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Abstract
The power of neuronal networks comes from their adaptation to training data, known as feature
learning. We consider feature learning within Bayesian learning and derive the two prominent
high dimensional theories, kernel scaling and kernel adaptation, respectively, from a unified large
deviation approach. We then show when feature learning escapes the scaling approach, but is
captured by kernel adaptation.

1. Introduction

A central quest of the theory of deep learning is to understand the inductive bias of network archi-
tectures, which underlays their ability to find solutions that generalize well despite networks being
highly overparametrized. One process that enables generalization is feature learning, a process
where the network learns useful representations of the data. The success of deep learning is often
attributed to this process. This is reflected, in part, by the performance gap between actual deep
neural networks and their infinite-width Gaussian Process (GP) counterparts, [5, 7, 12, 13, 15, 21]
where only a minimal change to the weights is observed [9]. Moreover, feature learning is necessary
to understand transfer learning, the central mechanism that enables modern foundation models [4].

Despite the importance of feature learning, there is no consensus on how to analytically de-
scribe this process. The two prominent Bayesian approaches derived using statistical physics type
analysis— kernel scaling [10, 14] and kernel adaptation [18] — lead to seemingly contradictory
descriptions, while both make successful predictions. Our main contributions are as follows: I.
We introduce a formalism of feature learning that unifies the two approaches based on large devi-
ation theory. II. We perform a numerical comparison of the two approaches in mean-field scaling
(MFS) [11] and standard scaling (SS) i.e. weights ∝ 1/

√
width. III. We identify a feature-learning

scenario captured by kernel adaptation, which kernel scaling fails to describe.
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A UNIFIED APPROACH TO FEATURE LEARNING IN BAYESIAN NEURAL NETWORKS

2. Unified Approach to Feature Learning

We start by presenting the posterior output distribution, which we show to be the common origin of
the two theories. Consider a network with a single hidden layer

h = V x, f = wTϕ(h), y = f + ξ , (1)

where ϕ is a point-wise applied activation, V ∈ RM×d, w ∈ RM function and ξ is a Gaussian
noise ξα

i.i.d.∼ N (0, κM1−γ). Here x ∈ Rd is the feature vector and f ∈ R is the scalar output
and we consider n tuples of training data D = {(xα, yα)}1≤α≤n. The data points {xα}nα=1 are

combined in the matrix X ∈ Rn×d. We assume Gaussian i.i.d. priors Vij
i.i.d.∼ N (0, gV /d) and

wi
i.i.d.∼ N (0, gw/M

γ) for all trainable weights and consider two cases, γ = 1, which we denote
as standard scaling (SS) and γ = 2, which we denote as mean-field scaling (MFS). We will be
interested in the posterior distribution of the outputs f after conditioning on the training data D in
the proportional limit where n ∝ M → ∞ at fixed ratio n/M . We note that both theories can be
extended to the deep case; here we focus on single hidden layer networks to clarify the comparison.

The joint prior distribution of the readouts f = {fα}1≤α≤n and the labels y = {yα}1≤α≤n

follows from standard manipulations, as

p(y, f |C(xx)) = N (y|f, κM1−γ)

∫
Df̃ exp

(
− fTf̃ +W (f̃ |C(xx))

)
, (2)

W (f̃ |C(xx)) = ln
〈
exp

( n∑
α=1

f̃α

M∑
i=1

wi ϕ(hαi)
)〉

wi,hαi

, (3)

where the i.i.d. distribution of the input weights Vij implies that hαi
i.i.d. over i∼ N (0, C(xx)), where

Rn×n ∋ C(xx) = gV d
−1XXT. We will show that both the kernel scaling approach and the kernel

adaptation approach, follow from (3) noting that the posterior p(f |y, C(xx)) ∝ p(y, f |C(xx)) and
employing a large deviation principle. The difference between approaches is the order in which the
expectation over hαi and wi is taken, resulting in two different order parameters, the kernel scale,
or the network output, respectively. In this work, we are interested in comparing the predictions of
each theory regarding the mean posterior discrepancy defined as

⟨∆α⟩ := yα − ⟨fα⟩p(f |y,C(xx)) = −κM1−γ ∂

∂yα
ln p(y|C(xx)) = κM1−γ⟨f̃α⟩, (4)

where p(y|C(xx)) =
∫
dfp(y, f |C(xx)) is the marginal over f .

