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Figure 1. Given one-shot images that contains multiple fine-grained parts, our pipeline can learn descriptive concepts for these parts with
disentanglement and flexibly re-compose them to generate new objects, for both intra-category and cross-category objects.

Abstract

We present a framework for part-level concept learn-
ing from single-image examples that enables text-to-image
diffusion models to compose novel objects from meaning-
ful components. Existing methods either struggle with ef-
fectively learning fine-grained concepts or require a large
dataset as input. We propose a dynamic data synthesis
pipeline generating diverse part compositions to address
one-shot data scarcity. Most importantly, we propose to
maximize the mutual information between denoised latents
and structured concept codes via a concept predictor, en-
abling direct regulation on concept disentanglement and re-
composition supervision. Our method achieves strong dis-
entanglement and controllable composition, outperforming
subject and part-level baselines when mixing concepts from
the same, or different, object categories.

1. Introduction

Visually inspired and creative generation emerges from the
ability to compose new objects from familiar parts [16, 17].
From virtual creatures to fantastical designs, part-level con-
cept composition is a powerful paradigm for visual imagi-
nation. Recent works have explored extracting visual con-
cepts from large generative models in the form of latent
codes [5, 7, 10, 13, 19, 20, 22]. Each of the extracted con-
cepts encodes the identity of an image object (e.g., a red seat

cushion) and can be used with other concepts in creative im-
age generation [2, 9, 11, 14, 16? ]. In this context, text-to-
image diffusion models serve as a versatile tool for learning
compositional concepts through personalization. However,
enabling these models to learn and compose fine-grained
part-level concepts from just single-image examples (i.e.,
one image per object) remains challenging.

While recent methods advance concept learning with
single-image input [10, 20, 22] or multi-concept capabili-
ties [2, 6], they largely operate at the subject level and of-
ten fail to disentangle and retain the identity of fine-grained
parts. Figure 2 illustrates this problem when composing 4
parts across 2 chairs. A common paradigm for these meth-
ods is to learn new or specialized token embeddings for con-
cepts, through finetuning the diffusion model (updating the
embeddings and/or the model weights) via latent diffusion
loss Lldm. The learned concepts token embeddings can be
directly used in prompts at inference time to generate im-
ages containing the target concepts. A common way to dis-
entangle concepts is applying cross-attention loss Lattn be-
tween concept tokens, but this method alone cannot effec-
tively deal with part-level concepts from one-shot inputs.
Without regulating the information flow into these embed-
dings, part composition is prone to entanglement, ambigu-
ity, or collapse. We present more detailed background dis-
cussion in Appendix A.

To overcome this issue, we propose a mutual information
maximization framework that explicitly aligns denoised la-
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Figure 2. Illustration of the challenge in learning fine-grained con-
cepts from one-shot inputs. Break-a-Scene [2] results in multiple
entanglement while out method cleanly reflect target concepts.

tents with structured part-level concept codes. We intro-
duce a concept predictor that performs both classification
and segmentation on latent features, regularizing the em-
bedding space to reflect concept presence and spatial struc-
ture. Additionally, we develop a dynamic data synthesis
pipeline to generate rich part-level supervision from single-
image examples.

Our framework enables compositional generation of new
objects from single-image examples for the same and differ-
ent object categories, advancing the capability of generative
models to support creative, part-based visual reasoning.

2. Method
Given single-image examples, we want to be able to learn
part concepts and mix them from each input together arbi-
trarily. Our pipeline build upon the commonly used diffu-
sion model customization approaches (introduced in Sec-
tion 1) like Break-a-Scene [2] and PartCraft [14], where
standard diffusion loss Lldm and cross-attention losses Lattn
are used to learn and disentangle concept tokens. However,
to enable learning concepts at part level with single-image
examples, we propose a dynamic data synthesis method to
augment the limited data and a maximizing mutual informa-
tion scheme to enable clear disentanglement of parts’ con-
cepts and good composition capabilities. Figure 3 gives an
overview of our approach.

