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ABSTRACT

How to achieve better end-to-end speech translation (ST) by leveraging (text)
machine translation (MT) data? Among various existing techniques, multi-task
learning is one of the effective ways to share knowledge between ST and MT, thus
additional MT data can help to learn the source-to-target mapping. However, due
to the differences between speech and text, there is always a gap between ST and
MT. In this paper, we first aim to understand this modality gap from the target-side
representation differences. We also link the modality gap to another well-known
problem in neural machine translation: exposure bias, where the modality gap is
relatively small during training except for some hard cases, but keeps increasing
during inference due to the cascading effect. To address these problems, we pro-
pose the Cross-modal Regularization with Scheduled Sampling (CRESS) method.
Specifically, we regularize the output predictions of ST and MT, whose target-side
contexts are derived by sampling between ground truth words and self-generated
words with a varying probability. Furthermore, to handle the difficult cases with
large modality gaps, we introduce token-level adaptive training to assign differ-
ent training weights to target tokens according to the extent of the modality gap.
Experiments and analysis show that our approach effectively bridges the modality
gap, and achieves significant improvements over a strong baseline, which estab-
lishes new state-of-the-art results in all eight directions of the MuST-C dataset.1

1 INTRODUCTION

End-to-end Speech Translation (ST) aims to translate speech signals to text in another language
directly. Compared to traditional cascaded methods, which combine automatic speech recognition
(ASR) and machine translation (MT) models in a pipeline manner, end-to-end ST could avoid error
propagation and high latency. Recently, end-to-end ST models have achieved comparable or even
better results than cascaded ST models (Xu et al., 2021a; Fang et al., 2022).

However, due to the scarcity of ST data, it is difficult to learn a mapping from source speech to target
text directly. Previous works often leverage MT data to help the training with multi-task learning
(Ye et al., 2022; Tang et al., 2021a). By sharing encoder and decoder between ST and MT, the
model tends to learn similar representations from different modalities. In this way, the auxiliary
MT task can help build the source-to-target mapping. However, there remains a gap between ST
and MT due to the modality gap between speech and text. In this paper, we measure the modality
gap with the differences between the last decoder layer representations of ST and MT, because the
representation of this layer will be mapped into the embedding space to obtain the final translation.
A larger modality gap potentially causes different predictions, which makes ST lags behind MT.

Thanks to multi-task learning, we observe that when training with teacher forcing, where both ST
and MT use ground truth words as target-side contexts, the modality gap is relatively small except for
some difficult cases. However, the exposure bias problem (Bengio et al., 2015; Ranzato et al., 2016)
can make things worse. During inference, both ST and MT predict the next token conditioned on
their previous generated tokens, which may be different since the modality gap. Moreover, different
predictions at the current step may lead to even more different predictions at the next step. As a
result, we observe that the modality gap will increase step by step due to this cascading effect.

1Code is available in the supplementary material.
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To solve these problems, we propose the Cross-modal Regularization with Scheduled Sampling
(CRESS) method. To reduce the effects of exposure bias, we introduce scheduled sampling during
training, where the target-side contexts are sampled between ground truth words and self-generated
words with a changing probability. Based on this, to bridge the modality gap, we propose to regular-
ize ST and MT in the output space by minimizing a Kullback-Leibler (KL) divergence loss between
their predictions. This will encourage greater consistency between ST and MT predictions based
on partially self-generated words, which is closer to the inference mode. Besides, to handle the
difficult cases, we introduce token-level adaptive training for CRESS, where each target token is
given a varying weight during training according to the scale of the modality gap. In this way, cases
with a significant modality gap will be emphasized. We conduct experiments on the ST benchmark
dataset MuST-C (Di Gangi et al., 2019a). Results show that our approach significantly outperforms
the strong multi-task learning baseline, with 1.8 BLEU improvements in the base setting and 1.3
BLEU improvements in the expanded setting on average, which establishes new state-of-the-art re-
sults in all eight translation directions. Further analysis shows that our approach effectively bridges
the modality gap, and improves the translation quality, especially for long sentences.

2 BACKGROUND

2.1 END-TO-END SPEECH TRANSLATION

End-to-end Speech Translation (ST) aims to translate speech in the source language to text in the
target language directly. The corpus of ST is usually composed of triplet data D = {(s,x,y)}.
Here s = (s1, ..., s|s|) is the sequence of audio wave, x = (x1, ..., x|x|) is the transcription and
y = (y1, ..., y|y|) is the translation. Similar to previous work (Ye et al., 2021; Fang et al., 2022),
our ST model is composed of an acoustic encoder and a translation model. The acoustic encoder is
a pre-trained HuBERT (Hsu et al., 2021) followed by two convolutional layers to reduce the length
of the speech sequence. The translation model follows standard Transformer (Vaswani et al., 2017)
encoder-decoder architecture, where the encoder contains N Transformer encoder layers, and the
decoder contains N Transformer decoder layers. The translation model is first pre-trained with text
translation data. The whole model is optimized by minimizing a cross-entropy loss:

LST = −
|y|∑
i=1

log p(yi|s,y<i), (1)

p(yi|s,y<i) ∝ exp(W · f(s,y<i)), (2)
where f is a mapping from the input speech s and target prefix y<i to the representation of the last
decoder layer at step i. W is used to transform the dimension to the size of the target vocabulary.