2.1. Scaling Approach

For the special case of ϕ(h) = h, by averaging first over the preactivations in eq. (3), W is given
by the cumulant-generating function of a Gaussian- W (f̃ |w) = 1/2 f̃TC(xx)f̃ ∥w∥2. This shows
that the readout weights only appear in the form of the squared norm – we hence define Q :=
Mγ−1∥w∥2. By performing a change of variables, the posterior distribution can be rewritten as (see
App. A.1)

p(y|C(xx)) =

∫
dQN (y|0,M1−γQC(xx) + κM1−γI) p(Q) , (5)
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where p(Q) =
〈
δ[−Q+ ∥w∥2]

〉
wi

i.i.d.∼ N (0, gw
M

)
. As detailed in App. (A.1), p(Q) can be approximated

using the large deviation approach with Q as an order parameter so that- − ln p(Q) ≃ Γ(Q), with
Γ(Q) being a rate function defined in eq. (13). Intuitively, the large deviation approach corresponds
to a saddle point approximation, which is possible because Q concentrates. Finally, because the
two terms in S(Q) := lnN (y|0,M1−γQC(xx) + κM1−γI) − Γ(Q) are proportional to n and M ,
respectively, the integral over Q in the proportional limit n,M → ∞ is dominated by the maximum
Q∗ of S, resulting in the average discrepancy

⟨∆⟩ = κ
(
Q∗C(xx) + κI

)−1
y . (6)

As a consequence, this feature learning theory [10] recovers the same mean discrepancy as the GP
limit [12], but with a kernel scaled by the factor Q∗/gw. We comment that for a single hidden layer
linear network in SS the expression for Q∗ can be derived explicitly [17], however, the derivation
brought here can be extended to deep networks as well where the explicit derivation does not hold.

For a non-linear activation function, the result by [1] can be recovered if one performs an addi-
tional cumulant expansion of eq. (3) up to Gaussian order W (f̃ |w) = 1

2

∑
αβ f̃αC

(ϕϕ)
αβ f̃β

∑
iw

2
i +

O
(
f̃4
)
, where C(ϕϕ)

αβ := ⟨ϕ(hα)ϕ(hβ)⟩hα∼N (0,C(xx)) and where we used the pairwise independence
of the ϕ(hαi) across i. This approximation corresponds to stating that the ϕα be jointly Gaussian
distributed. In brief, we recover the action Eq. (33) in [1] from [10] by replacing C(xx) by C(ϕϕ)

in the equations for the linear activations, showing the tight relation to the case of linear networks.
However, from this presentation, it is unclear when this approximation is accurate, since the next to
leading order terms can be ∝ O(1) for n ∝ M due to correlations in the data summation. In certain
cases, a Gaussian equivalence property justifies this step [3] (as discussed in App. A.1.1).

2.2. Adaptive Kernel Approach

In the case of a linear network in mean-field scaling γ = 2, the cumulant-generating function
W (f̃ |C(xx)) can be computed by taking the expectation with respect to w first, and then with h,

−2W (f̃ |C(xx))/M = ln
(
1− gw/M

2f̃TC(xx)f̃
)
= ln det

([
[C(xx)]−1 − gw/M

2f̃ f̃T
])

, (7)

which shows that W (M◦)/M as a function of ◦ is independent of M , having scaling form, indi-
cating that the network readout f concentrates; formally, a large deviation approach with respect to
the parameter f̃ yields the prior distribution from (2)

− ln p(y|C(xx))≃ supf̃{−f̃Ty − κ

2M
f̃Tf̃ −W (f̃ |C(xx))} , (8)

where the quadratic term f̃Tf̃ comes from the average over the noise. Now fixing y by the training
labels, the f̃∗ that satisfies the supremum condition in eq. (8) yields the mean posterior discrepancy
(4) given by ⟨∆⟩ = κ/M⟨f̃⟩ = κ/Mf̃∗

⟨∆⟩ = κ
(
QC(xx) + κ I

)−1
y = κ

(
κI+ gw

(
[C(xx)]−1 − gw/M

2f̃∗f̃∗T)−1
)−1

y , (9)

where the latter two expressions come from the two different forms (7) for W , and Q−1 = g−1
w −

f̃∗TC(xx)f̃∗/M2. The result is similar to the NNGP prediction, but with a kernel that is rescaled by
Q/gw, or, correspondingly, changed into a rank-one direction f̃∗f̃∗T.
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In SS (γ = 1) the cumulant-generating function (3) does not possess a scaling form, implying
that fluctuations of f and hence fluctuations of the discrepancies become important. To treat these
systematically, we define the effective action γ(f̃∗) := supy{−yTf̃∗ − ln p(y|C(xx)}, such that
∂γ(f̃∗)/∂f̃∗ = −y. This action expanded to include the leading order fluctuation corrections [8]
takes the form, with W ′′ being the hessian,

γ(f̃∗) = −κ

2
f̃∗T f̃∗ −W (f̃∗) +

1

2
ln det

(
κ+W ′′(f̃∗)

)
. (10)

Explicit expressions for this implicit equation are given in App. (A.2.4).
For nonlinear networks, the same large deviations approach is applied both in standard and mean

field scaling, see App. (A.2.3) and App. (A.2.1) for further details. Crucially, since the adaptive
approach tracks many parameters, this allows it to capture richer feature learning effects than in the
scaling picture, such as Grokking [16], and reduction in sample complexity described in section 3.