Dynamic Data Synthesis We propose a dynamic data
synthesis approach to augment the limited single-image ex-
ample input. Our training batch contains two images, an in-
stance image that is directly sampled from the given exam-
ples and a synthetic image that is generated on-the-fly. Fig-
ure 4 demonstrates our dynamic data synthesis approach.
The instance image is randomly chosen from the input ex-
amples, and we randomly select a subset of the parts con-
tained in the chosen instance image, inspired by the union
sampling method in Break-a-Scene [2]. We mask out the
unused parts areas and change the background to white to
focus only on the part concepts, and pair it with a descriptive
prompt. However, this data alone cannot provide enough
training data to finetune diffusion models to mix different

compositions of parts across different images. We thus pro-
pose to synthesize an image that contains parts that are ran-
domly sampled across input examples. For each part cat-
egory (e.g., the armrest of the chair), we randomly select
a part from the input instances. Inspired by MuDI [9], we
randomly scale and place the sampled parts on an white im-
age. The parts can overlap each other to encourage learning
concepts from multiple possible compositions. We modify
the original masks according to the overlapping occlusions.
Due to the high variability in the synthetic image, we use
a different prompt to treat it as a collection of parts. Ad-
ditional dynamic data synthesis explanation and examples
can be found in Appendix D.

Maximizing Mutual Information Most existing concept
learning methods either rely on multiple inputs [7, 13, 14]
or are restricted by the number of concepts they could learn
at the same time [10, 20, 22]. These restrictions results in
poor performance in applying them on learning part-level
concepts. We argue that a key missing point is that there
are no explicit regulation on the information encoded in the
concept embeddings. We thus propose a scheme to maxi-
mize the mutual information between the denoised latents
and the concepts contained in the input image.

To this end, we adopt a mutual information maximiza-
tion objective inspired by InfoGAN [3], which encourages
the learned concept embeddings to retain interpretable and
disentangled semantic structure. Let z̃ denote the denoised
latent representation, and let c denote the set of concept
codes associated with the input image. We seek to maxi-
mize the mutual information I(c; z̃), which quantifies how
much information about the concepts is preserved in the la-
tent. This can be expressed as:

I(c; z̃) = H(c)−H(c | z̃),

where H(c) is the entropy of the concept distribution and
H(c | z̃) is the conditional entropy of the concepts given the
latent. Since directly computing this term is intractable, we
introduce a variational distribution Q(c | z̃), implemented
via a concept predictor, to approximate the true posterior.
This leads to a variational lower bound:

Ilower = Ec∼P (c),z̃∼P (z̃|c)[logQ(c | z̃)] +H(c),

which satisfies Ilower ≤ I(c; z̃). For a fixed prior over con-
cepts (i.e., the ground-truth labels that supervise the concept
predictor), H(c) is constant and can be omitted during opti-
mization. The corresponding training loss LInfo is defined as
the negative of the lower bound which is minimized along-
side the task loss. This encourages the model to produce
latents z̃ from which the concept codes c can be accurately
inferred, effectively regularizing the embedding space to re-
flect part-level semantics.
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Figure 3. Overview of our method. Given a concept-compositional prompt and noise input, the denoising U-Net produces a latent z̃
supervised by reconstruction loss Lldm, cross-attention losses Lattn, and information loss Linfo. Linfo is computed by a concept predictor
which receives z̃ and outputs concept classification and segmentation logits. The goal is to maximize mutual information between latent
features and concept codes. All modules are jointly optimized to enable part-level concept disentanglement and controllable composition.
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Figure 4. Dynamic data synthesis. Each training batch includes
an instance image with masked parts and a synthetic image with
randomly sampled and placed parts from multiple inputs, enabling
diverse part-level supervision from single-image examples.

In our concept predictor design shown in Figure 3, we
use two output heads to provide both classification and seg-
mentation predictions of concepts given an denoised latent.
The classification loss LCLS penalizes the wrong compo-
sitions of concepts (i.e., missing concepts or containing
more concepts). The segmentation loss LSEG further pe-
nalizes wrong localization of concepts. These two losses

are weighted to have the same scale and combined to get
the mutual information loss LInfo. The concept predictor is
jointly optimized with the concept learning process. More
detailed loss function descriptions and weight settings are
introduced in Appendix D.

