
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPSRT: QUANTIZATION AND PRUNING FOR
IMAGE SUPER RESOLUTION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model compression has emerged as a way to reduce the cost of using image super
resolution models by decreasing storage size and inference time. However, the
gap between the best compressed models and the full precision model still re-
mains large and a deeper understanding of compression theory on more performant
models remains unexplored. Prior research on quantization of Large Language
Models has shown that Hadamard transforms lead to ‘flattened’ weight and activa-
tion distributions which lower quantization errors. However, we observe that on
SwinIR-light, Hadamard transformations on weights and activations do not lead to
flatter distributions, but do lead to lower quantization errors. Instead of flattening
distributions, we show that lower errors is caused by the Hadamard transforms
ability to reduce the ranges, and increase the proportion of values around 0. Based
on these findings, we introduce CompSRT, a more performant way to compress the
image super resolution transformer network SwinIR-light. We perform Hadamard-
based quantization, and we also perform scalar decomposition to introduce two
additional trainable parameters. Our quantization performance statistically signifi-
cantly surpasses the current state-of-the-art in metrics with gains as large as 1.53
dB, and visibly improves visual quality by reducing blurriness at all bitwidths. At
3-4 bits, to show our method is compatible with pruning for increased compression,
we also prune 40% of weights and show that we can achieve 6.67-15% reduction
in bits per parameter with comparable performance to the state-of-the-art.

1 INTRODUCTION

Image super-resolution (SR), the task of reconstructing high-resolution (HR) images from low-
resolution (LR) inputs, plays a critical role in diverse domains such as imagevideo enhancement
Hitachi; Takeda et al. (2009); Su et al. (2011), medical imaging Yu et al. (2017); Greenspan et al.
(2002); Yu et al. (2018); Robinson et al. (2017), remote sensing Zhu et al. (2018); Murthy et al.
(2014), and astronomy Yue et al. (2016). Deep learning has driven significant progress in SR, with
convolutional neural networks (CNNs) like EDSR Lim et al. (2017a), RDN Zhang et al. (2018), and
SRResNet Ledig et al. (2017) achieving high performance at the cost of substantial parameter counts,
resulting in increased storage and inference time. Recently, transformer-based models have emerged
as efficient alternatives, offering competitive performance with fewer parameters.

Despite being lighter than traditional CNNs, SwinIR-light still demands significant resources. Model
compression addresses this issue through various methods like quantization and pruning. Quantization
works by reducing parameter precision (e.g., from 32/16-bit to 2–4-bit), trading minor accuracy loss
for substantial gains in memory and compute efficiency. Quantization strategies include quantization-
aware training (QAT), which jointly optimizes weights and quantization parameters, and post-training
quantization (PTQ), which calibrates quantization on a frozen model. Pruning works through
removing nodes that don’t offer that much information, eliminating signal noise and enhancing clarity.
Pruning methods can be structured, i.e. removing whole blocks/channels or unstructured, removing
individual elements. We focus on a Hadamard guided combination quantization with pruning prior to
quantization at higher bit-widths.

While most prior work focuses on either quantization or pruning with CNNs, recent PTQ methods like
2DQuant Liu et al. (2024) and CondiQuant Liu et al. (2025) have adapted PTQ to SwinIR. However,
the current state-of-the-art (SOTA) in PTQ, CondiQuant, does not provide deeper understanding of
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LR 2DQuant Ours FP

Figure 1: Qualitative visual comparison for 2-bit (×4) SR on a challenging example. LR denotes low
resolution image. FP denotes the output of the FP model. The comparative example is taken from
2DQuant Liu et al. (2024)1. SOTA (2DQuant) suffers from excessive blurriness, while our method is
significantly more clear.

theory nor directly modify distributions of weights and activations, which are known to be critical
to quantization performance. As a result, it exhibits a notable gap from the full-precision (FP)
SwinIR-light model.

Previous literature on quantization of LLMs Sun et al. (2024) introduced how “flatness” of weights
and activations is important for quantization and Tseng et al. (2024) and Sun et al. (2024) stated that
Hadamard transformations can increase flatness of distributions. However, we find that after applying
the Hadamard transform to the weights and activations of SwinIR-light, the weights tend to be more
normally distributed and bell curve shaped. Therefore, the mechanism for the Hadamard’s lowering
of the errors remains unexplored. We show that the Hadamard transformation lowers the ranges of
values and increases the proportion of values being concentrated around 0 which lowers quantization
errors. Using statistical tests for both activations and weights, we find that Hadamard transformations
produce more normally distributed distributions, statistically significantly reduce the ranges, and
move more values closer to 0 to give improved quantization performance. Given these, our main
contributions are as follows:

• We provide a deeper understanding of how the Hadamard functions, and apply the transforms
to directly modify weights and activations pre-quantization to statistically significantly
reduce ranges and compact the signal around 0 which lowers quantization errors.

