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Abstract

An objective assessment of intrathoracic pressures remains an important diagnostic
method for patients with heart failure. Although cardiac catheterization is the gold
standard for estimating central hemodynamic pressures, it is an invasive procedure
where a pressure transducer is inserted into a great vessel and threaded into the
right heart chambers. Approaches that leverage non-invasive signals – such as the
electrocardiogram (ECG) – have the promise to make the routine estimation of
cardiac pressures feasible in both inpatient and outpatient settings. Prior models
that were trained in a supervised fashion to estimate central pressures have shown
good discriminatory ability over a heterogeneous cohort when the number of
training examples is large. As obtaining central pressures (the labels) requires an
invasive procedure that can only be performed in an inpatient setting, acquiring
large labeled datasets for different patient cohorts is challenging. In this work, we
leverage a dataset that contains over 5.4 million ECGs, without concomitant central
pressure labels, to improve the performance of models trained with sparsely labeled
datasets. Using a deep metric learning (DML) objective function, we develop a
procedure for building latent 12-lead ECG representations and demonstrate that
these latent representations can be used to improve the discriminatory performance
of a model trained in a supervised fashion on a smaller labeled dataset. More
generally, our results show that training with DML objectives with both labeled and
unlabeled ECGs showed the downstream performance on par with the supervised
baseline.

1 Introduction

Cardiac catheterization is a procedure for measuring hemodynamics, and is an important diagnostic
tool. For instance, intracardiac pressures play an important role in the assessment of hemodynamic
severity in patients with heart failure. The mean pulmonary capillary wedge pressure (mPCWP) - an
estimate of the left atrial pressure - is one measurement that is used for treatment and prognostication
in heart failure patients. The mPCWP, however, is acquired via right heart catherization (RHC), which
is an invasive procedure that is only performed in an inpatient setting. To provide readily available
diagnostic tools to detect and understand heart failure, we need safe routine screening methods that
reliably predict patient hemodynamics.

One universally available piece of clinical data is the electrocardiogram, which has shown promise
with respect to helping to guide the care of patients with suspected heart failure [1]. To reduce the risk
of invasive procedures, a ECG-based model can be constructed to infer when the mean pulmonary
capillary wedge pressure (mPCWP) is above normal [2].

Previous studies [3, 4, 5, 6, 7] have leveraged large unlabeled datasets to infer cardiac abnormalities
using the similarity information between ECGs. In particular, several approaches have used contrastive
learning to construct latent representations of ECG data for downstream inference tasks [3, 4, 5].

Submitted to Learning from Time Series for Health (TS4H) Workshop in NeurIPS 2022. Do not distribute.



Figure 1: Schematic Diagram of Inferring cardiac pressure using ECGs without matched mPCWP.
1) Using larger unlabeld ECG corpus (ECGs without matched mPCWP), we learn upstream metric
embedding fΦ with deep metric learning objective. 2) Then we finetune this embedding fΦ with
smaller ECG dataset with matched mPCWP (labeled ECGs) to 3) infer mPCWP. Figure 2 includes
the diagram for supervised deep metric learning with the joint learning of both triplet and finetuning
task loss.

However, Deep Metric Learning (DML), a procedure that maps data to latent representations in a
manner such that similar datapoints are mapped to similar points in the latent space, has not been
used to develop learned representations of ECG data. Yet the use of DML for representation learning
[8, 9, 10] has yielded frutiful results for other tasks such as few-shot image retrieval [11] or facial
re-identification [12].

In this work, we apply DML to a real-world clinical task, intracardiac pressure classification and
regression using the 12-lead ECGs. The goal is to arrive at learned representations that adequately
represent the information within ECG signals, using a large resource of unlabeled ECGs (Figure
1). DML objective functions (e.g., triplet loss and angular loss) learn an embedding that preserves
the inherent distance between ECGs by pulling similar or positive samples together and pushing
dissimilar samples away in the embedding space. We define similar/positive labels by ranking the
ECGs in a batch using the dynamic time warping distance between two ECGs which represents the
inherent characteristics of ECG data. We finetune the model from upstream DML on downstream task
to esimate intracardiac pressures. Our preliminary results showed improved performance compared
to the supervised baseline, which shows promise that utilization of unlabeled dataset helps improve
generation of embedding with useful information for downstream task.

