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Abstract

We study the problem of fitting the high dimensional sparse linear regression
model with sub-Gaussian covariates and responses, where the data are provided by
strategic or self-interested agents (individuals) who prioritize their privacy of data
disclosure. In contrast to the classical setting, our focus is on designing mechanisms
that can effectively incentivize most agents to truthfully report their data while
preserving the privacy of individual reports. Simultaneously, we seek an estimator
which should be close to the underlying parameter. We attempt to solve the problem
by deriving a novel private estimator that has a closed-form expression. Based on
the estimator, we propose a mechanism which has the following properties via some
appropriate design of the computation and payment scheme: (1) the mechanism is
(o(1), O(n−Ω(1)))-jointly differentially private, where n is the number of agents;
(2) it is an o( 1n )-approximate Bayes Nash equilibrium for a (1− o(1))-fraction of
agents to truthfully report their data; (3) the output could achieve an error of o(1)
to the underlying parameter; (4) it is individually rational for a (1− o(1)) fraction
of agents in the mechanism; (5) the payment budget required from the analyst to
run the mechanism is o(1). To the best of our knowledge, this is the first study
on designing truthful (and privacy-preserving) mechanisms for high dimensional
sparse linear regression.

1 Introduction
One fundamental learning task is estimating the linear regression model, with a wide array of
applications ranging from statistics to experimental sciences like medicine [7, 23] and sociology
[36]. These studies typically assume that analysts have high-quality data, which is essential to the
success of the model. However, real-world data, such as medical records and census surveys, often
contain sensitive information sourced from strategic, privacy-concerned individuals. In this case, data
providers (agents)1 may be disinclined to reveal their data truthfully, potentially jeopardizing the
accuracy of model estimation. Therefore, in contrast to conventional statistical settings, it becomes
imperative to model the utility functions of individuals and engineer mechanisms that can concurrently
yield precise estimators, safeguard the privacy of individual reports, and encourage the majority of
individuals to candidly disclose their data to the analyst.

The problem involves two intertwined components: data acquisition and privacy-preserving data anal-
ysis. The analyst must strategically compensate agents for potential privacy violations, considering
the alignment of their reported data with both the statistical model and their peers’ contributions,
while minimizing the payment budget. Additionally, the analyst must perform privacy-preserving
computations to accurately learn the underlying model. As agents cannot refine their reports after
seeing their payment, the interaction is designed to be completed in one round, creating a trade-off
between estimator accuracy and the total payment budget needed for participant cooperation.

1In this paper, individuals, data providers, and participants are the same and all represent agents.
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In recent years, there has been a line of work studying truthful and privacy-preserving linear models
such as [2, 37, 14, 38]. However, due to the complex nature of the problem, all of them only consider
the low dimension case, where the dimension of the feature vector (covariate) is much lower than the
sample size, i.e., they need to assume the dimension is a constant. In practice, we always encounter the
high dimensional sparse case where the dimension of the feature vector is far greater than the sample
size but the underlying parameter has an additional sparse structure. While the (high dimensional
sparse) linear model has been widely studied in statistics and privacy-preserving machine learning
[39, 24, 3, 52, 61, 53, 49, 28], to the best of our knowledge, there is no previous study on truthfully
and privately estimating high dimensional sparse linear models due to some intrinsic challenges of
the problem (see Section C in Appendix for details). Therefore, a natural question to ask is:

Can we fit the high dimensional sparse linear regression and design mechanism which incentivizes
most agents and truthfully report their data and preserves the privacy of the individuals?

In this paper, we answer the question in the affirmative via providing the first study on the trade-off
between privacy, the accuracy of the estimator, and the total payment budget for high dimensional
sparse linear models where the dimension d can be far greater than the sample size n, while the
sparsity k and log d are far less than n can be considered as constants. Specifically, for the privacy-
preserving data analysis part, we adopt the definition of Joint Differential Privacy (JDP) [31] to protect
individuals’ data and develop a novel closed-form and JDP estimator for sparse linear regression,
which is significantly different from the low dimension case and can be applied to other problems.
Moreover, we develop a general DP estimator for the ℓp-sparse covariance matrix with p ∈ [0, 1] as a
by-product, which extends the previous results on the ℓ0-sparse case. Based on our JDP estimator,
via the peer prediction method, we then provide a payment mechanism that can incentivize almost all
participants to truthfully report their data with a small amount of the total payment budget.

In detail, our mechanism has the following properties. (1) The mechanism preserves privacy for
individuals’ reported data, i.e., the output of the mechanism is (o(1), O(n−Ω(1)))-JDP, where n is the
number of agents. (2) The private estimator of the mechanism is o(1)-accurate, i.e., when the number
of agents increases, our private estimator will be sufficiently close to the underlying parameter. (3)
The mechanism is asymptotically truthful, i.e., it is an o( 1n )-approximate Bayes Nash equilibrium for
a (1− o(1))-fraction of agents to truthfully report their data. (4) The mechanism is asymptotically
individually rational, i.e., the utilities of a (1 − o(1))-fraction of agents are non-negative. (5) The
mechanism only requires o(1) payment budget, i.e., when the number of participants increases, the
total payment tends to zero.

2 Preliminaries
Notations. Given a matrix X ∈ Rn×d, let xTi be its i-th row and xij (or [X]ij) be its (i, j)-th
entry (which is also the j-th element of the vector xi). For any p ∈ [1,∞], ∥X∥p is the p-norm,
i.e., ∥X∥p := supy ̸=0

∥Xy∥p

∥y∥p
, and ∥X∥∞,∞ = maxi,j |xij | is the max norm of matrix X . For an

event A, we let I[A] denote the indicator, i.e., I[A] = 1 if A occurs, and I[A] = 0 otherwise.
The sign function of a real number x is a piece-wise function which is defined as sgn(x) = −1 if
x < 0; sgn(x) = 1 if x > 0; and sgn(x) = 0 if x = 0. We also use λmin(X) to denote the minimal
eigenvalue of X . For a sub-Gaussian random variable X , its sub-Gaussian norm ∥X∥ψ2 is defined as
∥X∥ψ2 = inf{c > 0 : E[exp(X

2

c2 )] ≤ 2} (see Appendix E for more preliminaries).

2.1 Problem Setting

We consider the problem of sparse linear regression in the high dimensional setting where d ≫ n.
Suppose that we have a data universe D = X×Y ⊆ Rd×R and n agents in the population, where each
agent i has a feature vector xi ∈ X and a response variable yi ∈ Y (we denote Di = (xi, yi) and D
as the whole dataset). We assume that {(xi, yi)}ni=1 are i.i.d. sampled from a sparse linear regression
model, i.e., each (xi, yi) is a realization of the sparse linear regression model y = ⟨θ∗, x⟩ + ζ,
where the distribution of x has mean zero, ζ is some randomized noise that satisfies E[ζ|x] = 0, and
θ∗ ∈ Rd is the underlying model estimator with sparsity assumption ∥θ∗∥0 ≤ k. In the following, we
provide some assumptions related to the model. See Section A in Appendix for a table of notations.
Assumption 1. We assume ∥θ∗∥2 ≤ 1. Moreover, for the covariance matrix of x, Σ, there exist κ∞
and κx such that ∥Σw∥∞ ≥ κ∞∥w∥∞,∀w ̸= 0 and ∥Σ− 1

2x∥ψ2
≤ κx. 2

2To make our results comparable to the previous results, we assume κ∞ and κx are constants for simplicity.
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These assumptions have been commonly adopted in some relevant studies such as [52, 14, 3]. Next,
we present the assumptions made on the covariate vectors xi and response variable yi.
Assumption 2. We assume that the covariates (feature vectors) x1, x2, · · · , xn ∈ Rd are i.i.d. (zero-
mean) sub-Gaussian random vectors with variance σ2

d with σ = O(1). 3 The responses yi are i.i.d.
(zero-mean) sub-Gaussian random variables with variance σ2 with σ = O(1).

In our setting, the agents are self-interested or strategic. They concerned about their privacy and
can misreport their responses {yi}ni=1 but not their features {xi}ni=1. This means the features are
directly observable but the response (e.g., during physical examination) is unverifiable. We denote
D̂ = {D̂i = (Xi, ŷi)}ni=1 the reported dataset where ŷi = σi(Di) is the reporting strategy adopted
by agent i. Specifically, each agent is characterized by a privacy cost coefficient ci ∈ R+. Higher ci
indicates the agent i is concerned more about the privacy violation.

Apart from the agents, there is an analyst who seeks an accurate estimator θ̄ of θ∗ based on the
reported data and needs to construct a payment rule π : Dn → Πn that encourages the truthful
participation, i.e., reveal their data truthfully to the agent. Misreporting the response yi will result in a
decrease in the payment received πi. The analyst will thus design a mechanism M takes the reported
dataset D̂ = {D̂i = (Xi, ŷi)}ni=1 as input and outputs an estimator θ̄ of θ∗ and a set of non-negative
payments {πi}ni=1 for each agent. This mechanism will in turn satisfy some privacy guarantee for
the reports provided by agents. Moreover, the desired mechanism must constrain the payments to an
asymptotically small budget. All of the above discussion depends upon the rationality of each agent.

2.2 Differential Privacy

Due to space limit, we postpone all the relevant definitions of DP to the appendix, readers can refer
to Section. A.1. In our case, DP requires that all outputs, including the payments allocated to agents,
are insensitive to each agent’s input. This requirement is quite strict, as the payment to each agent is
not shared publicly or with other agents. Therefore, instead of using the original DP, we consider a
relaxation known as joint differential privacy (JDP) [31].

2.3 Utility of Agents

Based on the definition of JDP, we introduce in this section our model of agent utilities. We assume
that each agent i is characterized by her privacy cost parameter ci ∈ R+ representing how she is
concerned about the privacy violation in the case she truthfully reports yi to the analyst. We also
introduce her privacy cost function fi(ci, ε, δ) which measures the cost she incurs when her response
yi is used in an (ε, δ)-Joint Differential Private Mechanism. Considering the payment πi of agent i
and her privacy cost function fi(ci, ε, δ), we denote by ui = πi− fi(ci, ε, δ), her utility function that
represents the utility she gets when she reports her response yi truthfully to the analyst. Following
the previous works, we assume that all functions fi are bounded by a function of ci and ε, increasing
with ε.
Assumption 3. The privacy cost function of each agent i satisfies fi(ci, ε, δ) ≤ ci(1 + δ)ε3

Larger values of ε and δ imply weaker privacy guarantees, which means the privacy cost of an
agent becomes larger. Thus, it is natural to let fi be bounded by a component-wise increasing
function, which can be denoted by F (ci, ε, δ). Here F (ci, ε, δ) = ci(1 + δ)ε3. In [14], the authors
consider the case where the response is bounded and δ = 0, they assume fi(ci, ε, δ) ≤ ciε

2, i.e.,
F (ci, ε, δ) = ciε

2. However, since our Assumption 2 on the distribution of the response is more
relaxed, we need stronger assumptions regarding the privacy cost function and the distribution of
privacy cost coefficients.

We assume that the privacy cost parameters are also random variables, sampled from a distribution C.
It is intuitive to believe that the privacy cost ci for each individual does not reflect the privacy costs
incurred by other individuals. Also, we allow ci to be correlated with its corresponding data sample
Di. Therefore, we make the following assumption.
Assumption 4. Given Di, (D−i, c−i) is conditionally independent of ci, for each i ∈ [n] :

p(D−i, c−i|Di, ci) = p(D−i, c−i|Di, c
′
i)

3In order to make our result comparable to previous work on linear regression with bounded covariates, we
assume the variance proxy is σ2/d so that with high probability ∥xi∥2 is bounded by some constant.
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where c−i represents the set of privacy costs excluding the privacy cost of agent i.

In addition, we make the same assumption on the tail of C as in [37] that the probability distribution
of ci has exponential decay. This assumption is essential for providing a bound on the threshold value
τα,β of truthful reporting, which will be explained in the following section.
Assumption 5. There exists some constant λ > 0 such that the conditional distribution of the privacy
cost coefficient satisfies infDi Pci∼p(ci|Di)(ci ≤ τ) ≥ 1− e−λτ .

2.4 Truthful Mechanism Properties

Following the previous work, we propose to design mechanisms that satisfy the following properties :
(1) truthful reporting is an equilibrium; (2) the private estimator output should be accurate; (3) the
utilities of almost all agents are ensured to be non-negative; and (4) the total payment budget required
from the analyst to run the mechanism is small. These concepts will be measured and evaluated using
the framework of a multiagent, one-shot, simultaneous-move symmetric Bayesian game, where the
behavior of the agents is modeled. Due to space limit, we provide rigorous definitions of the truthful
mechanism properties to the Appendix. Readers can refer to Section A.2 for details.

3 Main Results
In this section, we will design truthful and private mechanisms for our problem. Generally speaking,
our method consists of two components: a closed-form JDP estimator for high dimensional sparse
linear regression and a payment mechanism. In the following, we first introduce our private estimator
for the original dataset D.

3.1 Novel Efficient Private Estimator

As mentioned in Section 1, the one-round communication constraint necessitates a closed-form
estimator. For this reason, in the low dimension setting, previous methods did not favour LASSO
as there is no closed-form solution and thus also cannot be used. [14, 37] are motivated by the
closed-form solution of the ordinary least square (OLS) or ridge regression (See Section C for
detailed discussion). However, it is well-known that for high dimensional sparse setting these two
estimators come with less favorable guarantees when compared to the LASSO. When employed as a
regularization term, the ℓ2-norm does not encourage sparsity to the same extent as the ℓ1-norm. Thus,
all previous methods for truthful linear regression cannot be applied to our problem.

