trustworthy agents (Lightman et al., 2023). However, this approach relies heavily on
large-scale, expert-curated question-answer (QA) pairs (Team, 2025b; Wei et al., 2025). The labor-
intensive and time-consuming nature of acquiring and validating this data leads to scarcity, which in
turn poses a significant bottleneck to the scalability of RLVR systems (Liang et al., 2025b).

To mitigate the data scarcity issue, existing approaches typically synthesize QA pairs as a prelim-
inary step before the RL post-training phase (Li et al., 2025; Gao et al., 2025a). However, this
strategy suffers from two critical limitations: Scalability is inherently constrained (Villalobos et al.,
2024), as each synthesized QA pair must be rigorously validated for correctness and logical coher-
ence to ensure training fidelity. Offline synthesis lacks adaptability (Guo et al., 2025b). It cannot
dynamically adjust question difficulty or complexity in response to the evolving capabilities of the
agent during training. This rigidity ultimately limits both learning efficiency and performance gains.
Consequently, existing approaches lack a scalable, self-sustaining algorithm that can autonomously
generate high-quality QA pairs without human intervention.

Self-play methods, pioneered by AlphaGo Zero (Silver et al., 2017), offer a promising solution to
these challenges. Through a self-sustaining learning loop, an agent learns by playing against itself
and continuously improves through reinforcement learning. This paradigm effectively addresses
both data scarcity and adaptability issues by autonomously generating training examples that natu-
rally scale in difficulty as the agent improves.

Inspired by this self-play approach, we introduce Search Self-Play (SSP), a framework for training
continuously self-improving search agents through RLVR without human supervision. This frame-
work centers on a single LLM that adopts two alternating roles: a question proposer and a problem
solver. The proposer generates progressively challenging and verifiable deep search queries, which
the solver then attempts to answer using multi-turn search interactions. A core component of SSP
is its validation mechanism: each query is verified via RAG using the full set of documents that
the proposer itself retrieved. This process guarantees that a well-defined, ground-truth answer ex-
ists and is recoverable from the provided evidence. This closed-loop design allows the agent to
autonomously generate high-quality training signals, eliminating the need for human-annotated data
while maintaining reward fidelity. Through this iterative game of competition and collaboration, the
proposer and solver co-evolve, systematically improving the agent’s core skills in search, reasoning,
and self-verification. Our empirical results show that SSP yields substantial and consistent improve-
ments across multiple benchmarks in both from-scratch and continual learning settings, establishing
a scalable pathway toward self-supervised agentic learning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 DEEP SEARCH

Deep Search agents have recently attracted substantial attention and rapid progress (Xi et al.,
2025). Proprietary systems such as DeepResearch (OpenAI, 2025), Grok-3 (x.ai, 2025), and Kimi-
Researcher (Moonshot AI, 2025) demonstrate strong performance on web search and information
synthesis tasks, but their model designs, training data, and training procedures remain opaque. In
contrast, open-source efforts—including Search-R1 (Jin et al., 2025c), R1-Searcher (Song et al.,
2025), DeepResearcher (Zheng et al., 2025), and ZeroSearch (Sun et al., 2025b)—leverage agentic
reinforcement learning (RL) to enhance question-answering capabilities, yet still rely on existing
training sets. To push the capability frontier of web-search agents, works such as WebDancer (Wu
et al., 2025), WebSailor (Li et al., 2025), and ASearcher (Gao et al., 2025b) propose data synthe-
sis pipelines; however, these synthesis processes remain offline. Our approach departs from this
paradigm: via self-play, it simultaneously improves the agent’s problem-proposing and problem-
solving abilities without human-annotated data, freeing training from the constraints of offline syn-
thetic corpora and from the limitations of the model’s internal knowledge.

2.2 SELF-PLAY IN LARGE LANGUAGE MODELS

The self-play paradigm, wherein a model adopts dual roles to create a self-improving loop, has
recently been explored to advance the capabilities of language models without reliance on human
data. For instance, (Cheng et al., 2024) applied self-play to the Adversarial Taboo game to enhance
model reasoning, but their method employs offline updates and remains confined to a simple word
game. Other works, such as (Fang et al., 2025; Liang et al., 2025a), generate problems from seed
data but only train the solver model, leaving the problem-generation capability static and preventing
a co-evolutionary dynamic. A more advanced line of research trains both the proposer and solver
models concurrently. (Chen et al., 2025a; Huang et al., 2025a; Kuba et al., 2025) have demonstrated
the effectiveness of this approach on diverse tasks like mathematics, code generation, and instruc-
tion following. Our work makes two fundamental distinctions from these prior self-play approaches.
First, our Proposer generates problems with inherent ground truth by crafting corresponding ques-
tions from externally retrieved and verifiable information. Second, by equipping the Proposer with
search tools, our framework actively grounds the problem-generation process in external knowledge,
thereby breaking free from the limitations of the model’s internal, static knowledge base.

3 METHODOLOGY

Denote N := {x = (x1, x2, . . . , xN) : N ∈ N+, x
i ∈ V, i = 1, 2, . . . , N} as the natural language

sequence space, where V is the vocabulary set of tokens. An auto-regressive next-token prediction
policy of LLM πθ iteratively outputs next-token xi+1 ∼ πθ(·|x1:i) with θ as the model parameters,
where x1:i = (x1, x2, . . . , xi) is the length-i prefix of the natual language sequence x.

The a search agent trajectory can be written as: τ = (x,y1,o1,y2,o2, . . . ,yT−1,oT−1,yT), where
x ∈ N is the input prompt, each yt ∈ N is the LLM output at the t-th step, and ot ∈ N is the
corresponding observation returned by the search tools at the i-th step. We model the search agent
exploration as a token-level Markov decision process (Littman, 1994) (S,A, T , r). S is naturally
the language sequence space N . A is the vocabulary set V for token-level action generation. The
transition T directly appends the newly-generated token yi+1

t to the end of y1:i
t if y1:i

t has not formed
a complete search tool call, or additionally appends the t-step observation ot if yt is finished. r(τ)
assigns the outcome reward to τ as the judgment of the agent’s performance, which we will discuss
design details in 3.2. Given a search agent system prompt xsys and a user query q, we can use a
LLM policy πθ to induce the search agent policy u(·|x) = πθ(·|xsys, q). For notation simplification,
we denote τ ∼ u(·|x) as collecting the trajectory τ from the search agent policy u(·|x).

3.1 SEARCH SELF-PLAY DESIGN

We focus on exploring the benefits of self-play training for deep search agents, enabling LLMs
to self-improve their agentic capabilities without additional supervision. To achieve this objective,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

I'll start by finding out who Dr. Will

Boyd is or what he is known for …

Proposer

Who is Dr. Will Boyd?

(Title: "William Boyd (pathologist)") was a physician …

Generated Question: Who was a founding member of the National Cancer Institute and also made a Companion of

the Order of Canada for his service as a pathologist?

Solver

Let's begin by searching for such a

pathologist who fits these criteria …
(Title: "Donald Rix") He was a fellow of the College of …

founders of National Cancer Institute + Companion of the Order

of Canada pathologists

Solver

There is no clear and direct match.

I'll reformulate search terms to

focus on the award …

Companion of the Order of Canada pathology

Ground-Truth:

Dr. Will Boyd

Let me focus on Dr. Will Boyd's professional

background and his contributions …

(Title: "William Boyd (pathologist)") was made a

Companion of the Order of Canada, Canada’s …

William Boyd roles and contributions

(Title: "William Boyd (pathologist)") was made a Compani-on of

the Order of Canada, Canada's highest civilian honor, …

DS prediction:

Dr. Will Boyd

Cooperative Outcome

A
d

v
ersarial O

u
tco

m
e

RAG

Prediction:

Dr. Will Boyd

Tool Call

CoT

CoT

Tool Call

Figure 2: Examples of Search Self-Play with a given ground-truth “Dr. Will Boyd”. Provided with
the ground-truth, the proposer iteratively uses search tools to excavate implicit factual evidence, then
generates a challenging search question. Then the solver uses all search results from the proposer’s
trajectory as the RAG materials to predict the answer without searching, for the validation of the
question’s correctness. Once verified, the solver follows the ordinary deep search pipeline to explore
the solution via multi-turn agentic rollout.

we consider using the search agent to act as a question proposer to generate challenging questions
via multi-turn deep search tool usage. Meanwhile, given the generated questions, we let the same
LLM agent act as a problem solver to seek the answer, as ordinary deep search agents do. The
proposer aims to generate increasingly challenging questions to puzzle the solver, whereas the solver
is dedicated to improving its answer correctness, no matter how difficult the generated questions are.
Based on the above rules, the search self-play can be regarded as a zero-sum adversarial game. We
suppose both the proposer and the solver can evolve through this intense competition.

However, the above SSP rules can be easily hacked: the proposer can constantly generate incor-
rect questions so that the solver can never solve. Hence, to verify the correctness of the generated
question from the proposer, we collect all the search results in the proposer’s trajectory as the RAG
documents, and let the solver answer without using search tools. If the proposer’s question is correct
and the corresponding search actions are meaningful, with the RAG documents, the solver should
have sufficient information to correctly predict the ground-truth answer. By this additional verifica-
tion progress, we successfully avoid the search self-play game from degeneration. The verification
constraint requires the proposer and the solver to cooperate, which enhances the SSP game with
both cooperation and competition. An example of the search self-play game is shown in Figure 2.