2.3. Experimental Results

For a linear network, the kernel scaling theory and the adaptive theory can be made to agree regard-
ing the output statistics (⟨∆⟩). This is true for mean-field scaling at leading order, and in standard
scaling by including fluctuation corrections, as detailed in App. (A.2.4). We demonstrate this for a
single hidden layer linear network trained on a linear target function. Fig. (1) shows the accuracy
of the theories compared to the experiment for both SS and MFS, for different values of κ,M and
n = d = 300, gv = gw = 1. In standard scaling, the fluctuation corrections to the adaptive approach
improve its accuracy, closely matching it to the scaling approach, and also in MFS both theories are
in close agreement.

Standard scaling MF scaling

Figure 1: Comparison between numerics and theoretical predictions for ⟨∆⟩ (”adaptive” approach
(9) / ”adaptive+” with fluctuation corrections (46) / ”scaling” approach (6)), each for
standard scaling and for mean-field scaling (right) for different combinations of regu-
larization noise κ and network width M . Scatter plots for κ = 1 and M = 500,
RMSE =

√
∥(⟨∆th.⟩ − ⟨∆exp.⟩∥2/n.

3. Sample Complexity Reduction in Nonlinear Networks

Even though the two theories predict the same result for linear networks, the fundamental difference
in their description of feature learning has significant repercussions. In particular, we here show that
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for a nonlinear network, the presence of strong feature learning results in a dimensional reduction
which in turn leads to a reduction in sample complexity. Since the scaling approach considers only
a scalar order parameter it cannot address such strong feature learning effects, and consequentially
fails to capture the reduction in the complexity. This is in contrast to the adaptive approach, where
the high dimensional order parameter allows for a richer picture of feature learning and the resulting
sample complexity reduction.

3.1. Model

Here we consider a two-layer neural network as defined in eq. (2) with ReLU activation, trained
on a target function y(x) = v∗Tx + ϵ

(
|v∗Tx| −

√
2/π

)
, where v∗ is normalized. We introduce

the sample complexity measure, p-learnability ratio (Rp) which is defined as the fraction of the

p-th component of the target that was learned: Rp =
f(X)·Hp(Xv∗)
y(X)·Hp(Xv∗) where Hp is the p-th Hermite

polynomial. Here Rp = 0 indicates no learning of the p-th component and Rp = 1 perfect learning.
We note that this measure is different from the notion of information exponent [2], since it measures
the learnability of higher order nonlinear components and it can also be defined per dataset. We
use the kernel scaling theory [1] re-derived in Sec. 2.1. For the adaptive approach, we apply
additional approximations as described in App. (B.1). This approach requires solving a single
nonlinear equation, making it similar to the scaling approach in terms of computational complexity,
yet because the kernel adapts, it nonetheless captures the qualitative behaviour of the system.

3.2. Experimental Results

Fig. (2) comparses the experimental learnability ratios to the predictions of the scaling approach,
and to an approximate solution of the adaptive approach, for different values of β scaling n,M, d,
where the value of the learnability ratio is averaged over datasets. The accuracy of the approximate
adaptive approach improves with β, as expected from approching the proportional limit. While both,
the scaling approach and the GP approximation, predict R2 = 0, this contradicts the experiment.
The adaptive approach on the other hand correctly predicts the value of R2. For further details, see
App. (B.2).

Figure 2: Learnability ratios R1,2 predicted by the approximate adaptive approach (orange (54)),
scaling approach (green (6)), GP (red) compared to experimental values (blue), as a func-
tion of the scaling factor β, for different values of n/d.
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4. Conclusion

We compare two statistical physics theories of feature learning, the kernel scaling approach, where
the NNGP kernel is rescaled by a single self-consistently determined scalar, and the kernel adap-
tation approach, where the kernel changes more flexibly. We present a unified derivation of both
theories from the same mechanistic starting point of the Bayesian posterior distribution, each fol-
lowing in the proportional limit from the application of ideas from large deviation theory to the
kernel scaling variable or to the network readout as order parameters, respectively. We show that
for a linear network in MFS, the two approaches yield consistent results. In SS, both theories agree
if leading-order fluctuation corrections of the discrepancies are taken into account in the adaptive
approach. For a nonlinear network in MFS, we find that feature learning may result in phenom-
ena that escape the kernel scaling theory and require the richer, kernel adaptation approach. Our
work thus provides a stepping stone in the development of a coherent view of contemporary feature
learning theories.
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Appendix A. Derivation of Unified Formalism