In the following, we derive a new estimator based on a variant of the classical OLS estimator, tailored
for the high dimensional sparse setting. Our aim is twofold: first, to achieve convergence rates similar
to the LASSO, and second, to exploit the inherent sparsity of the model.

We initiate our analysis with an initial, albeit unrealistic "scaffolding" assumption that the inverse of
the empirical covariance matrix (Σ̂XX)−1 exists with Σ̂XX = 1

n

∑n
i=1 xix

T
i , which will be removed

in the course of our analysis. Intuitively, our goal is to find a sparse estimator that is close to OLS,
i.e., argminθ ∥θ − Σ̂−1

XXΣ̂XY ∥22, s.t. ∥θ∥0 ≤ k, whose ℓ1 convex relaxation of the ℓ0 constraint is

argmin
θ

∥θ − Σ̂−1
XXΣ̂XY ∥22 + λn∥θ∥1 (1)

with some λn > 0.

Although (1) is very similar to LASSO, fortunately, the above minimizer is just the proximal operator
on OLS: Proxλn∥·∥1

(Σ̂−1
XXΣ̂XY ), which has a closed form expression. Since the proximal operator

is separable with respect to both vectors, θ and Σ̂−1
XXΣ̂XY , we have (Proxλn∥·∥1

(Σ̂−1
XXΣ̂XY ))i =

sgn((Σ̂−1
XXΣ̂XY ))i)max{|(Σ̂−1

XXΣ̂XY ))i| − λn, 0}. And the optimal solution θ̂ satisfies:

θ̂ = Sλn(Σ̂
−1
XXΣ̂XY ), (2)

where for a given thresholding parameter λ, the element-wise soft-thresholding operator Sλ : Rd 7→
Rd for any u ∈ Rd is defined as the following: the i-th element of Sλ(u) is defined as [Sλ(u)]i =
sgn(ui)max(|ui| − λ, 0).

A key insight is that this operation is equivalent to embedding the classical OLS estimator within
the sparsity constraint. This secures ℓ2-norm consistency which does not hold for neither the ridge
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regression nor the original OLS estimator. The ℓ1 regularization serves to minimize the structural
complexity of the parameter under constraints. Importantly, the estimator above is available in
closed-form.

Our next focus centers on the privatization scheme. Prior work on truthful linear regression [14, 37]
employed the output perturbation method, which adds some noise to the closed-form estimator. The
noise should be calibrated by the ℓ2-sensitivities of their non-private estimators to ensure DP, which
depend on Poly(

√
d/n). This is unacceptable when d ≫ n. Should we adopt the same strategy to

analyze the sensitivity of Sλn
(Σ̂−1

XXΣ̂XY ), we inevitably encounter the estimation error of Σ̂−1
XX .

This error will cause the noise to have an unavoidable dependency on Poly(
√
d/n) [46]. Given the

previous discussion, we propose to inject Gaussian noise separately to Σ̂XX and Σ̂XY . It is notable
that while similar methods have been used in DP statistical estimation [40, 48], it has not been used
in truthful linear regression. This is due to that in our problem, the data is misreported, which makes
the utility analysis more difficult. We will discuss it in Section 4.1.

For the term Σ̂XX , we apply ℓ2-norm clipping so that the sensitivity of clipped version Σ̂X̄X̄ is
irrelevant to d. For the term Σ̂XY , since the covariate and the response yi are sub-Gaussian. Therefore,
clipping operation becomes necessary. We shrink each coordinate of xi via parameters τx, i.e., for
j ∈ [d] and x̃i = sgn (xi)min {|xi| , τx}. We also perform the element-wise clipping on the response
yi by τy. Then the server aggregates these terms x̄ix̄Ti and x̃iỹi and separately add Gaussian noises
to Σ̂X̄X̄ and Σ̂X̃Ỹ . The noisy version is denoted by Σ̇X̄X̄ and Σ̇X̃Ỹ .

We now give a second thought to the estimation of the covariance matrix. As mentioned earlier,
we used the scaffolding assumption on the invertibility of Σ̂XX matrix, which does not hold as the
matrix is rank-deficient if d ≫ n. To mitigate this issue, we need to impose additional assumptions
and here switch to the sparsity assumption introduced below on the structure of the covariance matrix,
which has been widely studied previously such as [4, 5].

Assumption 6. We assume that Σ ∈ Gq(s) for some 0 ≤ q < 1, where Gq(s) = {Σ =

(σxxT ,ij)1≤i,j≤d : maxi
∑d
j=1 |σxxT ,ij |q ≤ s,∀j ∈ [d]} is the parameter space of s-approximately

sparse covariance matrices.

It is notable that the sparse covariance assumption is commonly adopted in the previous work on high
dimensional estimation [60, 9]. To the best of our knowledge, the only work that considers the private
sparse covariance matrix estimation is [51]. Unfortunately, [51] only considers the case where q = 0,
which is a special case of Assumption 6 and we cannot trivially apply their method to our setting.
Also, as we will discuss in Remark 3, even if the assumption does not hold, all of our theoretical
results still hold if the sample size is large enough.

Directly using the perturbed covariance matrix will be insufficient to exploit the sparsity structure.
In fact, it can be readily seen that ∥Σ̇X̄X̄ − Σ∥2 ≤ O(

√
d

nϵ ), which is quite large under the high
dimensional setting. To see why Σ̇X̄X̄ will introduce a large error under Assumption 6, we observe
that some of its entries are quite large which makes |σ̇x̄x̄T ,ij − σxxT ,ij | large for some i, j. Thus, we
need to develop a new private estimator for (approximately) sparse covariance matrices as a valuable
by-product. By Lemma 24 and 11 in the Appendix, we can get the following, with high probability,

for all 1 ≤ i, j ≤ d,
∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ ≤ Õ(

√
ln 1

δ

nε ). However, under the sparsity assumption, there
will be two cases: (1) If σxxT ,ij is small enough, then maybe the zero entry could have a smaller
error than σ̇x̄x̄T ,ij since the noise is quite large. (2) If σxxT ,ij is large, then the original σ̇x̄x̄T ,ij could
be better. Motivated by the above observation, we perform a hard-thresholding operation on each
σ̇x̄x̄T ,ij . This method takes advantage of this sparsity assumption by first estimating the sample
covariance matrix, and then setting all entries with absolute values below a certain threshold Thres to
0. To be more specific, it filters out σ̇x̄x̄T ,ij smaller than Thres and sets them to 0 while keeping those
larger than Thres unchanged. This effectively shrinks the magnitude of the perturbed covariance
matrix and thus lowering the error since some small σxxT ,ij correspond to large σ̇x̄x̄T ,ij . After the
hard-thresholding operation, we denote the resulting matrix by Σ̈X̄X̄ and it is invertible with high
probability as shown below.
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Algorithm 1 (ε, δ)-DP Algorithm for Sparse Linear Regression

1: Input: Private data {(xi, yi)}ni=1 ∈
(
Rd × R

)n
. Predefined parameters r, τx, τy, λn.

2: for each user i ∈ [n] do
3: Clip x̄i = ximin {1, r/∥xi∥2} , i.e. x̄i = Πr(xi). Release x̄ix̄

T
i to the server.

4: Clip x̃i := sgn (xi)min {|xi| , τx} and ỹi := sgn (yi)min {|yi| , τy}. Release x̃iỹi to the
server.

5: end for
6: The server aggregates Σ̂X̄X̄ = 1

n

∑n
i=1 x̄ix̄

T
i and Σ̂X̃Ỹ = 1

n

∑n
i=1 x̃iỹi.

7: Add noise Σ̇X̄X̄ = Σ̂X̄X̄ + N1, where N1 ∈ Rd×d is a symmetric matrix and each entry of

the upper triangular matrix is sampled from N (0,
32r4 log 2.5

δ

n2ε2 ). Add noise Σ̇X̃Ỹ = Σ̂X̃Ỹ +N2,

where the vector N2 ∈ Rd is sampled from N (0,
32τ2

xτ
2
y log 2.5

δ

n2ε2 Id).
8: Apply hard-thresholding to Σ̇X̄X̄ and obtain Σ̈X̄X̄ where each entry is defined as σ̈x̄x̄T ,ij =

σ̇x̄x̄T ,ij · I[|σ̇x̄x̄T ,ij | > Thres], where Thres = γ
√

log d
n +

4r2
√

2 ln 1.25/δ
√
log d

nε and γ is some
constant.

9: The server outputs θ̂P (D) = Sλn
([Σ̈X̄X̄ ]−1Σ̇X̃Ỹ ).

Lemma 1. The estimation error of private estimator Σ̈X̄X̄ satisfies with probability 1− d−Ω(1) that

E∥Σ̈X̄X̄ − Σ∥2∞ ≤ O

(
s2
(
log d log 1

δ r
4

nε2

)1−q

+

(
log d log 1

δ r
4

nε2

))
where the expectation takes over the randomness of the data records and the algorithm.

Remark 1. When q = 0 and r = O(1), Lemma 1 could achieve an error bound of O( s
2 log d
nϵ2 ), which

matches the optimal rate of locally differentially private sparse covariance matrix estimation [51, 50].

Our private estimator is of the form θ̂P (D) = Sλn(Σ̈
−1
X̄X̄

Σ̇X̃Ỹ ). With some r, τx, and τy, θ̂P (D),

upper bound of Õ(
√
k√
nε
) is achievable. See Algorithm 1 for details. Notably, step 8 is the hard

thresholding step for the private covariance matrix estimator. Importantly, the threshold only depends
on n, log d, and the privacy parameters and is independent on the two sparsities s and k of our
problem. Moreover, since we assume ∥θ∗∥2 ≤ τθ, we can also project θ̂P (D) in Algorithm 1 onto a
ℓ2-norm ball: θ̄P (D) = Πτθ (θ̂

P (D)), where Πτθ (v) = argminv′∈B(τθ) ∥v′ − v∥22 and B(τθ) is the
closed ℓ2-norm ball with radius τθ.

To sum up, high dimensionality gives rise to several consequences: (1) the regularization techniques
used by [37, 14] are not applicable, (2) the invertibility of covariance matrix estimate is not guaranteed,
(3) it also precludes the output perturbation method. Our proposed estimator properly overcomes
the above challenges. To tackle (1) we embed the OLS estimator within the ℓ1 constraint to exploit
the sparsity, along with a novel estimator of the covariance matrix to mitigate (2), and privatize it
by sufficient perturbation to solve (3), which in turn makes our truthful analysis part much more
complicated.

3.2 Payment Rule

We now turn our attention to the payment rule. The analyst wants to pay agents according to the
veracity of the data they have provided and needs a reference against which to compare each data
item. As mentioned before, the response is unverifiable, hence we lack a ground truth reference to
validate the accuracy of the reported values. To circumvent the problem, we adopt the peer prediction
method to determine a player’s payment. In principle, the higher payment means higher consistency
between the agent’s reported value ŷi and the predicted value of yi estimated using the collective
input from their peers D̂−i.

To quantitatively measure the similarity between each agent’s report and their peer’s reports, we will
use the rescaled Brier score rule[21]. Let a1 and a2 be positive parameters to be specified. Consider
that q represents the prediction of agent i’s response based on her own reports, and p represents the
prediction of agent i’s response based on her feature vector and her peers’ reports. The analyst uses
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Algorithm 2 General Framework for Truthful and Private High Dimensional Linear Regression

1: Ask all agents to report their data D̂1, · · · , D̂n;
2: Randomly partition agents into two groups, with respective data pairs D̂0, D̂1

3: For each dataset D̂, D̂0 and D̂1, compute private estimators θ̂P (D̂), θ̂P (D̂b) for b = 0, 1
according to Algorithm 1

4: Compute estimators θ̄P (D̂) = Πτθ (θ̂
P (D̂)) and θ̄P (D̂b) = Πτθ (θ̂

P (D̂b)) for b = 0, 1
5: Set parameters a1, a2, and compute payments to each agent i: if agent i’s is in group 1− b, then

he will receive payment πi = Ba1,a2

(
⟨x̄i, θ̄P (D̂b)⟩, ⟨x̄i,Eθ∼p(θ|D̂i)

[θ]⟩)
)
.

the following payment rule:

Ba1,a2(p, q) = a1 − a2(p− 2pq + q2), (3)

Observing that Ba1,a2(p, q) is a function that exhibits strict concavity with respect to q, we point
out that its maximum is attained when q equals p. This implies a congruence between the pre-
diction of agent i’s response based on her own information and that derived from her peers’ in-
formation. For agent i, given E[yi|xi, θ∗] = ⟨xi, θ∗⟩, it is logical to set p = ⟨x̄i, θ̄P (D̂b)⟩ and
q = ⟨x̄i,Eθ∼p(θ|D̂i)

[θ]⟩. Here, θ̄P (D̂b) denotes the private estimator for a dataset D̂b excluding D̂i,

and p(θ|D̂i) represents the posterior distribution of θ post the analyst’s receipt of D̂i.

Building upon this analysis, we structure our Algorithm 2. This algorithm utilizes reported data,
which may contain manipulated responses, to generate estimators. To maintain data independence,
we divide the dataset into two subsets, D̂0 and D̂1. For the purpose of calculating the payment for
each agent i in group b ∈ {0, 1}, the estimator θ∗ is derived using D̂1−b. Finally, the algorithm
applies θ̄P (D̂) in combination with the specific agent’s feature vector xi to forecast their response.

4 Theoretical Results and Implementation
4.1 Accuracy and Privacy Analysis

Theorem 2 (Privacy). The output of Algorithm 2 satisfies (2ε, 3δ)-JDP.