3.2 SEARCH SELF-PLAY MODELING

We use different system prompts xpropose and xsolve to let the LLM learning policy πθ act as the
proposer and the solver, respectively. Given a ground-truth answer a, the policy for the question
proposer is u(·|a) = πθ(·|xpropose,a). After the proposer generates a question q, the solver policy
tries to settle the question with the policy v(·|q) = πθ(·|xsolve, q). Denote τ and ρ as the corre-
sponding trajectories of the proposer and the solver, respectively. Then the adversarial self-play
training objective is:

min
u

max
v

Ea∗∼D,τ∼u(·|a=a∗),ρ∼v(·|q=Q(τ))[r(A(ρ),a∗)], (1)

where a∗ is a ground-truth answer drawn from a pre-defined answer set D. Q(·) and A(·) ex-
tract the generated question and predicted answer from the proposer trajectory τ and the solver
trajectory ρ, respectively. r(A(τ),a∗) is a binary outcome judgment function to check whether the
solver’s prediction A(τ) and the ground-truth answer a∗ are semantically equivalent (which means

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Search Self-play training process.

Require: LLM policy πθ; ground-truth answer set D; proposer and solver prompts (xpropose,xsolve).

1: for each parameter-updating step do
2: Sample a batch of ground-truth answers {a∗

i }Bi=1 ∼ D with batch size B.
3: Proposer generates candidate questions Q = {Q(τi)}Bi=1 with each τi ∼ πθ(·|xpropose,a

∗
i).

4: Filter out valid questions as Q∗ with format rules and the RAG constraint:

r(A(σi),a
∗
i) = 1, for σi ∼ πθ(xsolve,Q(τi)).

5: for each question qi ∈ Q∗ do
6: Solver explores n trajectories for solution: ρj

i ∼ πθ(·|xsolve, qi), j = 1, 2, . . . , n

7: Compute solver’s reward of each trajectory: rjsolve,i = r(A(ρj
i),a

∗
i)

8: Compute proposer’s reward in expectation: r̄propose,i = 1− 1
n

∑n
j=1 r

j
solve,i

9: end for
10: Update πθ with solver’s trajectories and outcomes {(ρj

i , r
j
solve,i)} via GRPO.

11: Update πθ with proposer’s trajectories and outcomes {(τi, r̄propose,i)} via REINFORCE.
12: end for

r(A(τ),a∗) = 1). To ensure accurate judgment, we implement r(A(τ),a∗) with an LLM-as-a-
judge function, where the corresponding prompt and judge critics are described in Appendix D.

To make sure the generated question q = Q(τ) is solvable and correct with respect to the ground-
truth a∗, we need additional constraints. Therefore, we use the solver agent to v(·|q,OT) =
πθ(·|xsolve, q,OT) to verify the correctness of the generated question Q(τ), where OT =
(o1,o2, . . . ,oT) = O(τ) is the collection of all the search results from the proposer trajectory.
Then the proposer and the solver need to cooperate to maximize the solver’s answer accuracy under
RAG setups:

max
u

Ea∗∼D,τ∼u(·|a=a∗),σ∼v(·|q=Q(τ),OT=O(τ))[r(A(σ),a∗)]. (2)

In practice, we find that jointly optimizing both the cooperation and competition objectives suffers
from training inefficiency. Because the cooperative objection in equation 2 requires the proposed
question to be completely correct, otherwise the optimization of equation 1 could lose its effective-
ness due to the reward hacking. Therefore, we use rejection sampling (Liu et al., 2025) strategy for
the cooperative objective instead. More specifically, we dynamically filter the generated questions
with r(A(σ),a∗) = 1 to collect a full batch of valid questions to optimize the adversarial objective
in equation 1. Therefore, the overall training objective of search self-play is:

min
u

max
v

Ea∗∼D,τ∼u(·|a=a∗),ρ∼v(·|q=Q(τ))[r(A(ρ),a∗)], (3)

s.t. Eσ∼v(·|q=Q(τ),OT=O(τ))[r(A(σ),a∗)] = 1.

3.3 SSP IMPLEMENTATION

We describe the updating details of the SSP optimization as equation 3 in Algorithm 1. As discussed
in Section 3.2, invalid questions generated by the proposer will hinder the training effectiveness of
SSP. Therefore, we applied two filtering strategies to improve the quality of generated questions:
rule-based filtering and RAG verification.

Rule-based filtering ensures LLM has legal output for the question generation task. More specif-
ically, each proposer’s output should have a correct format for extracting the question (within
<question></question> tags). Furthermore, we conduct several additional rule-based checks
to pre-filter the low-quality questions and reduce the computational consumption before the RAG
verification process. The bad cases to filter include: (1) empty question string; (2) no search tool
invoked; (3) excessively short question; (4) containing the original answer in the question.

After the rule-based filtering, we applied the RAG verification process as described in Section 3.2.
We collect the search results from the proposer’s trajectory as the RAG documents, then let the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

solver answer the generated question with the provided RAG materials. To further increase the
robustness of the verification judgment, we mix some unrelated documents from other trajectories
within the same batch to simulate more real RAG scenarios. Details and ablation studies about
adding irrelevant RAG noises are discussed in Section 4.3.2.

When the outcome reward calculation finished, each generated question qi had been tried by the
solver for n times, yielding a group of trajectories {ρj

i}nj=1 and corresponding binary rewards
{rjsolve,i}nj=1, where rjsolve,i = r(A(ρj

i),a
∗
i). A natural updating method for the solver’s policy v

is Group Relative Policy Optimization (GRPO) (Shao et al., 2024), which uses the average reward
of the group as a baseline to reduce variance. The solver aims to maximize its reward, so its loss
function for a given question qi is:

∇θLGRPO(θ) =
1

B

B∑
i=1

[
1

n

n∑
j=1

1

|ρj
i |

|ρj
i |∑

t=1

∇θ log πθ(ρ
j,t
i |qi,ρj,1:t−1

i) · Âj
i − β∇θKL[πθ||πref]

]
(4)

where the advantage Âj
i = rjsolve,i −

1
n

∑n
k=1 r

k
solve,i is calculated for the j-th trajectory as the

difference between its reward and the group’s average reward for question qi.

Conversely, the proposer is updated to generate questions that are more challenging for the solver,
which aligns with the min-max objective in equation 3. As defined in Algorithm 1, the proposer
receives a high reward if the solver fails. We use the REINFORCE (Williams, 1992) algorithm to
update the proposer’s policy u. The loss function aims to increase the log-probability of generating
trajectories that result in high proposer reward (i.e., low solver success rate):

∇θLREINFORCE(θ) =
1

B

B∑
u=1

R(τi)

|τi|∑
t=1

∇θ log πθ(τ
t
i |a∗

i , τ
1:t−1
i)

 , (5)

where R(τi) = 1 − 1
n

∑n
j=1 r

j
solve,i. This update encourages the proposer to generate increasingly

difficult questions to continuously challenge the task solver. Unlike prior question proposing meth-
ods, which only use LLMs’ internal knowledge, our SSP utilizes interactions with external environ-
ments to acquire information for question generation. Moreover, our SSP verifies the correctness
of the generated question with a verifiable RAG pipeline, which is more credible than previous
synthetic methods, such as majority vote (Huang et al., 2025a).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Benchmarks. Seven standard question-answering benchmarks are adopted in our evaluation, in-
cluding NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), PopQA (Mallen et al., 2022),
HotpotQA (Yang et al., 2018), 2WikiMultiHopQA (Ho et al., 2020), Musique (Trivedi et al., 2022),
and Bamboogle (Press et al., 2022). Following the practice in prior works (Sun et al., 2025c;a; Zhao
et al., 2025; Gao et al., 2025a; Deng et al., 2025; Tan et al., 2025), we randomly sample 500 QA
pairs for evaluation on each benchmark to reduce evaluation overhead while maintaining statistical
reliability, while all 125 test samples in Bamboogle are used for evaluation.

Baselines. To verify the effectiveness of SSP, we select open-source pretrained LLMs of differ-
ent sources and model sizes used for deep search, including Qwen2.5-Instruct (Yang et al., 2024),
LLaMA3.1-8B (Dubey et al., 2024), Qwen3-8B (Yang et al., 2025), Search-R1 (Jin et al., 2025b;a),
ZeroSearch (Sun et al., 2025a), and R-Search (Zhao et al., 2025).

Search Tools. A local E5 retriever with a Wikipedia 2018 corpus (Karpukhin et al., 2020) is incor-
porated in our training and evaluation, which retrieves the top-3 related documents for each query.

Evaluation Metrics. Following recent work (Gao et al., 2025a), we adopt LLM-as-a-judge as stan-
dard metric for evaluation. Qwen2.5-32B-Instruct (Yang et al., 2024) is deployed as the judge model.
All results are reported in terms of pass@1 accuracy.

Training Details. We implemented our method using the SGLang asynchronous multi-turn
tool-integrated rollout in veRL (Sheng et al., 2024). The proposer is optimized using REIN-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Main experimental results. SSP delivers strong gains across from-scratch training, gener-
alization across architectures, continual training on search-specialized agents, and scaling to larger
models. All scores are on a 100-point scale. Bold (black) indicates the better score within each
baseline v.s. +SSP pair.