• We reparameterize the quantization scalars and zero offsets by decomposing both terms into
two learnable variables, introducing two additional degrees of freedom that enable finer
optimization of quantization parameters.

• We statistically significantly outperform SOTA in PSNR and SSIM across ×2, ×3, and ×4
scale factors for all bitwidths. Specifically, we have gained +1.53 dB PSNR, and +0.03
SSIM over CondiQuant Liu et al. (2025) on Manga109 at 2-bit ×4. Qualitative results reveal
sharper image reconstructions.

• We implement weight pruning with our quantization strategy at 3-4 bits. Using the Hadamard
transform’s ability to concentrate more values around 0, we prune 40% of weights per
quantized layer and have comparable performance with CondiQuant, but with 6.67% and
15% less bits per parameter for 3 and 4 bits respectively.

2 RELATED WORK

2.1 IMAGE SUPER RESOLUTION

EDSR (Enhanced Deep Super-Resolution) Lim et al. (2017b), is a CNN-based architecture that
improves upon traditional residual networks by removing unnecessary modules and stabilizing the
training procedure. SRResNet Ledig et al. (2017) employs residual learning and partial convolution
based padding to generate high-quality images with fine details. SwinIR Liang et al. (2021) is a
transformer-based model that has demonstrated superior performance with a reduced number of

1Since CondiQuant does not have open-sourced code, we compare our visual results with 2DQuant.
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parameters compared to CNN-based approaches by leveraging shallow and deep feature extraction
along with the self-attention mechanism. SwinIR is made up of Residual Swin Transformer Blocks
(RSTB), which are in turn made up of Swin Transformer Layers (STL). SwinIR-light is the SwinIR
model designed for lightweight SR made up of 4 RSTBs that each contain 6 STLs. In our work we
focus on this model for it’s lightweight quality, which makes it more ideal for further compression
and edge device deployment.

2.2 MODEL QUANTIZATION

Previous research has focused mainly on PTQ for CNN based architectures or vision transformers
Hong & Lee (2024a); Makhov et al. (2024); Tu et al. (2023); Ding et al. (2022); Yuan et al. (2024)
Li et al. (2023); Liu et al. (2023), QAT Tian et al. (2023); Hong & Lee (2024b); Hong et al. (2022a;b);
Li et al. (2020); Zhong et al. (2022); Wang et al. (2021) or unique quantized architectures Qin et al.
(2023). 2DQuant Liu et al. (2024) and CondiQuant Liu et al. (2025) represent the SOTA PTQ
methods for SwinIR-light. 2DQuant performs Distribution-Oriented Bound Initialization (DOBI)
to search for optimal clipping ranges from input distributions, then finetunes these bounds on a
calibration dataset to minimize discrepancy with the full precision model’s output. CondiQuant
identifies that quantization errors primarily stem from activation quantization and uses the condition
number of weight matrices to measure how sensitive outputs are to small input changes, employing
proximal gradient descent to minimize these condition numbers while preserving model outputs.
While both methods are effective, they do not directly address large ranges in weight and activation
distributions. 2DQuant initializes parameters based on distributions but doesn’t modify them, while
CondiQuant focuses on condition numbers rather than distribution properties. Our method goes
further by reducing the ranges of the weights and activations and compacting the signal through
Hadamard transforms, making distributions more quantization-friendly.

2.3 MODEL PRUNING

Prior work has experimented with pruning, although like quantization, the focus has been on convolu-
tional models like EDSR. However, there has been some work on transformers and SwinIR. Chen
et al. (2023) leverage activation sparsity in window-based vision transformers to prune activations
while preserving the regular batching structure, enabling speedups on monocular 3D detection, 2D
instance segmentation, and semantic segmentation with negligible accuracy loss. Prasetyo et al.
(2023) apply Sparse Regularization and Pruning methods to the Vision Transformer architecture for
image classification tasks and find that sparse regularization increases performance. Kim et al. and
Jiang et al. (2023) focused on SwinIR specifically and experiment with knowledge distillation and
pruning of the network. Their results show that the model compression could reduce computational
costs and number of parameters without losing the performance, but their performance does not
exceed ours. Lastly, Wang et al. (2025) also focus on knowledge distillation and pruning with SwinIR,
letting the teacher guide channel selection during pruning for better accuracy and efficiency than
sequential pipelines. It uses a learnable, differentiable auto-pruning module and a Multiscale Wavelet
Refine Module to transfer high-frequency details. While these methods are effective, none implement
two methods of compression at the same time. In our work we implement both quantization and
pruning for more compression at higher bitwidths.

