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ABSTRACT

A default assumption in reinforcement learning and optimal control is that expe-
rience arrives at discrete time points on a fixed clock cycle. Many applications,
however, involve continuous systems where the time discretization is not fixed but
instead can be managed by a learning algorithm. By analyzing Monte-Carlo value
estimation for LQR systems in both finite-horizon and infinite-horizon settings,
we uncover a fundamental trade-off between approximation and statistical error
in value estimation. Importantly, these two errors behave differently with respect
to time discretization, which implies that there is an optimal choice for the tempo-
ral resolution that depends on the data budget. These findings show how adapting
the temporal resolution can provably improve value estimation quality in LQR
systems from finite data. Empirically, we demonstrate the trade-off in numerical
simulations of LQR instances and several non-linear environments.

1 INTRODUCTION

In many real-world applications of control and reinforcement learning, the underlying system
evolves continuously in time. For instance, a physical system such as a robot is naturally modeled
as a stochastic dynamical system. In practice, however, sensor measurements are usually captured
at discrete time intervals, and the practitioner must make a decision about how to discretize the time
dimension, i.e. choosing a sampling frequency or a measurement step-size. A common belief is that
a finer time discretization always leads to better estimation of the system properties and the control
cost or the reward in reinforcement learning. As we show, this is only true with an unlimited data
budget. In practice there are always limitations on how much data can be collected, stored and pro-
cessed. Consider for example the task of episodic policy evaluation with a finite data budget. A
higher temporal resolution means that more data is collected within fewer episodes. This inevitably
leads to the question on how to optimally choose the time discretization for the task at hand.

The practitioner therefore faces a fundamental trade-off: using a finer temporal resolution leads
to better approximation of the continuous-time system from discrete measurements, but the conse-
quence of collecting denser data along fewer trajectories leads to larger estimation variance with
respect to stochasticity in the system. This is indeed true for any system with stochastic dynam-
ics, even if the learner has access to exact (noiseless) measurements of the system’s state. In this
paper, we show that data efficiency can be significantly improved by leveraging a precise under-
standing of the trade-off between approximation error and statistical estimation error in long term
value estimation — two factors that react differently to the level of temporal discretization.

The main contributions of this work are twofold. First, we consider the simplest and canonical
case of Monte-Carlo value estimation in a Langevin dynamical system (linear dynamics perturbed
by a Wiener process) with quadratic instantaneous costs. Although the setup is specialized, it is
simple enough such that we can obtain analytical expressions of the least-squares error that exactly
characterize the approximation-estimation trade-off with respect to the step-size parameter. Second,
we present a numerical study that illustrates and confirms the trade-off in both linear and non-linear
systems, including several MuJoCo control environments. Our findings imply that practitioners
should pay attention to carefully choosing the step-size parameter of the estimation to obtain the
most accurate results possible.
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1.1 RELATED WORK

There is a sizable literature on reinforcement learning in continuous-time systems (e.g. Doya, 2000;
Lee & Sutton, 2021; Lewis et al., 2012; Bahl et al., 2020; Kim et al., 2021; Yildiz et al., 2021).
These previous works have largely focused on deterministic dynamics, and do not investigate trade-
offs in temporal discretization. A smaller body of work has considered learning continuous-time
control under stochastic (Baird, 1994; Bradtke & Duff, 1994; Munos & Bourgine, 1997; Munos,
2006), or bounded (Lutter et al., 2021) perturbations, but with a focus on making standard learning
methods more robust to small time scales (Tallec et al., 2019), again without explicitly managing the
temporal discretization level. There have also been works that characterize the effects of temporal
truncation in infinite horizon problems (Jiang et al., 2016; Droge & Egerstedt, 2011). Despite these
prevailing topics in the literature, we find that managing temporal discretization offers substantial
improvements not captured by these previous studies.

The LQR setting is a standard framework in control theory and it gives rise to a fundamental op-
timal control problem (Lindquist, 1990), which has proven itself to be a challenging scenario for
Reinforcement Learning algorithms (Tu & Recht, 2019; Krauth et al., 2019). The stochastic LQR
considers linear systems driven by additive Gaussian noise with a quadratic form for the cost, which
is sought to be minimised by means of a feedback controller. Although it is a well-understood
scenario and a closed form of the optimal controller is known thanks to the separation principle
(Georgiou & Lindquist, 2013), only recently the statistical properties of the long-term cost have
been investigated (Bijl et al., 2016). The work in this paper also closely related to the now siz-
able literature on reinforcement learning in LQR systems (Bradtke, 1992; Krauth et al., 2019; Tu &
Recht, 2018; Dean et al., 2020; Tu & Recht, 2019; Dean et al., 2018; Fazel et al., 2018; Gu et al.,
2016). These existing works uniformly focused on the discrete time setting, although the benefits of
managing spatial rather than temporal discretization has been considered (Sinclair et al., 2019; Cao
& Krishnamurthy, 2020). Wang et al. (2020) studied the continuous-time LQR setting but it focused
on the exploration problem rather than the temporal discretization.

There is compelling empirical evidence that managing temporal resolution, typically via action per-
sistence (Lakshminarayanan et al., 2017; Sharma et al., 2017; Huang et al., 2019; Huang & Zhu,
2020; Dabney et al., 2021; Park et al., 2021), can greatly improve learning performance. Even grid
worlds (Sutton & Barto, 2018) can be seen as leveraging a form of action persistence, where a coarse
spatial discretization is imposed on an otherwise continuous two dimensional navigation problem to
improve learning efficiency. These empirical findings have recently been supported by an initial the-
oretical analysis (Metelli et al., 2020) that shows temporal discretization plays a role in determining
the effectiveness of fitted Q-iteration. The analysis by Metelli et al. (2020) does not consider fully
continuous systems, but rather remains anchored in a base level discretization and only provides
worst-case upper bounds that do not necessarily capture the detailed trade-offs one faces in practice.

Choosing the temporal resolution can also be understood as a non-linear experimental design prob-
lem (Chaloner & Verdinelli, 1995; Ford et al., 1989). By choosing the time discretization, the exper-
imenter determines how to allocate measurements for a given data budget. What is peculiar to our
objective is that any fixed design has a constant approximation error (bias) that persists even when
the number of data points becomes infinite. At the same time, the bias can also be managed by scar-
ifying estimation error (variance). Optimal designs that consider the bias-variance trade-off jointly
have been studied previously (e.g. Bardow, 2008; Mutny et al., 2020; Mutnỳ & Krause, 2022).

2 POLICY EVALUATION IN CONTINUOUS LINEAR QUADRATIC SYSTEMS

In the classical continuous-time linear quadratic regulator (LQR), a state variable X(t) ∈ Rn evolves
over time t ≥ 0 according to the following equation:

dX (t) = AX(t) dt+BU(t) dt+ σdW (t). (1)

The dynamical model is fully specified by the matrices A ∈ Rn×n, B ∈ Rn×p and the diffusion
coefficient σ. The control input is U (·) ∈ Rp is given by a fixed policy, and W (t) is a Wiener
process. The state variable X(t) is fully observed. For simplicity, we assume that the dynamics start
at X (0) =

−→
0 ∈ Rn (c.f. Abbasi-Yadkori & Szepesvári, 2011; Dean et al., 2020).
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The expected quadratic cost J is defined for positive semi-definite, symmetric matrices Q ∈ Rn×n

and R ∈ Rp×p, a system horizon 0 < τ ≤ ∞ and a discount factor γ ∈ (0, 1]:

Jτ =

∫ τ

0

γt
[
X (t)

⊤
QX (t) + U (t)

⊤
RU (t)

]
dt (2)

In the following we consider the class of controllers given by static feedback of the state, i.e.:

U (t) = KX (t) (3)

where K ∈ Rp×n is the static control matrix yielding the control input. It is well known that in
infinite horizon systems with discounting, the optimal control is of the form Eq. (3). The specific
choice of policy plays no particular role in what follows, therefore we reduce the LQR in Eq. (1)
further to a linear stochastic dynamical system described by a Langevin equation. Using the defini-
tions A := A+BK and Q := Q+K⊤RK, we express both the state dynamics and the cost in a
more compact form:

dX (t) = AX (t) + σξ (t) , Jτ =

∫ τ

0

γtX (t)
⊤
QX (t) dt (4)

The expected cost Vτ is the expectation of the cost w.r.t. the Wiener process, Vτ = E [Jτ ].