2 Related Works

2.1 Deep Metric Learning

Deep Metric Learning (DML) is a similarity driven learning method for building a representation by
learning a distance metric. DML works by optimizing the loss function defined on pairs or tuples
generated from training examples, where the objectives are often distance metric on embedding
space. One of the example distance metrics used for the objectives are ranking-based contrastive
training, including a triplet loss function [13, 14] and a pairwise loss funciton [15]. DML has been
demonstrated to improve generalization performance in representation learning [8, 9, 10]. However,
DML has been applied mostly in the supervised setting, and only few recent works proposed ways for
establishing DML in an unsupervised manner [16, 17, 18]. Furthermore, as DML generally requires
class of labels to form the tuplets of data, only a few studies have applied DML to regression problems
[19]. Here we apply unsupervised DML to a real-world regression problem to determine if similarity
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information within ECG dataset helps create an embedding space that improves the performance of
downstream hemodynamics inference.

2.2 Self-Supervised Contrastive Learning for Electrocardiogram

Self-supervised contrastive learning performs pre-training with pretext tasks to generate a global
embedding over an unlabeled dataset, by modeling consistency while ensuring invariance to pertur-
bations. There have been several attempts to leverage unlabeled ECG dataset using self-supervised
representation learning for downstream ECG classification task [3, 4, 5, 6, 7, 20] and inferrence in
biosignals [21]. However, to the best of our knowledge, unsupervised DML has not been applied to
downstream tasks involving ECGs. In this work, we apply DML on unlabeled ECG for downstream
hemodynamics inference task and compare the test performance with supervised learning.

3 Methods

At the core of our project is utilizing Deep Metric Learning to build a better representation by
leveraging rich information from unlabeled ECG data. We build representation space by pulling
similar samples into similar metric spaces and pushing different samples apart.

3.1 Supervised Deep Metric Learning for Classification

Given a n labeled ECG dataset D = {(x1, y1), · · · , (xn, yn)}, where x ∈ Rd×T and y ∈ {0, 1} with
d being the number of ECG leads and T is the number of ECG timestep. Binary label y describes
whether a patient has elevated mPCWP or not, which is defined by the cutoff mPCWP threshold 15
mmHg (1 if the patient has elevated mPCWP (> 15 mmHg). Per each anchor ECG xa, we define
the positive sample xp to be the ECGs having the same label with the anchor ECG and the negative
sample xn is defined to be the one that has different label. The triplet (xa, xp, xn) are then sampled
from the batch B to calculate the triplet loss Ltriplet. The model fΦ that has D-dimensional output is
optimized with triplet loss (LTriplet) and fΦ with the last fully-connected layer g. Thus, g · fΦ is
optimized by the learning objective combining cross-entropy loss (LCE) for a batch size of N with
the triplet loss scaling factor of α.

Ltot = LCE + αLtriplet

= −
N∑
i=1

yilog(σ(g(fΦ(xi))) + α

N∑
i=1

{||fΦ(xa)− fΦ(xp)|| − ||fΦ(xa)− fΦ(xn)||}

where α is the scaling coefficient of triplet loss and σ is the sigmoid function.

3.2 Supervised Deep Metric Learning for Regression

Similar to the case of supervised DML classification task, where we have N labeled ECG dataset
D = {(x1, y1), · · · , (xN , yN )}, where x ∈ Rd×T and y ∈ R with d ECG leads. We define the
positive sample xp to be the input sample with the smallest absolute label difference with the anchor:
xp = {xi|i = argmin

yi∈B
|yi− ya|} where B is the batch. Then the negative sample xn is then randomly

sampled from the set of ECGs in a batch except the positive sample: NB = {xj ∈ B|xj ̸= xp}.
Again, we construct the triplet (xa, xp, xn) and let the model fΦ be optimized by triplet loss (LTriplet)
while at the same time the final classifier g · fΦ is jointly optimized with Root Mean Square Error
(RMSE) with the triplet scaling factor of α: Ltot = LRMSE + αLtriplet. See Appendix Section A.1
for the full loss function.

3.3 Unsupervised Deep Metric Learning

Now we expand this setting to unsupervised metric learning where we nave M ECG data D =
{x1, · · · , xM}, where x ∈ Rd without the matched mPCWP labels. Given an anchor xa in a batch,
a positive sample corresponding to each anchor is determined as the one with the smallest distance
metric which compares the ECG signal inputs. Here we measure the distance between two inputs
using distance measures suitable for signal input and define the similarity between inputs, dynamic
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Table 1: Performance of downstream mPCWP classification task with unsupervised DML pretraining
according to each embedding dimensions (Dim).