3 METHODOLOGY

3.1 HADAMARD TRANSFORMATION

Hadamard transformations have been used with effectiveness in quantization of LLMs to lower
quantization errors. They have been said to increase “flatness” but this concept has not been
rigorously evaluated. Hadamard matrices are recursively defined with entries in {±1} and implement
linear, orthogonal, involutive transforms for dimensions that are powers of two, typically scaled by
1/

√
n (where n is the last dimension) for reversibility. To implement this, we first pad each weight

and activation tensor with zeros so that their dimensions become powers of two. Once padded, we
perform matrix multiplication between the tensors and a Hadamard matrix of the appropriate size in
full precision. This is given in X ′ = (H ·X)/

√
dim(X) where dim(X) returns the last dimension

of X . This operation has been said to flatten the matrices by distributing the magnitude of outliers
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Figure 2: The left histogram shows the weight distribution prior Hadamard with a larger range and a
sharper peak. The right histogram shows that the Post-Hadamard weight distribution is not flatter.
The dark blue region indicates the values within [−ϵ, ϵ] which now have more concentration after the
transform as shown by the increase in the probability of a value being in [−ε, ε], pε.

and that is how the errors get reduced, but the exact mechanism has not been explored nor has the
flatness or normality of distributions been tested.

We test whether the weight and activation distributions are more normally distributed after the
transformation. To perform all of our statistical tests, since tensor elements are not individually
matchable across the Hadamard because each post-coordinate is a linear combination of many pre-
coordinates, we treat each whole tensor as the experimental unit and form paired pre/post Hadamard
summaries on the same tensor. For all experiments, we have 144 pairs of weight tensors and
240 pairs of activation tensors. For every paired pre/post tensor (pj , qj), we flatten the matrices,
randomly sample 1 million elements and calculate the Shapiro-Wilk W -statistic prior to and after the
transformation. We then calculate ∆wj = Wqj −Wpj (positive means more normal). Aggregating
over matrices j = 1, . . . , N , we use a one-sided Wilcoxon signed-rank test with H0 : median(∆w) =
0 vs. H1 : median(∆w) > 0, and our findings in Table 1 show that W statistically significantly
increases, so distributions become statistically significantly more normal after the transformation.
Plotting a distribution also confirms this as shown in Figure 2.

Thus, there must be another reason for the Hadamards efficacy in quantization, since they do not
make distributions flatter. We show that the Hadamard transformations reduce quantization errors in
matrices by reducing the ranges of the values, and concentrating values around 0. This reduces the
error because if values are closer together and closer to 0, quantizing them to a fixed value incurs
less errors. We perform statistical tests to measure whether the Hadamard does reduce ranges and
concentrate more values around 0.

To test whether the Hadamard transform statistically reduces the range of values in activations and
weights, for every paired pre/post tensor (pj , qj), we flatten the arrays and align dimensions by
right-padding the pre tensor with zeros to the post length, ensuring summaries live in the same
ambient space as the transform. We then compute per-tensor ranges Rpre

j = max(pj) − min(pj)

and Rpost
j = max(qj)−min(qj), and form paired differences ∆rj = Rpre

j −Rpost
j (positive means

a reduction). Aggregating over matrices j = 1, . . . , N , we assess normality of {∆rj} using a
Shapiro–Wilk test. Finding non-normality, we use a one-sided Wilcoxon signed-rank test with ties
dropped to test H0 : median(∆r) = 0 vs. H1 : median(∆r) > 0. For interpretability, we compute
a paired effect size, Cohen’s dz = ∆̄r/s∆r

. Table 1, shows both activations and weights have
statistically significant range reductions at α = 0.05.

To test whether the Hadamard transform increases mass near zero, we evaluate the proportion of
entries within [−ε, ε]. In our work, we set ε = 0.05 to be close to 0. For each pre/post pair
(pj , qj), we compute per-tensor in-band proportions p̂pre

j = 1
npj

∑npj

i=1 1{|pj,i| ≤ ε} and p̂post
j =

1
nqj

∑nqj

i=1 1{|qj,i| ≤ ε}, then form the paired difference ∆pj = p̂post
j − p̂pre

j . Aggregating over tensors
j = 1, . . . , N (weights and activations analyzed separately), we test H0 : median(∆p) = 0 vs

4
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Figure 3: Architecture and Quantization scheme for Swin Transformer Layer (STL). X denotes the
input. The quantized weights & activations per component are in green and the FP operations are in
purple. The Hadamard and inverse Hadamard transforms are shown with red boxes.

H1 : median(∆p) > 0 using a one-sided Wilcoxon signed-rank test with ties dropped. We also
compute a paired effect size (Cohen’s dz) on {∆pj}.

As shown in Table 1, the ε-band proportion increases significantly after the Hadamard, consistent
with shrinkage toward zero at α = 0.05 with a significant effect size. All of these findings are
further validated in Figure 2. The moving in of the red bars and lowering of min and max indicates
range reduction and the bar graph to the left which calculates the proportion of values within the
[−ε, ε] band, pε, shows that pε increased after the transformation. Overall, we find that Hadamards
statistically significantly make distributions more normal, reduce the range, shrink values, move more
values closer within [−ε, ε].