3. Experimental Results

The implementation details and experimental settings are
presented in Appendix B. We present the qualitative results
for part-level concept learning and composition (for intra-
and cross-category objects) in this section.

Intra-category Results We first demonstrate the part-
level concept learning and composition capability of our
model using inputs from same categories. The input sub-
jects consist same part decompositions (e.g., we decom-
pose a chair into 4 parts: armrest, seat back, legs, and seat
in Figure 5.) We compare the our methods with Break-a-
Scene [2], which is representative for concept learning from
a single image, and PartCraft [14], which is representative
for part-level concept learning. To align their setting with
our task, we adapt the original Break-a-Scene input dataset
into a multi-image input manner and feed the single-image
examples into PartCraft pipeline. More implementation de-
tails for the adaptation of their methods are explained in
Appendix E.

Figure 5 shows the qualitative comparison of our method
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Figure 5. Comparison of Concept mixing results for 2 chairs using our approach, Break-a-Scene [2], and PartCraft [14]. The input images
and correspond part decompositions are shown in the left column. We illustrates 4 part composition across the two input images by
selecting 2 parts from each image, which are shown on the top row. We randomly sample 4 generated images for each composition.

with Break-a-Scene [2] and PartCraft [14], where we aim to
recompose concepts across two input images. We gener-
ate 4 samples for each part composition. Break-a-Scene [2]
struggles to disentangle and recompose part-level concepts,
resulting in mixed identity in different parts, presumably
since it was designed to do subject-level concept learning.
PartCraft struggles to learn and recompose part-level con-
cepts from single-image examples, resulting in poor and
inconsistent image generation quality, presumably since it
was designed to train on a large dataset. Our pipeline
produce clear part-level concept disentanglement and clean
composition capability. Additional intra-category results
are presented in Appendix F.1.

Cross-category Results To enable more creativity in
part-level concepts composition, we evaluate our methods
in learning and remixing parts from objects in different cat-
egories, aiming to generate virtual objects. Figure 1 shows
hybrid compositions from a chair and a gym equipment.

More results are shown in Figure 17 in Appendix F.2, where
the parts from a chair and a bed are hybridly composed.
Our methods can generate creative virtual objects with dif-
ferent part compositions, preserving clear part-level identity
with reasonable structural arrangements for most composi-
tion scenarios.

4. Conclusion

We propose a mutual information maximization frame-
works in text-to-image diffusion model customization to
disentangle the concepts and reduce concept missing in
composing new objects. Together with our dynamic data
synthesis approach, we enable learning and composing fine-
grained part-level concepts from single-image examples.
Our methods can produce identity-preserved and natural
part compositions given the single-image examples from
the same or different object categories.
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A. Background in Visual Concept Learning

Input Requirements Pioneering works like Textural In-
version [5] and DreamBooth [19] in visual concept learning
require multiple images as input to encode a single a con-
cept. Several follow-up works have loosen the input con-
straint as learning single concept from single-image exam-
ples [10, 20, 22]. Multi-concept learning from multiple in-
puts are also being discovered [7, 13]. Break-a-Scene [2]
first propose a pipeline to learn multiple concepts from
single-image examples, enabling great flexibility in learn-
ing and remixing concepts from general use cases.

Concept Granularity Most concept learning methods fo-
cus on learning concept for the entire image or on the sub-
ject level [2, 6, 7, 9, 10, 13, 20, 22]. The target use case
for these methods is to generate images that are organi-
cally composed by required subject(s) according to user-
specified prompts. However, to enable more creativity in
generating new subjects, part-level concept learning is re-
quired. This more fined-grained concept learning task has
been explored by PartCraft [14]. They learn a large dictio-
nary of concepts for different parts of creatures and gener-
ate new virtual creatures that have not been seen in the real
world. However, their method rely on training on a large
dataset and struggle on single-image examples. Piece-it-
Together (PiT) [17] also targets part-level concept learning,
by directly operating in a carefully chosen IP-Adapter+ [23]
representation space and synthesizes a complete and coher-
ent concept by training a generative model to fill in miss-
ing information conditioned on a strong domain-specific
prior. Unlike optimization-heavy approaches, PiT enables
efficient inference, supports diverse sampling from sparse
inputs, and allows flexible semantic manipulation. How-
ever, PiT still requires training on class-specific datasets,
where direct single-image examples are not supported.