GeneralQA Multi-HopQA

Method NQ TriviaQA PopQA HotpotQA 2Wiki MuSiQue Bamboogle Avg
From-Scratch Training on Base and Instruct Models

Qwen2.5-7B-Base 32.0 33.2 25.0 18.0 10.8 11.0 26.4 22.3
+ SSP 54.2+22.2 73.6+40.4 56.0+31.0 52.8+34.8 33.2+22.4 24.0+13.0 47.2+20.8 48.7+26.4

Qwen2.5-7B-Instruct 44.2 64.0 36.4 45.0 32.8 16.8 51.2 41.5
+ SSP 54.8+10.6 73.4+9.4 51.8+15.4 51.8+6.8 38.8+6.0 21.2+4.4 54.4+3.2 49.5+8.0

Generalization Across Model Families
LLaMA-3.1-8B 50.2 65.2 45.8 34.6 19.4 11.4 30.4 36.7
+ SSP 58.0+7.8 75.8+10.6 55.4+9.6 44.2+9.6 34.4+15.0 16.2+4.8 40.0+9.6 46.3+9.6

Qwen3-8B 53.6 76.0 50.8 54.2 48.0 26.6 58.4 52.5
+ SSP 56.0+2.4 78.2+2.2 55.0+4.2 58.0+3.8 51.5+3.5 28.0+1.4 67.2+8.8 56.3+3.8

Continual Training on Search-Specialized Agents
ZeroSearch-7B 52.2 66.6 50.2 43.2 34.6 17.6 40.8 43.6
+ SSP 54.2+2.0 69.0+2.4 53.0+2.8 44.0+0.8 37.2+2.6 19.6+2.0 44.0+3.2 45.9+2.3

Search-R1-7B 56.6 75.4 57.2 58.2 45.2 29.6 55.2 53.9
+ SSP 57.8+1.2 78.0+2.6 58.4+1.2 60.4+2.2 45.6+0.4 30.6+1.0 59.2+4.0 55.7+1.8

R-Search-7B 50.8 71.0 53.8 54.0 56.4 29.8 53.6 52.8
+ SSP 52.4+1.6 74.2+3.2 56.8+3.0 54.2+0.2 58.0+1.6 31.4+1.6 55.2+1.6 54.6+1.8

Scaling to Larger Models
Qwen2.5-14B-Instruct 56.0 77.0 53.8 57.0 48.4 26.6 64.8 54.8
+ SSP 57.4+1.4 77.8+0.8 54.6+0.8 61.2+4.2 49.4+1.0 28.0+1.4 69.6+4.8 56.9+2.1

Qwen2.5-32B-Instruct 58.0 78.4 53.4 57.0 48.4 27.4 63.2 55.1
+ SSP 62.6+4.6 82.8+4.4 55.0+1.6 62.8+5.8 49.2+0.8 32.0+4.6 69.6+6.4 58.5+3.4

FORCE (Williams, 1992), while the solver is updated with GRPO (Shao et al., 2024). Key hy-
perparameters are: learning rate 1e-6 with 5 warmup steps; global batch size 256 (mini-batch 128);
maximum sequence lengths of 4,096 tokens for prompts and up to 8,192 tokens for responses; and
a training horizon of approximately 150–200 steps. More implementation details and prompts used
in each agent role are provided in Appendix A & D; full configurations are summarized in Table 4.

4.2 MAIN RESULTS

The main experimental results, summarized in Table 1, demonstrate that Search Self-Play is a highly
effective and versatile method for enhancing LLM agent capabilities.

Our primary finding is that SSP yields substantial improvements when training models from scratch
without any external supervision. The gains are particularly pronounced for base models that have
not undergone instruction tuning; for instance, applying SSP to Qwen2.5-7B-Base results in an im-
pressive average improvement of 26.4 points, including a remarkable +40.4 gain on TriviaQA. SSP
also benefits instruction-tuned models, improving Qwen2.5-7B-Instruct by 8.0 points on average.
Moreover, SSP proves to be model-agnostic, consistently enhancing models from different architec-
tural families, including LLaMA-3.1 and Qwen3.

Additionally, SSP serves as an effective continual training strategy. Even when applied to strong
open-source models that have already been extensively trained on search-oriented tasks (e.g.,
Search-R1, R-Search), our method consistently yields further performance improvements. Further-
more, this performance gain holds as we scale to larger models, where applying SSP to Qwen2.5-
32B-Instruct helps achieve state-of-the-art results, securing the best scores on five of the seven
benchmarks. These comprehensive results validate that SSP is a robust framework for enhancing
agent capability across diverse model sizes, architectures, and initial search skill levels.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Ablation on training schemes. Full search self-play (+SSP) significantly outperforms fixed-
opponent variants, underscoring the necessity of co-evolution for robust performance gains.

GeneralQA Multi-HopQA

Method NQ TriviaQA PopQA HotpotQA 2Wiki MuSiQue Bamboogle Avg.
Qwen2.5-7B-Instruct 0.442 0.640 0.364 0.450 0.328 0.168 0.512 0.415

+SSP (Solver-Only) 0.452 0.682 0.466 0.472 0.326 0.210 0.488 0.442
+SSP (Proposer-Only) 0.524 0.690 0.504 0.448 0.288 0.142 0.320 0.417

+SSP 0.548 0.734 0.518 0.518 0.388 0.212 0.544 0.495

4.3 ABLATION STUDIES

4.3.1 EFFICACY OF SELF-PLAY VERSUS FIXED-OPPONENT TRAINING

The co-evolution of the proposer and solver is critical for pushing the frontier of agent capability.
We investigate this core hypothesis through an ablation study comparing our full Search Self-Play
framework against two fixed-opponent schemes: training only the solver, denoted as Solver-Only,
and training only the proposer, denoted as Proposer-Only. As detailed in Table 2, the results clearly
demonstrate the superiority of SSP. Our SSP achieves the highest average score, substantially out-
performing both fixed-opponent variants. The training dynamics, analyzed in Figure 3, reveal the
reasons behind this performance gap.

Solver-Only. Figure 3 (a) reveals the underlying issue with Solver-Only. The solver’s in-game
reward rapidly saturates near 0.9, indicating that it quickly masters the static distribution of tasks
from the fixed proposer. Lacking a progressively challenging curriculum, the solver begins to overfit.
This is confirmed by its performance on held-out evaluation sets (Figure 3(b) and (c)), where scores
on NQ and 2Wiki initially improve but then degrade over time.

Proposer-Only. Conversely, the Proposer-Only setting shows different limitations. While its in-
game reward also rises, its evaluation performance on NQ and 2Wiki initially declines before a
slight recovery. We attribute this partial recovery to the proposer learning general tool-use skills,
which incidentally aids the fixed solver. This effect is more pronounced on simpler GeneralQA
benchmarks like NQ, where this setting eventually surpasses Solver-Only. However, this general
skill enhancement is insufficient for complex multi-hop reasoning, resulting in weaker performance
on Multi-HopQA datasets compared to Solver-Only.

In stark contrast to the flawed dynamics of fixed-opponent training, our full SSP framework fa-
cilitates a healthy co-evolution. The training dynamics for SSP offer a compelling narrative. As
shown in Figure 3(a), the solver’s in-game reward initially rises, but unlike the saturating curve of
the Solver-Only setting, it later experiences a slight decline. This dip is not a sign of performance
degradation, but rather crucial evidence of the proposer’s co-evolution: it has learned to generate
more difficult tasks that challenge the improving solver, thus lowering its success rate. This dynamic
creates a robust and adaptive curriculum where task difficulty perpetually adjusts to the solver’s cur-
rent skill level, preventing overfitting and forcing continuous learning. Consequently, this internal
adversarial pressure translates into the stable and sustained performance gains observed on the exter-
nal evaluation benchmarks in Figure 3 (b) and (c). This confirms that mutual co-evolution between
the proposer and solver is decisively superior to fixed-opponent training.

4.3.2 ABLATION ON THE RAG VERIFICATION

A critical component of our SSP framework is the RAG verification, which uses RAG process to
ensure that each proposed question is valid and answerable given the evidence collected by the
proposer. We conduct an ablation study to quantify the impact of this strategy and also optimize its
configuration. All experiments in this section are conducted on Qwen2.5-7B-Instruct, with results
presented in Table 3.

First, we compare our SSP against a variant with no RAG verification. As shown in results, remov-
ing RAG verification leads to a significant performance degradation, particularly on GeneralQA
benchmarks. This result confirms our hypothesis that the RAG verification is crucial for quality

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) In-Game Training Reward (b) Evaluation Score on NQ (c) Evaluation Score on 2Wiki

Figure 3: Training dynamics of different SSP variants. (a) shows the in-game reward. (b) and (c)
display the evaluation accuracy on the held-out NQ and 2Wiki datasets over training steps.

control; it effectively prunes invalid questions where the proposed ground-truth answer is not actu-
ally supported by the retrieved documents, thus preventing the solver from being trained on noisy or
incorrect data.

Table 3: Ablation on the RAG verification. Per-
formance (Avg. Score) improves with a moderate
number of noisy context documents.

Config. GeneralQA Multi-HopQA
No RAG Verifi. 49.5 36.7

RAG verification w/ Noisy Docs:
0 Noisy Docs 58.5 38.2
1 Noisy Docs 58.5 36.9
4 Noisy Docs 60.0 41.6
7 Noisy Docs 57.8 35.9

Next, we examine the impact of introducing
noisy documents into the context used for RAG
verification. These documents are randomly
sampled from the corpus and were not retrieved
by the proposer during its search trajectory. The
goal of this strategy is to prevent the proposer
from "hacking" the self-play dynamic. Without
such regularization, the proposer could exploit
the RAG-based solver’s access to a complete
set of retrieved documents by crafting questions
that are answerable in the verifier’s omniscient
context, but unfairly difficult for a solver oper-
ating under realistic search constraints. A no-
table failure mode involves generating questions with non-unique answers: the proposer may locate
and reinforce evidence for one particular answer, which the RAG verifier accepts, while a search-
based solver might reasonably retrieve evidence supporting a different, equally plausible answer and
be wrongly penalized.

By introducing noisy documents, we challenge the solver in RAG verification. Now, it must verify
the ground truth answer from a context that contains relevant and irrelevant information, making it
more difficult to validate ambiguous questions. This forces the proposer to generate more robust
questions whose answers are strongly and uniquely entailed by the evidence, rather than being triv-
ially verifiable only in a noise-free context. The results show that adding a moderate amount of
noise is beneficial. The configuration with 4 noisy documents achieves the best performance on
both benchmarks. However, adding too much noise (e.g., 7 noisy documents) becomes counterpro-
ductive, as the excessive irrelevant information likely confuses the RAG solver, reducing its ability
to accurately verify question answerability and leading to a drop in performance. Therefore, we use
the setting with 4 noisy documents for our main experiments.