Classification Regression

Dim AUC APR ACC RMSE

Supervised - 0.75 ± 0.00 0.54 ± 0.00 0.72 ± 0.00 7.78 ± 0.1

128 0.78 ± 0.00 0.69 ± 0.01 0.69 ± 0.00 7.65 ± 0.02
Supervised DML 256 0.75 ± 0.00 0.67 ± 0.00 0.70 ± 0.00 6.97 ± 0.01

512 0.77 ± 0.00 0.69 ± 0.01 0.71 ± 0.00 7.42 ± 0.00
1024 0.78 ± 0.00 0.68 ± 0.00 0.71 ± 0.01 7.5 ± 0.00

128 0.75 ± 0.00 0.53 ± 0.00 0.72 ± 0.01 7.28 ± 0.00
Unsupervised DML 256 0.74 ± 0.00 0.52 ± 0.00 0.72 ± 0.00 7.16 ± 0.02

(DTW) 512 0.76 ± 0.00 0.53 ± 0.00 0.72 ± 0.00 7.98 ± 0.01
1024 0.74 ± 0.00 0.53 ± 0.01 0.71 ± 0.00 7.48 ± 0.00

time warping (DTW) [22]: dDTW . As the complexity of DTW calculation is quadratic (O(n2)), we
use pretrained DTW model to get the surrogate DTW (d̂DTW , See Appendix B for more detail). We
can then define the positive sample to be xp = {xi|i = argmin

xi∈B
d̂DTW (xi, xa)}. Then the negative

sample xn is randomly sampled from the set containing dataset from the batch excluding the positive
sample: NB = {xj ∈ B|xj ̸= xp}. The model fΦ is optimized with the upstream deep metric
learning with Ltriplet. The input triplets (xa, xp, xn) are mapped on D-dimensional representation
space Φ, where we finetune the model with the downstream finetuing task (See Appendix A.2, Figure
1).

3.4 Datasets, Tasks, and Model

Dataset with mPCWP Labels (labeled dataset) We construct the 12 lead ECG dataset with corre-
sponding right heart catheterization procedure from the data warehouse of Massachusetts General
Brigham where we have total of 8, 172 right heart catheterization procedure data and ECGs from
4, 051 patients. Our data includes the patients who had ECG recordings the same date they had right
heart catheterization from 2010 to 2020. The ECG data contains 10 seconds of signal data which
was sampled with 250 Hz sampling rate, and the mPCWP label was obtained from the right heart
catheterization procedure. We divided the dataset into train, valid, and test set which contains 4,680,
1,667, 1,825 data points and 2,430, 810, and 811 patients, respectively.

Dataset without mPCWP Labels The larger 12 lead ECG dataset without mPCWP mapping has
provided by the agreement from Massachusetts General Hospital and Brigham and Women’s Hospital
where we have total of 5, 426, 614 ECGs with 1, 195, 268 patients who had ECG recordings while
their daytime visit or admission. We removed patient cohort overlapping with the ECG datasets with
mPCWP labels, and excluded abnormal ECG signals with continued zero amplitude (mV) at any
point of recording at any lead.

Task We train a model to predict the mPCWP of patient in either classification and regression task.
Binary classification task is to infer the elevation of mPCWP with the threshold of 15 mmHg, and the
regression task would be to predict the value of mPCWP itself.

Model For the basic model architecture, we used ResNet18 [23] backbone as encoder for generating
D-dimensional space (metric learning experiments), classifier in combination with the last fully
connected layer with sigmoid function (supervised learning, downstream finetuning). See Appendix
C for more detail.

4 Results and Future Works

In this work, we have demonstrated with our baseline experiment that unsupervised DML improves
the performance of downstream wedge pressure prediction. We summarize the test performance
(Supervised baseline, Supervised DML) and downstream performance on hemodynamics inference
(Unsupervised DML) in Table 1. The results show that supervised and unsupervised DML helps
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improve the performance of the supervised baseline, specifically more in regression task. This implies
that the underlying similarity information in the ECG signal pattern captured by DTW metric helps
inferring the downstream wedge pressure in both classification and regression settings. Although
we obtained the RMSE value of 6.9 mmHg in supervised DML and 7.16 mmHg in unsupervised
DML, the regressinon error is not sufficiently small to be applied in clinical ward given that the mean
mPCWP measure of our dataset is 15.6 mmHg and standard deviation is 8.07 mmHg.