Remark 2. By the selection of ε and δ, our mechanism could achieve an (o( 1√
n
), O(n−Ω(1)))-JDP,

which provides asymptotically the same good privacy guarantee as in [14] for the low dimension
setting with bounded covariates and responses. Specifically, [14] shows that it is possible to design
an o( 1√

n
)-JDP mechanism, while here we consider the approximate JDP due to the Gaussian noise

we add. [37] considers truthful (low dimensional) linear regression with sub-Gaussian/heavy-tailed
covariates and responses, our Theorem 2 is better than theirs. In detail, [37] can only guarantee
Random Joint Differential Privacy (RJDP) where on all but a small proportion of unlikely dataset
pairs, pure ε-JDP holds, while in this paper we can guarantee approximate JDP, which is more widely
used in the DP literature. The main reason is that [37] used the output perturbation-based method
to ensure DP. However, as the data distribution is sub-Gaussian rather than bounded as in [14],
the sensitivity of the closed-form linear regression estimator could be extremely large (with some
probability). Thus, the output perturbation-based method can fail with a small probability and can
only ensure RJDP. Instead, in our method, we use sufficient statistics perturbation, due to our clipping
operator, the sensitivities of Σ̂X̄X̄ and Σ̂X̃Ỹ are always bounded. One consequence of adopting our
sufficient statistics perturbation method is that the utility analysis is harder than that of the output
perturbation-based method, as we will discuss in the following.
Theorem 3 (Accuracy). Fix a privacy parameter ε, a participation goal 1 − α and a desired
confidence parameter β in Definition 6. Then under the symmetric threshold strategy στα,β

, when

n is sufficient large such that n ≥ Ω(
s2r4 log d log 1

δ

ε2κ∞
), the output θ̄P (D̂) of Algorithm 2 satisfies that

with probability at least 1− β −O(n−Ω(1)),

E[∥θ̄P (D̂)− θ∗∥22] ≤ O

((
α2n+

1

n

)
kr4log d log 1

δ

ε2

)
.

Remark 3. The above bound is independent on Poly(d). This outcome is primarily due to the use of
sufficient statistics perturbation method, which effectively reduces the size of noise. It is notable that
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Assumption 6 only ensures that when n ≥ Ω̃( s
2r4

ε2κ∞
) our private covariance estimator is invertible.

Thus, even if the assumption does not hold, we can still get the same upper bound as in Theorem 3 as
long as n ≥ Ω̃(d).

Our framework for analyzing the accuracy differs dramatically from that of the prior ones since our
privatization mechanism incurs finer and more delicate analysis on some specific error terms. The
work of [37] and [14] both used the output perturbation method, as it provides an explicit characteri-
zation of the noise. Specifically, their estimator can be represented as θ̄P (D̂) = Πτθ (θ̃

P (D̂)), where
θ̃P (D̂) = θ̃(D̂) + v with θ̃(D̂) as a (non-private) closed-form estimator and v is the added Gamma
noise of scale O(

√
d/n) to the non-private estimator. It can be shown that:

E[∥θ̄P (D̂)− θ∗∥22] ≤ E∥θ̃P (D̂)− θ∗∥22 ≤ 2E∥θ̃P (D̂)− θ̂(D)∥22 + 2E∥θ̂(D)− θ∗∥22
=2(E∥θ̃(D̂)− θ̂(D)∥22 + E∥v∥22 + E∥θ̂(D)− θ∗∥22) (4)

where D is original data and D̂ is the reported data. Note that the second and the third terms in (4)
are easy to upper bound. For the first term, since we know the number of manipulated data in D̂
is bounded by αn with high probability, indicating there are at most αn different samples between
D̂ and D. Thus, it can be bounded by directly re-using the sensitivity analysis of θ̃(D) as a part of
the privacy data analysis. However, as we mentioned previously, the sensitivity of (2) is of scale
O(
√
d/n), indicating the previous method cannot be applied in our setting. Hence our tactic is to

privatize the terms Σ̂X̄X̄ and Σ̂X̃Ỹ separately. We shall take another route to estimate the error of the
private estimator θ̄P (D̂):

E[∥θ̄P (D̂)− θ∗∥22] ≤ E∥θ̂P (D̂)− θ∗∥22 ≤ 2E∥θ̂P (D̂)− θ̂P (D)∥22 + 2E∥θ̂P (D)− θ∗∥22.
The above framework is now estimating the difference in the private θ̂P (instead of the non-private θ̂).
However, this nuance inevitably leads to more complex analysis, i.e. the term E∥θ̂P (D̂)− θ̂P (D)∥22
is much more complicated to deal with than the first term in (4). The bound on E∥θ̂P (D̂)− θ̂P (D)∥22
cannot be obtained by simply applying existing results on the covariance matrix estimation as in
[37] or the assumption of strong convexity of the loss function as in [14]. Specifically, we tackle this
issue by combining the analysis for s-approximately sparse covariance matrices and some technical
tools such as the decomposability of the ℓ1 norm term in (1) to give a non-trivial bound. The relevant
lemma is given below and as mentioned this bound comprises a key component for the proof of
Theorem 3.
Lemma 4. Let θ̂P (D̂) and θ̂P (D) be the private estimators on the original dataset D and the reported

dataset D̂ that at most one agent misreports. We set the constraint bound λn = O

(
r2
√

log d log 1
δ√

nε

)
,

when n is sufficient large such that n ≥ Ω(
s2r4 log d log 1

δ

ε2κ∞
), with probability at least 1− O(d−Ω(1))

we have the following error bounds:

∥θ̂P (D̂)− θ̂P (D)∥∞ ≤ 4λn,
∥∥∥θ̂P (D̂)− θ̂P (D)

∥∥∥
2
≤ 16

√
kλn.

4.2 Analysis for the Properties of Truthful Mechanism

Theorem 5 (Truthfulness). Fix a privacy parameter ε, a participation goal 1 − α and a desired
confidence parameter β in Definition 6. Then with probability at least 1− β −O(n−Ω(1))− nd−

9
2 ,

the symmetric threshold strategy στα,β
is an η-approximate Bayesian Nash equilibrium in Algorithm

2 with

η = O

(
a2r

4 log d log
1

δ

(
nα2k

ε2
+

1

nε2

)
+ τα,βδε

3

)
.

We can see with some specified parameters, the above bound could be sufficiently small. For example,
when we set α = O( 1n ) we have η → 0 as n → ∞ since δ = o( 1n ).

Theorem 6 (Individual rationality). With probability at least 1−β−O(n−Ω(1))−nd−
9
2 , Algorithm

2 is individually rational for all agents with cost coefficients ci ≤ τα,β as long as

a1 ≥ a2(rτθ + 3r2τ2θ ) + τα,β8(1 + 3δ)ε3

regardless of the reports from agents with cost coefficients above τα,β , where a1, a2 are in (6).
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Remark 4. Our mechanism may not be individually rational for all agents, since the privacy cost
coefficients follow an unbounded distribution with exponential decay. This assumption is made
reasonable because for a relatively small subset of agents the privacy costs could be exceptionally
high, indicating certain individuals may persistently refrain from reporting truthfully, regardless of
the compensation offered to them. The same situation happens in other truthful mechanisms as well.

Theorem 7 (Budget). With probability at least 1−β−O(n−Ω(1))−nd−
9
2 , the total expected budget

B =
∑n
i=1 E (πi) required by the analyst to run Mechanism 1 under threshold equilibrium strategy

στα,β
satisfies

B ≤ n(a1 + a2(rτθ + r2τ2θ )).

Remark 5. With some appropriate setting of α, it is reasonable to expect the overall expected budget
to diminish toward zero as the sample size increases. This is because if the sample size is infinite,
the ground-truth parameters can always recovered by our estimator, which allows the analyst to pay
nothing to incentivize the agents.

4.3 Formal Statement of Main Result

Corollary 8. For any ξ ∈ ( 13 ,
1
2 ) and c > 0, we set ε = n−ξ, δ = Θ(n−Ω(1)), α = Θ(n−3ξ),

β = Θ(n−c), a2 = O(n−3ξ), a1 = a2(rτθ + 3r2τ2θ ) + τα,β8(1 + 3δ)ε3. Then the output of
Algorithm 2 satisfies (O(n−ξ), O(n−Ω(1)))-JDP. Moreover, with probability at least 1−O(n−Ω(1)),
it holds that:

1. The symmetric threshold strategy στα,β
is a Õ(n−ξ−1)-Bayesian Nash equilibrium for a

1−O(n−3ξ) fraction of agents to truthfully report their data;

2. The private estimator θ̄P (D̂) is Õ(n2ξ−1)-accurate;

3. It is individually rational for a 1−O(n−3ξ) fraction of agents to take part in the mechanism;

4. The total expected budget required by the analyst is Õ(n1−3ξ).

Remark 6. It is important to highlight the subtle balance between the precision of the estimator and the
other attributes of the mechanism. Compromising on accuracy often results in several consequences:
(1) a reduction in the total compensation paid to the agents, (2) an increase in the proportion of
rational agents, and (3) a closer approximation to the Bayesian Nash Equilibrium. However, we do
not observe such a trade-off in [37]’s implementation for linear regression cases. Besides, our results
slightly differ from that of [14] in the sense that they do not have a trade-off between rationality and
accuracy. Such discrepancies may be caused by varying willingness to supply higher compensation
to the agents, resulting in different settings of parameters.

5 Conclusions
In this paper, we fit the high dimensional sparse linear regression privately and we propose a truthful
mechanism to incentivize the strategic users. On the one hand, the mechanism is (o(1), O(n−Ω(1)))-
jointly differentially private. This is achieved by using the sufficient statistics perturbation method
which adds much less noise than the output perturbation method employed by prior work. Leveraging
the idea of soft-thresholding, we propose a private estimator of θ∗ to exploit the sparsity of the model
and it achieves an error of o(1). On the other hand, via some computation on the consistency between
the agent’s reported value and the predicted value using peers’ reports, we design an appropriate
payment scheme for each agent using rescaled Brier score rule. This method ensures that our
mechanism reaches an o( 1n )-approximate Bayes Nash equilibrium for a (1− o(1))-fraction of agents
to truthfully report their data while a (1− o(1)) fraction of agents receive non-negative utilities, thus
establishing their individual rationality. Moreover, the total payment budget required from the analyst
to run the mechanism is o(1).
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A Notations and Omitted Relevant Definitions

Notation Description
n The number of agents
d The dimensionality

xi ∈ X ⊆ Rd The feature vector of agent i
yi ∈ Y ⊆ R The response variable of agent i
ΣXX or Σ The covariance matrix of xi
∥X∥p p-norm of matrix X
I[A] Indicator of event A
sgn(x) Sign function of a real number x
[Sλ(u)]i Element-wise soft-thresholding operator

N1 ∈ Rd×d Gaussian noise added to Σ̂X̄X̄
N2 ∈ Rd Gaussian noise added to Σ̂X̃Ỹ

γ Some constant associated with the variance of N2

ỹi shrunken version of yi via parameter τy
Σ̂X̄X̄(Σ̂X̃Ỹ ) The sample covariance between X and X (The sample covariance be-

tween the clipped X and the clipped Y )
Σ̇X̄X̄ (Σ̇X̃Ỹ ) a noisy and (clipped) version of Σ̂X̄X̄ ( Σ̂X̃Ỹ )
ci ∈ C ⊆ R+ The privacy cost coefficient of agent i
D = X × Y The feature-response data universe
Di = (xi, yi) The feature-response data pair of agent i

σi(·, ·) : D × C → Y The reporting strategy of agent i
ŷi = σi (Di, ci) The reported response of agent i
D̂i = (xi, ŷi) The reported feature-response data pair of agent i
D = {Di}ni=1 All feature-response data pairs

D̂ =
{
D̂i

}n
i=1

All reported feature-response data pairs

σ = {σi}ni=1 The collection of all agents’ reporting strategies
D−i = D\Di The collection of data pairs except Di

D̂−i = D̂\D̂i The collection of reported data pairs except D̂i

σ−i = σ\σi The collection of strategies except σi
c−i = {cj}nj=1 \ci The collection of privacy cost coefficients except ci

πi The payment to agent i
ui The utility of agent i

ε, δ ∈ R+ The privacy parameters of the mechanism
θ∗ ∈ Rd The model parameter needs to estimate

στ The threshold strategy with privacy cost threshold τ ∈ R+

τα,β The privacy cost threshold characterized by α, β ∈ (0, 1)
B The expected total budget

θ̂(D) The non-private estimator on data D

θ̂P (D̂) The private estimator on the reported data D̂

θ̄P (D̂) The private estimator on the reported data D̂ after projection
κ2, κ∞ The lower bounds for the operator norm and infinity norm of matrix Σ

respectively
η The level of truthfulness

ξ ∈ ( 13 ,
1
2 ) The parameter to control the trade-off between accuracy and truthfulness,

payment amount and individual rationality.

A.1 Definitions of Differential Privacy

Definition 1 (Differential Privacy [17]). Given a data universe X , we say that two datasets D,D′ ⊆
X are neighbors if they differ by only one entry, which is denoted as D ∼ D′. A randomized
algorithm A is (ε, δ)-differentially private (DP) if for all neighboring datasets D,D′ and for all
events S in the output space of A, we have P(A(D) ∈ S) ≤ eεP(A(D′) ∈ S) + δ.
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Definition 2. (Gaussian Mechanism). Given any function q : Xn → Rp, the Gaussian Mechanism is
defined as: MG(D, q, ε) = q(D) + Y, where Y is drawn from Gaussian Distribution N

(
0, σ2Ip

)
with σ ≥

√
2 ln(1.25/δ)∆2(q)/ε. Here ∆2(q) is the ℓ2-sensitivity of the function q, i.e. ∆2(q) =

supD∼D′ ∥q(D)− q (D′) ∥2. Gaussian Mechanism preserves (ε, δ)-differential privacy.
Definition 3 (Joint Differential Privacy [31]). Consider a randomized mechanism M : Dn → Θ×Πn

with arbitrary response sets Θ,Πn. For each i ∈ [n], we denote by M(·)−i = (θ, π−i) ∈ Θ×Πn−1

the portion of the mechanism’s output that is observable by external observers and agents j ̸= i.
a mechanism M preserves (ε, δ)- joint differential privacy (JDP), at privacy level ε > 0 and
confidence level δ ∈ (0, 1), if for every agent i, every dataset D ∈ Dn and every Di, D

′
i ∈ D we

have ∀S ⊆ Θ×Πn−1,

P (M(Di, D−i)−i ∈ S|(Di, D−i)) ≤
eεP (M(D′

i, D−i)−i ∈ S|(D′
i, D−i)) + δ,

where D−i ∈ Dn−1 is the dataset D that excludes the i-th sample in D and π−i is the vector that
contains all payments except the payment of agent i.