2.2 MULTI-TASK LEARNING FOR SPEECH TRANSLATION

Multi-task learning (MTL) has been proven useful to share knowledge between text translation and
speech translation (Tang et al., 2021a), where an auxiliary MT task is introduced during training:

LMT = −
|y|∑
i=1

log p(yi|x,y<i), (3)

p(yi|x,y<i) ∝ exp(W · f(x,y<i)). (4)
Note that both modalities (i.e., speech and text) share all transformer encoder and decoder layers.
Finally, the training objective is written as follows:

LMTL = LST + LMT. (5)

3 PRELIMINARY STUDIES ON THE MODALITY GAP

With multi-task learning, most of the knowledge of MT can be transferred to ST. However, the
performance gap between ST and MT still exists. In this section, we first did some preliminary
studies with our multi-task learning baseline to understand where this gap comes from.
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3.1 DEFINITION OF THE MODALITY GAP
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Figure 1: Distribution of the modality gap on
MuST-C En→De dev set with kernel den-
sity estimation (KDE).

The gap between ST and MT is related to the pre-
diction difference at each decoding step, while the
prediction depends only on the representation of the
last decoder layer. Therefore, we define the modality
gap at the i-th decoding step as follows:

G(s,y<i,x,y<i) = 1− cos(f(s,y<i), f(x,y<i)),
(6)

where cos is the cosine similarity function
cos(a,b) = a⊤b/∥a∥∥b∥. A larger cosine
similarity indicates a smaller modality gap.

To understand the extent of the modality gap, we
count the frequency of G(s,y<i,x,y<i) based on
all triples (s,x,y<i) in MuST-C (Di Gangi et al.,
2019a) En→De dev set. As shown in Figure 1,
the modality gap is relatively small in most cases
(< 10%), which proves the effectiveness of multi-
task learning in sharing knowledge across ST and
MT. However, we also observe a long-tail problem:
there is a large difference between ST and MT representations in some difficult cases.

3.2 CONNECTION BETWEEN EXPOSURE BIAS AND MODALITY GAP
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Figure 2: Curves of the average modality gap
on MuST-C En→De dev set with decod-
ing steps under teacher forcing, beam search,
and greedy search strategies. Note that for
beam search we have several candidate trans-
lations. The modality gap is calculated with
the average representation of all candidates.
Here we set a beam size of 8.

Exposure bias, a discrepancy between training and
inference, is a well-known problem in neural ma-
chine translation (Bengio et al., 2015; Ranzato et al.,
2016; Wang & Sennrich, 2020; Arora et al., 2022).
During training with teacher forcing, both ST and
MT predict the next token conditioned on the ground
truth target prefix y<i. However, during inference,
the predictions of ST and MT depend on their pre-
vious generated tokens by the model itself (denoted
as ŷs

<i and ŷx
<i for ST and MT respectively), which

might be different due to the modality gap. Further-
more, different predictions at the current decoding
step result in different target prefixes for ST and MT,
potentially causing even more different predictions
at the next step. The such cascading effect will en-
large the modality gap step by step during inference.

To prove our hypothesis, we present the curves of
the modality gap with decoding steps under teacher
forcing, beam search, and greedy search strategies,
respectively. As shown in Figure 2, with teacher
forcing, there is no significant difference in the
modality gap across steps, as both ST and MT de-
pend on the same target prefix at any step, so the
modality gap G(s,y<i,x,y<i) only comes from the
difference between input speech s and text x. However, when decoding with greedy search, due to
the cascading effect mentioned above, the self-generated target prefix ŷs

<i and ŷx
<i become more

and more different, which makes the modality gap G(s, ŷs
<i,x, ŷ

x
<i) keep increasing with decoding

steps. A simple way to alleviate this problem is beam search, which considers several candidate
tokens rather than a single one at each decoding step. When there is an overlap between candidate
tokens of ST and MT, the cascading effect will be reduced, thus slowing down the increase of the
modality gap.
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Figure 3: Overview of our proposed CRESS. Note that the step of selecting predicted words has no
gradient calculation and is fully parallelized.

4 METHOD: CRESS

Our preliminary studies in Section 3 show that:

• The modality gap will be enlarged during inference due to exposure bias.