3.2 SCALAR DECOMPOSITION

We quantize attention layers, linear layers and batch matrix multiplication weights and activations.
The full pipeline of our method and what is quantized is shown in Figure 3 and Figure 4. To quantize
the parameters to 2-4 bits, we use fake-quantization Jacob et al. (2017) i.e. quantization dequantization
that simulates the loss of information through the quantization process by restricting the values to
be representable by 2-4 bits but then immediately reverting them back to floats. The standard
approach to fake quantization involves determining the quantization scalar, S = u−l

2b−1
, based on the

upper and lower bounds of the clipping range. The equations are as follows: vc = Clip (x, l, u),

vq = Round ( 2
b−1
u−l (vc − l)), vdeq = u−l

2b−1
vr + l, where x is the tensor to be quantized, b is the

bit-width, l is the lower bound, and u is the upper bound. The lower bound represents the zero offset,
which is used to offset the quantization range, ensuring that the smallest value is 0 and so zero is
exactly representable by an integer in the quantized range. In our work, we modify this value and the
quantization scalar S which is u−l

2b−1
. Following 2DQuant, we have a step for searching for the upper

and lower bounds of the clipping range to minimize quantization error, and a step for finetuning the
quantization parameters given those starting points. We additively decompose the zero offset l and
the quantization scalar S = u−l

2b−1
into S′ = S + α and l′ = l + β to be able to fine-tune each by one

additional parameter. The idea behind introducing an additional predictor for the quantization scalar
and zero offset serves two complementary purposes.

First, both variables are crucial for quantization, necessitating a method with high representation
capabilities. By expanding the representational capacity of the model, the added predictor helps reduce
the bias inherent in simpler models that rely on fewer predictors. Second, the additional parameters
provide an alternative pathway through which gradients can flow more freely during backpropagation
which allows for better optimization. To this end, we introduce α, which is initialized at 0 and adjusts
the quantization scalar S, and β which is also initialized at 0 and we add the additional parameters to
the scalar and zero point as shown above. When we search for the upper and lower bounds of the
clipping range, we set these values to 0. However, during the parameter finetuning phase, we finetune
these parameters starting from 0. With these adjustments, the quantization process then proceeds

5
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Figure 4: Architecture and quantization scheme
for Swin Transformer Layer MLP. The Hadamard
transformation is in full precision.

Test
Weights Acts

p dz p dz

median(∆w) > 0 3.9e−10 0.51 1.09e−6 0.31

median(∆r) > 0 7.4e−13 0.44 1.6e−36 0.97

median(∆p) > 0 3.0e−25 2.35 1.2e−4 0.61

Table 1: Combined statistical tests for weights
and activations. For all tests, Nweights = 144,
Nactivations = 240.To measure the effect size, we
report Cohen’s dz . All p < 0.05.

as follows with the clipping step omitted for brevity: vq = Round (( 2
b−1
u−l + α) (vc − (l + β))),

vdeq = ( u−l
2b−1

+ α)vq + (l + β). For the Clip and Round operations, we use the Straight Through
Estimator Courbariaux et al. (2016) technique for calculating the gradients during backpropagation.

3.3 PRUNING

To achieve more compression at 3 and 4 bits, prior to quantization but after the Hadamard transfor-
mation on each weight, we take advantage of the Hadamard’s ability to move more values closer to
0 to perform pruning on the weights. As shown in Figure 2, the transform allows for more values
to be closer to 0, allowing us to remove them and compress the weights further. We prune 40%
of weights as this is the cutoff to actually give storage gains at 3 and 4 bits and results in minimal
performance degradation. To perform this pruning, we take a sample of the matrix, take the absolute
value of it, and calculate the desired pruning percentile, Tn%. To prune 40% of the matrix, then
we calculate the 40th percentile. Then, we set to 0 all values whose absolute values are below the
threshold, corresponding to the n percent of the matrix with the smallest absolute magnitude. This
follows the equation: XP = X ⊙ 1{|X|≥Tn%}, where XP is the pruned tensor, and X is the input
tensor. To actually lower bits per parameter by this pruning, we propose storing the smaller, pruned
weight matrices along with a 1-bit per element mask matrix of 1s and 0s the size of the original tensor
to store the indices of the pruned values in the full-sized matrix. In Section 4.6, we show that we can
gain bits per parameter by performing our method.

4 EXPERIMENTS

4.1 DATA AND EVALUATION

We use DF2K Timofte et al. (2017); Lim et al. (2017a) as the training data, which combines DIV2K
Timofte et al. (2017) and Flickr2K Lim et al. (2017a). We use the Set5 Bevilacqua et al. (2012)
as the validation set. We test our method on five commonly used benchmarks in the SR field:
Set5 Bevilacqua et al. (2012), Set14 Zeyde et al. (2012), B100 Martin et al. (2001), Urban100
Huang et al. (2015), and Manga109 Matsui et al. (2017). The evaluation metrics we used are Peak
signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) Wang et al. (2004),
which are calculated on the Y channel (i.e., luminance) of the YCbCr space. For both metrics, higher
indicates better performance. The implementation details of our method are given in Section 7.1.