5 CONCLUSION

We introduce Search Self-Play, a reinforcement learning approach for training deep search agents
by making the LLM policy act as both the question proposer and the problem solver, which allevi-
ates the reliance on human-crafted supervision. Through a self-play game grounded in multi-turn
search engine interactions, SSP dynamically generates verifiable search tasks with controllable dif-
ficulty and ensures reward accuracy via retrieval-augmented verification of ground-truth answers.
Extensive experiments demonstrate that SSP consistently enhances search agent performance across
diverse benchmarks under both from-scratch and continuous training setups, without requiring any
external human supervision. These results highlight the potential of self-play as a scalable and au-
tonomous paradigm for agentic LLM training, paving the way for more efficient and self-sustaining
reinforcement learning systems in complex information-seeking scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Lili Chen, Mihir Prabhudesai, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak. Self-
Questioning Language Models, August 2025a. URL http://arxiv.org/abs/2508.
03682. arXiv:2508.03682 [cs].

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z. Pan,
Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. ReSearch: Learning
to Reason with Search for LLMs via Reinforcement Learning, March 2025b. URL http://
arxiv.org/abs/2503.19470. arXiv:2503.19470 [cs].

Pengyu Cheng, Tianhao Hu, Han Xu, Zhisong Zhang, Yong Dai, Lei Han, nan du, and Xiaolong
Li. Self-playing adversarial language game enhances llm reasoning. In Advances in Neural
Information Processing Systems, volume 37, pp. 126515–126543, 2024.

Yong Deng, Guoqing Wang, Zhenzhe Ying, Xiaofeng Wu, Jinzhen Lin, Wenwen Xiong, Yuqin Dai,
Shuo Yang, Zhanwei Zhang, Qiwen Wang, Yang Qin, and Changhua Meng. Atom-Searcher: En-
hancing Agentic Deep Research via Fine-Grained Atomic Thought Reward, August 2025. URL
http://arxiv.org/abs/2508.12800. arXiv:2508.12800 [cs].

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Wenkai Fang, Shunyu Liu, Yang Zhou, Kongcheng Zhang, Tongya Zheng, Kaixuan Chen, Min-
gli Song, and Dacheng Tao. SeRL: Self-Play Reinforcement Learning for Large Language
Models with Limited Data, May 2025. URL http://arxiv.org/abs/2505.20347.
arXiv:2505.20347 [cs].

Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu.
Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous rl. arXiv
preprint arXiv:2508.07976, 2025a.

Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu.
Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous
RL, August 2025b. URL http://arxiv.org/abs/2508.07976. arXiv:2508.07976 [cs].

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Yiduo Guo, Zhen Guo, Chuanwei Huang, Zi-Ang Wang, Zekai Zhang, Haofei Yu, Huishuai
Zhang, and Yikang Shen. Synthetic data rl: Task definition is all you need. arXiv preprint
arXiv:2505.17063, 2025b.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics, pp. 6609–6625, 2020.

Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
Huang, Haitao Mi, and Dong Yu. R-Zero: Self-Evolving Reasoning LLM from Zero Data, August
2025a. URL http://arxiv.org/abs/2508.05004. arXiv:2508.05004 [cs].

Yuxuan Huang, Yihang Chen, Haozheng Zhang, Kang Li, Meng Fang, Linyi Yang, Xiaoguang
Li, Lifeng Shang, Songcen Xu, Jianye Hao, Kun Shao, and Jun Wang. Deep Research Agents:
A Systematic Examination And Roadmap, June 2025b. URL http://arxiv.org/abs/
2506.18096. arXiv:2506.18096 [cs].

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

10

http://arxiv.org/abs/2508.03682
http://arxiv.org/abs/2508.03682
http://arxiv.org/abs/2503.19470
http://arxiv.org/abs/2503.19470
http://arxiv.org/abs/2508.12800
http://arxiv.org/abs/2505.20347
http://arxiv.org/abs/2508.07976
http://arxiv.org/abs/2508.05004
http://arxiv.org/abs/2506.18096
http://arxiv.org/abs/2506.18096

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bowen Jin, Jinsung Yoon, Priyanka Kargupta, Sercan O Arik, and Jiawei Han. An empirical
study on reinforcement learning for reasoning-search interleaved llm agents. arXiv preprint
arXiv:2505.15117, 2025a.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025b.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Za-
mani, and Jiawei Han. Search-R1: Training LLMs to Reason and Leverage Search Engines
with Reinforcement Learning, April 2025c. URL http://arxiv.org/abs/2503.09516.
arXiv:2503.09516 [cs].

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Jakub Grudzien Kuba, Mengting Gu, Qi Ma, Yuandong Tian, and Vijai Mohan. Language Self-Play
For Data-Free Training, September 2025. URL http://arxiv.org/abs/2509.07414.
arXiv:2509.07414 [cs].

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Haitao Li, Junjie Chen, Jingli Yang, Qingyao Ai, Wei Jia, Youfeng Liu, Kai Lin, Yueyue Wu, Guozhi
Yuan, Yiran Hu, et al. Legalagentbench: Evaluating llm agents in legal domain. arXiv preprint
arXiv:2412.17259, 2024.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
uan Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu,
Yong Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. WebSailor: Navigating
Super-human Reasoning for Web Agent, July 2025. URL http://arxiv.org/abs/2507.
02592. arXiv:2507.02592 [cs].

Xiao Liang, Zhongzhi Li, Yeyun Gong, Yelong Shen, Ying Nian Wu, Zhijiang Guo, and Weizhu
Chen. Beyond pass@ 1: Self-play with variational problem synthesis sustains rlvr. arXiv preprint
arXiv:2508.14029, 2025a.

Xiao Liang, Zhongzhi Li, Yeyun Gong, Yelong Shen, Ying Nian Wu, Zhijiang Guo, and Weizhu
Chen. Beyond Pass@1: Self-Play with Variational Problem Synthesis Sustains RLVR, August
2025b. URL http://arxiv.org/abs/2508.14029. arXiv:2508.14029 [cs].

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Haoxiong Liu, Yifan Zhang, Yifan Luo, and Andrew C Yao. Augmenting math word problems via
iterative question composing. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 24605–24613, 2025.

11

http://arxiv.org/abs/2503.09516
http://arxiv.org/abs/2509.07414
http://arxiv.org/abs/2507.02592
http://arxiv.org/abs/2507.02592
http://arxiv.org/abs/2508.14029

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel Khashabi.
When not to trust language models: Investigating effectiveness and limitations of parametric and
non-parametric memories. arXiv preprint arXiv:2212.10511, 7, 2022.

Moonshot AI. Kimi researcher. Project page, Moonshot AI, 2025. URL https://moonshotai.
github.io/Kimi-Researcher/. Accessed: 2025-09-19.

OpenAI. Deep research system card. System card, OpenAI, 2025. URL https://cdn.openai.
com/deep-research-system-card.pdf. Version 2025a.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. arXiv preprint arXiv:2210.03350,
2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
and Ji-Rong Wen. R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement
Learning, March 2025. URL http://arxiv.org/abs/2503.05592. arXiv:2503.05592
[cs].

Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Fei Huang,
and Yan Zhang. Zerosearch: Incentivize the search capability of llms without searching. arXiv
preprint arXiv:2505.04588, 2025a.

Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
Fei Huang, and Jingren Zhou. ZeroSearch: Incentivize the Search Capability of LLMs without
Searching, May 2025b. URL http://arxiv.org/abs/2505.04588. arXiv:2505.04588
[cs].

Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai, Jia
Deng, Wayne Xin Zhao, Zheng Liu, et al. Simpledeepsearcher: Deep information seeking via
web-powered reasoning trajectory synthesis. arXiv preprint arXiv:2505.16834, 2025c.

Jiejun Tan, Zhicheng Dou, Yan Yu, Jiehan Cheng, Qiang Ju, Jian Xie, and Ji-Rong Wen. HierSearch:
A Hierarchical Enterprise Deep Search Framework Integrating Local and Web Searches, August
2025. URL http://arxiv.org/abs/2508.08088. arXiv:2508.08088 [cs].

MiroMind AI Team. Miroflow: An open-source agentic framework for deep research. https:
//github.com/MiroMindAI/MiroFlow, 2025a.

Tongyi DeepResearch Team. Tongyi-deepresearch. https://github.com/Alibaba-NLP/
DeepResearch, 2025b.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Position: will we run out of data? limits of llm scaling based on human-generated data. In
Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

12

https://moonshotai.github.io/Kimi-Researcher/
https://moonshotai.github.io/Kimi-Researcher/
https://cdn.openai.com/deep-research-system-card.pdf
https://cdn.openai.com/deep-research-system-card.pdf
http://arxiv.org/abs/2503.05592
http://arxiv.org/abs/2505.04588
http://arxiv.org/abs/2508.08088
https://github.com/MiroMindAI/MiroFlow
https://github.com/MiroMindAI/MiroFlow
https://github.com/Alibaba-NLP/DeepResearch
https://github.com/Alibaba-NLP/DeepResearch

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. BrowseComp: A Simple Yet
Challenging Benchmark for Browsing Agents, April 2025. URL http://arxiv.org/abs/
2504.12516. arXiv:2504.12516 [cs].

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran, Daiyi
Peng, Ruibo Liu, Da Huang, et al. Long-form factuality in large language models. Advances in
Neural Information Processing Systems, 37:80756–80827, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
Zekun Xi, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. WebDancer: Towards Au-
tonomous Information Seeking Agency, May 2025. URL http://arxiv.org/abs/2505.
22648. arXiv:2505.22648 [cs].

x.ai. Grok 3 beta — the age of reasoning agents, 2025. URL https://x.ai/news/grok-3.
Accessed: 2025-09-19.