Equation (4) is what we analyze in the following. From now on, we explicitly distinguish the finite-
horizon setting where τ < ∞, γ ≤ 1 and the cost is Vτ , and the infinite-horizon setting where
τ = ∞, γ < 1 and the cost is V∞.

Monte-Carlo Policy Evaluation Our main objective of policy evaluation is to estimate the ex-
pected cost from discrete-time observations. To this end, we choose a uniform discretization of the
interval [0, T ] with increment h resulting in N = T/h time points tk := kh for k ∈ {0, 1, . . . , N}.
Here, the estimation horizon T , such that T < ∞ and T ≤ τ , is chosen by the practitioner (for sim-
plicity assume that T/h is an integer). With the N points sampled from one trajectory, a standard
way to approximate the integral in Eq. (4) is with the Riemann sum estimator

Ĵ (h) =

N−1∑
k=0

γtkhX (tk)
⊤
QX (tk) . (5)

To estimate Vτ , we average M independent trajectories with cost estimates Ĵ1, . . . ĴM to obtain the
Monte-Carlo estimator:

V̂M (h) =
1

M

M∑
i=1

Ĵi (h) =
1

M

M∑
i=1

N−1∑
k=0

γtkhX (tk)
⊤
QX (tk) (6)

Our main objective is to understand the mean-squared error of the Monte-Carlo estimator for a
fixed system (specified by A, σ and Q), with the goal to inform an optimal choice of the step-size
parameter h for a fixed data budget B = M ·N .

Note that one degree of freedom remains in choosing M and N . For simplicity, we require that in
the finite-horizon setting, the estimation grid is chosen to cover the full episode [0, τ ] which leads to
the constraint T = τ = N · h. We write the least-squares error-surface as a function of h and B:

MSET (h,B) = E
[
(V̂M (h)− VT )

2
]

(7)

In the infinite horizon setting, i.e. τ = ∞, the estimation horizon T is a free variable chosen by the
experimenter that determines the number of trajectories through M = B

N = Bh
T . The mean-squared

error for the infinite horizon setting is given as a function of h, B, and T :

MSE∞(h,B, T ) = E
[
(V̂M (h)− V∞)2

]
. (8)

3 CHARACTERIZING THE MEAN-SQUARED ERROR

In the following our goal is to characterize the least-squares error of the Monte-Carlo estimator as a
function of the step size h and the total data budget B (and the estimation horizon T in the infinite
horizon setting). Our results uncover a fundamental trade-off for choosing an optimal step size that
leads to a minimal least-squares error.
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One-Dimensional Langevin Process To simplify the exposition while preserving the main ideas,
we will first present the results for the 1-dimensional case. The analysis for the vector case exhibits
the same quantitative behavior but is significantly more involved. To distinguish the 1-dimensional
from the d-dimensional setting described in Eq. (4), we use lower-case symbols. Let x(t) ∈ R be
the scalar state variable that evolves according to following the Langevin equation:

dx(t) = ax(t)dt+ σdw(t). (9)

Here, a ∈ R is the drift coefficient and w(t) is a Wiener process with scale parameter σ > 0. We
assume that a ≤ 0, i.e. the system is stable (or marginally stable).

The realized sample path in episode i = 1, . . . ,M is xi(t) (with starting state x(0) = 0) and
t ∈ [0, T ]. The expected cost is

Vτ = E
[ ∫ τ

0

γtr2i (t)dt
]
=

∫ τ

0

γtqE
[
x2
i (t)

]
dt, (10)

where ri(t) = qxi(t)
2 is the quadratic cost function for a fixed q > 0. The Riemann sum that

approximates the cost realized in episode i ∈ [M ] becomes Ĵi(h) =
∑N−1

k=0 hqx2
i (kh). Given data

from M episodes, the Monte-Carlo estimator is V̂M (h) = 1
M

∑M
i=1 Ĵi(h). Since the square of the

cost parameter q2 factors out of the mean-squared error in Eq. (10), we set q = 1 in what follows.

3.1 FINITE-HORIZON

Recall that in the finite-horizon setting we set the system horizon τ and estimation horizon T to be
the same. This implies that the estimation grid covers the full episode, i.e. hN = T = τ . Perhaps
surprisingly, the mean-squared error of the Riemann estimator for the Langevin system (9) can be
computed in closed form. The result takes its simplest form in the finite-horizon, undiscounted
setting where γ = 1 and τ < ∞. This result is summarized in the next theorem.
Theorem 1 (Finite-horizon, undiscounted MSE). In the finite-horizon, undiscounted setting, the
mean-squared error of the Monte-Carlo estimator is

MSET (h,B) = E1(h, T, a) +
E2(h, T, a)

B
,

where

E1(h, T, a) =
σ4
(
−2ah+ e2ah − 1

)2 (
e2aT − 1

)2
16a4 (e2ah − 1)

2 ,

E2(h, T, a) =
σ4T

[
h
(
e2aT − 1

) (
4e2ah + e2aT + 1

)
−
(
e2ah − 1

) (
e2ah + 4e2aT + 1

)
T
]

2a2 (e2ah − 1)
2 .

The proof involves computing the closed-form expressions for the second and forth moments of the
random trajectories xi(t) and is provided in Appendices B and C.1. While perhaps daunting at first
sight, the beauty of the result is that it exactly characterizes the error surface as a function of the step
size h and the budget B.

In principle, for any fixed B, we can optimize h to minimize the mean-squared error by searching
over possible step-sizes hm = T/m for m = 1, . . . , B, provided knowledge of the system parame-
ters a, σ and fixed horizon T . On the other hand, the practical scope of this procedure is somewhat
limited. On the upside, as we show next, the underlying trade-offs can be characterized and under-
stood closely in several different regimes. In Section 4, we show through numerical experiments
how these insights translate into simulations of linear and non-linear systems.

In the case of marginal stability (a = 0), a simpler form of the MSE emerges that is easier to
interpret. Taking the limit a → 0 of the previous expression gives the following result:
Corollary 1 (MSE for marginally stable system). Assume a marginally stable system, a = 0. Then
the mean-squared error of the Monte-Carlo estimator is

MSET (h,B) =
σ4T 2

4
· h2 +

σ4T 5

3
· 1

hB
+

σ4T 2(−2T 2 + 2hT − h2)

3B
.
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The first part of the expression can be understood as a Riemann sum approximation error that is
controlled by the h2 term. The second part corresponds to the variance term that decreases with the
number of episodes as 1

M = T
Bh . The remaining terms are of lower order terms for small h and

large B. For a fixed data budget B, the step size h can be chosen to balance these two terms (up to
lower order terms in 1/B):

h∗(B) := argmin
h>0

MSET (h,B) ≈ T

(
2

3B

)1/3

. (11)

From this, we can compute the optimal number of episodes M∗ ≈ Bh
T =

(
2
3

)1/3
B2/3. We remark

that under the assumption B ≫ 1, we also obtain that M∗ ≫ 1. This is in agreement with the
implicit requirement that h is big enough to consider at least one whole trajectory, i.e. h > T/B.
Consequently, the mean-squared error for the optimal choice of h (up to lower order terms in 1/B):

MSET (h
∗, B) ≈ 3 (3/2)

1/3
σ4T 4B−2/3 .