An (ε, δ)-JDP mechanism on any dataset (including likely ones) may leak sensitive information on
low probability responses, forgiven by the additive δ relaxation, which we hope to have a magnitude
of o( 1n ). Definition 3 assumes that the private estimator θ̄ produced by the mechanism M is publicly
observable, and that the payments πi can only be seen by agent i. Thus, from the perspective of each
agent i, the released public output (θ, π−i) may compromise their privacy.

A.2 Truthful mechanism properties

Consider M the regression mechanism that takes as input the reported data D̂ = {D̂i = (Xi, ŷi)}ni=1
from n agents, with ŷi = σi(Di) the reporting strategy adopted by agent i. We denote the set of
all agents’ strategies by the strategy profile σ = (σ1, ..., σn) and σ−i = (σ1, ..., σi−1, σi+1, ..., σn)
denotes the set of strategies excluding the reporting strategy of agent i. Let fi(ci, ε, δ) be the privacy
cost function of agent i with ci her cost parameter. Each agent i receives a real-valued payment πi
and finally receives utility ui = πi − fi(ci, ε, δ). Based on these settings, we quantify property (1)
by introducing Bayesian Nash equilibrium.
Definition 4 (η-Bayesian Nash Equilibrium). A strategy profile σ = (σ1, ..., σn) forms an η-Bayesian
Nash Equilibrium if for every agent i, Di and ci, and for every reporting strategy σ′

i ̸= σi, one have :

ED−i,c−i
∼p(D−i,c−i|Di,ci)[ui(σi(Di, ci), σ−i(D−i, c−i))] ≥

ED−i,c−i∼p(D−i,c−i|Di,ci)[ui(σ
′
i(Di, ci), σ−i(D−i, c−i))]− η.

The positive value η represents the maximum of additional expected payment an agent might receive
by altering their reporting strategy. To encourage agents to report their data truthfully, the payment
rule should aim to keep η as minimal as possible. This paper investigates a specific threshold strategy.
We will establish that if all agents consistently employ the threshold strategy with a common positive
value τ , this unified strategy profile will effectively realize an η-Bayesian Nash equilibrium.
Definition 5 (Threshold Strategy). The threshold strategy στ is defined as follows:

ŷi = στ (xi, yi, ci) =

{
yi, if ci ≤ τ,

arbitrary value in Y, if ci > τ.

Definition 6 (Threshold τα,β). Fix a probability density function p(c) of privacy cost parameter, and
let

τ1α,β = inf{τ > 0 : P(c1,··· ,cn)∼pn(#{i : ci ≤ τ} ≥ (1− α)n) ≥ 1− β},
τ2α = inf{τ > 0 : inf

Di

Pcj∼p(c|Di)(cj ≤ τ) ≥ 1− α}.

Define τα,β as the larger of these two thresholds: τα,β = max{τ1α,β , τ2α}.

τ1α,β is a threshold that with probability at least 1 − β, at least 1 − α fraction of agents have cost
coefficient ci ≤ τα,β . τ2α is a threshold that conditioned on their own dataset Di, each agent i believes
that with probability 1− α any other agent j has cost coefficient cj ≤ τα,β .
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We introduce the definition of η-accuracy and we use the l2-norm distance between the private
estimator and the true parameter.

Definition 7 (η-accuracy). A mechanism is η-accurate if its output θ̄P satisfies E
[
∥θ̄P − θ∗∥22

]
≤ η.

Definition 8 (Individual Rationality). A mechanism is individually rational if the utility received by
each agent i has a non-negative expectation: ∀i ∈ [n],E[ui] ≥ 0

To satisfy individual rationality, the mechanism should output payments high enough to compensate
for privacy costs. Meanwhile, we also expect a total payment budget B =

∑n
i=1 E[πi] = o(1) that

tends to zero as the number of agents n increases.

Definition 9 (Asymptotically Small Budget). An asymptotically small budget is such that B =∑n
i=1 E[πi] = o(1) for all realizable dataset D = {(xi, yi)}ni=1.

To sum up, we have n agents reporting potentially manipulated data, denoted as D̂ = (xi, yi), to
an analyst. Subsequently, the analyst computes an estimator for the model parameters using the
reported data. To preserve DP, the analyst meticulously introduces controlled noise into the estimator.
Furthermore, the analyst strategically compensates the agents for their privacy costs based on their
reports, with the goal of incentivizing truthful reporting. This incentivization is implemented under
the assumption that the agents will adhere to a threshold strategy.

B Related Work

Following the pioneering work of [22], a substantial body of research has explored data acquisition
problems involving agents with privacy concerns [20, 32, 57, 15, 21, 18, 19, 13]. The majority of
this work operates in a model where agents cannot fabricate their private information; their only
recourse is either to withhold it or, at most, misrepresent their costs related to privacy. A related
thread [22, 34, 10] explores cost models based on the notion of differential privacy [17]. However,
most of the aforementioned work only considers the mean estimation problem and does not consider
advanced statistical models [18, 19, 13]. Thus, these methods cannot be applied to linear models.
[14] and [37] represent the closest work to ours, as they investigate the challenge of estimating
(generalized) linear models from self-interested agents that have privacy concerns. However, as we
mentioned above, they only consider the low dimensional case and their methods cannot be applied
to the high dimensional sparse setting, see Section C for details.

Classical approaches including the work by [55, 27, 43, 44, 45, 58, 1, 30, 41, 8, 3, 52, 54] for
estimating linear regression models with differential privacy (DP) guarantee utilize central and local
models. These approaches typically involve adding noise to the output of optimization methods,
privatizing the objective function, or injecting noise into the gradients during optimization. However,
the truthful data acquisition process follows a single-round interactive procedure between the analyst
and the agents, in contrast to the multi-round interactions typically encountered in these approaches,
indicating these methods cannot be applied to our problem. The closed-form expression of our
estimator ensures that this requirement is satisfied. We believe that our method is non-trivial and it
has the potential to extend to other related scenarios. Recently, [61] proposed a closed-form private
estimator for sparse linear regression. However, as we discussed in Section 3.1, their estimator cannot
be directly applied to our problem due to inherent limitations, such as challenges associated with the
invertibility of the covariance matrix.

Recently, there has been also some worth-noting literature on estimating linear regression from
strategic agents (without privacy consideration). [25] and [6] have investigated regressing a linear
model using data from strategic agents who can manipulate their associated costs but not the data. [29]
explored a setting without direct payments, in which agents receive a utility that serves as a measure
of estimation accuracy. [11] studied the case where agents may intentionally introduce errors to
maximize their own benefits and proposed several group-strategyproof linear regression mechanisms.
Additionally, [16] and [35] considered an analyst who aims to derive a "consensus" model from data
provided by multiple strategic agents. In this setting, agents seek a consensus value that minimizes
their individual data loss, and the authors demonstrated that empirical risk minimization is group-
strategyproof. However, all of these methods only consider the low dimensional setting and cannot
be applied to the high dimensional sparse linear regression.
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C Challenges in Designing Truthful and Privacy-preserving Sparse Linear
Regression

In this section, we provide a retrospect of previous methods and then outline the explain why existing
methods are not suitable for directly applying to our settings. The challenges associated with the
problem make it fundamentally difficult to design a desirable mechanism.

Under truthful setting, [14] proposed to use the general Ridge regression estimator, i.e., solving
the regularized convex program: argminθ

1
2n∥Y −Xθ∥22 + γ∥θ∥22 where γ is some parameter and

X = (xT1 , · · · , xTn )T ∈ Rn×d, and Y = (y1, · · · , yn)T ∈ Rn. The unique closed-form solution can
be written as θ̂R(D) = (γI +XTX)−1XTY . [37] considered the classical ordinary least square
(OLS) estimator θ̂OLS = (Σ̂XX)−1Σ̂XY where Σ̂XX = 1

n

∑n
i=1 xix

T
i and Σ̂XY = 1

n

∑n
i=1 xiyi.

Both of the private estimators are based on the closed-form solution θ̂L(D) of the ridge regression.
However, there are four problems with the above methods, θ̂R and θ̂OLS .

C.1 Sparsity-encouraging and Private Regressor

The ℓ2-norm accuracy errors of θ̂R and θ̂OLS are both bounded by O(
√

d/n). This rate is not
convergent in the data-poor scenario, indicating that both of these two estimators are not suitable
in our setting. Since ℓ2-regularization used in θ̂R is not a sparsity-encouraging technique, we shall
seek some alternative regularization. A qualified estimator that satisfies our need must (1) exploit the
sparsity assumption and (2) have a closed-form solution.

Apart from the choice of (non-private) estimator, we also need to give some thoughts on the privacy
mechanism. Previous work [14] and [37] both adopt the output perturbation method to ensure
ε-JDP, i.e., adding some Gamma noise to θ̂R or θ̂OLS . According to the DP theory, the scale of the
noise should be proportional to the ℓ2-norm sensitivity, which can be readily bounded by

√
d/n

through clipping operation or if the data are assumed to be bounded. In the high dimensional setting,
output perturbation could fail catastrophically as d ≫ n. The magnitude of noise needs to grow
polynomially with

√
d/n, causing the estimation error much larger. This means we must find a

privatization mechanism that gives a better accuracy guarantee.

C.2 The Invertibility of Covariance Matrix

The invertibility of the covariance matrix is also an issue in high dimensional space. The classical
OLS estimator θ̂OLS used in [37] is no longer well-defined as Σ̂X̄X̄ is not full-rank. In the case of
θ̂R = (ϱI + XTX)−1XTY , although (ϱI + XTX)−1 always exists for some ϱ > 0, the caveat
with such method is however its concentration only holds when n = Ω(d) [46].

To solve the invertibility issue posed by high dimensionality, we need to consider properly impos-
ing some reasonable assumption on the structure of covariance matrix Σ, which will be formally
introduced and serve to yield an efficient estimator for the covariance matrix with such assumption.

C.3 Truthfulness Analysis Framework

Due to the additional regularization parameter ϱ, θ̂L is a biased estimator of θ∗, which complicates
the truthfulness analysis. This complexity arises because the OLS linear regression estimator θ̂OLS =(
XTX

)−1
XT y maximizes the scoring rule when players truthfully report their responses. However,

for θ̂L(D), the bias caused by ϱ causes the optimal report of each player to deviate from truthful
reporting by a quantity proportional to the bias. To address the above issue, [14] shows that as long as
ϱ grows more slowly than n, the bias term of θ̂L converges to zero with high probability. More specif-
ically, it is shown that the estimation error can be decomposed into the summation of a bias and a vari-

ance term: E[
∥∥∥θ̂(D)− θ∗

∥∥∥2
2
] = trace(Cov(θ̂(D))) + ∥ bias(θ̂(D))∥22, where trace(Cov(θ̂(D))) =

σ2
(
ϱI +XTX

)−1
XTX

(
ϱI +XTX

)−1
,bias(θ̂(D)) = −ϱ

(
ϱI +XTX

)−1
θ∗, σ2 is the vari-

ance of the noise variables ζi. However, it remains uncertain whether there is a closed-form bias-
variance decomposition available for our estimator proposed in Section 3.1.
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D Limitation

Although some truthful mechanism studies [12] provided payment schemes for multiple-round data
acquisition, existing truthful linear regression research poses constraint to the mechanism where data
are only collected once. In this paper we mainly follow the analysis framework of [14] to guarantee
truthful mechanism properties, therefore our work is still hampered by the one-round communication
constraint. It remains uncertain whether this constraint could be removed in the future.

E Supporting lemmas

Definition 10 (Sub-Gaussian random variable). A zero-mean random variable X ∈ R is said to
be sub-Gaussian with variance σ2

(
X ∼ subG

(
σ2
))

if its moment generating function satisfies

E[exp(tX)] ≤ exp
(
σ2t2

2

)
for all t > 0. For a sub-Gaussian random variable X , its sub-Gaussian

norm ∥X∥ψ2
is defined as ∥X∥ψ2

= inf{c > 0 : E[exp(X
2

c2 )] ≤ 2}. Specifically, if X ∼ subG(σ2)
we have ∥X∥ψ2 ≤ O(σ).

Definition 11 (Sub-Gaussian random vector). A zero mean random vector X ∈ Rd is said to be
sub-Gaussian with variance σ2 (for simplicity, we call it σ2-sub-Gaussian), which is denoted as(
X ∼ subGd

(
σ2
))

, if ⟨X,u⟩ is sub-Gaussian with variance σ2 for any unit vector u ∈ Rd.

Lemma 9. For a sub-Gaussian vector X ∼ subGd

(
σ2
)
, with probability at least 1− δ′ we have

∥X∥2 ≤ 4σ
√
d log 1

δ′ .

Lemma 10 ([47]). Let X1, X2, · · · , Xn be n (zero mean) random variables such that each Xi is
sub-Gaussian with σ2. Then the following holds

P
(
max
i∈n

Xi ≥ t

)
≤ ne−

t2

2σ2 ,

P
(
max
i∈n

|Xi| ≥ t

)
≤ 2ne−

t2

2σ2 .