4.2 RESULTS

CompSRT demonstrates superior performance to SOTA across all experimental configurations
and benchmarks. Table 2 presents comprehensive comparisons of our quantization method and
previous SOTA across scale factor (×4) and 2-4 bit widths. Additional results for other scale factors
are included in Section 7.2. To assess whether CompSRT statistically significantly outperforms
CondiQuant, for a fixed scale and bit width and for each metric m ∈ {PSNR,SSIM}, we form per-
dataset differences ∆i = score(m)

CompSRT,i − score(m)
CondiQuant,i for i = 1, . . . , N (with N = 5 datasets).

We then test H0 : median(∆) = 0 versus H1 : median(∆) > 0 using the paired Wilcoxon signed-
rank test; exact ties (∆i = 0) are excluded. We present the one-sided Wilcoxon p-value and the

6
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Method (×4) Bit
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SwinIR-light 32 32.45 0.8976 28.77 0.7858 27.69 0.7406 26.48 0.7980 30.92 0.9150
Bicubic 32 27.56 0.7896 25.51 0.6820 25.54 0.6466 22.68 0.6352 24.19 0.7670
PTQ4ViT 4 31.49 0.8831 28.04 0.7680 27.20 0.7240 25.53 0.7660 29.52 0.8940
NoisyQuant 4 31.09 0.8751 27.75 0.7591 26.91 0.7151 25.07 0.7500 28.96 0.8820
2DQuant 4 31.77 0.8867 28.30 0.7733 27.37 0.7278 25.71 0.7712 29.71 0.8972
CondiQuant 4 32.09 0.8923 28.50 0.7792 27.52 0.7345 25.97 0.7831 30.16 0.9054
CompSRT (ours) 4 32.41 0.8969 28.74 0.7849 27.68 0.7399 26.39 0.7953 30.81 0.9131
PTQ4ViT 3 29.77 0.8337 27.00 0.7248 26.21 0.6735 24.22 0.6983 27.94 0.8479
NoisyQuant 3 28.90 0.7972 26.50 0.6970 26.16 0.6628 23.86 0.6667 27.17 0.8116
2DQuant 3 30.90 0.8704 27.75 0.7571 26.99 0.7126 24.85 0.7355 28.21 0.8683
CondiQuant 3 31.62 0.8855 28.20 0.7715 27.31 0.7269 25.39 0.7624 29.29 0.8915
CompSRT (ours) 3 32.31 0.8956 28.69 0.7839 27.64 0.7387 26.27 0.7918 30.60 0.9108
PTQ4ViT 2 27.23 0.6702 25.38 0.5914 25.15 0.5621 22.94 0.5587 24.66 0.6132
NoisyQuant 2 25.94 0.5862 24.33 0.5067 24.16 0.4718 22.32 0.4841 23.82 0.5403
2DQuant 2 29.53 0.8372 26.86 0.7322 26.46 0.6927 23.84 0.6912 26.07 0.8163
CondiQuant 2 30.64 0.8671 27.59 0.7567 26.93 0.7136 24.54 0.7282 27.67 0.8613
CompSRT (ours) 2 31.44 0.8820 28.15 0.7696 27.28 0.7253 25.38 0.7585 29.20 0.8881

Table 2: Performance comparison with state-of-the-art methods for scale factor (×4) across different
bit widths. All comparative results are taken from SwinIR-light Liang et al. (2021), PTQ4VIT Yuan
et al. (2024), NoisyQuant Liu et al. (2023), 2DQuant Liu et al. (2024), and CondiQuant Liu et al.
(2025)as reported in their papers. Our method achieves superior performance across all configurations.

effect size given by Cohen’s dz = ∆̄/s∆, where ∆̄ is the mean of the paired differences and s∆ is
their sample standard deviation. This procedure is run independently for each (scale, bit, metric)
configuration using only dataset-level PSNR and SSIM averages. As presented in Table 5, the
resulting p-values for all pairwise comparisons fall below the significance threshold of α = 0.05.
This allows us to reject the null hypothesis and confirms that CompSRT statistically significantly
outperforms CondiQuant across all evaluated conditions. Notably, our 4-bit quantized model delivers
performance remarkably close to the full-precision baseline. For (×4), the difference ranges from
0.01–0.11 dB across datasets (0.04 on Set5). These results highlight that CompSRT achieves almost
full-precision quality for 4-bits while reducing the model size by a factor of 8 times. Furthermore, we
have gained +1.53 dB PSNR, and +0.03 SSIM over CondiQuant Liu et al. (2025) on Manga109 at
2-bit ×4, higlighting our large gains.