Yunjia Xi, Jianghao Lin, Yongzhao Xiao, Zheli Zhou, Rong Shan, Te Gao, Jiachen Zhu, Weiwen Liu,
Yong Yu, and Weinan Zhang. A survey of llm-based deep search agents: Paradigm, optimization,
evaluation, and challenges. arXiv preprint arXiv:2508.05668, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing
Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang.
DAPO: An Open-Source LLM Reinforcement Learning System at Scale, May 2025. URL
http://arxiv.org/abs/2503.14476. arXiv:2503.14476 [cs].

Qingfei Zhao, Ruobing Wang, Dingling Xu, Daren Zha, and Limin Liu. R-search: Empowering llm
reasoning with search via multi-reward reinforcement learning. arXiv preprint arXiv:2506.04185,
2025.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Envi-
ronments, April 2025. URL http://arxiv.org/abs/2504.03160. arXiv:2504.03160
[cs].

13

http://arxiv.org/abs/2504.12516
http://arxiv.org/abs/2504.12516
http://arxiv.org/abs/2505.22648
http://arxiv.org/abs/2505.22648
https://x.ai/news/grok-3
http://arxiv.org/abs/2503.14476
http://arxiv.org/abs/2504.03160

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 TRAINING HYPERPARAMETER

The primary hyperparameters for our main experiments are detailed in Table 4. Any parameters
not explicitly mentioned in the table adhere to the default settings provided by the Verl frame-
work (Sheng et al., 2024).

Table 4: Experimental hyperparameter configuration. The table is divided into two sections: Base
Settings for the main training process, and specific settings for the Search Self-Play module.

Base Settings
Parameter Value
Global Batch Size 256
Mini-batch Size 128
Learning Rate 1e−6

Learning Rate Warmup Steps 5
Max Prompt Length 4096
Max Response Length 8192
KL Loss Coefficient 0.01
Validation Temperature 0.0
Rollout Temperature 1.0

Search Self-Play Settings
Parameter Value
— Proposer —
Proposer Warm-up Steps -1 (disabled)
Proposer Advantage Estimator REINFORCE
Proposer Samples (n) 1
— Solver —
Solver Advantage Estimator grpo
Solver Samples (n) 5
— Other —
Extraction Failure Strategy reuse
Use RAG Verification True
Noisy RAG Documents 4

A.2 REWARDS DESIGN

Solver. A simple binary outcome reward is adopted for Solver:

rsolve = I(y = y∗) (6)

where y∗ is the ground-truth answer and I(·) is the indicator function that checks for equality be-
tween the predicted and true answers.

Proposer. The Solver attempts to answer the same question n times, where the average success rate
for that question is r̄solve = 1

n

∑n
i=1 r

(i)
solve. Thus the reward for Proposer can be formulated as:

rpropose = 1− r̄solve (7)

Tool-integrated rollout is an interactive sequence of reasoning and tool invocation, with the search
tool providing external information. Following Search-R1 (Jin et al., 2025b;a), we mask the content
within the <information></information> tags to exclude their loss computation during
training to maintain stability. Proposer and Solver responses are required to follow our specified
format, using tags such as <think>, <search>, <answer>, and <question>. Responses
that do not adhere to this format will receive zero reward.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 OTHERS

For the baseline models used for continuous RL training (Search-R1 (Jin et al., 2025b;a), Ze-
roSearch (Sun et al., 2025a), and R-Search (Zhao et al., 2025)), we start the SSP training from the
best-performing checkpoint as reported in their respective papers. For example, Search-R1-7B cor-
responds to the SearchR1-nq_hotpotqa_train-qwen2p5-7b-em-ppo-v0p2 checkpoint, ZeroSearch-
7B to the ZeroSearch_wiki_V2_Qwen2.5_7B checkpoint, and R-Search-7B to the R-Search-7b-grpo
checkpoint.

During the question proposing rollout, a batch of questions is significantly reduced in size after pass-
ing through the online filter. To mitigate this, we replenish the batch using dynamic sampling (Yu
et al., 2025) or a QA replay buffer. This ensures that the rewards within a training batch are less
sparse, thus contributing to a more stable training process.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 TRAINING DYNAMICS

We provide a granular view into the training process by analyzing the training dynamics of our SSP
framework on the Qwen2.5-7B-Base model, configured with the Replay Buffer (Periodic Reset)
strategy. Figure 4 illustrates several key metrics throughout the training, showcasing how the agent’s
behavior and performance co-evolve.

As shown in Figure 4a, the average number of search tool calls per trajectory steadily increases
over time. This trend is a clear indicator that through search self-play, the agent learns to conduct
more extensive and complex multi-step searches to solve problems, significantly enhancing its tool-
use capabilities. Simultaneously, Figure 4b shows that the solver’s response length also grows,
suggesting it learns to generate more detailed and comprehensive answers. In contrast, the prompt
length remains relatively stable, indicating consistent task generation from the proposer.

Figures 4c and 4d demonstrate a consistent and significant improvement in accuracy across both
GeneralQA and Multi-HopQA datasets as training progresses. Notably, the slope of performance
improvement gradually decreases in later training stages. We hypothesize that this plateau is par-
tially attributable to a resource-imposed constraint: the maximum number of search steps was
capped at 10 to conserve computational resources. This limit may have become a bottleneck, pre-
venting the agent from exploring even deeper reasoning paths. We believe that scaling this search
step limit could unlock further performance improvements.

B.2 ABLATION ON BATCH COMPLETION STRATEGIES

In our SSP framework, the proposer’s generation process is stochastic, and not all generated ques-
tions pass the online filter. This can result in training batches smaller than the target batch size,
leading to sparse reward signals and potential training instability. To address this, we investigate
four distinct batch completion strategies to ensure a full batch is always available for the RL update
step. All experiments are conducted on the Qwen2.5-7B-Base model, with results summarized in
Table 5.

The strategies are as follows:

• Dummy Padding: Invalid slots in a batch are filled with a generic, non-informative
"dummy" problem. This is the simplest approach but provides no learning signal for the
padded slots.

• Dynamic Resampling: The proposer continues to generate new questions until a full batch
of valid problems is collected. This ensures every sample in the batch is novel but can be
computationally expensive if the valid question rate is low.

• Replay Buffer (Full Reuse): We maintain a replay buffer of all previously generated valid
questions. Invalid slots are filled by sampling from this buffer. This guarantees a dense
training signal but risks solver overfitting and proposer policy stagnation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140 160
Training Steps

2

4

6

8

10

Se
ar

ch
 T

ur
ns

Avg
Max
Min

(a) Search Tool Usage

0 20 40 60 80 100 120 140 160
Training Steps

500

1000

1500

2000

2500

L
en

gt
h

(t
ok

en
s)

Response Length
Prompt Length

(b) Trajectory Length Statistics

0 20 40 60 80 100 120 140
Training Steps

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
Sc

or
e

nq
triviaqa
popqa
Average

(c) Performance on GeneralQA Benchmarks

0 20 40 60 80 100 120 140
Training Steps

0.1

0.2

0.3

0.4

0.5

M
ea

n
Sc

or
e

hotpotqa
2wikimultihopqa
musique
bamboogle
Average

(d) Performance on Multi-HopQA Benchmarks

Figure 4: Training dynamics for Qwen2.5-7B-Base with SSP. (a) The agent learns to use the search
tool more frequently. (b) Solver response length increases while prompt length remains stable. (c,
d) Evaluation scores on both GeneralQA and Multi-HopQA datasets show consistent improvement
throughout training.

• Replay Buffer (Periodic Reset): This is the strategy used in our main experiments. It
is identical to Full Reuse, but the replay buffer is cleared every 10 training steps. This is
designed to balance the efficiency of reuse with the need for data novelty.

Table 5: Ablation study on batch completion strategies. Performance is evaluated on the Qwen2.5-
7B-Base model. The Periodic Reset strategy achieves the best results, demonstrating the importance
of balancing data reuse and novelty.

Method NQ TriviaQA PopQA HotpotQA 2Wiki MuSiQue Bamboogle Avg.
Qwen2.5-7B-Base (Baseline) 32.0 33.2 25.0 18.0 10.8 11.0 26.4 22.3

Dummy Padding 48.4 68.8 49.6 40.8 22.6 19.0 40.8 41.4
Dynamic Resampling 48.4 66.4 45.8 44.6 31.4 17.6 42.4 42.4
Replay Buffer (Full Reuse) 51.2 67.8 49.0 46.0 31.0 17.8 48.0 44.4
Replay Buffer (Periodic Reset) 54.2 73.6 56.0 52.8 33.2 24.0 47.2 48.7

As shown in Table 5, the choice of strategy has a profound impact on training outcomes. The
Dummy Padding approach yields the smallest improvement over the baseline. Its low performance
can be attributed to severe reward sparsity; with many invalid proposals, both the proposer and solver
receive fewer learning signals per iteration, hindering effective optimization. Dynamic Resampling
performs slightly better, as it guarantees a full batch of novel, valid questions. However, this comes
at a high, often prohibitive, computational cost, as it requires repeated generation cycles.

The introduction of a Replay Buffer (Full Reuse) provides a significant performance boost, improv-
ing the average score from 42.4 to 44.4. This strategy allows the solver to learn more thoroughly

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 20 40 60 80

Training Step

0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Proposer
Solver

(a) In-Game Reward Dynamics

0 20 40 60 80

Training Step

9.6

9.7

9.8

9.9

Pr
op

os
er

's
En

tro
py

Trend (slope: 0.0036)

(b) Proposer Policy Entropy

0 20 40 60 80

Training Step

0.00

0.01

0.02

0.03

0.04

Va
lid

 Q
ue

st
io

n
R

at
e Mean: 0.0056

(c) Valid Question Rate

Figure 5: Training dynamics of SSP when the proposer receives a negative reward for format er-
rors. (a) The proposer’s reward (blue) trends to -0.1 as it stops producing valid questions, while
the solver’s reward (purple) spuriously increases due to overfitting on a question pool. (b) The pro-
poser’s policy entropy steadily rises as the agent tries to escape the negative rewards, leading to more
random and less valid outputs. (c) Consequently, the rate of generating valid questions collapses,
halting productive self-play training and demonstrating the instability caused by punitive rewards.

from each valid question generated by the proposer by reusing it for multiple training updates. This
densifies the reward signal and enhances training efficiency. However, its gains are ultimately lim-
ited. We hypothesize this is because unbounded reuse allows the solver to train on the same questions
too many times, leading to overfitting on the static pool of questions within the ever-growing buffer.
Concurrently, the proposer’s learning signal diminishes as the solver masters these old questions,
potentially causing policy degradation.