A.1. Kernel Scaling Approach

For the special case of a linear activation function ϕ(h) = h, (3) becomes the cumulant-generating
function of a Gaussian W (f̃ |w) = 1/2 f̃TC(xx)f̃ ∥w∥2. This shows that the readout weights only
appear in the form of the squared norm Q := ∥w∥2. The distribution of the output of the network
(2) for standard scaling γ = 1 is hence

p(y, f |C(xx)) = N (y|f, κ)
∫

dQN (f |0, QC(xx)) p(Q), (11)

p(Q) =
〈
δ[−Q+ ∥w∥2]

〉
wi

i.i.d.∼ N (0, gw
Mγ )

.

Here p(Q) is the distribution of the Euclidean length of the vector of w ∈ RM with M i.i.d.
Gaussian entries of variance gw/M

γ each.
For large M and for standard scaling γ = 1 we may approximate its distribution by the Gärtner-

Ellis theorem as

p(Q)
l.d.p.
≃ e−Γ(Q), (12)

Γ(Q) = sup
Q̃

{Q̃Q−W (Q̃)} = −M

2

[ Q
gw

− ln
Q

gw

]
+ const., (13)

because its cumulant-generating function has the scaling form W (Q̃) = M ln
〈
exp

(
Q̃w2

)〉
w∼N (0,gw/M)

=

M λQ(Q̃/M) with λQ(k) = −1
2 ln

[
1− 2gwk

]
independent of M . Intuitively this implies that the

mean ⟨Q⟩ ∝ M0 and its variance is ⟨⟨Q2⟩⟩ ∝ M−1, so Q concentrates, where ⟨⟨...⟩⟩ refers to cumu-
lant expectation. So the network prior for the labels p(y|C(xx)) ≡

∫
df p(y, f |C(xx)) follows from

(11) as

p(y|C(xx))
l.d.p
≃
∫

dQeS(Q|y) (14)

S(Q|y) = lnN (y|0, QC(xx) + κI)− Γ(Q), (15)

where one may call S(Q|y) the “action” for Q. Its form agrees to Li & Sompolinsky [10], their Eq.
A11 for a single layer. We obtain an extension for mean-field scaling γ = 2 by considering, instead
of Q, the distribution of Q := MQ. Analogous to (13) its distribution

p(Q) =
〈
δ[−Q+M ∥w∥2]

〉
wi

i.i.d.∼ N (0, gw
M2 )

l.d.p.
≃ sup

Q̃

{Q̃Q−W (Q̃)} ≡ Γ(Q)

so Q for mean-field scaling is distributed identical to Q in standard scaling. The network prior for
mean-field scaling is hence written as

p(y|C(xx))
l.d.p
≃
∫

dQ eS(Q|y) (16)

S(Q|y) = lnN (y|0,Q/MC(xx) + κI)− Γ(Q) (17)

In the following, we will again rename Q by Q.
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In both expressions, (17) and (15), the exponent S contains two terms, both of which are ex-
tensive in n or M , respectively. The integral over Q, in the proportional limit n,M → ∞ while
n/M fixed, will hence be dominated by the maximum with regard to Q. This maximum a pos-
teriori estimate for Q, given by the conditional on the training data p(Q|y) = p(y|Q) p(Q)/p(y)
only depends on the numerator and is therefore given by the stationary point Q∗ of (14) given by
∂S/∂Q

!
= 0. To obtain predictions beyond the length of the readout Q = ∥w∥2 one notes that the

mean discrepancies between label and network output are ⟨∆α⟩ := yα − ⟨fα⟩p(f |y,C(xx)) are given

with ln p(y|C(xx))
MAP Q
≃ supQ S(Q|y)

⟨∆α⟩ = −κ
∂

∂yα
ln p(y|C(xx))

(11)
=
〈
yα − fα

〉
(18)

MAP Q
≃ −κ

∂

∂yα
S(Q∗|y) = κ

(
Q∗M1−γ C(xx) + κI

)−1
y,

where the inner derivative ∂S/∂Q∂Q/∂zα = 0 due to stationarity of Q∗. A consequence of this
feature learning theory is that the mean predictor is the same as the one of the NNGP with a different
regularization noise κ/(Q∗M1−γ)