In other words, the optimal error rate as a function of the data budget is O(B−2/3).

We can further obtain a similar form for h∗ for the general case where a ≤ 0.
Corollary 2 (Optimal step size). For B ≫ 1, the optimal step-size (up to lower order terms in 1/B)

h∗(B) ≈

(
−
T
(
4aT − e4aT + e2aT (8aT − 4) + 5

)
a2(e2aT − 1)2

)1/3

B−1/3 .

Moreover, MSET (h
∗, B) ≤ O(B−2/3).

The proof is provided in Appendix C.2 where we also include a more precise expression of h∗.

Discounted Cost Adding discounting (γ < 1) in the finite-horizon setting does not fundamentally
change the results but makes it more involved (details shown in Appendix C.3).

Vector Case Also for the vector case (n > 1) it is possible to exactly characterise the mean-
squared error of the Monte-Carlo estimator for the Langevin system in Eq. (9). The closed-form
computations will however require to assume that the matrix A governing the behaviour of the
system is diagonalisable, and stable. The latter is a rather mild assumption, as it is sufficient for
the system in Eq. (1) to be controllable to ensure satisfiability of this condition. Controllability in
fact translates into the possibility of freely adjusting the eigenvalues of the closed-loop matrix A
through the choice of the controller K. This means that it is always possible to choose eigenvalues
to be distinct from each other, so that A is diagonalisable. The explicit form of the mean-squared
error, although actually computable, is given by a long formula which is not easy to interpret, and is
therefore deferred to Appendix D. The following theorem summarizes the result for the vector case
in the form of a Taylor expansion for small h and large B.
Theorem 2 (Mean-squared error - vector case). Assume A is diagonalisable, with eigenvalues
λ1, . . . , λn. The mean-squared error of the Monte-Carlo estimator in the finite-horizon, undis-
counted setting, is

MSET (h,B) = E1 (h, T, λ1, . . . , λn) +
E2 (h, T, λ1, . . . , λn)

B
(12)

where

E1 (h, T, λ1, . . . , λn) =
(
C1 + C1 (λ1, . . . , λn)O (T )

)
σ4T 2h2 +O(h3) (13)

E2 (h, T, λ1, . . . , λn)

B
=
(
C2 + C2 (λ1, . . . , λn)O (T )

)
σ4 T

5

hB
+O (1/B) (14)

The proof with the exact derivation of the constants C1, C1 (λ1, . . . , λn), C2, C2 (λ1, . . . , λn) can
be found in Appendix D.1. Note that the terms composing the MSE are very similar to the ones ob-
tained in the scalar analysis. Indeed by comparing them with the expressions in Eq. (28) and Eq. (29)
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(in Appendix C.2), the expression has the same order for h,B and T . The only difference is that
in the vector case, cumbersome eigenvalue-dependent constants are involved, whereas in the scalar
case the result can more easily be expressed in terms of the system parameter a.

Since the optimal choice for h is given by balancing the trade-off between the two terms above, E1

for the approximation error and E2 for the variance term, its expression is analogous to the scalar
case, as shown by the following corollary.
Corollary 3 (Optimal step size - vector case). Under the assumption that B ≫ 1, the optimal
step-size for the vector case is given by

h∗ (B) =

(
C1 + C1 (λ1, . . . , λn)O (T )

C2 (λ1, . . . , λn) + C2 (λ1, . . . , λn)O (T )

)1/3

TB−1/3 + o
(
B−1/3

)
(15)

The constants in Corollary 3 are clearly the same as in Theorem 2.

General bounds that hold for the case of a vector Langevin process with a stable matrix A are
provided in Appendix D.3. These results show that the mean-squared error lies in between two ex-
pressions with the same order in h and B, whose difference depends only on T , and the eigenvalues
of the matrix. Both the lower and upper bounds are convex functions of h, narrowing down the be-
haviour of the step size in this general case. In particular, the lower bound can always be expressed
in terms of the mean-squared error for the scalar case, emphasizing the importance of examining this
special case. Although the convex behaviour is only proven for the case of a Langevin system, our
experimental results (Section 4) exhibit a similar trade-off for general nonlinear stochastic systems.

From the present analysis, it is possible to derive guidelines on how to set the step-size even for the
case of nonlinear and unknown dynamics. Although the sharp order in B for the optimal step-size
holds for the case of linear dynamics only, we empirically show in Section 4 that a similar trade-off
carries on to nonlinear dynamics, and h = cTB−1/3 is a solid choice for the more general setting.
While the constant c depends on the controlled dynamics (therefore on both the free dynamics and
the policy), c could be estimated with a small budget, in order to properly scale the value of h for a
large-scale experiment. This approach does not require the knowledge of the dynamics beforehand,
nonetheless it provides a systematic way of setting the step size h for any given scenario.

3.2 INFINITE-HORIZON SETTING

The main characteristic of the finite-horizon setting is the trade-off between approximation and
estimation error. Recall that in the infinite-horizon setting (τ = ∞), the estimation horizon T < ∞
becomes a free variable that is chosen by the experimenter to define the measurement range [0, T ].
Consequently the mean-squared error of the Monte-Carlo estimator suffers an additional truncation
error from using a finite Riemann sum with N = T/h terms as an approximation to the infinite
integral that defines the cost V∞.

More precisely, we decompose the expected cost V∞ = VT + VT,∞, where VT =
∫ T

0
γtE[x2(t)]dt

as before, and

VT,∞ =

∫ ∞

T

γtE
[
x2(t)

]
dt =

σ2γT

2a

(
1

log (γ)
− e2aT

log (γ) + 2a

)
. (16)

The integral is a direct calculation based on Lemma 1 in Appendix B. Thus the mean-squared error
becomes

MSE∞(h,B, T ) = E
[
(V̂M (h)− V )2

]
= MSET (h,B)− 2E

[
V̂M (h)− VT

]
VT,∞ + V 2

T,∞ ,

(17)

where MSET (h,B) = E
[
(V̂M (h) − VT )

2
]

is the mean-squared error of discounted finite-horizon
setting. Note that the term V 2

T,∞ is neither controlled by a small step-size h nor by a large data
budget B, hence results in the truncation error from finite estimation. Fortunately, the geometric
discounting ensures that V 2

T,∞ = O(γ2T ), which is not unexpected given that the term constitutes
the tail of the geometric integral. In particular, setting T = c · log(B)/log(1/γ) for large enough
c > 1 suffices to ensure that the truncation error is below the estimation variance.

We summarize the result in the next theorem.
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Theorem 3 (Infinite-horizon, discounted MSE). In the infinite-horizon, discounted setting, the
mean-squared error of the Monte-Carlo estimator is

MSE∞(h,B, T ) = σ4 T C(a, γ) · 1

hB
+

σ4

144
· h4 +O(h5) +O(B−1) (18)

where we let C(a, γ) = 1
log(γ)(a+log(γ))(2a+log(γ))2 and assume that γT = o(h4).