The Replay Buffer (Periodic Reset) strategy emerges as the clear winner, achieving the highest
scores across nearly all benchmarks and boosting the average score to 48.7. This method represents
an effective trade-off between sufficient data exposure and novelty. By reusing questions for a
limited period, it allows the solver to learn sufficiently from each generated task, ensuring the reward
signal remains dense. However, by periodically clearing the buffer, it prevents the solver from
learning the same questions too many times, thus mitigating the overfitting observed with full reuse.
Concurrently, this forces the proposer to continuously generate novel questions to populate the fresh
buffer, maintaining a strong co-evolutionary pressure. This result validates our choice of this strategy
for the main experiments, as it fosters the most stable and effective self-play dynamic.

B.3 THE IMPACT OF PROPOSER’S REWARD DESIGN

We analyze the sensitivity of our Search Self-Play framework to the reward function by conducting
an experiment on the effect of a punitive reward structure for the proposer. In our main configura-
tion, the proposer receives a zero reward for generating an invalid or malformed question. In this
experimental variant, we introduce a small penalty, setting reward as -0.1 for any question that fails
the online filter. For this setup, the proposer is optimized using the REINFORCE algorithm with a
single sample per prompt (n = 1).

The results, shown in Figure 5, demonstrate that this seemingly minor change leads to a catastrophic
failure of the training process. The proposer’s average reward becomes sparse and progressively
declines (Figure 5a), directly corresponding to a collapse in the valid question generation rate, which
plummets towards -0.1 (Figure 5c). This phenomenon can be explained as a negative feedback loop:
the penalty for format errors encourages the agent to explore away from its current policy. However,
this exploration, manifested as an increase in policy entropy (Figure 5b), makes the generation more
random and thus more likely to produce invalid outputs. This "death spiral" effectively halts the
creation of new training instances. Meanwhile, the solver’s reward appears to increase, but this is a
misleading artifact of overfitting. As the supply of new, valid questions from the proposer dwindles,
the solver is repeatedly trained on a small, static buffer of past questions, failing to generalize its
capabilities. This experiment critically underscores that the proposer’s reward design is paramount
for stable co-evolution in SSP; a punitive approach can destabilize the entire self-play dynamic,
highlighting the need for a carefully calibrated reward scheme.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C SELF-PLAY EXAMPLES

Table 6, 7, 8, 9, 10, and 11 provide examples of trajectories in our SSP game.

Table 6: Example 1: Question Proposing

Proposer creates a question that leads to the answer Roger (alien)

<think>Given that I have a single search requirement, it’s essential to design a straightforward but intricate-enough
route to come to the term "Roger (alien)" that would normally require a direct search. This will differentiate "Roger
(alien)" from other similar or general terms to ensure the question is precise and unambiguous.
Starting with "Roger (alien)," this seems like a reference to a specific character or entity. "Roger" is a common name.
The term "alien" specifically refers to an alien from other galaxies or universes.
I’ll brainstorm some ’associated concepts’ related to "Roger (alien)." If it is a specific cultural reference or a name from
specific media content, I can build my questions around these concepts.
Let’s begin by searching for ’associated’ or ’preceding’ facts which connect to "Roger (alien)" without specifying the
answer directly.</think>
<search> Roger alien </search>
<information> (Title: "Roger (American Dad!)") Roger is a fictional character in the adult animated sitcom
""American Dad!"", voiced by Seth MacFarlane. The character was created and designed by Seth MacFarlane. Roger
is a centuries-year-old grey space alien living with the Smith family, around whom the show revolves. Having . . .

(Title: "Big O (mecha)") locks itself and lets Roger out because R. Dorothy is in danger. In ""Enemy Is . . .
(Title: "Roger (Hellboy)") Roger the Homunculus is a fictional character featured in the . . . </information>

<think>It appears that the most prominent "Roger (alien)" refers to a character named Roger from the animated
sitcom, "American Dad!," who is known to be an extraterrestrial being from another planet. Given this, the associated
concept is now clear, and we can build the question accordingly. We need to find a particular instance or unique detail
linked to Roger from American Dad! which would require a solver to search to reach the final answer.</think>
<search> Roger alien american dad! </search>
<information> (Title: "Roger (American Dad!)") Roger is a fictional character in the adult animated . . .

(Title: "Roger (American Dad!)") be shown on the series. Although in the episode ""Lost in Space"", a brief clip . . .

(Title: "American Dad!") alien race. To date, Roger’s birth planet has yet to be revealed . . . </information>

<think>Based on the information gathered, I see that there’s a notable character detail that can be used—the fact that
Roger has a backstory linked to Roswell crash. Given that it’s quite specific and links directly to the search results, we
can use this idea to form our single-search question.</think>
<question> Who is the grey alien character from American Dad! that was involved in the Roswell incident in 1947?
</question>

Table 7: Example 1: Question Answering

Solver answers the question raised by Proposer: Who is the grey alien character from American Dad! that was involved
in the Roswell incident in 1947?

<think>To answer this question, I need to identify a grey alien character from American Dad! that has a connection
to the Roswell incident in 1947. I’m not sure off-hand which character is known for this, as the show features many
alien characters. Searching for the details will likely retrieve the relevant information.</think>
<search> Grey alien character from American Dad! Roswell incident 1947 </search>
<information> (Title: "Grey alien") as ""visitors"", appear in two episodes of ""South Park"", and Roger . . .
(Title: "Grey alien") small-bodied beings with smooth grey-colored skin, enlarged hairless heads and large . . .

(Title: "Roger (American Dad!)") Roger is a fictional character in the adult animated sitcom ""American Dad!"", voiced
by Seth MacFarlane. The character was created and designed by Seth MacFarlane. Roger is a centuries-year-old grey
space alien living with the Smith family, around whom the show revolves. Having lived on Earth since crashing in
Roswell, New Mexico in 1947, Roger came to live with the Smiths after rescuing main character Stan Smith at Area 51
four years prior to the beginning of the series. . . . </information>

<think>Based on the provided information, the grey alien character from American Dad! that was involved in the
Roswell incident in 1947 is Roger. The text mentioned that Roger is a grey space alien living with the Smith family,
and he has been on Earth since crashing in Roswell, New Mexico in 1947.</think>
<answer> Roger </answer>

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Example 2: Question Proposing

Proposer creates a question that leads to the answer Castle Drogo

<think>The target answer is Castle Drogo. To create a question that requires three sequential searches, I need to find
an associated concept for the final answer and reverse-engineer the question from there.
First, let’s identify an associated concept for Castle Drogo. Castle Drogo is a 20th-century castle located in the South
West of England, situated in Devon. The associated concept could be the architect behind it, Sir Edwin Lutyens.
Next, I’ll search for information connecting Sir Edwin Lutyens to Castle Drogo to find a ’preceding fact’ for the third
search.</think>
<search> Sir Edwin Lutyens and Castle Drogo </search>
<information> (Title: "Castle Drogo") Castle Drogo Castle Drogo is a country house and castle near Drewsteign-
ton, Devon, England. Constructed between 1911 and 1930, it was the last castle to be built in England. The client was
Julius Drewe, the hugely successful founder of the Home and Colonial Stores. Drewe chose the site in the belief that
it formed part of the lands of his supposed medieval ancestor, Drogo de Teigne. The architect he chose to realise his
dream was Edwin Lutyens, then at the height of his career. Lutyens lamented Drewe’s determination to . . .

(Title: "Castle Drogo") purely decorative. Additionally, the castle had electricity and lifts from the outset, with power
being supplied by two turbines on the river below. The castle is a Grade I listed building. . . .
(Title: "Castle Drogo") the village of Drewsteignton in the belief . . . </information>

<think>From the search results, we know that Edwin Lutyens designed Castle Drogo. The preceding fact for the
third search could be the architect who designed Castle Drogo.
Now, I need to find another piece of information that leads logically to Edwin Lutyens as the answer, which will be the
second search. I know that Sir Edwin Lutyens was a notable 20th-century English architect, known for his numerous
significant works, including collaborations with Gertrude Jekyll. Let’s explore his collaboration with Jekyll further.
Lutyens frequently collaborated with the famous garden designer Gertrude Jekyll. I’ll find a specific project or fact
related to this collaboration.</think>
<search> Edwin Lutyens and Gertrude Jekyll </search>
<information> (Title: "Gertrude Jekyll") wife Julia Hammersley. Her younger brother, Walter Jekyll (an Anglican
priest; sometime Minor Canon of Worcester Cathedral and Chaplain of Malta) . . .
(Title: "Gertrude Jekyll") was awarded the Victoria Medal of Honour of the Royal Horticultural Society in 1897 and
the Veitch Memorial Medal of the society in 1929. Also in 1929, she was given the George Robert White Medal . . .
(Title: "Hestercombe House") the house by Henry Hall in the 1870s. The Edwardian garden was laid out by Gertrude
Jekyll and Edwin Lutyens between 1904 and 1906 for . . . </information>

<think>From the search results, I can see that Edwin Lutyens and Gertrude Jekyll collaborated on several projects,
particularly Hestercombe House. The preceding fact for the second search could be a well-known collaboration project
of Edwin Lutyens and Gertrude Jekyll.
For the final step, I need to identify an associated concept related to Hestercombe House that leads to Edwin Lutyens
as the answer. I can create a sequential search question that starts from a well-known architectural or garden feature
associated with Hestercombe House.
The Hestercombe Garden is a well-known aspect. The next fact for the first search could be related to a designer or
architect’s masterpiece associated with Hestercombe Garden.</think>
<search> Hestercombe Garden architect </search>
<information> (Title: "Hestercombe House") petrol and air. When the house and gardens were inherited . . .