Below is a lemma related to the Gaussian random variable. We will employ it to bound the noise
added by the Gaussian mechanism.
Lemma 11. Let {x1, · · · , xn} be n random variables sampled from Gaussian distribution N

(
0, σ2

)
.

Then

E
[
max
1≤i≤n

|xi|
]
≤ σ

√
2 log 2n,

P
({

max
1≤i≤n

|xi| ≥ t

})
≤ 2ne−

t2

2σ2 .

Particularly, if n = 1, we have P ({|xi| ≥ t}) ≤ 2e−
t2

2σ2 .
Lemma 12 (Hoeffding’s inequality). Let X1, · · · , Xn be independent random variables bounded by
the interval [a, b]. Then, for any t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi −
1

n

n∑
i=1

E [Xi]

∣∣∣∣∣ > t

)
≤ 2 exp

(
− 2nt2

(b− a)2

)
.

Lemma 13 (Bernstein’s inequality for bounded random variables). Let X1, X2, · · · , Xn be indepen-
dent centered bounded random variables, i.e. |Xi| ≤ M and E [Xi] = 0, with variance E

[
X2
i

]
= σ2.

Then, for any t > 0,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > √
2nσ2t+

2Mt

3

)
≤ 2e−t.

Lemma 14 (Bound on threshold τα,β). Under the Assumption 5, τα,β ≤ 1
λ log 1

αβ .

Lemma 15. For any w,w′ ∈ Rd and closed convex set C ⊆ Rd we have

∥ΠC(w)−ΠC(w
′)∥2 ≤ ∥w − w′∥2,

where ΠC is the projection operation onto the set C, i.e., ΠC(v) = argminu∈C ∥u− v∥2.
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E.1 Lemmas for privacy guarantee

Lemma 16 (Post-processing). Let M : Xn → Y be an ε-differential private mechanism. Consider
F : Y → Z as an arbitrary randomized mapping. Then the mechanism F ◦ M is ε-differential
private.
Lemma 17 (Billboard lemma [26]). Let M : Dn → O be an (ε, δ)-differential private mechanism.
Consider a set of n functions πi : D×O → R, for i ∈ [n]. Then the mechanism M′ : Dn → O×Rn

that computes r = M(D) and outputs M′(D) = (r, π1(D1, r), · · · , πn(Dn, r)), where Di is the
agent i’s data, is (ε, δ)-joint differential private.
Theorem 18 (Parallel Composition Theorem). Let O1, O2, ..., Ok be n independent operations
that satisfy (εi, δ-DP for each i ∈ [k], then the parallel composition of these operations guarantee
(ε1 + ε2 + ...+ εk, δ)-DP.
Theorem 19 (Sequential Composition Theorem(Theorem 4 in [33])). If O1, O2, ..., Ok are sequential
operations that satisfy ε-individual differential privacy with a failure probability of δ, then the
sequential composition of these operations guarantees (ε1+ε2+ ...+εk, k ·δ)-individual differential
privacy, where εi represents the ε of operation Oi, and k is the total number of operations performed.

E.2 Technical lemmas for upper bounding the accuracy

Lemma 20. Let θ̂(D) and θ̂(D′) be the estimators on two fixed datasets D,D′ that differ on at most
k entries and let D̂ denote the fixed dataset that differs from D on at most one entries. Suppose that
with probability at least 1 − γn, if ∥θ̂(D) − θ̂(D̂)∥2 ≤ λn then we have with probability at least
1− gγn, it holds that

∥θ̂(D)− θ̂(D′)∥2 ≤ gλn.

Lemma 21 (Theorem 2 in [59]). Suppose we solve the problem of the form minθ ∥θ− θ̄∥22+λn∥θ∥1,
such that constraint term λn is set as λn ≥

∥∥θ∗ − θ̄(D)
∥∥
∞. Then, the optimal solution θ̂ = Sλn(θ̄)

satisfies: ∥∥∥θ̂(D)− θ∗
∥∥∥
∞

≤ 2λn,∥∥∥θ̂(D)− θ∗
∥∥∥
2
≤ 4

√
kλn,∥∥∥θ̂(D)− θ∗

∥∥∥
1
≤ 8kλn.

Lemma 22. Under Assumption 1 and 6, we set τx = Θ(σ
√
logn√
d

), τy = Θ(σ
√
log n), r =

Θ(σ
√
log n), λn = O

(
r2
√

log d log 1
δ√

nε

)
, when n is sufficient large such that n ≥ Ω(

s2r4 log d log 1
δ

ε2κ∞
),

with probability at least 1−O(d−Ω(1)), one has∥∥∥θ̂P (D)− θ∗
∥∥∥
2
≤

√
kλn

Lemma 23. (Weyl’s Inequality[42]) Let X,Y ∈ Rd×d be two symmetric matrices, and E = X − Y .
Then, for all i = 1, · · · , d, we have

|λi(X)− λi(Y )| ≤ ∥E∥2,
where we take some liberties with the notation and use λi(M) to denote the i-th eigenvalue of the
matrix M .

E.3 Technical lemmas for covariance matrix estimation

Lemma 24 ([4]). If {x1, x2, · · · , xn} are n realizations of a (zero mean) σ2-sub-Gaussian random
vector X with covariance matrix ΣXX = E[XXT ], and Σ̂X̄X̄ =

(
σ̂x̄x̄T ,ij

)
1≤i,j≤d =

1
n

∑n
i=1 x̄ix̄

T
i

is the empirical covariance matrix, then there exist constants C1 and γ > 0 such that for any
i, j ∈ [d], we have:

P
(∥∥∥Σ̂X̄X̄ − ΣXX

∥∥∥
∞,∞

> t

)
≤ C1e

−nt2 8
γ2 ,
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for all |t| ≤ ϕ with some ϕ, where C1 and γ are constants and depend only on σ2. Specifically,

P

(∥∥∥Σ̂X̄X̄ − ΣXX

∥∥∥
∞,∞

≥ γ

√
log d

n

)
≤ C1d

−8.

Lemma 25. For every fixed 1 ≤ i, j ≤ d, there exists a constant C1 > 0 such that with probability at
least 1− C1d

− 9
2 , the following holds:∣∣σ̈x̄x̄T ,ij − σxxT ,ij

∣∣
≤ 4min

{∣∣σxxT ,ij

∣∣ , γ√ log d

n
+

4r2
√

2 ln 1.25/δ
√
log d

nε

}
(5)

F Proofs of Supporting Lemmas

Proof of Lemma 15. Denote b = ΠC(w) and b′ = ΠC(w
′). Since b and b′ are in C, so the segment

bb′ is contained in C, thus we have for all t ∈ [0, 1], ∥(1− t)b+ tb′ − w∥2 ≥ ∥b− w∥2. Thus

0 ≤ d

dt
∥tb+ (1− t)b′ − w∥22|t=0 = 2⟨b′ − b, b− w⟩

Similarly, we have ⟨b− b′, b′ − w′⟩ ≥ 0. Now consider the function D(t) = ∥(1− t)b+ tw − (1−
t)b′− tw′∥22 = ∥b−b′+ t(w−w′+b′−b)∥22, which is a quadratic function in t. And by the previous
two inequalities we have D′(0) = 2⟨b− b′, w−w′ + b′ − b⟩ ≥ 0. Thus D(·) is a increasing function
on [0, 2), thus D(1) ≥ D(0) which means ∥w − w′∥2 ≥ ∥b− b′∥2.

Proof of Lemma 14. We first bound τ1α,β . Since n = #{i : ci ≤ τ} + #{i : ci > τ}, the event
{#{i : ci ≤ τ} ≥ (1 − α)n} is equivalent to the event {#{i : ci > τ} ≤ αn}. Thus, by the
definition of τ1α,β ,

τ1α,β = inf{τ > 0 : P(c1,··· ,cn)∼pn(#{i : ci > τ} ≤ αn) ≥ 1− β}
= inf{τ > 0 : P(c1,··· ,cn)∼pn(#{i : ci > τ} > αn) ≤ β},

By Markov’s inequality, we have

P(c1,··· ,cn)∼pn(#{i : ci > τ} > αn) ≤
E(c1,··· ,cn)∼pn [

∑n
i=1 I{ci>τ}]

αn

=

∑n
i=1 Eci∼p[1{ci>τ}]

αn
=

nP[ci > τ ]

αn
=

P[ci > τ ]

α
.

Thus, {τ > 0 : P(ci > τ) ≤ αβ} ⊆ {τ > 0 : P(c1,··· ,cn)∼pn(#{i : ci > τ} > αn) ≤ β}, which
implies τ1α,β ≤ inf{τ > 0 : P(ci > τ) ≤ αβ}. The Assumption 5 implies that P(ci > τ) ≤ e−λτ .
Hence, τ1α,β ≤ 1

λ log 1
αβ . By the definition of τ2α and Assumption 5, we have τ2α ≤ 1

λ ln 1
α . Since

β ∈ (0, 1), 1
λ log 1

αβ > 1
λ log 1

α , then τα,β = max{τ1α,β , τ2α} ≤ 1
λ log 1

αβ .

Proof of Lemma 4. For the ease of presentation, we denote the initial parameter (Σ̈−1
X̄X̄

)Σ̇X̃Ỹ on
which the soft-thresholding Sλn is performed by θ̄. Let ∆ be the error vector ∆ = θ̂P (D)− θ̂P (D̂).
It follows that

∥∆∥∞ =∥θ̂P (D̂)− θ̄(D̂) + θ̄(D̂)− θ̄(D) + θ̄(D)− θ̂P (D)∥∞
≤∥θ̂P (D̂)− θ̄(D̂)∥∞ + ∥θ̄(D̂)− θ̄(D)∥∞ + ∥θ̄(D)− θ̂P (D)∥∞ (6)

where we utilize the fact that θ̂P (D̂) is feasible.

Using the property of generalized thresholding operator, we can bound the first term of equation 6
as ∥θ̂P (D̂) − θ̄(D̂)∥∞ ≤ λn. For the third term of equation 6, from Lemma 22, we know that
∥θ̄(D)− θ̂P (D)∥∞ ≤ λn.
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Our next task it to show λn is indeed greater than the second term of equation 6 ∥θ̄(D̂)− θ̄(D)∥∞.
It can be expressed as

∥θ̄(D̂)− θ̄(D)∥∞ = ∥
(
Σ̈X̄X̄(D̂)

)−1

Σ̇X̃Ỹ (D̂)−
(
Σ̈X̄X̄(D)

)−1

Σ̇X̃Ỹ (D)∥∞.

Applying the inequality ∥AB −A′B′∥∞ = ∥AB −AB′ +AB′ −A′B′∥∞ ≤ ∥A∥∞∥B −B′∥∞ +
∥A−A′∥∞∥B′∥∞, we have,

∥
(
Σ̈X̄X̄(D̂)

)−1

Σ̇X̃Ỹ (D̂)−
(
Σ̈X̄X̄(D)

)−1

Σ̇X̃Ỹ (D)∥∞

≤∥
(
Σ̈X̄X̄(D̂)

)−1

∥∞∥Σ̇X̃Ỹ (D̂)− Σ̇X̃Ỹ (D)∥∞

+∥
(
Σ̈X̄X̄(D̂)

)−1

−
(
Σ̈X̄X̄(D)

)−1

∥∞∥Σ̇X̃Ỹ (D)∥∞
(7)

For the first term of equation 7, we see from Lemma 1 that when n ≥ Ω
(
s2r4 log d log 1

δ

ε2κ∞

)
,∥∥∥∥(Σ̈X̄X̄)−1

∥∥∥∥
∞

≤ 2
κ∞

. And by equation 15, we have with probability 1− 2d−8 that

∥Σ̇X̃Ỹ (D̂)− Σ̇X̃Ỹ (D)∥∞
=∥Σ̂X̃Ỹ (D̂)−N2(D̂) +N2(D)− Σ̂X̃Ỹ (D)∥∞
≤∥Σ̂X̃Ỹ (D̂)− Σ̂X̃Ỹ (D)∥∞ + ∥N2(D̂)∥∞ + ∥N2(D)∥∞

≤ 1

n
max
i

(∥xi∥2(|ỹi|) + ∥xi∥2(|ỹi|)) +
8rτy

√
2 log 1

δ log d

εn

≤2rτy
n

+
8rτy

√
2 log 1

δ log d

εn

≤O

rτy

√
log 1

δ log d

εn

 ≤ λn

For the second term of equation 7, note that for any two nonsingular square matrices A,B with the
same size, it holds that A−1 −B−1 = −B−1(A−B)A−1. Thus, by Lemma 1, we have

∥
(
Σ̈X̄X̄(D̂)

)−1

−
(
Σ̈X̄X̄(D)

)−1

∥∞

≤∥
(
Σ̈X̄X̄(D̂)

)−1

∥∞∥ −
(
Σ̈X̄X̄(D)

)−1

∥∞∥
(
Σ̈X̄X̄(D̂)

)
−
(
Σ̈X̄X̄(D)

)
∥∞

≤ 4

κ2
∞

(
∥Σ̈X̄X̄(D̂)− Σ∥∞ + ∥Σ̈X̄X̄(D)− Σ∥∞

)

≤c2

sr2
√
log d log( 1δ )

κ2
∞ε

√
n

 ≤ λn

Combining above, we have

∥θ̂P (D̂)− θ̂P (D)∥∞

≤2λn +O

rτy

√
log 1

δ log d

εn

+O

sr2
√
log d log( 1δ )

κ2
∞ε

√
n


≤4λn (8)
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To further our analysis, we introduce the notion of decomposibility of norm and subspace compatibility
constant. We call

(
M,M⊥)

a subspace pairs where M is the model subspace in which the estimated
model parameter θ∗ and similarly structured parameters lie, and which is typically low-dimensional,
while M⊥

is the perturbation subspace of parameters that represents perturbations away from the
model subspace.