⟨fx∗⟩ =
[
I− κ

(
Q∗M1−γ C(xx) + κI

)−1]
y

=
[
C

(xx)
x∗◦

] (
C(xx) + κ/(Q∗M1−γ)I

)−1

◦◦ y◦,

where ◦ refer to training indices and x∗ to the test point. Along similar lines follows the variance as

⟨⟨∆α,∆β⟩⟩ =⟨⟨fα, fβ⟩⟩

= κδαβ − κ2 (C + κI)−1
αβ = C − C [C + κI]−1C

∣∣∣
C=Q∗ M1−γC(xx)

,

which is the same expression as in the NNGP, but with the NNGP kernel rescaled by Q∗M1−γ .
This derivation only employed methods from large deviation theory and can be made rigorous.

It enables by large M and approximated Q by its maximum a posteriori estimate.

A.1.1. CUMULANT EXPANSION FOR NON-LINEAR ACTIVATION

For a non-linear activation function we perform a cumulant expansion of eq. (3) up to Gaussian
order, writing the weights in standard scaling as w = w̄/

√
M with w̄ = O(1)

W (f̃ |w) = 1

2

∑
αβ

f̃αC
(ϕϕ)
αβ f̃β

1

M

∑
i

w̄2
i +O

(
1/M2f̃4

)
, (19)

where we assumed a point-symmetric activation function, so that only even cumulants appear,
and C

(ϕϕ)
αβ = ⟨ϕαϕβ⟩h∼N (0,C(xx)) is the second cumulant. Even though the suppressed terms are

∝ M−1, it is unclear when this approximation is accurate, because the next order suppressed term
explicitly reads 1

4!M2

∑
iw

4
i

∑
α,β,γ,δ⟨⟨ϕαϕβϕδϕδ⟩⟩fαfβfγfδ where ⟨⟨ϕαϕβϕδϕδ⟩⟩ is the fourth cu-

mulant of the postactivations. It is a priori not clear that this term is subleading compared to the
Gaussian term, because of the summation

∑
γ,δ ∝ n2 ∝ M2. A justification must therefore come

from additional assumptions. An example is a Bayes-optimal setting, where the students weights
are Gaussian i.i.d. and the teacher uses the same distribution as a prior. Then a Gaussian equivalence
principle holds [6] due to the Nishimori property which has been exploited in [3]

10
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A.2. Kernel Adaptation Approach

For the kernel adaptation approach, we first take the marginalization over f in (2) to obtain

p(y|Cxx) =

∫
dfN (f |y, κ

Mγ−1
I)
∫

Df̃ exp
(
− fT f̃ +W (f̃ |Cxx)

)
(20)

=

∫
Df̃ exp

(
− yTf̃ +

κ

2Mγ−1
f̃Tf̃ +W (f̃ |Cxx)

)
, (21)

where W follows from (3) by taking the expectation value over the w to obtain

W (f̃ |C(xx)) := ln
〈
exp

(∑
α

f̃α
∑
i

wi ϕ(hαi)
)〉

wi∼N (0,gw/Mγ),hαi

(22)

=M ln
〈
exp

(1
2

∑
αβ

f̃αf̃β
gw
Mγ

ϕ(hα)ϕ(hβ)
)〉

hα

. (23)

A.2.1. MEAN-FIELD SCALING

Now assume mean-field scaling γ = 2 and correspondingly scale the regularization noise κ/M so
that it will not dominate the signal part. Then the cumulant-generating function in (23) has scaling
form

W(f̃) :=
κ

2M
f̃Tf̃ +W (f̃) = M λf (f̃/M), (24)

where λf (k) = κ/2 kTk+ ln
〈
exp

(
gw/2

∑
αβ kαkβ ϕ(hα)ϕ(hβ)

)〉
hα∼N (0,C(xx))

is independent

of M with k := f̃/M This implies that for large M , the probability distribution p(y|C(xx)) can be
approximated by the Gärtner-Ellis theorem [20] as

− ln p(y|C(xx))/M = sup
k
{kTy − λf (k)} =: γf (y|C(xx)). (25)

The supremum condition 0 = y −∇kλf (k) yields with k∗ = ⟨∆⟩/κ

k∗ = ⟨∆⟩/κ =
(
C + κI

)−1
y, (26)

where C := gw

[
ϕ(h)ϕT(h)

]
plays the role of the kernel and the expectation

[
. . .
]

is with regard
to the measure [

. . .
]
∝
〈
. . . exp

(
gw/2

∑
αβ

kαkβ ϕ(hα)ϕ(hβ)
)〉

h∼N (0,C(xx))
, (27)

where the proportionality constant is given by the proper normalization. We note that when taking
k = 0, then C̄ is simply the GP kernel- gwC(ϕϕ). The expression (26) has a similar form as the
discrepancies in the case of kernel scaling (18), replacing QC(xx) → C. In particular, the limit
M → ∞ exists and k∗ assumes a finite value, making the measure (27) non-Gaussian. Compared
to kernel scaling, where one obtains a single-order parameter Q, one here has the vector of discrep-
ancies ⟨∆⟩ = κk∗ ∈ Rn as order parameters.