(Title: "Hestercombe House") the house by Henry Hall in the 1870s. The Edwardian garden was laid out by Gertrude
Jekyll and Edwin Lutyens between 1904 and 1906 for the Hon E.W.B. Portman, resulting in a garden ""remarkable for
the bold, concise pattern of its layout, and for the minute attention to detail everywhere to be seen in the variety . . .

(Title: "Hestercombe House") the hardy herbaceous planting espoused by Miss Jekyll. Lutyens also designed the
orangery about 50 m east of the main house between 1904–09, which is now Grade I listed . . . </information>

<think>The search results indicate that Hestercombe House and Garden were designed by Edwin Lutyens and
Gertrude Jekyll. This association can lead us to the architect Edwin Lutyens in a search starting from a prominent
aspect of the Hestercombe Garden. The question can start by referencing a key feature of Hestercombe Garden and
logically lead to Edwin Lutyens and later Castle Drogo.
To formulate the question, let’s start referring to the specific feature, such as the orangery built by Edwin Lu-
tyens.</think>
<question> What is the name of the 20th-century castle in Devon, England, designed by the architect who, along-
side Gertrude Jekyll, created the famous Edwardian garden at Hestercombe House, known for its listed orangery?
</question>

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Example 2: Question Answering

Solver answers the question raised by Proposer: What is the name of the 20th-century castle in Devon, England,
designed by the architect who, alongside Gertrude Jekyll, created the famous Edwardian garden at Hestercombe House,
known for its listed orangery?

<think>The question is asking for the name of a 20th-century castle in Devon, England. This castle is designed by an
archite ct who also worked with Gertrude Jekyll on the Hestercombe House gardens. The Hestercombe House gardens
are f amous for their Edwardian style and especially known for their listed orangery.
Given this information, I need to find:
1. The architect who collaborated with Gertrude Jekyll on the Hestercombe House gardens.
2. A 20th-century castle in Devon, England, designed by that architect.</think>
<search> architect who collaborated with Gertrude Jekyll on Hestercombe House gardens </search>
<information> (Title: "Hestercombe House") the house by Henry Hall in the 1870s. The Edwardian garden was
laid out by Gertrude Jekyll and Edwin Lutyens between 1904 and 1906 for the Hon E.W.B. Portman, resulting in a
garden ""remarkable for the bold, concise pattern of its layout, and for the minute attention to detail everywhere to be
seen in the variety and imaginative handling of contrasting materials, whether cobble, tile, flint, or thinly coursed local
stone"". Jekyll and Lutyens were leading participants of the Arts and Crafts movement. Jekyll is remembered for her
outstanding designs and subtle, painterly approach to the arrangement of the gardens . . .
(Title: "Hascombe Court") Hascombe Court Hascombe Court is a estate in Hascombe, Surrey, best known for its vast
garden designed by Gertr ude Jekyll. Hascombe Court is listed Grade II on the National Heritage List for England, and
its gardens are also Grad e II listed on the Register of Historic Parks and Gardens. . . .
(Title: "Gertrude Jekyll") over 300 photographs taken by Jekyll. From 1881, when she laid out the gardens for Munstead
House, built for her mother by John James Stevenson, Jekyll provided designs or planned planting for some four hundred
gardens. More than half were directly commissioned, but many were . . . </information>

<think>Doc 1 mentions that Edwin Lutyens and Gertrude Jekyll collaborated on the garden at Hestercombe House.
With this in mind, I can now search for a 20th-century castle in Devon, England designed by Edwin Lutyens.</think>
<search> 20th-century castle in Devon, England designed by Edwin Lutyens </search>
<information> (Title: "Castle Drogo") Castle Drogo Castle Drogo is a country house and castle near Drewsteign-
ton, Devon, England. Constructed between 1911 and 1930, it was the last castle to be built in England. The client was
Julius Drewe, the hugely successful founder of the Home and Colonial Stores. Drewe chose the site in the belief that
it formed part of the lands of his supposed medieval ancestor, Drogo de Teigne. The architect he chose to realise his
dream was Edwin Lutyens, then at the height of his career. Lutyens lamented Drewe’s determination to . . .

(Title: "Devon County War Memorial") The Devon County War Memorial is a First World War memorial, designed by
Sir Edwin Lutyens and situated on Cathedral Green in Exeter, the county town of Devon, in the south west of England.
It is one of fifteen War Crosses designed by Lutyens with similar characteristics . . .
(Title: "Devon County War Memorial") memorials were built across Britain. Amongst the most prominent designers
of memorials was the architect Sir Edwin Lutyens, described by Historic England as ""the leading English architect of
his generation"". Prior to the First World War, Lutyens established . . . </information>

<answer> Castle Drogo </answer>

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 10: Example 3: Question Proposing

Proposer creates a question that leads to the answer George Smith

<think>To create a question that leads to the answer "George Smith," which requires three searches, I need to work
backwards and establish a logical sequence of information that will lead to this name. Let’s start by identifying an
associated concept or related information.
1. Associated Concept: George Smith might be a person involved in a specific historical event, a notable figure in a
certain field, or someone connected to a particular organization or place. For this, I’ll explore who George Smith might
be and find a notable fact or place relevant to this person.
2. Search Process:
- Search #3: Start with the target "George Smith." I need to identify an event or place associated with him.
- Search #2: Once the preceding fact is discovered from Search #3, I’ll use that information to identify another inter-
mediary fact.
- Search #1: Finally, will determine the starting point using the information from Search #2.
Let’s start with Search #3 to establish the initial associated concept.</think>
<search> Who is George Smith and what is he known for? </search>
<information> (Title: "George P. Smith (politician)") George Peter Smith (August 12, 1873 – November 29, . . .
(Title: "George Smith (historian)") George Smith (31 August 1800 – 30 August 1868) was an English businessman . . .

(Title: "George Smith (artist)") George Smith (1713/14 – 7 September 1776) was . . . </information>

<think>From the search results, George Smith (politician) from Alberta provides a specific context. George P. Smith
played a role in the development of Duhamel, Alberta, and the establishment of influential relationships with indigenous
peoples. I will use this in the backward search chain.
Search #3: Identify a fact related to George P. Smith.</think>
<search> What significant role did George P. Smith play in the community of Duhamel, Alberta? </search>
<information> (Title: "George P. Smith (politician)") George Peter Smith (August 12, 1873 – November 29, . . .
(Title: "George P. Smith (politician)") with fraud as they believed that the money which was . . .
(Title: "George Wilbert Smith") George Wilbert Smith (April 24, 1855 – August 1, 1931) . . . </information>

<think>From the information, George P. Smith played a significant role in founding the Trading Store in Duhamel,
Alberta, and developing it into a hub for fur trading with indigenous peoples.
Search #3 Key Fact: George P. Smith bought and established a Trading Store in Duhamel, Alberta.
Next, we will now build on this fact in Search #2.</think>
<search> What role did trading stores play in the development of settlements like Duhamel, Alberta, in the early
20th century? </search>
<information> (Title: "Duhamel, Alberta") Duhamel is a hamlet in the . . .

(Title: "Duhamel, Alberta") soil, and vegetation within the circles had apparently been . . .

(Title: "Exchange District") was a new route for shipping goods from Eastern Canada . . . </information>

<think>From the search, trading stores played a crucial role in connecting settlers with resources and indigenous
peoples. Tr ading stores in early settlements were central to economic and social development.
Search #2 Key Fact: Trading stores were central hubs for economic activities, distributing goods and establishing trade
relations with indigenous peoples.
Finally, we build the starting point for Search #1.</think>
<search> Which early 20th-century Alberta town was a key trading center due to the presence of a significant fur-
trading activity? </search>
<information> (Title: "History of Alberta") providing an important channel for the flow . . .

(Title: "Lamson & Hubbard Trading Company") Lamson & Hubbard Trading Company (also referred to as . . .
(Title: "Northern Traders Company") The Northern Traders Company was an enterprise . . . </information>

<think>From the search, Alberta towns like Red Deer could have been key trading centers due to fur trading activity.
Red Deer’s role fits well because it was an economic hub with connections to the indigenous communities.
Search #1 Key Fact: Red Deer, Alberta, was a key trading center due to its fur-trading activity.
Now I can construct the final question ensuring it meets all the established requirements and necessitates precisely three
searches to reach the final answer.</think>
<question> What was the name of the politician who established a crucial trading store in the early 20th century,
which transformed a small community into an important trading hub for fur and developed strong relationships with
the indigenous peoples in Alberta? </question>

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 11: Example 3: Question Answering

Solver answers the question raised by Proposer: What was the name of the politician who established a crucial trading
store in the early 20th century, which trans formed a small community into an important trading hub for fur and
developed strong relationships with the indigenous peoples in Alberta?

<think>The question asks for a politician who established a trading store in Alberta, Canada in the early 20th century.
This politician seems to have had substantial influence in the region, not just in politics but also in trade, and built strong
relationships with indigenous peoples. The region mentioned, Alberta, was an important area for fur trading during this
period.
Given that the politician founded a crucial trading store, it’s likely that they were known for their contributions to
Canadian history, particularly in the province of Alberta. Notable figures in Alberta during the early 20th century would
be relevant here, particularly those linked with economic development through trade or industry, and who engaged in
dialogue or relationships with indigenous groups.
To identify this specific politician, more precise historical information about fur trading in Alberta in the early 20th ce
ntury is required, especially someone known for such a significant act of setting up a trading hub.</think>
<search> politician who established a trading store in Alberta early 20th century </search>
<information> (Title: "James Ramsey (politician)") James ""Merchant Prince"" Ramsey (April 4, 1864 – Decem-
ber 23, 1939) was a provincial politician and business man from Alberta, Canada . . .