It follows that the optimal choice for the step-size is h∗(B, T ) ≈ (36T C(a, γ)/B)
1/5. The minimal

least-squares error is MSE∞(h∗, T, B) ≤ O
(
(T C(a, γ)/B)4/5 + γ2T

)
.

Lastly, we remark that if γT is treated as a constant, the cross term E
[
V̂M (h)−VT

]
VT,∞ in Eq. (17)

introduces a dependence of order O(hγ2T ) to the mean-squared error. In this case, the overall trade-
off becomes MSE∞(h,B, T ) ≈ O

(
1/(hB)+γ2T (1+h)

)
, and the optimal step-size is h∗ ≈ B−1/2.

Vector Case As before, the mean-squared error for the vector case can be explicitly computed
in closed-form assuming that A is diagonalizable. The result reflects the same behaviour as in the
scalar case. Conveniently, the MSE in Theorem 3 has been expressed with sharp terms in h and B,
while confining the dependence on the system parameter a within the constant C, and the impact
of higher-order terms in T within VT,∞. This allows us to state the same result for the vector case,
in which the constant will now depend on the eigenvalues of the matrix A, as well as the discount
factor γ. These are provided in full detail in Appendix D.2.

Corollary 4. For A diagonalisable, with eigenvalues given by λ1, . . . , λn, the mean-squared error
of the Monte-Carlo estimator in the infinite-horizon, discounted setting is

MSE∞ (h,B, T ) = C3 (λ1, . . . , λn, γ)σ
4 T

hB
+

σ4

144
h4 +O

(
h5
)
+O

(
B−1

)
, (19)

under the assumption that γT = o
(
h4
)
.

The different terms in Corollary 4 correspond to the estimation error, the approximation error and
the truncation error as in the scalar case. The optimal step size choice exhibits the same dependence
on T and B as in the scalar case, but with a different constant depending on the eigenvalues. Lastly,
the general case for Langevin processes with a stable matrix A is discussed in Appendix D.3.

4 FROM LINEAR TO NON-LINEAR SYSTEMS: A NUMERICAL STUDY

The trade-off identified in our analysis suggests that there exists an optimal choice of the temporal
resolution in policy evaluation. Our next goal is to verify the trade-off in several simulated dy-
namical systems. While our analysis assumes a linear transition and quadratic cost, we empirically
demonstrate that such a trade-off also exists in nonlinear systems. For our experimental setup, we
choose simple linear quadratic systems mirroring the setup of Section 2, as well as several stan-
dard benchmarks from OpenAI Gym (Brockman et al., 2016) and MuJoCo (Todorov et al., 2012).
Our findings confirm the theoretical results and highlight the importance of choosing an appropriate
step-size for policy evaluation.

4.1 LINEAR QUADRATIC SYSTEMS

We first run numerical experiments on the Langevin dynamical systems to demonstrate the trade-
off analyzed in the previous section, the results of this experiment are shown in Fig. 1. For all the
systems, we fix the parameters σ2 = 1 and Q = I . The lines in the plot represent the sample mean
(V̂M (h) − V )2 and the shading represent standard error of our sample means. Each data point was
averaged over 50 independent runs in the scalar case and 40 in the vector case. We observe a clear
trade-off in all the Fig. 1 plots. Fig. 1(a) shows the MSE in an one-dimensional system with T = 8
and a = −1. The ground truth V is calculated analytically by using Eq. 27. The figure illustrates
how the error changes as we vary the data budget, B = {212, 213, 214, 215, 216}, and also illustrates
the improvement that can be obtained by increasing the budget. As we increase B, both the error
and and the optimal step size, h∗, decrease. This result aligns with the analysis shown in Theorem 1
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and Corollary 2. The objective is minimized when h is chosen appropriately. Fig. 1(b) and 1(c)
show the experimental results for both undiscounted finite horizon and discounted infinite horizon
multi-dimensional systems. Calculating the ground truth V for our multi-dimensional systems is
more involved than in our scalar system. To calculate V for the undiscounted finite horizon system,
we numerically solve the Riccati Differential Equation using backwards induction as is standard
practice. To calculate V for the discounted infinite horizon system we solve the Lyapunov equation
using a standard solver. Note in our experiments the dimension n = 3. We fix all parameters and
run our experiments on the system A = cI3 where c ∈ {−0.2,−0.5,−1,−2,−4}, producing stable
systems with different eigenvalues. Results in both plots suggest that the impact of these eigenvalues
of A on h∗ is mild and that the eigenvalue-dependent constant terms in Corollary 3 in our vector
analysis do not significantly affect the optimal step-size h∗. The eigenvalues do influence the values
of the MSE achieved in each system. MSE decreases as the magnitude of the eigenvalue increases.
In the infinite horizon system, the horizon needs to be large enough to manage truncation error while
simultaneously being small such that we can run multiple rollouts. We choose γ large enough such
that we can learn a good estimate of V . We set T = 1/(1 − γ), which is commonly referred to as
the effective horizon in the RL literature.
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(a) n = 1, finite horizon

10 3 10 2 10 1 100

h

10 3

10 2

10 1

100

101

(V
M
(h

)
V)

2

T=2, B=4096

A = -0.2 I3
A = -0.5 I3
A = -1 I3
A = -2 I3
A = -4 I3
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A = -0.2 I3
A = -0.5 I3
A = -1 I3
A = -2 I3
A = -4 I3

(c) n = 3, infinite horizon

Figure 1: Mean-squared error trade-off in linear quadratic systems of different dimension n. The
left-most plot shows the dependence of the optimal step-size on the data budget; as expected the
optimal step-size decreases with more data. Middle and right plot show the MSE for different drift
matrices A. Note that the optimal step-size h exhibits only a mild dependence on the scale of A.

4.2 NONLINEAR SYSTEMS

We empirically show that the trade-off identified in linear quadratic systems carries over to nonlin-
ear systems, with more complex cost functions. We demonstrate it in several simulated nonlinear
systems from OpenAI Gym (Brockman et al., 2016), including Pendulum, BipedalWalker and six
MuJoCo (Todorov et al., 2012) environments: InvertedDoublePendulum, Pusher, Swimmer, Hopper,
HalfCheetah and Ant. We note that the original environments all have a fixed temporal discretization
δt, pre-chosen by the designer. To measure the effect of h, we first modify all environments to run at
a small discretization δt = 0.001 as the proxy to the underlying continuous-time systems. We train
a nonlinear policy parameterized by a neural network for each system, by the algorithm DAU (Tallec
et al., 2019). This policy is used to gather episode data from the continuous-time system proxy at
intervals of δt = 0.001 which are then down-sampled for different h based on the ratio of h and
δt. This allowed to handle uniformly all environments, thus yielding the behaviour of the MSE with
respect to the sampling time h in the same interval. The policy is stable in the sense that it produces
reasonable behavior (e.g., pendulum stays mostly upright; Ant walking forward etc) and not cause
early termination of episodes (e.g., BipedalWalker does not fall), in the continuous-time system
proxy. The results of the MSE of Monte-Carlo value estimation are shown in Fig. 2. Similar to the
linear systems case, we vary the data budget B and see how the MSE changes with the discretiza-
tion h. We slightly abuse notations by using V, V̂ to refer to the true and estimated sum of rewards
instead of the cost. The true value of V is approximated by averaging the sum of rewards observed
at δt = 0.001 from 150k episodes. These environments fall under the finite horizon undiscounted
setting. The system (and estimation) horizon T of our experiments is chosen to be the physical time
of 1k steps under the default δt in the original environments (200 steps for Pendulum and 500 steps
for BipedalWalker). Please refer to Appendix F for more details on the setup including B, T , δt, h.
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Sample Budget B0 2 × B0 5 × B0 10 × B0 20 × B0

Figure 2: MSE of Monte-Carlo value estimation in nonlinear systems. The line and shaded region
denote the sample mean and its standard error of (V̂M (h) − V )2, from 30 random runs. T is the
horizon in physical time (seconds). B0 denotes the environment-dependent base sample budget,
chosen such that it gives a full episode for the smallest h (see Appendix F). In almost all environ-
ments the optimal step-size depends on the data budget (with ‘InvertedDoublePendulum-v2’ being
the only exception). In particular, the MSE as a function of h shows a clear minimum for choosing
the optimal step-size, which generally decreases as the data budget increases.