• The modality gap may be significant in some difficult cases.

Inspired by these, we propose the Cross-modal Regularization with Scheduled Sampling (CRESS)
method, to bridge the modality gap, especially in inference mode (Section 4.1). Furthermore, we
propose a token-level adaptive training method for CRESS to handle the difficult cases (Section 4.2).

4.1 CROSS-MODAL REGULARIZATION WITH SCHEDULED SAMPLING

To bridge the modality gap during inference, we adopt scheduled sampling for both ST and MT to
approximate the inference mode at training time. After that, we add a regularization loss between
the predictions of ST and MT based on part of their self-generated words as context. This allows for
more consistent predictions between ST and MT during inference, thus reducing the performance
gap between ST and MT. Figure 3 illustrates the main framework of our method.

Scheduled Sampling Scheduled sampling (Bengio et al., 2015), which samples between ground
truth words and self-generated words, i.e. predicted words, with a certain probability as target-side
context, has proven useful for alleviating exposure bias. In general, the input at the {i + 1}-th
decoding step should be the ground truth word yi during training. With scheduled sampling, it can
also be substituted by a predicted word. Next we describe how to select the predicted word ŷsi for ST
and ŷxi for MT. For ST, we follow Zhang et al. (2019) to select the predicted word ŷsi by sampling
from the word distribution p(yi|s,y<i) in Equation (2) with Gumbel-Max technique (Gumbel, 1954;
Maddison et al., 2014), a method to draw a sample from a categorical distribution:

η = − log(− log u), (7)
ŷsi = argmax (W · f(s,y<i) + η) , (8)

where η is the Gumbel noise calculated from the uniform noise u ∼ U(0, 1). Similarly, for MT,
there is:

ŷxi = argmax (W · f(x,y<i) + η) . (9)

Note that we may omit the superscript and denote the predicted word for both ST and MT by ŷi in
the following.
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How to select between the ground truth word yi and the predicted word ŷi? Similar to Bengio et al.
(2015); Zhang et al. (2019), we randomly sample from both of them with a varying probability. We
denote the probability of selecting from the ground truth word as p∗. At the beginning of training,
since the model is not yet well trained, we select more from the ground truth words (with larger p∗)
to help the model converge. In the later stages of training, we select more from the predicted words
(with smaller p∗), which is closer to the situation during inference. To achieve this, we decrease p∗

with a function of the index of training epochs e:

p∗ =
µ

µ+ exp(e/µ)
, (10)

where µ is a hyper-parameter. With scheduled sampling, the target-side context becomes ỹ =
(ỹ1, ..., ỹ|y|), where

ỹi =

{
yi, p ≤ p∗

ŷi, p > p∗
, (11)

where p is sampled from the uniform distribution U(0, 1). Using ỹs and ỹx to denote the target-side
context of ST and MT respectively, the loss functions of ST and MT become:

LCRESS
ST = −

|y|∑
i=1

log p(yi|s, ỹs
<i), (12)

LCRESS
MT = −

|y|∑
i=1

log p(yi|x, ỹx
<i), (13)

Cross-modal Regularization To bridge the modality gap in inference mode, we expect the pre-
dictions of ST and MT with scheduled sampling to be consistent. Inspired by recent works of
consistency training (liang et al., 2021; Guo et al., 2022), we regularize ST and MT in the output
space. Specifically, we minimize the bidirectional Kullback-Leibler (KL) divergence between the
output distributions of ST and MT at each decoding step:

LCRESS
Reg =

|y|∑
i=1

1

2
(DKL(p(yi|s, ỹs

<i)∥p(yi|x, ỹx
<i)) +DKL(p(yi|x, ỹx

<i)∥p(yi|s, ỹs
<i))). (14)

With the translation loss in Equation (12) and (13), the final training objective is as follows:
LCRESS = LCRESS

ST + LCRESS
MT + λLCRESS

Reg , (15)

where λ is the hyper-parameter to control the weight of LCRESS
Reg .

4.2 TOKEN-LEVEL ADAPTIVE TRAINING FOR CRESS

As we mentioned above, the modality gap might be significant in some difficult cases. Inspired by
the idea of token-level adaptive training (Gu et al., 2020; Xu et al., 2021b; Zhang et al., 2022b),
we propose to treat each token adaptively according to the scale of the modality gap. The training
objectives in Equation (12), (13), and (14) are modified as follows:

LCRESS
ST = −

|y|∑
i=1

wi · log p(yi|s, ỹs
<i), (16)

LCRESS
MT = −

|y|∑
i=1

wi · log p(yi|x, ỹx
<i), (17)