4.3 QUALITATIVE RESULTS

We show the visual results comparing the performance of our 2-bit (×4) model with the 2-bit (×4)
2DQuant model, using the original low-quality image as input, as illustrated in Figure 5. These
qualitative comparisons highlight the effectiveness of our approach in enhancement. Across both
natural images and manga illustrations, our method consistently outperforms 2DQuant by generating
images that exhibit significantly less blurriness, more clarity and sharper lines. For example, in
examples from Manga109, our method produces less grainy images, making our method applicable to
animation. In images from Urban100, our model’s output exhibits the lines sharply, while 2DQuant’s
rendering has blur. On the Set14 image with writing, our method more clearly enhances words.
Lastly, As shown by the images of the man from B100 and the woman from Set5, our method can
more clearly enhance close ups of human eyes, making our method more applicable to security and
face identification domains.

4.4 PRUNING RESULTS

We show the performance of adding weight pruning to our CompSRT method on the 3 and 4-bit
quantized ×4 SwinIR models on Set5. We add this step after the Hadamard transformation but prior
to quantization. We experiment with varying percentages of pruning, with the results for 0% to 99.5%
being show in Figure 7. The figure shows that performance in terms of PSNR and SSIM degrades
after pruning any percentage for 4 bits, but at 3 bits, the performance slightly increases from 10 to
30%. This is because the small values close to 0 might have been closer to noise, and for a model
with less representational capacity, setting them to 0 allows for learning a smoother more easily
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Figure 5: Qualitative visual comparison for 2-bit (×4) SR across all five benchmark datasets. LR
denotes the low resolution image. Comparative examples are taken from the FP model SwinIR-light
Liang et al. (2021), and 2-bit (×4) 2DQuant Liu et al. (2024).

representable signal during finetuning. However, as the representational capacity of the 4-bit model
is exponentially larger than the 3-bit model, the 4-bit model suffers after the pruning. After 40% for
both bitwidths, there is a slight drop, but our performance is comparable with SOTA CondiQuant.
That is why we chose 40% pruning in our method; to achieve maximum space reduction without
any cost in performance. To further explore the performance of the 40% weight pruned model, we
examine the specifics of its performance across varying quantization bitwidths given in Table 3. We
find that performance degraded from our quantization method by 0.39 dB for 4 bits and by 0.47 dB
for 3 bits, but stayed on par with Condiquant in terms of PSNR and SSIM. This shows that 40% of
the weight signal can be extraneous and can be removed without a great loss in performance. The
loss at higher percentages of pruning is more pronounced, with any percentage after 40 performing
worse, as show in Figure 7.

4.5 ABLATION STUDIES

We conduct ablation studies with the two parts of our quantization method to find the element with
the most impact. The results presented in Figure 6 indicate that the most significant performance
improvements stem from incorporating additional trainable parameters via scalar decomposition. The
trainable parameters alone contributed to 0.64 dB increase in Set5 PSNR over the CondiQuantLiu
et al. (2025) baseline. Applying Hadamard transformations to both weights and activations also yields
a 0.62 dB gain over the 2DQuant baseline, proving its standalone efficacy. Furthermore, applying
the Hadamard transformation to only the weights or adding trainable parameters with Hadamard
transforms only on the weights did not lead to large improvements, indicating that weights benefit
less from range reduction and compaction. Given these results, our analysis supports the conclusion
that the primary advantage of the Hadamard transformation lies in its ability to reduce extreme values
in activation distributions.

4.6 MODEL COMPLEXITY

We evaluate the time and space complexity of our quantization and pruning method. To evaluate
the time complexity, we measured the time required to complete a single forward pass on our 2-bit
quantized ×4 model and our 4-bit quantized and pruned model on an image from the Set5 benchmark
dataset in seconds. We also measured the size of the model’s trainable parameters in megabytes
(MB) and in bits per parameter b. To calculate the size for pruned models, we take into account the
unpruned portion of the model, along with the storage cost of storing a 1-bit mask per matrix to store
the location of 0s. The calculation for bits per parameter in this case at 4 bits is (4 ∗ 0.6+1) = 3.4 vs.
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Figure 6: Ablation studies. Blue bars show SSIM
and purple bars show PSNR. W = weights; WA =
weights+activations. All models are (×2), 2-bit
PTQ, evaluated on Set5.

Figure 7: 3 and 4-bit (×4) model PSNR and
SSIM performance on Set5 vs. pruning percent-
age. Only quantized layers are pruned. Between
10-30% error lowers, but increases after 40%.

Bits PSNR SSIM
4 32.02 0.89
3 31.74 0.89

Table 3: Bitwise performance for CompSRT +
40% weight-pruned (×4) models. Performance
is comparable with SOTA after pruning.

Method Bit s MB b
2DQuant 4 0.048 13.99 4

Ours 4 0.092 14.00 4
Ours + Prune 4 0.092 13.95 3.4

Table 4: Time and space complexity for (×4)
models. All models evaluated on Set5. b de-
notes bits per parameter and s seconds.