(Title: "Alexander Livingstone (Alberta politician)") Alexander Livingstone (August 2, 1884 – October 26, 1944) was
a Canadian politician and municipal councillor in Edmonton, Alberta. Livingstone was born in Bathgate, Scotland . . .

(Title: "Cornelius Hiebert") Cornelius ""Don"" Hiebert (August 2, 1862 – March 21, 1919) was a politician from
Alberta, Canada. Hiebert was born in Sea of Azov, Russia and lived in Russia . . . </information>

<think>The initial search results did not directly identify a politician who established a fur trading store or created a
significa nt trading hub in early 20th-century Alberta. James Ramsey and Alexander Livingstone were notable business
and political figures, but they are primarily mentioned for their work in department stores in Edmonton, not for a
specific trading store related to fur or indigenous relations. Cornelius Hiebert was involved in setting up a general store
in a founding phase of a village, but not detailed circumstances specifically in trading of fur.
A second search is needed with a more concentrated focus on fur traders and key individuals who had influence in
relation to indigenous communities.</think>
<search> politician from Alberta early 20th century established fur trading store </search>
<information> (Title: "James Ramsey (politician)") James ""Merchant Prince"" Ramsey (April 4, 1864 . . .

(Title: "Cornelius Hiebert") Cornelius ""Don"" Hiebert (August 2, 1862 – March 21, 1919) was . . .
(Title: "Alexander Livingstone (Alberta politician)") Alexander Livingstone (August 2 . . . </information>

<think>Despite the multiple searches, there appears a lack of direct information providing an exact match regarding
a prominent fur trader politician in Alberta from the early 20th century. The information given points primarily to
notable business and political figures linked with department stores or general stores in Alberta but not specifically
to fur trading or close relations to indigenous communities as mentioned in the question. As the information is still
scattered and does not directly answer the specific individual queried, a reconsideration and possibly with a broader
search is required to uncover the correct specific person’s name and connection with fur trading in Alberta.</think>
<search> politician who established a fur trading store in Alberta early 1900s </search>
<information> (Title: "George P. Smith (politician)") George Peter Smith (August 12, 1873 – November 29, 1942)
was a politician and former Minister of the Crown from Alberta, Canada. He was born in Lieury, Ontario and came
west in 1901 while working for an insurance company. After visiting Duhamel (a mission settlement . . .
(Title: "Cornelius Hiebert") Cornelius ""Don"" Hiebert (August 2, 1862 – March 21, 1919) was . . .
(Title: "Alexander Livingstone (Alberta politician)") Alexander Livingstone (August 2 . . . </information>

<think>The information provided initially presents George P. Smith as someone who bought a trading store in 1902
after visiting Duhamel in Alberta and developed a relationship with influential settlers and with Métis and Saulteaux
peoples. He formed a lucrative fur trading business, leading to the establishment of a trading hub important for fur
trade. This matches well with the criteria outlined in the question. The second document did not specifically mention
fur trade, while the third one was about a prominent figure, but not specifically in the context of fur trading. So it
strongly indicates that George P. Smith is the person sought.
Given the direct relevance of George P. Smith’s background and activities in developing a fur trading hub and
formin g relationships with indigenous communities in Alberta, the answer to the question appears to be George P.
Smith.</think>
<answer> George P. Smith </answer>

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D PROMPTS

Prompts used in our search self-play experiments are listed as follows.

Proposer Prompt

You are an expert question creator. Your primary task is to reverse-engineer a challenging
question from a given answer. The question you create must require a solver to perform ’n’
sequential searches to solve it. I will provide you with the target answer and the required
number of searches, ’n’.

Your Creation Process & Tools:
1. Analyze Scope and Target: Begin by analyzing the provided ’Answer’ (your target)
and the required number of searches, ’n’ (the path’s length). This establishes your final
destination and the complexity of the logical chain you need to construct.

2. Build the Question by Working Backwards:
This is the core of the process. You will start from the destination and work your way

back to the starting point, step by step.
2.1. The Crucial First Step: Connection and Discovery

Start with the final ’Answer’, but do not search for the answer itself directly.
Instead, first analyze the ’Answer’. Brainstorm and identify a closely related yet distinct

’Associated Concept’ (e.g., a related historical event, a key figure, a geographic location, a
unique attribute, its parent category, etc.).

Perform an exploratory search with the goal of finding the ’bridging information’ that
connects this ’Associated Concept’ to your final ’Answer’.

From your search results, extract a unique, verifiable ’preceding fact’. This is a piece
of information that, when searched, would logically lead a user to your final ’Answer’. This
’preceding fact’ becomes the answer to Search #n-1.

2.2. Iterate Backwards
Now, treat this newly found ’preceding fact’ as your new target.
From this point on, you can search for this new target directly to find the preceding

piece of information that leads to it. This becomes the answer to the next search in the
backward chain (Search #n-2).

2.3. Construct the Full Chain
Continuously repeat the iterative process from Step 2.2, using each new fact as the

target for the next backward search, until you have constructed a complete logical chain of
’n’ links.

The very first piece of information you uncover in this process (the one at the start of
the chain) will become the initial clue for your question.

3. You must conduct reasoning inside <think> and </think> first every time you get
new information. After reasoning, if you find you lack some knowledge, you can call a
search engine by <search> query </search>, and it will return the top searched results
between <information> and </information>. You can search as many times as
you want. If you find no further external knowledge needed, you can directly provide
the answer inside <question> and </question> without detailed illustrations. For
example, <question> xxx </question>.

Here are three example questions:
Question 1: {example1}
Question 2: {example2}
Question 3: {example3}

Critical Rules:
1. Strictly Fact-Based: You must not create questions based on assumptions. The entire
logical path to the solution must be grounded in the information you find through searching.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

2. No Spoilers: The question must not contain any direct clues that reveal the answer or the
intermediate steps.
3. Search is Mandatory: The question must be impossible to answer from general knowl-
edge alone. It must necessitate the search process you have designed.
4. Adhere to Search Count: The number of searches required to solve the question must
precisely match the specified ’search count’.
5. Unique Answer: The designed question must be deterministic, leading to a single,
unambiguous final answer. The clues at each step must be precise enough to prevent a
solver from reasonably arriving at a different, valid conclusion.

The answer I provided is: {answer}.
You need to create a question that requires {n} searches.
When you have enough information to construct a question, please first check whether the
constructed question meets all requirements, especially whether the question is too sim-
ple. After checking that all conditions are met, you need to provide the final constructed
question in your final response, placing the final question between <question> and
</question> tags, for example: <question> ... </question>.

RAG Solver Prompt

Answer the given question based on the provided materials. You should first conduct very
concise reasoning within 50 words, and then directly provide your answer without detailed
illustrations after saying ’Answer:’.

Materials: {materials}

Question: {question}

Solver Prompt (Search-R1 / ZeroSearch / Qwen series / LLaMA 3.1)

You are a helpful and harmless assistant.
Answer the given question. You must conduct reasoning inside <think> and </think>
first every time you get new information. After reasoning, if you find you lack some knowl-
edge, you can call a search engine by <search> query </search> and it will return the
top searched results between <information> and </information>. You can search
as many times as your want. If you find no further external knowledge needed, you can
directly provide the answer inside <answer> and </answer>, without detailed illustra-
tions. For example, <answer> Beijing </answer>. Question: {question}

Solver Prompt (R-Search)

You are a helpful assistant that can solve the given question step by step. For each step,
start by explaining your thought process. If additional information is needed, provide a
specific query enclosed in <search> and </search>. The system will return the top
search results within <observation> and </observation>. You can perform multi-
ple searches as needed. When you know the final answer, use <original_evidence>
and </original_evidence> to provide all potentially relevant original information
from the observations. Ensure the information is complete and preserves the original word-
ing without modification. If no searches were conducted or observations were made, omit
the evidence section. Finally, provide the final answer within <answer> and </answer>
tags. {question}

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

LLM-as-a-judge Prompt

Please determine whether the model’s answer is consistent with the reference answer:

Question: {question}
Model Answer: {prediction}
Reference Answer: {ground_truth}

Evaluation Criteria:
1. The model answer must accurately respond to the question and be consistent with the
reference answer in meaning.
2. For numerical questions, the values must be equal or very close.
3. For textual questions, the core meaning must be correct.
4. Differences in wording or language are allowed as long as the core answer is the same.
5. If the model answer includes the correct answer and does not contain conflicting
information, it is also considered correct.

Please respond only with "Correct" or "Incorrect". Do not provide any additional explana-
tion.

E USE OF LARGE LANGUAGE MODELS

Large Language Models were used to aid in the writing and polishing of this manuscript. Specifi-
cally, LLMs assisted with language refinement and improving clarity. All core content and intellec-
tual contributions are solely the work of the authors.

25

	Introduction
	Related Work
	Deep Search
	Self-Play in Large Language Models

	Methodology
	Search Self-play Design
	Search Self-play Modeling
	SSP Implementation

	Experiments
	Experimental Setups
	Main Results
	Ablation Studies
	Efficacy of Self-Play versus Fixed-Opponent Training
	Ablation on the RAG verification

	Conclusion
	Implementation Details
	Training Hyperparameter
	Rewards Design
	Others

	Additional Experimental Results
	Training Dynamics
	Ablation on Batch Completion Strategies
	The Impact of Proposer's Reward Design

	Self-play Examples
	Prompts
	Use of Large Language Models