LCRESS
Reg =

|y|∑
i=1

1

2
wi · (DKL(p(yi|s, ỹs

<i)∥p(yi|x, ỹx
<i)) +DKL(p(yi|x, ỹx

<i)∥p(yi|s, ỹs
<i))), (18)

where wi is the token-level weight defined by a linear function of the modality gap:
wi = B + S ·G(s, ỹs

<i,x, ỹ
x
<i), (19)

where B (base) and S (scale) are two hyper-parameters to control the lower bound and magnitude of
change of wi. In this way, cases with a large modality gap will be assigned a larger weight and thus
emphasized during training. Note that the modality gap is computed on-the-fly during training.
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5 EXPERIMENTS

5.1 DATASETS

ST Datasets We conduct experiments on MuST-C (Di Gangi et al., 2019a) dataset, a multilingual
speech translation dataset containing 8 translation directions: English (En) to German (De), French
(Fr), Spanish (Es), Romanian (Ro), Russian (Ru), Italian (It), Portuguese (Pt) and Dutch (Nl). It
contains at least 385 hours of TED talks with transcriptions and translations for each direction. We
use dev set for validation and tst-COMMON set for evaluation.

External MT Datasets We also introduce external MT datasets to pre-train our translation model
in the expanded setting. For En→De/Fr/Es/Ro/Ru directions, we introduce data from WMT. For
En→It/Pt/Nl, we introduce data from OPUS1002 (Zhang et al., 2020).

Tabel 3 in Appendix A lists the statistics of all ST and external MT datasets.

5.2 EXPERIMENTAL SETUPS

Pre-processing For speech input, we use the raw 16-bit 16kHz mono-channel audio wave. For
text input, all sentences in ST and external MT datasets are tokenized and segmented into subwords
using SentencePiece3. For each translation direction, the vocabulary is learned from the source
and target texts from the ST dataset, with a size of 10K. For the external MT datasets (WMT and
OPUS100), we filter out parallel sentence pairs whose length ratio exceeds 1.5.

Model Setting We use the pre-trained HuBERT model4 to encode the input audio. Two 1-
dimensional convolutional layers after HuBERT are set to kernel size 5, stride size 2, and padding 2.
For the translation model, we employ post-LN (layer normalization) Transformer architecture with
the base configuration, which contains 6 encoder layers and 6 decoder layers, with 512 hidden states,
8 attention heads, and 2048 feed-forward hidden states for each layer. The translation model is first
pre-trained with MT task using transcription-translation pairs from the ST dataset (base setting),
and also sentence pairs from the external MT dataset (expanded setting).

During MT pre-training, each batch has up to 33k text tokens. The maximum learning rate is set
to 7e-4. During fine-tuning, each batch contains up to 16M audio frames. The maximum learning
rate is set to 1e-4. We use Adam optimizer (Kingma & Ba, 2015) with 4k warm-up steps. We set
dropout to 0.1 and label smoothing to 0.1. During inference, we average the checkpoints of the last
10 epochs for evaluation. We use beam search with a beam size of 8. We use scareBLEU5 (Post,
2018) to compute case-sensitive detokenized BLEU (Papineni et al., 2002) scores and the statistical
significance of translation results with paired bootstrap resampling6 (Koehn, 2004). We implement
our model with fairseq7 (Ott et al., 2019). All models are trained on 4 Nvidia RTX 3090 GPUs.

For scheduled sampling, the decay parameter is µ = 15 (See Appendix B for details). For
cross-modal regularization, the weight parameter is λ = 1.0. For token-level adaptive train-
ing, we did a grid search for base and scale parameters on MuST-C En→De dev set with
B ∈ {0.6, 0.7, 0.8, 0.9, 1.0} and S ∈ {0.05, 0.10, 0.20, 0.50, 1.00}. Finally, we set B = 0.7 and
S = 0.05 for all translation directions.

Baseline Systems We include several strong end-to-end ST systems for comparison: Fairseq ST
(Wang et al., 2020a), RevisitST (Zhang et al., 2022a), DDT (Le et al., 2020), LAT (Le et al., 2021),
Chimera (Han et al., 2021), XSTNet (Ye et al., 2021), TDA (Du et al., 2022), STEMM (Fang et al.,
2022), ConST (Ye et al., 2022), TaskAware (Indurthi et al., 2021), STPT (Tang et al., 2022). Besides,
the multi-task learning baseline in Section 2.2 is also included as a strong baseline, which is denoted
as MTL. We use CRESS to denote our method with token-level adaptive training (Section 4.2).