These system are stochastic in the starting state, while having deterministic dynamics. Despite the
different settings from our analysis, a clear trade-off is evident in all systems.

104 105

B

10 2

10 1

h*

Pendulum-v1
BipedalWalker-v3
InvertedDoublePendulum-v2
Pusher-v2
Swimmer-v3
Hopper-v3
HalfCheetah-v3
Ant-v3
Fitted trade-off c T B 1/3

Figure 3: Empirical h∗ in nonlinear experiments (solid
lines) aligns well with the analysis in Corollary 3
(dashed lines): h∗ = cTB−1/3. c is environment de-
pendent and estimated from the data by least squares.

Optimal Step-Size in Nonlinear Systems
Fig. 3 plots the empirical h∗ over B for
all nonlinear environments, and fitted lines
based on the relation h∗ = cTB−1/3 for
finite horizon undiscounted linear systems
described in Corollary 3. The plot shows
that the analytical trade-off for linear sys-
tems is observed approximately even in
the non-linear experiments. The constant
c depends on the system parameters (and
the policy) and, as expected, varies with
the environment. In our experiments, c
ranges from 0.02 to 0.2, which can serve
as a starting point for optimizing the step-
size in other experiments.

5 CONCLUSION

We provide a precise characterization of the approximation, estimation and truncation errors in-
curred by Monte-Carlo value estimation in a Langevin dynamical system with quadratic cost. Our
analysis reveals a fundamental bias-variance trade-off, modulated by the level of temporal discretiza-
tion h. In a second step, we confirm in numerical simulations that the analysis accurately captures
the trade-off in a precise, quantitative manner. In particular, we show that the trade-off carries over
to non-linear environments such as the popular MuJoCo physics simulation. Our findings show that
managing the temporal discretization level h can greatly improve the quality of value estimation
under a fixed data budget B. This has implication for practitioners, as in most environments that
we encountered the step-size is typically pre-set and rarely changed. There are several interesting
directions for future work, including considering policy optimization and other value estimation
techniques such as temporal differencing and system identification. Another direction is to extend
the analysis to non-linear systems via local linearization.
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A WARM-UP: THE RIEMANN SUM APPROXIMATION

The Riemann sum approximation is a standard argument that we reproduce here for completeness.
Let g : [0, T ] → R be a continuously differentiable function. Assume that we wish to approximate
the integral

∫ T

0
g(t) dt using the Riemann sum over N = T/h elements,

∑N−1
i=0 h g(ih). The

difference is readily computed up to first order as follows:

D =

∫ T

0

g(t) dt−
N−1∑
i=0

h g(ih)

=

N−1∑
i=0

∫ (i+1)h

ih

g(t)− g(ih) dt

≤
N−1∑
i=0

∫ h

0

g′(ih) t+O(t2) dt

=
1

2

N−1∑
i=0

(
g′(ih)h2 +O(h3)

)
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A naive bound is obtained as D ≤ 1
2N h2 ∥g′∥∞ + O(Nh3). Translated to a squared error, this

explains the dependency O(N2h4) = O(T 2h2).

In the case of discounting, let g(t) = γtf(t) and g′(t) = γt(f(t) + f ′(t)). Hence, the previous
display leads to the bound

D ≤ 1

2

N−1∑
i=0

γih
(
h2∥f(t) + f ′(t)∥∞ +O(h3)

)
=

h2(1− γNh) ∥f(t) + f ′(t)∥∞
2(1− γh)

+O(h3) .

Overall, the squared error is now O(h4(1 − γT )2/(1 − γh)2) = O(h2/ log(1/γ). Note that this
alone does not explain the improvement of the order from h2 to h4, which requires that also f(t) is
decaying fast enough.

B MOMENT CALCULATIONS

Recall that the solution of the SDE in Eq. (9), with x (0) = 0, takes the following form:

x (t) = σ

∫ t

0

ea(t−s) dw (s) . (20)

An integral part of finding the mean-squared error of the Monte-Carlo estimator is the computation
of the moments E

[
x(t)2

]
,E
[
x(t)4

]
and E

[
x(s)2x(t)2

]
when s ≤ t.

Lemma 1. Let x(t) be the solution of Eq. (9). The second moment of the state variable is

E
[
x2(t)

]
=

σ2

2a

(
e2at − 1

)
. (21)

For the forth moment, we get:

E
[
x (t)

4 ]
=

3σ4

4a2
(
e2at − 1

)2
(22)

Assuming that s ≤ t, we further get:

E
[
x2(s)x2(t)

]
=

σ4

4a2
(e2as − 1)e2at

{
(e−2as − e−2at) + 3(1− e−2as)

}
. (23)

Proof.

(1) We start with the second moment E
[
x(t)2

]
.

E
[
x(t)2

]
= σ2e2atE

[(∫ t

0

e−asdw(s)

)2
]
= σ2e2at

∫ t

0

e−2asds =
σ2

2a
(e2at − 1)

The calculation makes use of the Itô isometry, which can be stated as:

E

[(∫ t

0

z(s) dw (s)

)2
]
= E

[∫ t

0

z(s)2 ds

]
, (24)

for any stochastic process z(·) adapted to the filtration induced by the Wiener process w (·).

(2) Next we compute E
[
x(t)4

]
through Itô’s integral. Define y (t) :=

∫ t

0
e−au dw (u), so that

dy (t) = e−at dw (t). Thus,

df (y (t)) = f ′ (y (t)) dy (t) +
1

2
f ′′ (y (t)) ( dy (t))

2

= f ′ (y (t)) e−at dw (t) +
1

2
f ′′ (y (t)) e−2at dt,

13
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for any f (·). By choosing f (y) = y4:

f ′ (y) = 4y3 and f ′′ (y) = 12y2.

Therefore, by integration and taking the expectation:

E [f (y (t))] = E
[∫ t

0

f ′ (y (u)) e−au dw (u)

]
+

1

2
E
[∫ t

0

f ′′ (y (u)) e−2au du

]
= E

[∫ t

0

4

(∫ u

0

e−av dw (v)

)3

e−au dw (u)

]
︸ ︷︷ ︸

=0

+
1

2
E

[∫ t

0

12

(∫ u

0

e−av dw (v)

)2

e−2au du

]

= 6E

[∫ t

0

(∫ u

0

e−ave−au dw (v)

)2

du

]

= 6

∫ t

0

E

[(∫ u

0

e−ave−au dw (v)

)2
]

du (Itô isometry)

= 6

∫ t

0

∫ u

0

e−2ave−2au dv du

=

∫ t

0

e−2au 1

2a

(
1− e−2au

)
du

=
3

4a2
(
1− e−2at

)2
From Eq. (20) it holds x (t) = σeaty (t) so that the second part of the lemma follows.