Definition 12. A regularization function R is said to be decomposable with respect to a subspace
pair

(
M,M⊥)

, if R(u+ v) =R(u) +R(v), for all u ∈ M, v ∈ M⊥
.

Note that when R(·) is a norm, by the triangle inequality, the LHS is always less than or equal to the
RHS, so that the equality indicates the largest possible value for the LHS. For notational simplicity,
we use (S, Sc) instead of an arbitrary subspace pair

(
M,M⊥)

.

Definition 13. The subspace compatibility constant is defined as M : Ψ(M, ∥ · ∥) :=

supu∈M\{0}
R(u)
∥u∥ .

It is noted that subspace compatibility constant that captures the relationship between the regular-
ization function R(·) and the error norm ∥ · ∥, over vectors in subspace. In our proof, it is clear
that the regularization is the ℓ1-norm, which is decomposable with respect to the subspace pair. We
also denote the subspace of vectors in Rd by S. Since we assume k is the sparsity level of θ∗, the
cardinality of the support set of the model space where the true parameter θ∗ lies. It can be seen that
any parameter θ ∈ S would be at-most k-sparse. Therefore, we have that Ψ(S, ∥ · ∥2) ≤

√
k.

Additionally, we use the notion ΠS(∆) to represent the ℓ2 projection onto the model space S. Then,
by the assumption of the statement that θ∗Sc = 0, and the decomposability of ∥ · ∥1 with respect to
(S, Sc),

∥θ̂P (D̂)∥1 = ∥θ̂P (D̂)∥1 + ∥ΠSc(∆)∥1 − ∥ΠSc(∆)∥1
= ∥θ̂P (D̂) + ΠSc(∆)∥1 − ∥ΠSc(∆)∥1
(i)

≤ ∥θ̂P (D̂) + ΠSc(∆) + ΠS(∆)∥1 + ∥ΠS(∆)∥1 − ∥ΠSc(∆)∥1
= ∥θ̂P (D̂) + ∆∥1 + ∥ΠS(∆)∥1 − ∥ΠSc(∆)∥1 (9)

where the equality (i) holds by the triangle inequality, which is the basic property of norms. Since
we are minimizing the objective function ∥θ̂P (D)∥1, we obtain the inequality of ∥θ̂P (D̂) + ∆∥1 =

∥θ̂P (D)∥1 ≤ ∥θ̂P (D̂)∥1. Combining this inequality with equation 9, we have

0 ≤ ∥ΠS(∆)∥1 − ∥ΠSc(∆)∥1 (10)

Armed with inequalities equation 8 and equation 10, we utilize the Hölder’s inequality and the
decomposability of our regularizer ∥ · ∥1 in order to derive the error bounds in terms of ℓ2 norm:

∥∆∥22 = ⟨∆,∆⟩ ≤ ∥∆∥∞∥∆∥1
≤ ∥∆∥∞ (∥ΠS(∆)∥1 + ∥ΠSc(∆)) ∥1.

Since the error vector ∆ satisfies the inequality equation 10,

∥∆∥22 ≤ 2∥∆∥∞∥ΠS(∆)∥1 (11)

Combining all the pieces together yields

∥∆∥22 ≤ 4Ψ(S)λn ∥ΠS(∆)∥2
where Ψ(M) is the abbreviation for Ψ(S, ∥ · ∥2).

22



Notice that the projection operator is non-expansive, ∥ΠS(∆)∥22 ≤ ∥∆∥22. Hence, we obtain
∥ΠS(∆)∥2 ≤ 4Ψ(S)λn, and plugging it back into equation 11 yields the ℓ2 error bounds.

Proof of Lemma 20. Define a sequence of datasets D0, D1, · · · , Dk, such that D0 = D, Dk = D′,
and for each i ∈ [k], Di, Di−1 differ on at most one agent’s dataset. Then, by the triangular inequality,
we obtain

∥θ̂(D)− θ̂(D′)∥2 = ∥θ̂(D0)− θ̂(Dk)∥2 = ∥
k∑
i=1

θ̂(Di−1)− θ̂(Di)∥2 ≤
k∑
i=1

∥θ̂(Di−1)− θ̂(Di)∥2 ≤ g∆n.

with probability at least 1− kγn by taking a union bound over g failure probabilities γn.

Proof of Lemma 22. Before giving theoretical analysis, we first prove that Σ̈X̄X̄ is invertible with
high probability. With the help of Weyl’s Inequality (Lemma 23), we can see that to show Σ̈X̄X̄ is
invertible it is sufficient to show that ∥Σ̈X̄X̄ − Σ∥2 ≤ λmin(Σ)

2 . This is due to that by Lemma 23, we
have

λmin(Σ)− ∥Σ̈X̄X̄ − Σ∥2 ≤ λmin(Σ̈X̄X̄).

Thus, if ∥Σ̈X̄X̄ − Σ∥2 ≤ λmin(Σ)
2 , we have λmin(Σ̈X̄X̄) ≥ λmin(Σ)

2 > 0.

Thus, by Lemma 1, it is sufficient to show that λmin(Σ) ≥ O

(
sr2

√
log d log 1

δ

ε
√
n

)
, which is true under

the assumption of n ≥ Ω
(
s2r4log d log 1

δ

ε2λmin(Σ)2

)
. Thus, with probability at least 1− exp(−Ω(d))− ξ, it is

invertible. In the following we will always assume that this event holds.

To prove the theorem, we first introduce the following lemma on the estimation error of θ̂ in equation 2.

Note that this is a non-probabilistic result, and it holds deterministically for any selection
of λn or any distributional setting of the covariates xi. Our goal is to show that λn ≥∥∥∥∥θ∗ − (Σ̈X̄X̄)−1 (

Σ̈X̃Ỹ

)∥∥∥∥
∞

under the assumptions specified in Lemma 21.

∥∥∥θ∗ − θ̂P (D)
∥∥∥
∞

=

∥∥∥∥θ∗ − (Σ̈X̄X̄)−1 (
Σ̈X̃Ỹ

)∥∥∥∥
∞

≤
∥∥∥∥(Σ̈X̄X̄)−1

∥∥∥∥
∞

∥∥∥(Σ̈X̄X̄) θ∗ − (Σ̂X̃Ỹ +N2

)∥∥∥
∞

(12)

where the vector N2 ∈ Rd is sampled from N (0,
32τ2

xτ
2
y log 1.25

δ

n2ε2 Id). We first develop upper bound of
Σ̈X̄X̄ . For any nonzero vector w ∈ Rd, Note that∥∥∥Σ̈X̄X̄w

∥∥∥
∞

=
∥∥∥Σ̈X̄X̄w − Σw +Σw

∥∥∥
∞

≥ ∥Σw∥∞ −
∥∥∥(Σ̈X̄X̄ − Σ

)
w
∥∥∥
∞

≥
(
κ∞ −

∥∥∥Σ̈X̄X̄ − Σ
∥∥∥
∞

)
∥w∥∞.

Our objective is to find a sufficiently large n such that
∥∥∥Σ̈X̄X̄ − Σ

∥∥∥
∞

is less than κ∞
2 .

By Lemma 1 we can see the following:

∥Σ̈X̄X̄ − Σ∥2∞ = ∥Σ̈X̄X̄ − Σ∥21

≤ O

(
s2
(
log d log 1

δ r
4

nε2

)1−q

+

(
log d log 1

δ r
4

nε2

)) (13)
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Thus, when n ≥ Ω
(
s2r4 log d log 1

δ

ε2κ∞

)
, we have

∥∥∥Σ̈X̄X̄w
∥∥∥
∞

≥ κ∞
2 ∥w∥∞, which implies∥∥∥∥(Σ̈X̄X̄)−1

∥∥∥∥
∞

≤ 2
κ∞

.

Given sufficiently large n, from equation 12, we have:∥∥∥θ∗ − θ̂P (D)
∥∥∥
∞

≤ 2

κ∞

∥∥∥(Σ̈X̄X̄) θ∗ − (Σ̂X̃Ỹ +N2

)∥∥∥
∞

≤ 2

κ∞


∥∥∥Σ̂X̃Ỹ − ΣX̃Ỹ

∥∥∥
∞︸ ︷︷ ︸

T1

+
∥∥ΣX̃Ỹ − ΣY X

∥∥
∞︸ ︷︷ ︸

T2

+
∥∥∥(Σ̈X̄X̄ − Σ

)
θ∗
∥∥∥
∞︸ ︷︷ ︸

T3

+ ∥N2∥∞︸ ︷︷ ︸
N2


(14)

We will bound the above four terms one by one.

For 1 ≤ j ≤ d, we have Var (ỹix̃ij) ≤ E (ỹix̃ij)
2 ≤ E (yixij)

2 ≤
√
Ey4iEx

4
ij =: v1 < ∞. In

addition, E |ỹix̃ij |p ≤ (τxτy)
p−2

v1 holds. Therefore, according to Lemma 13, we have:

P

(∣∣∣σ̂Ỹ x̃j
− σỸ x̃j

∣∣∣ ≥√2v1t

n
+

cτxτyt

n

)
≤ exp(−t),

where σ̂Ỹ x̃j
= 1

n

∑n
i=1 ỹix̃ij , σỸ x̃j

= Eỹix̃ij and c is a certain constant. Then by the union bound,
the following can be derived:

P

(
|T1| >

√
2v1t

n
+

cτxτyt

n

)
≤ d exp(−t).

Next, we give an estimation of T2. Note that for 1 ≤ j ≤ d, by lemma 9 we have:
Eỹix̃ij − Eyixij = Eỹix̃ij − Eỹixij + Eỹixij − Eyixij

= Eỹi (x̃ij − xij) + E (ỹi − yi)xij

≤
√
E
(
y2i (x̃ij − xij)

2
)
P (|xij | ≥ τx) +

√
E
(
(ỹi − yi)

2
x2
ij

)
P (|yi| ≥ τy)

≤
√
v1

(
2e−

τ2
x

2σ2 + 2e−
τ2
y

2σ2

)
,

which shows that T2 ≤ √
v1

(
2e−

τ2
x

2σ2 + 2e−
τ2
y

2σ2

)
.

To upper bound term T3, we need to evaluate ∥Σ̈X̄X̄ − Σ∥∞ and we can reuse obtained results from
Lemma 1.

We can see that T3 is bounded by O(

√
log d log 1

δ√
nε

). Here we used the fact that Σ̈X̄X̄−Σ is a symmetric
matrix.

∥(Σ̈X̄X̄ − Σ)θ∗∥∞ ≤ ∥Σ̈X̄X̄ − Σ∥2∥θ∗∥2 ≤ ∥Σ̈X̄X̄ − Σ∥1∥θ∗∥2

≤ O(r2

√
(
log d log 1

δ

nε2
)) ∥θ∗∥2 ,

given the selection of r.

The last term of equation 14 can be bounded by Gaussian tail bound by lemma 11. With probability
1−O(d−8), we have:

∥N2∥∞ ≤ O

rτy

√
log 1

δ log d

εn

 . (15)
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Finally combining all pieces, we can find that T3 is the dominating term. Since λn ≥∥∥∥∥θ∗ − (Σ̈X̄X̄)−1 (
Σ̈X̃Ỹ

)∥∥∥∥
∞

, Lemma 21 implies that with probability at least 1−O(d−8)−e−Ω(d),

∥∥∥∥θ∗ − [Σ̈X̄X̄]−1 (
Σ̂X̃Ỹ +N2

)∥∥∥∥
2

≤ O


√
k log d log 1

δ√
nε

 ,

which completes our proof of Theorem.

Proof of Lemma 1. Our goal is to prove

E∥Σ̈X̄X̄ − Σ∥2

≤ C

s2(√ log d

n
+

4r2
√
2 ln 1.25/δ

√
log d

εγn

)2−2q

+

(√
log d

n
+

4r2
√

2 ln 1.25/δ
√
log d

εγn

)2


(16)
for some constant C. Since Σ̈X̄X̄ − Σ is symmetric, we know that ∥Σ̈X̄X̄ − Σ∥1 = ∥Σ̈X̄X̄ − Σ∥∞.
Thus, it suffices to prove that the bound in equation 16 holds for ∥Σ̈X̄X̄ − Σ∥1.

Define the event Aij by

Aij =
{∣∣σ̈x̄x̄T ,ij − σxxT ,ij

∣∣ ≤ 4min
{∣∣σxxT ,ij

∣∣ ,Thres
}}

. (17)

Then by lemma 25, we have P (Aij) ≥ 1− 2C1d
−9/2.

Let D = (dij)1≤i,j≤d with dij =
(
σ̈x̄x̄T ,ij − σxxT ,ij

)
I
(
Acij
)
, then the following holds.

E∥Σ̈X̄X̄ − Σ∥21 ≤ 2E

sup
j

∑
i̸=j

∣∣σ̈x̄x̄T ,ij − σxxT ,ij

∣∣ I (Aij)
2

+ 2E∥D∥21

+ C

(√
log d

n
+

4r2
√
2 ln 1.25/δ

√
log d

εγn

)2

≤ 32

sup
j

∑
i ̸=j

min

{∣∣σxxT ,ij

∣∣ , γ√ log d

n
+

4r2
√
2 ln 1.25/δ

√
log d

εn

}2

+ 2E∥D∥21

+ C

(√
log d

n
+

4r2
√
2 ln 1.25/δ

√
log d

εγn

)2

.