Common Challenges A common challenge in multi-
concept learning is to disentangle the identity of con-
cepts [2, 9, 14]. To achieve good disentanglement, dy-
namic masking different compositions of concepts and
using cross-attention mechanisms to regulate the diffu-
sion model finetuning are commonly used in methods like
Break-a-Scene [2] and PartCraft [14]. MuDI [9] proposes a
dynamic concept composition method and mean-shifted in-
ference technique to further improve the decoupling of dif-
ferent concepts. However, concepts missing or inaccurate
identity still occur in all of these methods when remixing/re-
composing concepts in generative process [2, 9, 14], espe-
cially when dealing with 4 or more concepts. Our observa-
tion is that all existing concept learning works do not pro-
vide any explicit regulation on the information encoded in
different concepts, causing inaccurate multi-concept remix-

ing. Other common challenges include learning large num-
ber of concepts (e.g., more than 4) from single inputs [2].

B. Experiments Setup
Data We use both synthetic data and real-world images
in our experiments. We generate the synthetic images using
DeepFloyd IF [4] and we collect real-world images mainly
from renderings of 3D objects [15]. The mask generation
methods are introduced in Appendix C.

Implementation Details For all experiments, we use Sta-
ble Diffusion v2.1 [18] as the pre-trained text-to-image dif-
fusion model and apply LoRA [8] with rank 32 to the U-
Net module. The concept predictor is a convolutional net-
work that operates on denoised latents and outputs both
classification and segmentation predictions. It consists of
three convolution layers (with output channels 16, 32, and
64), followed by two parallel output heads: a classification
head composed of two fully connected layers for predict-
ing multi-label concept presence, and a segmentation head
consisting of a 1 × 1 convolution followed by bilinear up-
sampling to produce per-concept spatial masks. We follow
a two-stage training scheme similar to Break-a-Scene [2],
where we only update the token embeddings with a high
learning rate (10−4) in the first stage and fully update both
text encoder and LoRA weights in the U-Net with a low
learning rate (10−6) in the second stage. More training and
inference details are introduced in Appendix D.

C. Mask Generation
Our method assumes access to part-level masks for training,
but remains agnostic to how these masks are obtained. In
practice, we adopt one of the following strategies depending
on the dataset:
• Automatic segmentation and labeling: We apply off-

the-shelf segmentation models such as SAM [12] to
produce over-segmented masks, followed by GPT-4o-
based [1] captioning and labeling to group and assign part
identities.

• Manual or direct annotation: In some settings, we di-
rectly specify or provide part masks, either manually or
from existing annotated assets (e.g., 3D renderings [15]
or synthetic data).
Our framework is compatible with any source of part-

level supervision, including both automatic and manual
pipelines. Since the main focus of our work is not on mask
generation itself, we treat this step as a pre-processing mod-
ule and do not over-emphasis our effort on it.

D. Training Details
We provide the detailed training configuration used in our
experiments for learning part-level visual concepts from



single-image examples. Our pipeline is trained using Stable
Diffusion v2.1 [18] as the base text-to-image model. We use
a pair of chair images from Figure 4 as an illustrative ex-
ample. Each chair is decomposed into four semantic parts:
armrest, backrest, legs, and seat. These parts are
tokenized into 8 learnable placeholder tokens, denoted as
<v1> through <v8>, with each token corresponding to a
specific part instance from the two training images.

Prompt Design. Each training image is paired with a
structured, part-compositional prompt using the assigned
placeholder tokens. Two types of prompts are generated
dynamically during training:
• Instance prompts: These describe partial objects com-

posed of a subset of parts from a single input image. For
example, if parts <v5>, <v7>, and <v8> are selected
from Image 2, the corresponding prompt is: “A photo of
a partial chair composed of: <v5>, <v7>, <v8>, on a
clean white background.”