(3) Lastly, we compute E
[
x(s)2x(t)2

]
for s ≤ t.

E
[
x2 (s)x2 (t)

]
= σ4e2a(s+t)E

[(∫ s

0

e−au dw (u)

)2(∫ t

0

e−au dw (u)

)2
]

= σ4e2a(s+t)E

[(∫ s

0

e−au dw (u)

)2(∫ s

0

e−au dw (u) +

∫ t

s

e−au dw (u)

)2
]

= σ4e2a(s+t)

{
E

[(∫ s

0

e−au dw (u)

)4
]

︸ ︷︷ ︸
(i)

+E

[(∫ s

0

e−au dw (u)

)2
]
E

[(∫ t

s

e−au dw (u)

)2
]

︸ ︷︷ ︸
(ii)

}

Note that we computed (i) before. For (ii) it holds:

E

[(∫ s

0

e−au dw (u)

)2
]
=

∫ s

0

e−2au dw (u)

=
1

2a
(1− e−2as)

and

E

[(∫ t

s

e−au dw (u)

)2
]
=

∫ t

s

e−2au dw (u)

=
1

2a
(e−2as − e−2at)

Therefore, assuming s ≤ t, it holds that (it is necessary to use Itô integration in this case):

E
[
x2 (s)x2 (t)

]
= σ4e2a(s+t)

{
1

4a2
(
1− e−2as

) (
e−2as − e−2at

)
+

3

4a2
(
1− e−2as

)2}
=

σ4

4a2
(e2at − 1)e2as

{
(e−2at − e−2as) + 3(1− e−2at)

}
.
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C CALCULATIONS OF THE MEAN-SQUARED ERROR

C.1 UNDISCOUNTED, FINITE-HORIZON: PROOF OF THEOREM 1

Proof. We first note that

E[V̂M (h)] =
h

M

M∑
i=1

N−1∑
k=0

E[x2
i (kh)] = h

N−1∑
k=0

E[x2(kh)]

where we denote x(t) = x1(t) for simplicity. Next we expand the mean-squared error

E[(V̂M (h)− VT )
2] = E[V̂ 2

M (h)]− 2VTE[V̂M (h)] + V 2
T

=
h2

M2
E

( M∑
i=1

N−1∑
k=0

x2
i (kh)

)2
− 2VTE[V̂M (h)] + V 2

T

=
h2

M2

M∑
i,j=1

N−1∑
k,l=0

E[x2
i (kh)x

2
j (lh)]− 2VTE[V̂M (h)] + V 2

T

=
h2

M

N−1∑
k,l=0

E[x2(kh)x2(lh)] +
M2 −M

M2
E[V̂M (h)]2 − 2VTE[V̂M (h)] + V 2

T

For the last equality, note that E[V̂M (h)]2 = h2
∑N−1

k,l=0 E[x2(kh)]E[x2(lh)]. It remains to compute
the expressions. By Lemma 1 we have for the second moment of the state variable:

E[x2(t)] =
σ2

2a

(
e2at − 1

)
. (25)

Assuming that s ≤ t, from the same lemma we get the following for the forth moments:

E[x2(s)x2(t)] =
σ4

4a2
(e2as − 1)e2at

{
(e−2as − e−2at) + 3(1− e−2as)

}
. (26)

Note that by symmetry, a similar expression follows for s ≥ t.

Using these expressions, for the expected cost we get

VT =

∫ T

0

E[x2(t)]dt =
σ2

2a

∫ T

0

(
e2at − 1

)
dt =

σ2

2a

(
e2aT − 1

2a
− T

)
(27)

We remark that a similar expression was previously obtained in (Bijl et al., 2016, Theorem 3). Next,
the expected estimated cost is

E[V̂M (h)] = h

N−1∑
k=0

E[x2(kh)] =
σ2h

2a

N−1∑
k=0

(
e2akh − 1

)
=

σ2h

2a

[
1− e2aT

1− e2ah
−N

]
Lastly, it remains to compute the sum

h2

M

N−1∑
k,l=0

E[x2(kh)x2(lh)] =
2h2

M

N−1∑
k<l

E[x2(kh)x2(lh)] +
h2

M

N−1∑
k=0

E[x4(kh)]

=
σ4T

(
h2
(
e2aT − 1

) (
8e2ah + 3e2aT + 1

)
+ T 2

(
e2ah − 1

)2 − 2hT
(
e2ah − 1

) (
e2ah + 5e2aT

))
4a2Bh (e2ah − 1)

2

The last equality is a cumbersome calculation that involves nested geometric sums. We verified the
result using symbolic computation. For reference we provide the notebooks containing all calcula-
tions in the supplementary material. It remains to collect all terms to get the final result.
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C.2 UNDISCOUNTED, FINITE-HORIZON: STEP SIZE

Although the exact optimal step size h∗ can be obtained from Theorem 1 in practice, such exact h∗

doesn’t have an explicit solution through Theorem 1. A trivial way to see the order of h∗ in terms
of B, a, T is finding the dominated term by using Taylor’s expansion for exponential parts (which is
true for any h) in Theorem 1. A proof of Corollary 2 is given as follows.

Proof. From Theorem 1, we compute the leading terms in h of the least-squares error:

E1(h, T, a) =
σ4(e2aT − 1)2

16a2
h2 +O(h3), (28)

E2(h, T, a)

B
= −

σ4T
(
4aT − e4aT + e2aT (8aT − 4) + 5

)
8a4

· 1

hB
+

σ4T (1− e4aT + 4aTe2aT )

4a3B

−
σ4Th

(
1 + 4aT + e2aT (8aT + 4)− 5e4aT

)
24a2B

− σ4Th2(e4aT − 1)

12aB
+O

(
h3/B

)
.

(29)
It is trivial to see, when h ≥ 1, both Eq. (28) and Eq. (29) will blow up, and increase exponentially
in h. Thus, a small h < 1 is considered to minimize E1(h, T, a) +

E2(h,T,a)
B . Keeping the first term

in both Eq. (28) and Eq. (29) and solving for the optimal h∗ yields the result.

A more precise approximation of h∗ than Corollary 2 is a minimizer of E1(h, T, a) +
E2(h,T,a)

B

truncated at O(h3):

h∗(a, T,B) =
D1

3D3
+

(
D3

1

33D3
3

− 3D2

2a2D3
−

√
9D2

2

4a4D2
3

− D3
1D2

9a2D4
3

) 1
3

+

(
D3

1

33D3
3

− 3D2

2a2D3
+

√
9D2

2

4a4D2
3

− D3
1D2

9a2D4
3

) 1
3

, (30)

where
D1 = T

(
1 + 4aT + e2aT (8aT + 4)− 5e4aT

)
,

D2 = T
(
4aT − e4aT + e2aT (8aT − 4) + 5

)
,

D3 = 3B(e2aT − 1)2 − 4aT (e4aT − 1) .

We can further express Eq. (30) in terms of B, as

h∗(B) =

(
−
T
(
4aT − e4aT + e2aT (8aT − 4) + 5

)
a2(e2aT − 1)2

)1/3

B−1/3

+
T
(
1 + 4aT + e2aT (8aT + 4)− 5e4aT

)
9(e2aT − 1)2B

+
4aT (e2aT + 1)D

1/3
2

9a2/3(e2aT − 1)5/3
B−4/3

+
4aT 2(e2aT + 1)D1

27(e2aT − 1)3
B−2 +O(B−7/3) .

where the first term is exactly the result in Corollary 2.