(18)

Note the first term in equation 18 is bounded by Cs2
(√

log d
n +

4r2
√

2 ln 1.25/δ
√
log d

εγn

)2−2q

, and

the first term is dominating, while the second term E∥D∥21 is comparably negligible. By setting
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k∗ =

⌊
s

(√
log d
n +

4r2
√

2 ln 1.25/δ
√
log d

εγn

)−q
⌋

, we have:

∑
i ̸=j

min

{∣∣σxxT ,ij

∣∣ , γ√ log d

n
+

4r2
√
2 ln 1.25/δ

√
log d

εn

}

≤ γ

∑
i≤k∗

+
∑
i>k∗

min

{∣∣σ[i]j

∣∣ ,√ log d

n
+

4r2
√

2 ln 1.25/δ
√
log d

εγn

}

≤ C5k
∗

(√
log d

n
+

4r2
√

2 ln 1.25/δ
√
log d

εγn

)
+ C5

∑
i>k∗

(s
i

)1/q
≤ C6

[
k∗

(√
log d

n
+

4r2
√

2 ln 1.25/δ
√
log d

εγn

)
+ s1/q · (k∗)1−1/q

]

≤ C7s

(√
log d

n
+

4r2
√
2 ln 1.25/δ

√
log d

εγn

)1−q

which implies equation 16 if E∥D∥21 = O
(
1
n

)
. We shall now show that E∥D∥21 = O

(
1
n

)
. Note that:

E∥D∥21 ≤ d
∑
ij

Ed2ij

= d
∑
ij

E
{[
d2ijI

(
Acij ∩

{
σ̈x̄x̄T ,ij = σ̇x̄x̄T ,ij

})
+ d2ijI

(
Acij ∩

{
σ̈x̄x̄T ,ij = 0

})]}
= d

∑
ij

E
{(

σ̇x̄x̄T ,ij − σxxT ,ij

)2
I
(
Acij
)}

+ d
∑
ij

Eσ2
xxT ,ijI

(
Acij ∩

{
σ̈x̄x̄T ,ij = 0

})
≡ R1 +R2

Lemma 25 yields that P
(
Acij
)
≤ 2C1d

−9/2, and the Whittle inequality (Theorem 2 in [56]) implies
σ̇x̄x̄T ,ij − σxxT ,ij has all finite moments under the sub-Gaussianity condition. Hence, we have:

R1 = d
∑
ij

E
{(

σ̇x̄x̄T ,ij − σxxT ,ij

)2
I
(
Acij
)}

≤ d
∑
ij

[
E
(
σ̇x̄x̄T ,ij − σxxT ,ij

)6]1/3 P2/3
(
Acij
)

≤ C8d · d2 ·
1

n
· d−3 = C8/n

On the other hand,

R2 = d
∑
ij

Eσ2
xxT ,ijI

(
Acij ∩

{
σ̈x̄x̄T ,ij = 0

})
= d

∑
ij

Eσ2
xxT ,ijI

(∣∣σxxT ,ij

∣∣ ≥ 4

(
γ

√
log d

n
+

4r2
√

2 ln 1.25/δ
√
log d

ε

))

I

(∣∣σ̇x̄x̄T ,ij

∣∣ ≤ γ

√
log d

n
+

4r2
√
2 ln 1.25/δ

√
log d

ε

)

≤ d
∑
ij

σ2
xxT ,ijEI

(∣∣σxxT ,ij

∣∣ 4γ√ log d

n
+

16r2
√
2 ln 1.25/δ

√
log d

ε

)

I

(∣∣σxxT ,ij

∣∣− ∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ ≤ γ

√
log d

n
+

16r2
√

2 ln 1.25/δ
√
log d

ε

)
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≤ d
∑
ij

σ2
xxT ,ijEI

(∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ > 3

4

∣∣σxxT ,ij

∣∣)

I

(∣∣σxxT ,ij

∣∣ ≥ 4

(
γ

√
log d

n
+

16r2
√
2 ln 1.25/δ

√
log d

ε

))

≤ d
∑
ij

σ2
xxT ,ijEI

(∣∣σxxT ,ij

∣∣ > 4γ

√
log p

n
+

16r2
√
2 ln 1.25/δ

√
log p

nε

)

I

(∣∣σ̂x̄x̄T ,ij − σxxT ,ij

∣∣+ |n1,ij | ≥
3

4

∣∣σxxT ,ij

∣∣)
≤ d

∑
ij

σ2
xxT ,ijP

({∣∣σ̂x̄x̄T ,ij − σxxT ,ij

∣∣ ≥ 3

4

∣∣σxxT ,ij

∣∣− |n1,ij |
}

⋂ {∣∣σxxT ,ij

∣∣ > 4γ

√
log d

n
+

16r2
√
2 ln 1.25/δ

√
log d

nε

})

= d
∑
ij

σ2
xxT ,ijP

({∣∣σ̂x̄x̄T ,ij − σxxT ,ij

∣∣ ≥ 3

4

∣∣σxxT ,ij

∣∣− |n1,ij |
}⋂{

|n1,ij | ≤
1

4

∣∣σxxT ,ij

∣∣}
⋂ {∣∣σxxT ,ij

∣∣ > 4γ

√
log d

n
+

16r2
√
2 ln 1.25/δ

√
log d

nε

})

+ d
∑
ij

σ2
xxT ,ijP

({∣∣σ̂x̄x̄T ,ij − σxxT ,ij

∣∣ ≥ 3

4

∣∣σxxT ,ij

∣∣− |n1,ij |
}

⋂ {
|n1,ij | ≥

1

4

∣∣σxxT ,ij

∣∣}⋂{∣∣σxxT ,ij

∣∣ > 4γ

√
log d

n
+

16r2
√
2 ln 1.25/δ

√
log d

nε

})

This gives us:

R2 ≤ d
∑
ij

σ2
xxT ,ijP

({∣∣σ̂x̄x̄T ,ij − σxxT ,ij

∣∣ ≥ 1

2

∣∣σxxT ,ij

∣∣}
⋂{∣∣σxxT ,ij

∣∣ > 4γ

√
log d

n
+

16r2
√
2 ln 1.25/δ

√
log d

nε

})

+ d
∑
ij

σ2
xxT ,ijP

({
|n1,ij | ≥

1

4

∣∣σxxT ,ij

∣∣}
⋂{∣∣σxxT ,ij

∣∣ > 4γ

√
log d

n
+

16r2
√
2 ln 1.25/δ

√
log d

nε

})
.

(19)

For the first term of equation 19, by Lemma 24 we have:

d
∑
ij

σ2
xxT ,ijP

({∣∣σ̂x̄x̄T ,ij − σxxT ,ij

∣∣ ≥ 1

2

∣∣σxxT ,ij

∣∣}⋂{∣∣σxxT ,ij

∣∣ ≥ 4γ

√
log d

n

})

≤ d

n

∑
ij

nσ2
xxT ,ij exp

(
−n

2σ2
xxT ,ij

γ2

)
I

(∣∣σxxT ,ij

∣∣ ≥ 4γ

√
log d

n

)

≤ d

n

∑
ij

[
nσ2

xxT ,ij exp

(
−n

σ2
xxT ,ij

γ2

)]
exp

(
−n

σ2
xxT ,ij

γ2

)
I

(∣∣σxxT ,ij

∣∣ ≥ 4γ

√
log d

n

)

≤ C
d3

n
d−16 = O

(
1

n

)
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For the second term of equation 19, by Lemmas 11 and 24 we have

d
∑
ij

σ2
xxT ,ijP

({
|n1,ij | ≥

1

4

∣∣σxxT ,ij

∣∣}⋂{∣∣σxxT ,ij

∣∣ > 4γ

√
log d

n
+

16r2
√

2 ln 1.25/δ
√
log d

nε

})

≤ d
∑
ij

σ2
xxT ,ijP

(
|n1,ij | ≥ γ

√
log d

n
+

4
√

2 ln 1.25/δ log d

nε

}P
(
|n1,ij | >

1

4
σxxT ,ij

)

≤ Cd
∑
ij

σ2
xxT ,ij · exp

−

(
γ
√

log d
n + 4σ1

√
log d

)2

2σ2
1

 exp

(
−
σ2
xxT ,ij

32σ2
1

)

≤ Cσ2
1d · d2 exp

(
−γ2 log d

2nσ2
1

)
d−8

≤ Cσ2
1d

−5 2nσ2
1

γ2 log d
= O

(
log 1/δ

nε2

)
.

Putting R1 and R2 together yields that for some constant C > 0,

E∥D∥21 ≤ C

n
.

Proof of Lemma. 25. Firstly, let us note that Σ̇X̄X̄ = Σ̂X̄X̄ +N1 =
∑n
i x̄ix̄

T
i +N1. Therefore by

Lemma 24 and Lemma 11 with probability at least 1 − Cd−8, for all 1 ≤ i, j ≤ d, and for some
constants γ and C that depends on σN1 ,

∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ ≤ γ

√
log d

n
+

128r2
√

2 log 1.25
δ log d

nε
≤ O

γr2

√
log d log 1

δ√
nε

 . (20)

Define the event Aij =

{∣∣σ̇x̄x̄T ,ij

∣∣ > γ
√

log d
n +

4r2
√

2 ln 1.25/δ
√
log d

εn

}
. Let Σ̂X̄X̄ =(

σ̂x̄x̄T ,ij

)
1≤i,j≤d and N1 = (n1,ij)1≤i,j≤d.We have:∣∣σ̈x̄x̄T ,ij − σxxT ,ij

∣∣ = ∣∣σxxT ,ij

∣∣ · I (Acij)+ ∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ · I (Aij) . (21)

By the triangle inequality, it is easy to see that

Aij =

{∣∣σ̇x̄x̄T ,ij − σxxT ,ij + σxxT ,ij

∣∣ > γ

√
log d

n
+

4r2
√
2 ln 1.25/δ

√
log d

εn

}

⊂

{∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ > γ

√
log d

n
+

4r2
√

2 ln 1.25/δ
√
log d

εn
−
∣∣σxxT ,ij

∣∣}
and

Acij =

{∣∣σ̇x̄x̄T ,ij − σxxT ,ij + σxxT ,ij

∣∣ ≤ γ

√
log d

n
+

4r2
√

2 ln 1.25/δ
√
log d

εn

}

⊂

{∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ > ∣∣σxxT ,ij

∣∣−(γ√ log d

n
+

4r2
√

2 ln 1.25/δ
√
log d

εn

)}
.

Depending on the value of σxxT ,ij , we need to consider the following three cases.

Case 1.
∣∣σxxT ,ij

∣∣ ≤ γ
4

√
log d
n +

√
2 log 1.25/δ

√
log d

nε .
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For this case, we have:

P (Aij) ≤ P

(∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ > 3γ

4

√
log d

n
+

3
√

2 ln 1.25/δ
√
log d

nε

)
≤ C1d

− 9
2 + 2d−

9
2 .

This is due to the fact:

P

(∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ > 3γ

4

√
log d

n
+

3
√

2 ln 1.25/δ
√
log d

nε

)

≤ P

(∣∣σ̂x̄x̄T ,ij − σxxT ,ij

∣∣ > 3γ

4

√
log d

n
+

3
√

2 ln 1.25/δ
√
log d

nε

)
− |n1,ij |

)

= P

(
Bij

⋂{
3
√
2 ln 1.25/δ

√
log d

nε

)
− |n1,ij | > 0

})

+P

(
Bij

⋂{
3
√
2 ln 1.25/δ

√
log d

nε

)
− |n1,ij | ≤ 0

})

≤ P

(∣∣σ̂x̄x̄T ,ij − σxxT ,ij

∣∣ > 3γ

4

√
log d

n

)
+ P

(
2
√
3 ln 1.25/δ log d

nε

)
≤ |n1,ij |

)
≤ C1d

− 9
2 + 2d−

9
2 ,

where event Bij denotes Bij =

{∣∣σ̂x̄x̄T ,ij − σxxT ,ij

∣∣ > 3γ
4

√
log d
n +

2
√

2 ln 1.25/δ log d

nε

)
− |n1,ij |

}
,

and the last inequality comes from lemma 11 and 24. Thus by equation 21, with probability at least
1− C1d

− 9
2 − 2d−

9
2 , we have:

∣∣σ̈x̄x̄T ,ij − σxxT ,ij

∣∣ = ∣∣σxxT ,ij

∣∣ , which satisfies equation 5.

Case 2.
∣∣σxxT ,ij

∣∣ ≥ 2γ
√

log d
n +

8r2
√

2 ln 1.25/δ
√
log d

nε .

For this case, we have

P
(
Acij
)
≤ P

(∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ ≥ γ

√
log d

n
+

r2
√
2 ln 1.25/δ

√
log d

εn

)
≤ C1d

−8 + 2d−8,

where the proof is identical to the proof for case 1. Thus, with probability at least 1−C1d
− 9

2 − 2d−8,
we have: ∣∣σ̈x̄x̄T ,ij − σxxT ,ij

∣∣ = ∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ .
Also, by equation 20, equation 5 also holds.

Case 3. Otherwise,

γ

4

√
log d

n
+

r2
√

2 log 1.25/δ
√
log d

nε
≤
∣∣σxxT ,ij

∣∣ ≤ 2γ

√
log d

n
+

8r2
√
2 ln 1.25/δ

√
log d

nε
.