2http://opus.nlpl.eu/opus-100.php
3https://github.com/google/sentencepiece
4https://dl.fbaipublicfiles.com/hubert/hubert_base_ls960.pt
5https://github.com/mjpost/sacrebleu
6sacreBLEU signature:nrefs:1|bs:1000|seed:12345|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
7https://github.com/pytorch/fairseq
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Table 1: BLEU scores on MuST-C tst-COMMON set. The external MT datasets are only used in the
expanded setting. Scores with grey background indicate the previous state-of-the-art results of each
translation direction. * and ** mean the improvements over MTL baseline is statistically significant
(p < 0.05 and p < 0.01, respectively). † uses a pre-trained acoustic encoder (e.g., Wav2vec 2.0 or
HuBERT). ‡ STPT (Tang et al., 2022) jointly pre-trains speech and text on large-scale datasets.

Models BLEU
En→De En→Fr En→Es En→Ro En→Ru En→It En→Pt En→Nl Avg.

Base setting (w/o external MT data)

Fairseq ST (Wang et al., 2020a) 22.7 32.9 27.2 21.9 15.3 22.7 28.1 27.3 24.8
RevisitST (Zhang et al., 2022a) 23.0 33.5 28.0 23.0 15.6 23.5 28.2 27.1 25.2
DDT (Le et al., 2020) 23.6 33.5 28.1 22.9 15.2 24.2 30.0 27.6 25.6
TDA (Du et al., 2022) 25.4 36.1 29.6 23.9 16.4 25.1 31.1 29.6 27.2
†XSTNet (Ye et al., 2021) 25.5 36.0 29.6 25.1 16.9 25.5 31.3 30.0 27.5
†STEMM (Fang et al., 2022) 25.6 36.1 30.3 24.3 17.1 25.6 31.0 30.1 27.5
†ConST (Ye et al., 2022) 25.7 36.8 30.4 24.8 17.3 26.3 32.0 30.6 28.0
†MTL 25.3 35.7 30.5 23.8 17.2 26.0 31.3 29.5 27.4
†CRESS 27.2** 37.8** 31.9** 25.9** 18.7** 27.3** 33.0** 31.6** 29.2

Expanded setting (w/ external MT data)

LAT (Le et al., 2021) 24.7 35.0 28.7 23.8 16.4 25.0 31.1 28.8 26.7
TaskAware (Indurthi et al., 2021) 28.9 - - - - - - - -
†Chimera (Han et al., 2021) 27.1 35.6 30.6 24.0 17.4 25.0 30.2 29.2 27.4
†XSTNet (Ye et al., 2021) 27.1 38.0 30.8 25.7 18.5 26.4 32.4 31.2 28.8
†STEMM (Fang et al., 2022) 28.7 37.4 31.0 24.5 17.8 25.8 31.7 30.5 28.4
†ConST (Ye et al., 2022) 28.3 38.3 32.0 25.6 18.9 27.2 33.1 31.7 29.4
‡STPT (Tang et al., 2022) - 39.7 33.1 - - - - - -
†MTL 27.7 38.5 32.8 24.9 19.0 26.5 32.0 30.8 29.0
†CRESS 29.4** 40.1** 33.2* 26.4** 19.7** 27.6** 33.6** 32.3** 30.3

5.3 MAIN RESULTS ON MUST-C DATASET

Table 1 shows the results on MuST-C tst-COMMON set in all eight directions. First, we noticed that
our implemented MTL is a relatively strong baseline compared with existing approaches. Second,
our proposed CRESS significantly outperforms MTL in both settings, with 1.8 BLEU improvement
in the base setting and 1.3 BLEU improvement in the expanded setting on average, which establishes
new state-of-the-art results on MuST-C dataset, demonstrating the superiority of our approach. Be-
sides, we also report ChrF++ scores in Appendix E.

6 ANALYSIS AND DISCUSSION

Table 2: BLEU scores on MuST-C En→De
dev set with different combinations of
training techniques. TAT. indicates token-
level adaptive training. Reg. indicates
cross-modal regularization. SS. indicates
scheduled sampling. * and ** mean the im-
provements over MTL baseline (Line 5)
is statistically significant (p < 0.05 and
p < 0.01, respectively).

TAT. Reg. SS. BLEU
✓ ✓ ✓ 28.4**
× ✓ ✓ 28.0**
× ✓ × 27.4*
× × ✓ 27.0
× × × 26.9

Results in Section 5.3 show the superiority of our
method. To better understand CRESS, we explore sev-
eral questions in this section. All analysis experiments
are conducted on MuST-C En→De dev set in the ex-
panded setting.