Scale, Bit PSNR SSIM
p dz p dz

×2, 4 0.031 1.57 0.031 1.28
×2, 3 0.031 1.64 0.031 1.15
×2, 2 0.031 1.83 0.031 1.11
×3, 4 0.031 1.63 0.031 1.68
×3, 3 0.031 1.79 0.031 1.60
×3, 2 0.031 1.85 0.031 1.87
×4, 4 0.031 1.89 0.031 2.33
×4, 3 0.031 1.95 0.031 2.08
×4, 2 0.031 1.83 0.031 2.25

Table 5: One-sided Wilcoxon signed-rank tests
(CompSRT > CondiQuant) and paired effect sizes
(Cohen’s dz). All p-values < 0.05.

4 (15% reduction in bits per parameter). The calculation for 3 bits is (3 ∗ 0.6+1) = 2.8 vs. 3 (6.67%
reduction in bits per parameter). Furthermore, Table 4 shows that our quantization method adds no
storage overhead but incorporating Hadamard transformations introduces a modest computational
overhead of 0.044 seconds compared to the 2DQuant baseline. This is expected, as this process
introduces an additional dense matrix multiplication per quantized matrix. However, there is very
minimal additional storage overhead because Hadamard matrices don’t need to be stored and can be
created when needed and we add only 2 extra parameters. When comparing pruning against 2DQuant,
our approach introduces more compression but adds no additional runtime to our method, as pruning
is done once per layer. This demonstrates that Hadamards can be applied to both quantization and
pruning of Swin-IR light. For MB of storage gains, it can be physically minimal without packing, but
the bits per parameter gains can allow us to pack values more tightly.

5 DISCUSSION

5.1 CONCLUSION

In this work, we propose a novel Hadamard guided approach to improve image SR PTQ. We challenge
previous intuitions about the Hadamard transform and find that the Hadamard transform does not
make distributions flatter in SwinIR-light. Instead, we hypothesized that there is another mechanism
for their function in improving quantization. We find that instead it decreases the ranges and increases
the concentration of values around 0 in activations and weights, which is why it lowers quantization
errors. These properties improve quantization to low bit widths but also allow us to prune 40%
of weights for increased compression without significant loss in performance. We also perform
parameter decomposition, which leverages the bias-variance tradeoff. Our quantization method
achieves statistically significant gains in quantitative metrics and visible improvements in visual
quality over the SOTA quantization method, with minimal storage overhead; our pruned models have
comparable performance with SOTA but with 6.67-15% less bits per parameter.
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6 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. The model architecture is
described in Sections 2 and 3 of the main paper, and the training details are described in Section 4.
All datasets used in our experiments are publicly available and evaluation methods are also described
in Section 4. Finally, an anonymous link to our source code and scripts for training, evaluation, and
statistical tests, together with exact run commands and an environment specification, is provided in
the supplementary materials to facilitate faithful replication of our experiments.
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7 SUPPLEMENTARY MATERIALS

7.1 IMPLEMENTATION DETAILS

We build our work on top of 2DQuant’s open sourced repository Liu et al. (2024), and use SwinIR-
light Liang et al. (2021) as the model backbone of our method. For the Hadamard transform and
statistical tests, we use SciPy Virtanen et al. (2020). For finetuning, we use the Adam Kinga et al.
(2015) optimizer with a learning rate of 1 ∗ 10−2 and betas set to (0.9, 0.999). We clip all gradient
values to between [−1, 1] and we finetune for at most 4000 iterations, or until we reach a nan gradient
which we handle by safely exiting. We select the model with the highest PSNR and SSIM. For
measuring the time and space complexity of our model, we calculate inference time in seconds and
size of model parameters in MB. Our code is written with PyTorch Paszke et al. (2019) and runs for
at most 7 hours on one NVIDIA RTX 6000 48G GPU. The anonymous open source code for this
paper along with instructions can be found here.

7.2 RESULTS

Method (×2) Bit
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SwinIR-light 32 38.15 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.11 0.9781
Bicubic 32 32.25 0.9118 29.25 0.8406 28.68 0.8104 25.96 0.8088 29.17 0.9128
PTQ4ViT 4 37.43 0.9571 33.19 0.9139 31.84 0.8950 31.54 0.9212 37.59 0.9735
NoisyQuant 4 37.50 0.9570 33.06 0.9101 31.73 0.8936 31.31 0.9181 37.47 0.9723
2DQuant 4 37.87 0.9594 33.41 0.9161 32.02 0.8971 31.84 0.9251 38.31 0.9761
CondiQuant 4 38.03 0.9605 33.50 0.9180 32.16 0.8993 32.03 0.9282 38.57 0.9769
CompSRT (ours) 4 38.13 0.9610 33.81 0.9203 32.28 0.9009 32.57 0.9325 38.98 0.9778
PTQ4ViT 3 36.49 0.9510 32.49 0.9045 31.27 0.8854 30.16 0.9027 36.41 0.9673
NoisyQuant 3 35.32 0.9334 31.88 0.8911 30.73 0.8710 29.28 0.8835 35.30 0.9537
2DQuant 3 37.32 0.9567 32.35 0.9106 31.60 0.8911 30.45 0.9086 37.24 0.9722
CondiQuant 3 37.77 0.9594 33.21 0.9151 31.94 0.8966 31.18 0.9197 38.01 0.9755
CompSRT (ours) 3 38.11 0.9609 33.82 0.9202 32.27 0.9008 32.53 0.9321 38.90 0.9775
PTQ4ViT 2 33.25 0.8923 30.22 0.8402 29.21 0.8066 27.31 0.8111 32.75 0.9093
NoisyQuant 2 30.13 0.7620 28.80 0.7536 28.26 0.7421 26.68 0.7627 30.40 0.8204
2DQuant 2 36.00 0.9497 31.98 0.9012 30.91 0.8810 28.62 0.8819 34.40 0.9602
CondiQuant 2 37.15 0.9567 32.74 0.9103 31.55 0.8912 29.96 0.9047 36.63 0.9713
CompSRT (ours) 2 38.03 0.9605 33.70 0.9194 32.19 0.9294 32.22 0.9294 38.69 0.9770