In the future, we will generalize our experimental setting to the full 5 million ECG dataset we have
in the dataset warehouse, and expect the deep metric embedding achieves better performance as it
builds embedding with richer similarity based information. Furthermore, we will add more baselines
onto our dataset to compare the result with contrastive learning settings. One additional baseline and
direction we can adopt in our future work would be to apply self-training with noisy student [24],
where we generate pseudolabels from unlabeled input ECG with learned model and keep validate
with supervised test set. We will release our final code base and model weights trained on our ECG
datasets upon release of our final paper.
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A Deep Metric Learning

A.1 Supervised Deep Metric Learning for Regression

The full loss function for supervised DML regression task uses the Root Mean Square Loss (RMSE)

for downstream classification loss, LRMSE =

√
N∑

i=1
||yi−fΦ(xi)||2

n where the equation for the full loss
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Figure 2: Supervised Deep Metric Learning with joint learning of deep metric learning objective,
triplet loss and the loss function for mPCWP inference task. The triplets are mined based on the label
for classification task, and based on the absolute label difference for regression task (see Section 3.2)

term is:

Ltot = LRMSE + αLtriplet

=

√√√√√ N∑
i=1

||yi − fΦ(xi)||2

n
+ α

N∑
i=1

{||fΦ(xa)− fΦ(xp)|| − ||fΦ(xa)− fΦ(xp)||}

A.2 Downstream Finetuning

We finetune the model fΦ with the downstream finetuning task with either supervised classification
(LCE) or regression task (LRMSE) on the ECG dataset D = {(x1, y1), · · · , (xN , yN )} introduced

in the Sections 3.1 and 3.2: LCE = −
∑N

i=1 yilog(σ(fΦ(xi)), LRMSE =

√
N∑

i=1
||yi−g(fΦ(xi))||2

n

B Dynamic Time Warping for similarity-based ECG Ranking

DTW calculates the amount of dissimilarity between two waveforms in terms of distance (e.g.
Euclidean) under admissible temporal alignments of those waveforms. The algorithm attempts
to minimize the distance for finding the optimal alignment (warping). Using discrete matching
between existing elements of the waveform, the admissible warping paths are defined; DTW finds the
best warping path that minimizes the overall distance using dynamic programming. This recursive
approach is computationally expensive as it costs near O(n2).

To use DTW as our ranking metric for the ECGs, we calculate the DTW (dDTW ) between respective
leads of two ECGs and take the average metric over the 12 leads. This approach adds a large
computational burden for each batch processing, given the complexity of the DTW calculation.
Hence, we design a surrogate model (Figure 3) to calculate the dDTW without using the dynamic
programming-based recursive algorithm, as described below.

B.1 Surrogate Model to infer DTW between two ECGs

To bypass the cost of calculating the DTW which is up to O(n2), we build a surrogate model to get
the surrogate DTW value d̂DTW , which is the prediction output of the model. We build the surrogate
model with ResNet18 encoders and two fully connected layers (FC layer) (Figure 3). We first embed
two ECGs using the ResNet18 encoder to get 50 dimension output, respectively. Then we concat the
two embeddings to generate 100-dimensional input to two FC layers, getting the final output. The
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Figure 3: Surrogate Model used to calculate the surrogate Dynamic Time Warping distance betwen
the two ECG inputs

surrogate model is updated with RMSE loss =

√ ∑
i,j∈B

||dDTW i,j−fΦ(xi,xj)||2

N where N is the number
of pairs in a batch B. Corresponding RMSE loss and R2 value is evaluated to check if the model
performs well to be applied for DTW-based similarity ranking. We run the model for 50 epochs
and got RMSE of 0.711, PearsonR 0.939, and p-value of < 0.01 which was sufficient to be used to
generate surrogate DTW d̂DTW .

C Implementation Details

For the supervised learning baseline we divided the whole ECG dataset with mPCWP labels into
train/val/test set and reported the evaluation performance on test set. For Supervised DML baseline
we jointly trained cross entropy loss or RMSE for mPCWP predition task with triplet loss on labeled
dataset. Lastly, for unsupervised DML baseline we utilized ECG dataset without mPCWP labels to
generate learned D-dimensional embedding then we finetuned this metric embedding using labeled
ECGs for downstream mPCWP prediction task. We used the scaling coefficient value of triplet loss,
α, to be 1 for the experiments we have presented here. For the downstream mPCWP inference, we
used 2 fully connected layers with batch normalization, ReLU, and Dropout rate of 0.3.
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