(1) Do scheduled sampling, cross-modal regular-
ization, and token-level adaptive training all mat-
ter? Scheduled sampling, regularization, and token-
level adaptive training are effective techniques to im-
prove the performance of translation models. To un-
derstand the role of each, we conduct ablation experi-
ments in Table 2. When training with scheduled sam-
pling only (Line 4), we observe a slight improvement
of 0.1 BLEU, which is probably due to the alleviation
of exposure bias. When training with cross-modal reg-
ularization only (Line 3), which encourages the consis-
tency between predictions of ST and MT with ground
truth target side context, we observe an improvement
of 0.5 BLEU. If we combine both together (Line 2),
we obtain a much more significant boost of 1.1 BLEU,
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Figure 4: Distributions of the modality gap on
MuST-C En→De dev set of MTL and CRESS
with kernel density estimation (KDE).
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Figure 5: Curves of the average modality gap
with decoding steps under three strategies. The
dotted line refers to MTL (same as Figure 2),
and the solid line refers to CRESS.

which proves that both scheduled sampling and cross-modal regularization play a crucial role in
our method. Furthermore, with token-level adaptive training, the improvement comes to 1.5 BLEU,
which shows the benefit of treating different tokens differently according to the modality gap.

(2) Does CRESS successfully bridge the modality gap? To validate whether our approach success-
fully bridges the modality gap between ST and MT, we revisit the experiments in Section 3. Figure
4 shows the distribution of the modality gap with teacher forcing. We observe a general decrease
in the modality gap compared with MTL. We also plot the curves of the modality gap with decod-
ing steps of CRESS under teacher forcing, greedy search, and beam search strategies. As shown
in Figure 5, our approach significantly slows down the increase of the modality gap compared with
MTL baseline, suggesting that the predictions of ST and MT are more consistent during inference,
demonstrating the effectiveness of our method in bridging the modality gap.

(3) How base and scale hyper-parameters influence token-level adaptive training? B (base)
and S (scale) are two important hyper-parameters in token-level adaptive training. We investigate
how different combinations of B and S influence performance. As shown in Figure 6, token-level
adaptive training can bring improvements over CRESS in most cases. In particular, it usually per-
forms better with smaller B and smaller S, leading to a boost of up to 0.4 BLEU. We conclude that
treating different tokens too differently is also undesirable.

(4) Is CRESS more effective for longer sentences? The autoregressive model generates the trans-
lation step by step, so the translation of long sentences would be more challenging. We divide the
MuST-C En→De dev set into several groups according to the length of target sentences, and com-
pute the BLEU scores in each group separately, which is shown in Figure 7. We observe that CRESS
achieve large improvements over the baseline in all groups, especially for sentences longer than 45,
which shows the superiority of our method when translating long sentences.

7 RELATED WORK

End-to-end Speech Translation End-to-end speech translation (Bérard et al., 2016; Weiss et al.,
2017) has shown great potential for overcoming error propagation and reducing latency compared
to traditional cascaded ST systems (Salesky et al., 2019; Di Gangi et al., 2019b;c; Bahar et al.,
2019a). One challenge in training end-to-end ST models is the scarcity of ST data. To address this
problem, researchers employed MT data to help training with techniques like pre-training (Bansal
et al., 2019; Stoian et al., 2020; Wang et al., 2020c;d; Alinejad & Sarkar, 2020; Le et al., 2021; Dong
et al., 2021a; Zheng et al., 2021; Xu et al., 2021a; Tang et al., 2022), multi-task learning (Le et al.,
2020; Dong et al., 2021b; Ye et al., 2021; Tang et al., 2021a;b; Indurthi et al., 2021), knowledge
distillation (Liu et al., 2019; Inaguma et al., 2021), and data augmentation (Jia et al., 2019; Bahar
et al., 2019b; Lam et al., 2022). However, due to the modality gap between speech and text, it is
still difficult to fully exploit MT data with the above techniques. To overcome the modality gap,
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Han et al. (2021) projects features of both speech and text into a shared semantic space. Fang et al.
(2022) introduces mixup between features of speech and text to learn similar representations for
them. Ye et al. (2022) brings sentence-level representations closer with cross-modal contrastive
learning. Bapna et al. (2021; 2022); Chen et al. (2022); Tang et al. (2022) jointly train on speech
and text and design training objectives to align two modalities. Different from previous work, in
this work, we understand the modality gap from the target-side representation differences, and show
its connection to exposure bias. Based on this, we propose the Cross-modal Regularization with
Scheduled Sampling (CRESS) method to bridge the modality gap during inference.

Exposure Bias Exposure bias indicates the discrepancy between training and inference. Several
approaches employ Reinforcement Learning (RL) (Ranzato et al., 2016; Shen et al., 2016; Bahdanau
et al., 2017) instead of Maximum Likelihood Estimation (MLE) to avoid this problem. However,
Wu et al. (2018) shows that RL-based training is unstable due to the high variance of gradient
estimation. An alternative and simpler approach is scheduled sampling (Bengio et al., 2015), which
samples between ground truth words and self-generated words with a changing probability. Zhang
et al. (2019) extends it with Gumbel noise for more robust training. In this paper, we adopt this
approach to approximate the inference mode due to its training stability and low training cost.