11
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A.2.2. LINEAR ACTIVATION

For the linear case considered in the main text, the expectation over h in (23) is a Gaussian integral
with the solution

W
(
f̃ |C(xx)

)
= −M

2

[
ln det

([
[C(xx)]−1 − gw

M2
f̃ f̃T

])
+ ln det(C(xx))

]
(28)

= −M

2

[
ln
[(

1− gw
M2

f̃TC(xx)f̃
)
/ det(C(xx))

]
+ ln det(C(xx))

]
(29)

= −M

2
ln
(
1− gw

M2
f̃TC(xx)f̃

)
, (30)

where we used the matrix determinant lemma for the rank-one part f̃ f̃T. Since each appearance
of f̃ comes with one factor 1/M , the cumulant-generating function has scaling form, so we define
with k := f̃/M the scaled cumulant-generating function λf (k) = W (Mk)/M

λf (k) = −1

2

[
ln
[(

1− gwk
TC(xx)k

)
/ det(C(xx))

]
+ ln det(C(xx))

]
(31)

= −1

2
ln
(
1− gwk

TC(xx)k
)
, (32)

and the supremum condition corresponding to (26) for the first form of W in (31) takes the explicit
form

0 = yα − κk∗α − gw
∑
β

{[
[C(xx)]−1 − gwk

∗(k∗)T
]−1}

αβ
k∗β , (33)

which is the second form of eq. (9) given in the main text. The second form of the cumulant-
generating function in (31) yields the supremum condition

0
!
= yα − κ k∗α − gw[C

(xx)k∗]α

1− gw(k∗)TC(xx)k∗
, (34)

which yields the first form of eq. (9) in the main text.

A.2.3. STANDARD SCALING

We here investigate the kernel adaptation approach in standard scaling γ = 1. Then the cumulant-
generating function (23) does not possess scaling form. This implies that fluctuations of f and
hence fluctuations of the discrepancies become important. To treat these systematically, we use that
by (4) ln p(y|C(xx)) acts as a cumulant-generating function for the discrepancies. So we define the
cumulant-generating function from (4)

w(j) := ln p(−j|C(xx)) = ln

∫
Df̃ exp

(
jTf̃ +W(f̃)

)
, (35)

fluctuation corrections by defining the effective action

γ(f̃∗) := sup
j
{jTf̃∗ − w(j)} , (36)

12
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which obeys the equation of state

∂γ(f̃∗)

∂f̃∗
= j + f̃T

∗
∂j

∂f̃∗
− ∂w

∂j

T ∂j

∂f̃∗︸ ︷︷ ︸
=0

= j
!
= −y, (37)

where we use that ∂w/∂j = f̃∗ and that we need to insert for −j the training labels y to obtain the
posterior conditioned on the training data.

Now we would like to expand γ to include the leading order fluctuation corrections.
For a theory of the form p ∝ exp(S(ϕ)) the fluctuation correction to γ would take the form

1
2 ln det(−S

′′
). (see, e.g., [8]), which comes from integrating over the Gaussian fluctuations around

the self-consistently determined saddle point. This situation is different, because the integral
∫
Df̃ =∏

α

∫ i∞
−i∞

df̃
2πi proceeds along the imaginary axis for each sample coordinate α. Also, the cumulant-

generating function W in (35) here plays the role of what normally is the action S. As a function
of a real-valued f̃ , the Hessian of W must be non-negative, because it is a covariance. Taking the
integral along tα where f̃α = itα, the fluctuations are controlled by −W ′′

, which is non-positive,
as it has to be. As result, the leading order fluctuation corretions to γ are

γ(f̃∗) = −W(f̃∗) +
1

2
ln det

(
W ′′(f̃∗)

)
.