• Synthetic prompts: These describe compositions of
parts sampled across both input images. For example,
if <v2> is sampled from Image 1 and <v5>, <v7>, and
<v8> are sampled from Image 2, the prompt is: “A photo
of randomly placed chair components: <v2>, <v5>,
<v7>, <v8>, on a clean white background.”

All prompts are automatically generated based on the se-
lected part indices. Backgrounds are set to white by de-
fault, and prompts are templated consistently to ensure
clean compositional control.

Loss Configuration. To enforce both generative quality
and part-level semantic disentanglement, we optimize a
weighted combination of losses:
• Lldm: The standard latent diffusion reconstruction loss.
• Lattn: Cross-attention loss to promote concept disentan-

glement.
• LCLS: Multi-label classification loss from the concept

predictor’s classification head.
• LSEG: Per-pixel segmentation loss from the predictor’s

segmentation head.
• LBG: Background supervision loss that penalizes genera-

tion of content outside the union of selected part masks.
This encourages the model to focus on concept-relevant
regions and avoid unrelated artifacts in unmasked areas.
The total loss is defined as:

Ltotal = Lldm + Lattn + λclsLCLS + λsegLSEG + λbgLBG,

with the following loss weights:

λcls = 0.05, λseg = 10.0, λbg = 0.01.

Training Procedure. We adopt a two-phase training
scheme:

• Phase 1: Only concept token embeddings are optimized
for 6,400 steps.

• Phase 2: The LoRA-injected U-Net (with rank 32) and
text encoder are jointly fine-tuned for 40,000 steps.

We want to note that the second stage training step number
is just a rough reference which generally ensures that all
concepts are well-learned, and removes background con-
tents. In general, after 18,000 steps, the concept learning
and re-composition results are already good enough.

Inference Procedure. We perform inference using
standard DDIM [21] sampling with a pretrained Stable
Diffusion v2.1 backbone, the optimized text encoder,
and the learned LoRA weights. Given a compositional
prompt (e.g., "A photo of a partial chair
with <v2>, <v5>, <v7>, <v8>, on a clean
white background."), the model decodes a final
image using 50 DDIM steps. We use a commonly used
guidance scale 7.5.

Learning Extra Background Concepts. Our pipeline
also supports learning extract background concepts if user
wants to place the re-composed object on specific back-
ground images. We use <bgX> to represent the background
concepts and they are learned together with the part-level
concepts. In our data dynamic data synthesis stage, we re-
place the white background with the given background im-
ages and keep all other operations as the same. We use the
background loss λbg with weight λbg = 0.01 to train the
background concepts. Figure 6 show the results for incorpo-
rating an indoor background with re-composed chairs. Our
method can naturally blend the newly composed chair into
the given background.

E. Qualitative Comparison Implementation
We compare our method with other visual concept learn-
ing and re-composition works, Break-a-Scene [2] and
PartCraft [14]. We introduce the detailed comparison ex-
periment setup in this section.

Break-a-Scene [2] is originally designed to learn mu-
tiple subject-level concepts in a single image. We mod-
ify the data loading and processing scheme to support
learning part-level concepts from single-image examples.
In addition, since we can only access 24G VRAM GPU
(RTX3090), we add LoRA [8] following standard StableD-
iffusion v2.1 model finetuning scheme to train the LoRA
weights instead of the entire diffusion U-Net. This approach
has been validated by PartCraft [14] that it will not harm the
concept learning quality when compared to finetuning the
entire U-Net.

PartCraft [14] is originally designed to learn part-level
concepts from a large dataset of images. Specifically, they
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Figure 6. Concept mixing results for a pair of chairs with an intended background.

require to have 10-20 images for a subject (e.g., a spe-
cific bird species.). We modify the data loading and pro-
cessing scheme to load single-image examples dataset into
their pipeline. In addition, we directly provide the part-level
masks instead of using their automatic concept discovering
method to ensure fair comparison. We use StableDiffusion
v1.5 as described in their paper to learn the concepts. Their
approach show unstable performance. The results we show
in Figure 5 are already the best results we observed. The im-
age quality degrades quickly when the training step number
increases (after the step we shown in Figure 5). We also
tried to use smaller learning rate but their pipeline struggle
to even learn any meaningful concepts. We hypothesis the
reason for this is that their method is designed to use on
a large dataset instead of the single-image examples in our
case.