Output Regularization for MT Regularization on the output space has proved useful for machine
translation. liang et al. (2021) proposes to regularize the output predictions of two sub-models
sampled by dropout. Guo et al. (2022) regularizes the output predictions of models before and after
input perturbation. In this paper, we turn to regularize the output predictions across modalities,
which encourages more consistent predictions for ST and MT.

Token-level Adaptive Training Token-level adaptive training for MT is first proposed in Gu et al.
(2020), which assigns larger weights to low-frequency words to prevent them from being ignored.
Xu et al. (2021b); Zhang et al. (2022b) computes the weight with bilingual mutual information. In
this paper, we compute the weights with the modality gap between ST and MT.

8 CONCLUSION

In this paper, we propose a simple yet effective method CRESS to regularize the model predictions
of ST and MT, whose target-side contexts contain both ground truth words and self-generated words
with scheduled sampling. Based on this, we further propose a token-level adaptive training method
to handle difficult cases. Our method establishes new state-of-the-art results on MuST-C dataset.
Further analysis shows that our method can effectively bridge the modality gap and improve the
translation quality, especially for long sentences. In the future, we will explore how to apply our
method to other tasks.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Ashkan Alinejad and Anoop Sarkar. Effectively pretraining a speech translation decoder with
machine translation data. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 8014–8020, Online, November 2020. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.644. URL https:
//aclanthology.org/2020.emnlp-main.644.

Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty,
Reuben Morais, Lindsay Saunders, Francis M. Tyers, and Gregor Weber. Common voice: A
massively-multilingual speech corpus. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache,
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A STATISTICS OF ALL DATASETS

Table 3: Statistics of all datasets. #sents refers to the number of parallel sentence pairs.

ST (MuST-C) External MT
En→ hours #sents name #sents

De 408 234K WMT16 3.9M
Fr 492 280K WMT14 31.2M
Es 504 270K WMT13 14.2M
Ro 432 240K WMT16 0.6M
Ru 489 270K WMT16 1.9M
It 465 258K OPUS100 0.7M
Pt 385 211K OPUS100 0.7M
Nl 442 253K OPUS100 0.7M

B THE CHOICE OF DECAY PARAMETER IN SCHEDULED SAMPLING

In scheduled sampling, the probability of selecting the ground truth word p∗ keeps decreasing during
training as the function in Equation (10). Here, the hyper-parameter µ is used to control the shape
of the function. As µ increases, the probability p∗ decreases more slowly, and vice versa. We
investigate the impact of µ in Figure 8, and find that (1) the model performs worse when p∗ drops
too quickly, and (2) when µ is within a reasonable range, there is not much impact on the final BLEU
score. We use µ = 15 in our experiments.
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Figure 8: BLEU scores on MuST-C En→De dev set (expanded setting) with different µ. Here
token-level adaptive training is not used for training.

C DISCUSSION ABOUT THE TRAINING SPEED

During training, our approach requires an additional forward pass to select predicted words com-
pared with baseline, which will impair the speed of training. Practically, we find the training time
for 1 epoch of CRESS is 1.12 times longer than MTL, which is actually negligible. This is because
the step of selecting predicted words is fully parallel and has no gradient calculation, which does not
incur a significant time overhead.
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D IMPACT OF DIFFERENT ACOUSTIC ENCODERS

Our model is composed of an acoustic encoder and a translation model. To investigate the impact of
different acoustic encoders, we also conduct experiments using Wav2vec 2.08 (Baevski et al., 2020)
as the acoustic encoder. As shown in Table 4, we find that (1) HuBERT performs slightly better than
Wav2vec 2.0 with an improvement of 0.5 BLEU, and (2) our proposed CRESS achieves consistent
improvements with different acoustic encoders.

Table 4: BLEU scores on MuST-C En→De tst-COMMON set (expanded setting) with different
acoustic encoders.

Acoustic Encoder MTL CRESS

HuBERT (Hsu et al., 2021) 27.5 29.4
Wav2vec 2.0 (Baevski et al., 2020) 27.0 28.9

E CHRF++ SCORES ON MUST-C DATASET

We also report ChrF++ score (Popović, 2017) using sacreBLEU toolkit9 on MuST-C dataset in Table
5. We observe that CRESS outperforms MTL with 1.4 ChrF++ improvement in the base setting and
1.0 ChrF++ improvement in the expanded setting.

Table 5: ChrF++ scores on MuST-C tst-COMMON set. The external MT datasets are only used in
the expanded setting. * and ** mean the improvements over MTL baseline is statistically significant
(p < 0.05 and p < 0.01, respectively).

Models ChrF++
En→De En→Fr En→Es En→Ro En→Ru En→It En→Pt En→Nl Avg.