For this case, we have∣∣σ̈x̄x̄T ,ij − σxxT ,ij

∣∣ = ∣∣σxxT ,ij

∣∣ or
∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ .
When

∣∣σxxT ,ij

∣∣ ≤ γ
√

log d
n +

4r2
√

2 ln 1.25/δ
√
log d

εn , we can derive from equation 20 that with proba-
bility at least 1− 2d−6 − C1d

−8

∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ ≤ γ

√
log d

n
+

4r2
√

2 ln 1.25/δ
√
log d

εn
≤ 4

∣∣σxxT ,ij

∣∣ .
Thus, equation 5 holds whether

∣∣σxxT ,ij

∣∣ ≥ γ
√

log d
n +

4r2
√

2 ln 1.25/δ
√
log d

εn or not, which completes
the proof of Lemma 25.
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G Omitted Proofs

Proof of Theorem 2. By Gaussian mechanism and the post-processing processing property, it is
easily to see that releasing Σ̈X̄X̄ satisfies ( ε2 ,

δ
2 )-DP, releasing Σ̇X̃Ỹ satisfies ( ε2 ,

δ
2 )-DP. Thus, the

output of Algorithm 1 is (ε, δ)-DP.

Next, we show that the output of the mechanism satisfies joint differential privacy using Billboard
Lemma (Lemma 17). The estimators θ̂P (D̂0) and θ̂P (D̂1) are computed in the same way as θ̂P (D̂),
so θ̂P (D̂0) and θ̂P (D̂1) each satisfy (ε, δ)-JDP. Since θ̂P (D̂0) and θ̂P (D̂1) are computed on disjoint
subsets of the data, then by the Parallel Composition Theorem, together they satisfy (ε, 2δ)-JDP. By
the Sequential Composition Theorem (Lemma 19), the estimators (θ̂P (D̂),θ̂P (D̂0),θ̂P (D̂1)) together
satisfy (2ε, 3δ)-JDP. Finally, using the post-processing property and Billboard Lemma 17, the output
(θ̄P (D̂),θ̄P (D̂0), θ̄P (D̂1), {πi(Di, θ̄

P (D̂b))}ni=1) of Algorithm 2 satisfies (2ε, 3δ)-JDP.

Proof of Theorem 3. For any realization D held by agents, let D̂ = στα,β
(D). Then by Lemma 15

we have

E[∥θ̄P (D̂)− θ∗∥22]
≤E∥θ̂P (D̂)− θ∗∥22
=E∥θ̂P (D̂)− θ̂P (D) + θ̂P (D)− θ∗∥22
=E∥θ̂P (D̂)− θ̂P (D)∥22 + 2⟨θ̂P (D̂)− θ̂P (D), θ̂P (D)− θ∗⟩+ ∥θ̂P (D)− θ∗∥22
≤2E∥θ̂P (D̂)− θ̂P (D)∥22 + 2E∥θ̂P (D)− θ∗∥22. (22)

For the first term of equation 22, if we set the constraint bound λn = O

(
r2
√

log d log 1
δ√

nε

)
, we know

from Lemma 4 and Lemma 20 that when n is sufficient large such that n ≥ Ω(
s2r4 log d log 1

δ

ε2κ∞
), with

probability at least 1− β −O(d−Ω(1)) we have

E∥θ̂P (D̂)− θ̂P (D)∥2 ≤ 16
√
kλnαn (23)

For the last term of equation 22, by Lemma 22, when n is sufficient large such that n ≥
Ω(

s2r4 log d log 1
δ

ε2κ∞
), with probability at least 1−O(d−Ω(1)),

E∥θ̂(D)− θ∗∥2 ≤
√
kλn. (24)

Combining equation 23 and equation 24 yields that with probability at least 1− β −O(d−Ω(1)),

E[∥θ̄P (D̂)− θ∗∥22] ≤ E[∥θ̂P (D̂)− θ∗∥22] ≤ O

(
kα2 r

4log d log 1
δ

ε2
+

r4log d log 1
δ

n2ε2

)
.

Proof of Theorem 5. Suppose all agents other than i are following strategy στα,β
. Let agent i be in

group 1− b, b ∈ {0, 1}. We will show that στα,β
achieves η-Bayesian Nash equilibrium by bounding

agent i’s incentive to deviate. Assume that ci ≤ τα,β , otherwise there is nothing to show because
agent i would be allowed to submit an arbitrary report under στα,β

. For ease of notation, we write σ
for στα,β

for the remainder of the proof. We first compute the maximum expected amount (based on
their belief) that agent i can increase their payment by misreporting to the analyst, i.e.

E
[
πi(D̂i, σ(D

b, cb))|Di, ci]− E[πi(Di, σ(D
b, cb))|Di, ci

]
= E

[
Ba1,a2

(
⟨xi, θ̄P (D̂b)⟩), ⟨x̄i,Eθ∼p(θ|D̂i)

[θ]⟩
) ∣∣Di, ci

]
− E

[
Ba1,a2

(
⟨xi, θ̄P (D̂b)⟩, ⟨x̄i,Eθ∼p(θ|Di)[θ]⟩

) ∣∣Di, ci

]
. (25)
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Note that Ba1,a2(p, q) = a1 − a2(p− 2pq + q2) is linear with respect to p, and is a strictly concave
function of q maximized at q = p. Thus, equation 25 is upper bounded by the following with
probability 1− C1n

−Ω(1)

Ba1,a2

[
E
[
⟨x̄i, θ̄P (D̂b)⟩|Di, ci

]
,E
[
⟨x̄i, θ̂P (D̂b)⟩|Di, ci

]]
−Ba1,a2

[
E[⟨xi, θ̄P (D̂b)⟩|Di, ci], ⟨x̄i,Eθ∼p(θ|Di)[θ]⟩

]
= a2

(
E[⟨x̄i, θ̄P (D̂b)⟩|Di, ci]− ⟨x̄i,Eθ∼p(θ|Di)[θ]⟩

)2
= a2

(
E[⟨x̄i, θ̄P (D̂b)⟩ − ⟨x̄i,Eθ∼p(θ|Di)[θ]⟩|Di, ci]

)2
≤ a2

(
E[x̄Ti (θ̄P (D̂b)− Eθ∼p(θ|Di)[θ])|Di, ci]

)2
≤ a2∥x̄i∥22∥E[θ̄P (D̂b)− Eθ∼p(θ|Di)[θ]|Di, ci]∥22
≤ r2a2∥E[θ̄P (D̂b)− Eθ∼p(θ|Di)[θ]|Di, ci]∥22.

We continue by bounding the term ∥E[θ̄P (D̂b)− Eθ∼p(θ|Di)[θ]|Di, ci]∥2. By Lemma 15

∥E[θ̄P (D̂b)− Eθ∼p(θ|Di)[θ]|Di, ci]∥2
≤ ∥E[θ̄P (D̂b)− θ̄P (Db)|Di, ci]∥2 + ∥E[θ̄P (Db)|Di, ci]− Eθ∼p(θ|Di)[θ]|Di, ci]∥2
≤ ∥E[θ̂P (D̂b)− θ̂P (Db)|Di, ci]∥2 + ∥E[θ̄P (Db)|Di, ci]− Eθ∼p(θ|Di)[θ]|Di, ci]∥2
≤ ∥θ̂P (D̂b)− θ̂P (Db)∥2 + ∥E[θ̄P (Db)|Di]− Eθ∼p(θ|Di)[θ]∥2 (26)

For the first term of equation 26, since agent i believes that with at least probability 1 − β, at
most αn agents will misreport their datasets under threshold strategy στα,β

, datasets Db and D̂b

differ only on at most αn agents’ datasets. By Lemma 20 and Lemma 4, we set the constraint

bound λn = O

(
r2
√

log d log 1
δ√

nε

)
, when n is sufficient large such that n ≥ Ω(

s2r4 log d log 1
δ

ε2κ∞
), with

probability at least 1− β −O(αnd−Ω(1)) we have that

E∥θ̂P (D̂)− θ̂P (D)∥2 ≤ 16
√
kλn (27)

For the second term of equation 26 :

E[θ̄P (Db)|Di]− Eθ∼p(θ|Di)[θ] = EDb∼p(Db|Di)[θ̄
P (Db)]− Eθ∼p(θ|Di)[θ]

= Eθ∼p(θ|Di)[EDb∼p(Db|θ)[θ̄
P (Db)]|θ]− Eθ∼p(θ|Di)[θ]

= Eθ∼p(θ|Di)[EDb∼p(Db|θ)[θ̄
P (Db)− θ]|θ].

Since

p(Db|θ) = p(Xb, yb|θ) = p(yb|Xb, θ)p(Xb|θ) = p(yb|Xb, θ)p(Xb),

we have

EDb∼p(Db|θ)[θ̂(D
b)− θ] = EXb [Eyb [θ̄P (Xb, yb)− θ]|Xb, θ].

Since we have the prior knowledge that ∥θ∗∥2 ≤ τθ. Thus, for the posterior distribution θ ∼ p(θ|D̂i)
it will also have ∥θ∥2 ≤ τθ. By Jensen’s inequality, Theorem 3 and Lemma 15, we have

∥E[θ̄P (Db)|Di]− Eθ∼p(θ|Di)[θ]∥2 ≤ Eθ∼p(θ|Di),Xb [Eyb [∥θ̄P (Xb, yb)− θ∥2|Xb, θ]]

≤ Eθ∼p(θ|Di),Xb [Eyb [∥θ̂P (Xb, yb)− θ∥2|Xb, θ]]

≤ O

r2
√
k log d log 1

δ

nε


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In addition to an increased payment, agent i may also experience decreased privacy costs from
misreporting. By Assumption 3, this decrease in privacy costs is bounded above by ci8(1 + 3δ)ε3.
Since we have assumed ci ≤ τα,β , the decrease in privacy costs for agent i is bounded above by
τα,β8(1 + 3δ)ε3. Hence, agent i’s total incentive to deviate is bounded above by

η = O

(
a2

(
α2r6k log d log 1

δ

ε2
+

r4log d log 1
δ

n2ε2

)
+ τα,βδε

2

)
.

Proof of Theorem 6. Let agent i have privacy cost ci ≤ τα,β and consider agent i’s utility from
participating in the mechanism. Suppose agent i is in group 1− b, then their expected utility is

E[ui] = E
[
Ba1,a2

(
⟨x̄i, θ̄P (D̂b)⟩, ⟨x̄i,Eθ∼p(θ|D̂i)

[θ]⟩
)
|Di, ci

]
− fi(ci, ε)

≥ Ba1,a2

(
E(⟨x̄i, θ̄P (D̂b)⟩)|Di, ci, ⟨x̄i,Eθ∼p(θ|D̂i)

[θ]⟩
)
− τα,β8(1 + 3δ)ε3. (28)

Note that

Ba1,a2(p, q) = a1 − a2(p− 2pq + q2) ≥ a1 − a2(|p|+ 2|p||q|+ |q|2), (29)

Since both |⟨x̄i, θ̄P (D̂b)⟩| and |⟨x̄i,Eθ∼p(θ|D̂i)
[θ]⟩| are bounded by ∥x̄i∥2∥θ̂(D̂b)∥2 ≤ rτθ, thus

by equation 28 and equation 29 agent i’s expected utility is non-negative as long as

a1 ≥ a2(rτθ + 3r2τ2θ ) + τα,β8(1 + 3δ)ε3.

Proof of Theorem 7. Note that

Ba1,a2(p, q) ≤ Ba1,a2(p, p) = a1 − a2(p− p2) ≤ a1 + a2(|p|+ |p|2),
thus

B =

n∑
i=1

E[πi] =
n∑
i=1

E[Ba1,a2
(
⟨x̄i, θ̄P (D̂b)⟩, ⟨x̄i,Eθ∼p(θ|D̂i)

[θ]⟩
)
|Di, ci]

≤ n(a1 + a2(rτθ + r2τ2θ )).

Proof of Corollary 8. For any ξ ∈ ( 13 ,
1
2 ) and c > 0, we set

ε = n−ξ, δ = n−Ω(1),

α = Θ(n−3ξ), β = Θ(n−c),

a1 = a2(rτθ + 3r2τ2θ ) + τα,β8(1 + 3δ)ε3, a2 = O(n−3ξ).

Note that by choosing ξ ∈ ( 13 ,
1
2 ), we ensure that αn = o(1).

Recall that by Theorem 3, the private estimator is O

(
knα2 r

4log d log 1
ξ

ε2 +
r4log d log 1

δ

nε2

)
-accurate.

Note that O(nα
2

ε2 ) = O(n1−4ξ), O( 1
nε2 ) = O(n2ξ−1). Since for any ξ ∈ ( 13 ,

1
2 ), we always have

1− 4ξ < 2ξ − 1, we obtain E∥θ̄P (D̂)− θ∗∥22 = O(n2ξ−1).

To bound the expected budget and truthfulness, we first consider bounding the threshold value τα,β
and the term 8(1 + 3δ)ε3. By Lemma 14, τα,β ≤ 1

λ log 1
αβ = Θ( 3ξ+cλ log n) = Θ̃(1). Combining

these, we get τα,β8(1 + 3δ)ε3 = O(n−3ξ).

Now we bound the term η for the truthfulness. Recall that by Theorem 5, the first term of the
truthfulness bound is a2

(
nα2r6k log d log 1

δ

ε2 +
r4log d log 1

δ

nε2

)
= O(n−1−ξ) , and the second term of the

bound is τα,β8(1 + 3δ)ε3 = O(n−3ξ), thus η = O(n−1−ξ + n−3ξ) = O(n−1−ξ).
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Then we consider individual rationality. By the choice of a1 and Theorem 6, the mechanism is
individual rational for at least 1−O(n−3ξ) fraction of agents.

Lastly, we consider total payment made to the agents. By Theorem 7, the total expected budget is
B = O

(
n(a1 + a2(rτθ + r2τ2θ ))

)
= O(n(a2 + ε3 + a2)) = O(n1−3ξ).

H Impact Statement

This paper presents work whose goal is to advance the field of machine learning theory. There
are many potential societal consequences of our work, none which we feel must be specifically
highlighted here.
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(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper presents work whose goal is to advance the field of machine learning
theory. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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