C.3 FINITE-HORIZON, DISCOUNTED

As stated in Section 3.1, adding discounting in the finite-horizon setting makes the mean-squared
error more involved. In the regime where h is small and B is large, a Taylor expansion characterizes
the error surface as follows:

MSET (h,B, γ) ≈ σ4T

log(γ)(a+ log(γ))(2a+ log(γ))2
· 1

hB
+

σ4γ2T (e2aT − 1)2

16a2
· h2

+
γT
(
e2aT − 1

) (
γT
(
e2aT (2a+ log (γ))− log (γ)

)
− 2a

)
48a2

· h3 +
σ4

144
· h4

(31)
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The approximation shows only the lowest order terms for 1/(hB), γT and h. The derivation is
given in Lemma 2 below. The results shows that main trade-off between h and B persists also for
the discounted objective, as long as γT is treated as a constant relative to h2 and 1/hB. In the
limit where γT becomes small (e.g. γT = o(h4)) the nature of the trade-off changes in that the
approximation error improves to O(h4). This can be understood from the fact that under geometric
discounting combined with a decaying process, the sum of N = T/h estimation errors do not
suffer a factor N , thereby removing a factor of 1/h from the (non-squared) approximation error (see
Appendix A for a more detailed explanation).

Lemma 2 (Finite-horizon, discounted). In the finite-horizon with a discount factor γ ∈ (0, 1] set-
ting, the mean-squared error of the Monte-Carlo estimator is

MSET (h,B, γ) = E1(h, T, a, γ) +
E2(h, T, a, γ)

B
,

where

E1(h, T, a, γ) = C1(T, γ, a)σ
4h2 + C2(T, γ, a)σ

4h3 +

(
1

144
+ C3(T, γ, a)

)
σ4h4 +O(h5) ,

E2(h, T, a, γ) =
σ4T + γTC4(T, γ, a)

log(γ)(a+ log(γ))(2a+ log(γ))2h
+ γTO(1) ,

C1(T, γ, a) =
γ2T

(
e2aT − 1

)2
16a2

,

C2(T, γ, a) =
γT
(
e2aT − 1

) (
γT
(
e2aT (2a+ log(γ))− log(γ)

)
− 2a

)
48a2

,

C3(T, γ, a) =
σ4γT

[
γT
(
e2aT (2a+ log(γ))− log(γ)

)2 − 4a
(
e2aT (2a+ log(γ))− log(γ)

)]
576a2

,

C4(T, γ, a) is some finite constant of (T, γ, a) that includes γT as a factor .

Proof. The proof follows the similar computations as those in the previous proof with a new ex-
pected cost as follows. In particular, using Lemma 1, we get

VT =

∫ T

0

γtE[x2(t)]dt =
σ2

2a

(
γT e2aT − 1

log(γ) + 2a
− γT − 1

log(γ)

)
(32)

Furthermore, the expected estimated cost is

E[V̂M (h)] =
σ2h

2a

N−1∑
k=0

γkh
(
e2akh − 1

)
=

σ2h

2a

(
1− γT e2aT

1− γhe2ah
− 1− γT

1− γh

)
.

Finally, the sum containing the forth order cross-moments is

h2

M

N−1∑
k,l=0

γkh+lhE[x2(kh)x2(lh)] =
2h2

M

N−1∑
k<l

γkh+lhE[x2(kh)x2(lh)] +
h2

M

N−1∑
k=0

γ2khE[x4(kh)] .

While not impossible to calculate on paper, a written derivation is beyond the scope of this work.
Instead, we rely on symbolic computation to obtain the expression and corresponding Taylor approx-
imations. The notebooks containing all derivations are provided in the supplementary material.
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C.4 INFINITE HORIZON: PROOF OF THEOREM 3

Proof. The proof relies on the decomposition provided in Eq. (17). It only remains to compute the
following cross term.

E
[
V̂M (h)− VT

]
VT,∞

=
σ4

2a

(
γT

log(γ)
− γT e2aT

log(γ) + 2a

)[
h

2a

(
1− γT e2aT

1− γhe2ah
− 1− γT

1− γh

)
− 1

2a

(
γT e2aT − 1

log(γ) + 2a
− γT − 1

log(γ)

)]
=

σ4γ2T
(
e2aT − 1

) (
log(γ)

(
e2aT − 1

)
− 2a

)
8a2 log(γ) (2a+ log(γ))

h+

σ4γT
(
2a+ log(γ)− e2aT log(γ)

) (
2a
(
γT e2aT − 1

)
+ γT log(γ)

(
e2aT − 1

))
48a2 log(γ) (2a+ log(γ))

h2 +O(h3) .

Thus, the mean-squared error MSE∞(h,B, T, γ) = E
[
(V̂M (h)− V∞)2

]
is obtained by combining

the above computation with Eq. (16) and Lemma 2.

D VECTOR CASE ANALYSIS

D.1 FINITE-HORIZON, UNDISCOUNTED: PROOF OF THEOREM 2

Proof. Consider the n-dimensional system that the solution of the trajectory of X(t) is

X(t) = σ

∫ t

0

eA(t−s) dW (t) .

Since A is a diagonalizable matrix, we can decompose A as A = P−1DP , where P is a invert-
ible matrix (not necessarily to be orthogonal) and D is a diagonal matrix whose diagonal entries
(λ1, · · · , λn) are corresponding to the eigenvalues of the matrix A. Followed by which, we can
decompose the matrix exponential of A as:

eAt = P−1eDtP .

Define the “diagonalized” process X̃ (·) as:

PX (t) = Pσ

∫ t

0

eA(t−s) dW (s)

= σPP−1

∫ t

0

eD(t−s)P dW (s)

= σ

∫ t

0

eD(t−s) dW̃ (s) =: X̃ (t)

where W̃ (s) is a Wiener process (with dependent components when P is not orthogonal). This
implies that X (·) = P−1X̃ (·).
To see X̃i(t) clearly, we denote P = [pij ]

n
i,j=1, and X̃i(t) = (ϕ

(i)
1 (t), · · · , ϕ(i)

n (t))⊤, then

ϕ
(i)
l (t) =

∑n
j=1 pljσ

∫ t

0
eλl(t−s) dw

(i)
j (s) for each l ∈ {1, · · · , n}. Particularly, in such an ex-

pression, w(i)
j (s) are independent Wiener processes for different i or j. Correspondingly, X̃(t) =

(ϕ1(t), · · · , ϕn(t))
⊤, and ϕl(t) =

∑n
j=1 pljσ

∫ t

0
eλl(t−s) dwj(s) for each l ∈ {1, · · · , n}, where

wj(s) are independent Wiener processes for different j.

By trace operation, we can rewrite V̂M (h) as follows:

V̂M (h) =
1

M

M∑
i=1

N−1∑
k=0

hX (tk)
⊤
QX (tk)

= tr

{
1

M

M∑
i=1

N−1∑
k=0

hX̃ (tk)
⊤
P−⊤QP−1X̃ (tk)

}
= tr

{
P−⊤QP−1V̂M (h)

}
,
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where V̂M (h) = 1
M

∑M
i=1

∑N−1
k=0 hX̃ (tk) X̃ (tk)

⊤ ∈ Rn×n.