Base setting (w/o external MT data)

MTL 52.4 60.4 56.4 50.9 41.7 52.6 57.3 56.1 53.5
CRESS 54.0** 62.0** 57.6** 52.4** 43.1** 53.8** 58.5** 57.6** 54.9

Expanded setting (w/ external MT data)

MTL 54.9 62.6 58.6 51.9 44.2 53.4 57.9 56.9 55.0
CRESS 56.1** 63.7** 58.9* 53.1** 44.5* 54.2** 59.3** 58.3** 56.0

F RESULTS ON COVOST 2 EN→DE

We also conduct experiments on CoVoST 2 (Wang et al., 2020b) to examine the performance of
our approach on large datasets. CoVoST 2 is a large-scale multilingual speech translation corpus
which covers translations from 21 languages into English and from English into 15 languages. It
is one of the largest open ST dataset available currently. In this paper, we evaluate our approach
on the En→De direction, which contains 430 hours of speech with annotated transcriptions and
translations. We use dev set for validation and test set for evaluation.

We use the same pre-processing, model configuration, and hyper-parameters as MuST-C (see details
in Section 5.2). The results are shown in Table 6. First, we find our CRESS significantly outperforms
the MTL baseline, with 1.8 BLEU improvement in the base setting and 1.6 BLEU improvement
in the expanded setting, which demonstrates the effectiveness and generalization capability of our
method across different datasets, especially on the large-scale dataset. Second, our result is compet-
itive with previous methods, although they use larger audio datasets (≥60K hours) and larger model
size (≥300M), while we only use 960 hours of audio data and 155M model parameters.

8https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
9sacreBLEU signature: nrefs:1|bs:1000|seed:12345|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.0.0
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Table 6: BLEU scores on CoVoST 2 En→De test set. LS-960: LibriSpeech (Panayotov et al.,
2015) (960 hours). LV-60K: Libri-Light (Kahn et al., 2020) (60K hours). VP-400K: VoxPopuli
(Wang et al., 2021a) (372K hours). MLS: Multilingual LibriSpeech (Pratap et al., 2020) (50K hours).
CV: CommonVoice (Ardila et al., 2020) (7K hours). VL: VoxLingua107 (Valk & Alumäe, 2021)
(6.6K hours). BBL: BABEL (Gales et al., 2014) (1K hours).

Models Audio Datasets #Params BLEU
wav2vec-2.0 (LS-960) (Wang et al., 2021b) LS-960 300M 20.5
wav2vec-2.0 (LV-60K) (Wang et al., 2021b) LV-60K 300M 25.5
wav2vec-2.0 + Self-training (LV-60K) (Wang et al., 2021b) LV-60K 300M 27.1
LNA (Joint Training) (Li et al., 2021) LV-60K 1.05B 25.8
SLAM-TLM (Bapna et al., 2021) LV-60K 600M 27.5
XLS-R (0.3B) (Babu et al., 2022) VP-400K, MLS, CV, VL, BBL 317M 23.6
XLS-R (1B) (Babu et al., 2022) VP-400K, MLS, CV, VL, BBL 965M 26.2
XLS-R (2B) (Babu et al., 2022) VP-400K, MLS, CV, VL, BBL 2162M 28.3
MTL (base setting) LS-960 155M 21.4
CRESS (base setting) LS-960 155M 23.2 (+1.8)
MTL (expanded setting) LS-960 155M 25.1
CRESS (expanded setting) LS-960 155M 26.7 (+1.6)

G PERFORMANCE OF TEXT TRANSLATION

Since our method is built upon the multi-task learning framework, we also report the performance
of MT task. As shown in Table 7, our method not only brings improvements to ST, but also gives
a slight average boost of 0.3 BLEU to MT. We suggest that this may be due to the effect of regu-
larization. More importantly, we find that the performance gap between ST and MT for CRESS is
significantly reduced compared to the MTL baseline (6.0→5.0), which further demonstrates that
the improvement in ST performance is mainly due to the effective reduction of the modality gap.

Table 7: BLEU scores of both ST and MT on MuST-C tst-COMMON set (expanded setting). ∆
indicates the average gap in BLEU between ST and MT.

Models Task BLEU
En→De En→Fr En→Es En→Ro En→Ru En→It En→Pt En→Nl Avg.↑ ∆ ↓

MTL ST 27.7 38.5 32.8 24.9 19.0 26.5 32.0 30.8 29.0 6.0MT 33.5 46.6 38.3 30.9 22.1 33.0 38.6 36.7 35.0

CRESS
ST 29.4 40.1 33.2 26.4 19.7 27.6 33.6 32.3 30.3 5.0MT 34.1 46.6 38.1 31.1 22.4 33.3 39.5 37.6 35.3
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