Where W ′′ is the Hessian of W concerning f̃∗. If the ln det-term was absent, the equation of state
∂W/∂f̃∗ = y would be identical to the supremum condition in (25). Including the fluctuation
determinant, the equation of state yields an implicit equation to determine f̃∗ as

−y =
∂γ(f̃∗)

∂f̃∗
= −W ′

α(f̃∗) +
1

2

∑
βγ

W ′′′
αβγ(f̃∗) [W ′′(f̃∗)]

−1
βγ . (38)

Where here we used the notation W ′
α = ∂W

∂f̃α
,W ′′

αβ = ∂W
∂f̃α∂f̃β

etc. So one needs the first to third
derivatives of W , which follow with the measure[

. . .
]
h
∝
〈
. . . exp

(1
2

∑
αβ

f̃∗αf̃∗β
gw
M

ϕ(hα)ϕ(hβ)
)〉

h∼N (0,C(xx))
, (39)

where the proportionality is fixed by the proper normalization.

A.2.4. FLUCTUATION CORRECTIONS IN LINEAR NETWORK

For the linear network, in analogy to (29), the cumulant generating function W takes the form

W
(
f̃ |C(xx)

)
= −M

2

[
ln
[(

1− gw
M

f̃TC(xx)f̃
)
/ det(C(xx))

]
+ ln det(C(xx))

]
(40)

= −M

2
ln
(
1− gw

M
f̃TC(xx)f̃

)
. (41)

The action W appearing in (35), correspondingly, takes the form

W(f̃) = κ/2f̃Tf̃ −M/2 ln
(
1− gw/Mf̃TC(xx)f̃

)
. (42)

13
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Since, on the other hand, W evaluated at real-valued f̃ , is a cumulant-generating function its Hessian
is non-negative.

The explicit terms for the derivatives of W are given by:

W
(
f̃
)
=

κ

2
f̃T f̃ − M

2

[
ln
(
1− gw

M
f̃TC(xx)f̃

)]
(43)

W ′
α

(
f̃
)
=

[
κf̃ +

gwC
(xx)f̃

1− gw
M f̃TC(xx)f̃

]
α

W ′′
αβ

(
f̃
)
=

κI + 2g2w
M

C(xx)f̃ f̃TC(xx)(
1− gw

M f̃TC(xx)f̃
)2 + gw

C(xx)

1− gw
M f̃TCf̃


αβ

W ′′′
αβγ

(
f̃
)
=

2g2w

M
(
1− gw

M f̃TC(xx)f̃
)2
 4gw

M
(
1− gw

M f̃TC(xx)f̃
)Cf̃f̃TC(xx) + C(xx)


αβ︸ ︷︷ ︸

Tαβ

[
C(xx)f̃

]
γ

+
2g2w
M

C
(xx)
αγ

[
C(xx)f̃

]
β
+ C

(xx)
βγ

[
C(xx)f̃

]
α(

1− gw
M f̃TC(xx)f̃

)2
Using the Sherman-Morris formula, we obtain-

[
W ′′

(
f̃
)]−1

= A− AC(xx)f̃ f̃TC(xx)A

1 + f̃TC(xx)AC(xx)f̃T
; A =

[
κI + gw

C(xx)

1− gw
M f̃TC(xx)f̃

]−1

(44)

Note that-

Giving us the equation for y:

y =

(
κ+

gwC
(xx)

1− gw
M f̃TC(xx)f̃

)
f̃ (45)

+
g2wC

(xx)

M
(
1− gw

M f̃TC(xx)f̃
) (tr([W ′′

]−1
T

)
I + 2

[
I − AC(xx)f̃ f̃TC(xx)

1 + f̃TC(xx)AC(xx)f̃

]
AC

)
f̃ ,

(46)

which needs to be solved for f̃ to obtain the discrepancies shown in Fig. ??.

Appendix B. Sample Complexity Reduction

B.1. Theoretical Derivation

Assume a two-layer neural network with ReLU activation, trained on a target function-

14
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y(x) = v∗ · x+ ϵ

(
|v∗ · x| −

√
2

π

)
(47)

Where v∗ is normalized for simplicity. As shown in eq. (26) The discrepancy obeys:

⟨∆⟩ = κ
(
C + κI

)−1
y. (48)

Where C̄ is given by

C = gw

〈
ϕ (h)ϕ (h)T exp

(
1

2

gw
M2

f̃Tϕ (h)ϕ (h)T f̃

)〉
h∼N(0,C(xx))

(49)

We note that h can be written in terms of the weights as h = Xv, so that in this space C̄ is given
by-

Cαβ = gw

〈
ϕ (Xv)ϕ (Xv)T exp

(
1

2

gw
M2

f̃Tϕ (Xv)ϕ (Xv)T f̃

)〉
v∼N (0,gv/d)

(50)

∝ gw

∫
dvϕ (xαv)ϕ (xβv)

T exp

− d

2gv
vTv +

1

2

gw
M2

∑
αβ

f̃αf̃βϕ (xαv)ϕ (xβv)


︸ ︷︷ ︸

:=Sv

up to normalizing constants, where here xα is the α-th row of the input data X . In general, it
is not possible to obtain a closed form expression for Sv, and therefore we make the following
simplifications:

• By (26), we replace f̃/M ∼ ⟨∆⟩/κ, which is exact in mean-field scaling and consistent with
Serrousi et. al. [19].