F. Extra Experimental Results
F.1. Intra-category Results
We conduct experiments on various object categories to
demonstrate our model’s capability in learning and re-
composing part-level concepts. In each case, objects are
decomposed into over four semantic parts, and our method
learns to mix these parts across instances from the same cat-
egory.

Chair. Parts are: armrest, backrest, legs, and
seat. Figure 7 and Figure 8 show concept mixing results
across 8 different chair pairs.

Bed. Parts are: headboard, base, mattress, and
pillow. Figure 9 shows concept mixing for a pair of beds.

Gym Equipment. Parts are: base, stand, seat, and
weight. Figure 10 shows concept mixing for a pair of gym

equipment examples.

Vehicle. Parts are: front, cockpit, tail, and
wheels. Figure 11 shows concept mixing for three pairs
of vehicles.

Bike. Parts are: handle, frame, seat, and wheels.
Figure 12 shows concept mixing results for a pair of bikes.

Plane. Parts are: body, wing, tail, and engine. Fig-
ure 13 shows concept mixing results for a pair of planes.

Bird and Virtual Creature. Parts are: head, body,
wings, tail, and legs. Figure 14 shows concept mixing
for a bird and a creature pair.

Virtual Characters. Figure 15 shows concept mixing for
a mushroom-like character and a santa-like character. Parts
are: head, eyes, face, body, and legs. Figure 16
shows concept mixing for a hermit-like character and a
reptile-like character. This example aim to demonstrate that
our method can learn a large number (i.e., in this case, 7
parts per image) of fine-grained concepts for parts and re-
compose them. Parts are: head, eyes, face, nose,
arms, body, and legs.

F.2. Cross-category Results

To demonstrate generalization beyond intra-category re-
composition, we evaluate our method on cross-category part
mixing. Figure 17 shows 2 hybrid compositions, one for a
chair and a gym equipment and another for a chair and a
bed.



Figure 7. Concept mixing results for various compositions of chair parts.

G. Limitations

Although our method can learn well entangled part-level
concepts can re-compose them, the image generation qual-
ity for some challenging inputs might still need improve-
ment. For example, when composing parts from a truck and
s sports car in Figure 11, there are some noticable artifacts
in the generated images even though all the intended part
concepts are preserved. Our pipeline also sometimes do not
preserve the exact details for very thing or high-frequency
structures like the horizontal bars in chair legs (in Figure 5)
and the number of bird legs (in Figure 14). This prob-
lem might partially due to the inherent limitation of text-to-
image diffusion models since these models can produce im-
ages containing unrealistic details like a bird with 3 or more

legs. Additionally, for cross-category part re-composition,
not all compositions of parts result in meaningful virtual ob-
jects. For example, when mixing a chair and a gym equip-
ment in Figure 17, the composition in the third column re-
sults in non-meaningful objects. A composition prediction
scheme may be developed in this case to predict the possi-
ble meaningful part compositions instead of naively trying
all possible compositions.



Figure 8. Concept mixing results for various compositions of chair parts.

Figure 9. Concept mixing results for bed.



Figure 10. Concept mixing results for gym.

Figure 11. Concept mixing results for vehicles. The first pair contains a sports car and an old formula one car. The second pair contains a
sports car and a modern formula one car. The last pair contains a sports car and a truck.



Figure 12. Concept mixing results for bike.

Figure 13. Concept mixing results for plane.



Figure 14. Concept mixing results for bird and virtual creatures.

Figure 15. Concept mixing results for a mushroom-like character and a santa-like character .



Figure 16. Concept mixing results for a hermit-like character and a reptile-like character.

Figure 17. Concept mixing results cross-category objects. The first row shows the re-composing results for a chair and a gym equipment.
The second row shows results for re-composing for a chair and a bed.
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