Table 6: Performance comparison with SOTA methods for scale factor (×2) across different bit
widths. All comparative results are taken from SwinIR-light Liang et al. (2021), PTQ4VIT Yuan et al.
(2024), NoisyQuant Liu et al. (2023), 2DQuant Liu et al. (2024), and CondiQuant Liu et al. (2025).
Our method achieves superior performance across all datasets and bitwidths.

Method (×3) Bit
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SwinIR-light 32 34.63 0.9290 30.54 0.8464 29.20 0.8082 28.66 0.8624 33.99 0.9478
Bicubic 32 29.54 0.8516 27.04 0.7551 26.78 0.7187 24.00 0.7144 26.16 0.8384
PTQ4ViT 4 33.77 0.9201 29.75 0.8272 28.62 0.7942 27.43 0.8361 32.50 0.9360
NoisyQuant 4 33.13 0.9122 29.06 0.8093 27.93 0.7754 26.66 0.8143 31.94 0.9293
2DQuant 4 34.06 0.9231 30.12 0.8374 28.89 0.7988 27.69 0.8405 32.88 0.9389
CondiQuant 4 34.32 0.9260 30.29 0.8417 29.05 0.8039 28.05 0.8506 33.23 0.9431
CompSRT (ours) 4 34.56 0.9284 30.49 0.8454 29.17 0.8075 28.50 0.8598 33.83 0.9467
PTQ4ViT 3 32.75 0.9028 29.14 0.8113 28.06 0.7712 26.43 0.8014 31.20 0.9131
NoisyQuant 3 30.78 0.8511 27.94 0.7624 26.98 0.7153 25.43 0.7481 29.64 0.8792
2DQuant 3 33.24 0.9135 29.56 0.8255 28.50 0.7873 26.65 0.8116 31.46 0.9235
CondiQuant 3 33.92 0.9224 30.02 0.8367 28.84 0.7986 27.37 0.8356 32.48 0.9367
CompSRT (ours) 3 34.54 0.9281 30.48 0.8451 29.16 0.8070 28.47 0.8589 33.79 0.9465
PTQ4ViT 2 29.96 0.7901 27.36 0.7030 26.74 0.6590 24.56 0.6460 27.37 0.7390
NoisyQuant 2 27.53 0.6641 25.77 0.5952 25.37 0.5613 23.59 0.5739 26.03 0.6632
2DQuant 2 31.62 0.8887 28.54 0.8038 27.85 0.7679 25.30 0.7685 28.46 0.8814
CondiQuant 2 33.00 0.9130 29.44 0.8253 28.45 0.7882 26.36 0.8080 30.88 0.9203
CompSRT (ours) 2 34.17 0.9248 30.21 0.8401 28.97 0.8017 27.86 0.8456 33.11 0.9414

Table 7: Performance comparison with SOTA methods for scale factor (×3) across different bit
widths. All comparative results are taken from SwinIR-light Liang et al. (2021), PTQ4VIT Yuan et al.
(2024), NoisyQuant Liu et al. (2023), 2DQuant Liu et al. (2024), and CondiQuant Liu et al. (2025).
Our method achieves superior performance across all datasets and bitwidths.
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7.3 LLM USAGE

We used LLMs to assist—but not replace—our research workflow. Specifically, LLMs were employed
to (i) help draft and refactor code snippets and experimental scripts, (ii) brainstorm and clarify ideas
and concepts discussed in the paper, (iii) suggest edits and critiques on early drafts, and (iv) provide
limited writing assistance for grammar and phrasing. All model outputs were reviewed, verified,
and, where needed, rewritten by the authors; we independently implemented, tested, and validated
every algorithmic choice and experimental result reported. No proprietary, confidential, or unreleased
data were provided to the models. LLMs were not used to generate or fabricate data, analyses, or
citations, and they are not listed as authors. The authors bear full responsibility for the paper’s content,
including the correctness of code, experiments, and references.
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