• We assume that for sufficiently small ϵ the discrepancy can be approximated as follows-
⟨∆⟩ ∼ aXv∗, where a is unknown.

• Taking the continuum limit/ equivalent kernel (EK) approximation, allowing the substitution
of summations over the data points with integrals with respect to the data measure.

By comparison between numerics and theory in 3, we show that these approximations in fact cap-
ture the essential phenomena and lead to accurate predictions. Within these approximations, the
distribution of the hidden layer weights is given by

Sv =
d

2gv

(
vTv − gvgwn

2a2

κ2d

[∫
dµxϕ (vx)

(
(v∗)Tx

)]2)
(51)

=
d

2gv

(
vTv − gvgwn

2a2

κ2d

(
vTv∗

2

)2
)

:= vTΣ−1 (a) v .
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Similarly, note that in the continuum limit, the linear function is an eigenfunction of C, as we obtain:

CXv∗ =

∫
dx C (y, x)xTv = gw

∫
dx

∫
dvϕ (vy)ϕ (vx)xTve−

1
2
vTΣ−1(a)v (52)

=
gw
2

∫
dv vTv∗ϕ (vy) e−

1
2
vTΣ−1(a)v =

gw
4

v∗TΣ−1 (a) v∗︸ ︷︷ ︸
:=Λ∗(a)

yTv∗ ,

where Λ∗ = gv
d

(
1− gvgwn2a2

4κ2d

)−1
. Again assuming that ϵ is sufficiently small, the target is domi-

nated by the linear term, resulting in the following equation for a:

a = κ
[ngw

4
Λ∗ (a) + κ

]−1
(53)

Which can be solved numerically for a. Finally, we obtain the expression for Rp for the test data

Rp =

∑
αβ

[
C

a
⋆◦
(
C

a
◦◦ + κI

)−1
]
αβ

y (xβ)Hp (xαv
∗)∑

α y (xα)Hp (xαv∗)
, (54)

where in the weight space description, the kernel C is given by[
C

a
⋆◦
]
αβ

=
〈
ϕ
(
vTxtest

α

)
ϕ
(
vTxtrain

β

)〉
v∼N (0,Σ(a))

(55)[
C

a
◦◦
]
αβ

=
〈
ϕ
(
vTxtrain

α

)
ϕ
(
vTxtrain

β

)〉
v∼N (0,Σ(a))

and a is such that it solves the self-consistent equation (53) above.

B.2. Experimental Results

We choose a network configuration in which the theory predicts that the variance in the v∗ direction
will be ∼

√
d times that of the variance in other directions. This choice implies that there will

be significant feature learning and that the Gaussian equivalence principle, that the weights are
identically distributed, will no longer hold. We would expect that in this scenario, the feature
learning results in a significant effective dimensional reduction of the task, which in turn would
result in a reduction of sample complexity. Thus, we would expect that the network begins to learn
high-order polynomials at n points which is an order of magnitude lower than that of the GP limit
and the scaling approach. In particular, we expect that the value of R2 will no longer be negligible.

B.2.1. EXPERIMENTAL DETAILS

We trained five ensembles of 10 networks, each ensemble trained on a different dataset. We used
the following network parameters:

M = β750, d0 = β96, n0 ∈ {2βd0, 3βd0, 4βd0} (56)

κ = gw = 0.3, gv = 0.5, ϵ = 0.1 (57)

Where we changed the values of β. With this parameter choice, we observe that there is in fact
strong feature learning, as can be seen by the difference in the variance of the hidden layer weights
aligned with v∗ compared to the perpendicular one.
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In fig. (3) the distribution of the weights in the hidden layer is shown, both in the same direction
as the target (v∗) and in a direction perpendicular to it. In this figure, evidence of strong feature
learning is observed, as the variance of the hidden layer weights in the v∗ direction is ∼ 15 ∼
O(

√
d) times that in the perpendicular dimension. The comparison between numerics and theory

shows accurate agreement, a posteriori justifying the assumptions of the theory.

1 0 1
v

0

1

2

3

4

5

6

−
ln

(p
(v

))

v v ∗

Analytical sol. v v ∗

v v ∗

Analytical sol. v v ∗

Figure 3: Negative log probability of hidden layer weight distribution. The distribution of the
weights in the same direction of the target is significantly wider than the distribution
in orthogonal directions.
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