Similarly, VT = tr
{
P−⊤QP−1VT

}
, where VT =

∫ T

0
E[X̃(t)X̃(t)⊤] dt.

Therefore, the MSET (h,B) can be written as

MSET (h,B) = E
[(

V̂M (h)− VT

)2]
= E

[
tr
{
P−⊤QP−1

(
V̂M (h)− VT

)}2
]
. (33)

For notional simplicity, we denote matrix P−⊤QP−1 =: B = [blj ]
n
l,j=1 and V̂M (h)− VT =: C =

[clj ]
n
l,j=1.

Noting the fact that

MSET (h,B) = E


∑

l,j

bjlclj

2
 =

∑
l1,j1,l2,j2

bj1l1bj2l2E [cl1j1cl2j2 ] , (34)

it is sufficient to find MSET by only computing E [cl1j1ci2j2 ].

We first introduce the following expectations that are used in the computations. For any s ≤ t

E
[∫ t

0

eλ1(t−u) dw(u)

∫ s

0

eλ2(s−u) dw(u)

]
=

eλ1t+λ2s

λ1 + λ2

(
1− e−(λ1+λ2)s

)
, (35)

E
[∫ s

0

eλ1(s−u) dw(u)

∫ s

0

eλ2(s−u) dw(u)

∫ t

0

eλ3(t−u) dw(u)

∫ t

0

eλ4(t−u) dw(u)

]
= e(λ1+λ2)s+(λ3+λ4)t

[
1

(λ1 + λ2)(λ3 + λ4)

(
1− e−(λ1+λ2)s

)(
1− e−(λ3+λ4)s

)
+

1

(λ1 + λ3)(λ2 + λ4)

(
1− e−(λ1+λ3)s

)(
1− e−(λ2+λ4)s

)
+

1

(λ1 + λ4)(λ2 + λ3)

(
1− e−(λ1+λ4)s

)(
1− e−(λ2+λ3)s

)
+

1

(λ1 + λ2)(λ3 + λ4)

(
1− e−(λ1+λ2)s

)(
e−(λ3+λ4)s − e−(λ3+λ4)t

)]
(36)∫ T

0

E
[∫ t

0

eλ1(t−u) dw(u)

∫ s

0

eλ2(−u) dw(u)

]
dt =

e(λ1+λ2)T − 1− (λ1 + λ2)T

(λ1 + λ2)2
. (37)

By using the definitions of V̂M (h) and VT , it is trivial to see for any l, j ∈ {1, · · · , n}

clj =
1

M

M∑
i=1

N−1∑
k=0

hϕ
(i)
l (kh)ϕ

(i)
j (kh)−

∫ T

0

E[ϕl(t)ϕj(t)] dt

=
hσ2

M

M∑
i=1

N−1∑
k=0

(
n∑

α=1

plα

∫ kh

0

eλl(kh−s) dw(i)
α (s)

)(
n∑

α=1

pjα

∫ kh

0

eλj(kh−s) dw(i)
α (s)

)

− σ2

∫ T

0

E

[(
n∑

α=1

plα

∫ t

0

eλl(t−s) dwα(s)

)(
n∑

α=1

pjα

∫ t

0

eλj(t−s) dwα(s)

)]
dt

=

n∑
α=1

plαpjα

[
hσ2

M

M∑
i=1

N−1∑
k=0

(∫ kh

0

eλl(kh−s) dw(i)
α (s)

)(∫ kh

0

eλj(kh−s) dw(i)
α (s)

)

− σ2

∫ T

0

E
[(∫ t

0

eλl(t−s) dwα(s)

)(∫ t

0

eλj(t−s) dwα(s)

)]
dt

]
+

∑
α̸=β

plαpjβ

[
hσ2

M

M∑
i=1

N−1∑
k=0

(∫ kh

0

eλl(kh−s) dw(i)
α (s)

)(∫ kh

0

eλj(kh−s) dw
(i)
β (s)

)]
,
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where the last equation is due to the fact that for α ̸= β

E
[(∫ t

0

eλl(t−s) dwα(s)

)(∫ t

0

eλj(t−s) dwβ(s)

)]
= 0 .

Thus, for any l1, l2, j1, j2 ∈ {1, · · · , n},

E [cl1j1cl2,j2 ] =

n∑
α=1

pl1αpj1αpl2αpj2ασ
4I1 (M,h, T, λl1 , λj1 , λl2 , λj2 , α)

+

n∑
α̸=β

pl1αpj1αpl2βpj2βσ
4I2 (M,h, T, λl1 , λj1 , λl2 , λj2 , α, β)

+

n∑
α̸=β

pl1αpj1βpl2αpj2βσ
4I3 (M,h, T, λl1 , λj1 , λl2 , λj2 , α, β) , (38)

where

I1 (M,h, T, λl1 , λj1 , λl2 , λj2 , α)

= E

{[
h

M

M∑
i=1

N−1∑
k=0

(∫ kh

0

eλl1
(kh−s) dw(i)

α (s)

)(∫ kh

0

eλj1
(kh−s) dw(i)

α (s)

)

−
∫ T

0

E
[(∫ t

0

eλl1
(t−s) dwα(s)

)(∫ t

0

eλj1
(t−s) dwα(s)

)]
dt

]
×[

h

M

M∑
i=1

N−1∑
k=0

(∫ kh

0

eλl2
(kh−s) dw(i)

α (s)

)(∫ kh

0

eλj2 (kh−s) dw(i)
α (s)

)

−
∫ T

0

E
[(∫ t

0

eλl2
(t−s) dwα(s)

)(∫ t

0

eλj2 (t−s) dwα(s)

)]
dt

]}
,

and

I2 (M,h, T, λl1 , λj1 , λl2 , λj2 , α, β)

= E

{[
h

M

M∑
i=1

N−1∑
k=0

(∫ kh

0

eλl1
(kh−s) dw(i)

α (s)

)(∫ kh

0

eλj1
(kh−s) dw(i)

α (s)

)

−
∫ T

0

E
[(∫ t

0

eλl1
(t−s) dwα(s)

)(∫ t

0

eλj1 (t−s) dwα(s)

)]
dt

]
×[

h

M

M∑
i=1

N−1∑
k=0

(∫ kh

0

eλl2
(kh−s) dw

(i)
β (s)

)(∫ kh

0

eλj2
(kh−s) dw

(i)
β (s)

)

−
∫ T

0

E
[(∫ t

0

eλl2
(t−s) dwβ(s)

)(∫ t

0

eλj2
(t−s) dwβ(s)

)]
dt

]}

and

I3 (M,h, T, λl1 , λj1 , λl2 , λj2 , α, β)

= E

{[
h

M

M∑
i=1

N−1∑
k=0

(∫ kh

0

eλl1
(kh−s) dw(i)

α (s)

)(∫ kh

0

eλj1
(kh−s) dw

(i)
β (s)

)]
×[

h

M

M∑
i=1

N−1∑
k=0

(∫ kh

0

eλl2
(kh−s) dw(i)

α (s)

)(∫ kh

0

eλj2
(kh−s) dw

(i)
β (s)

)]}
.
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Note that w(i)
α and w

(i)
β are independent for α ̸= β. By using the expectations Eqs. (35) and (37),

we can further obtain I2 (M,h, T, λl1 , λj1 , λl2 , λj2 , α, β) as
I2 (M,h, T, λl1 , λj1 , λl2 , λj2 , α, β)

=

[
h

(λl1 + λj1)

(
1− e(λl1

+λj1)T

1− e(λl1
+λj1)h

− T

h

)
− 1

(λl1 + λj1)
2

(
e(λl1

+λj1)T − 1− (λl1 + λj1)T
)]

×

[
h

(λl2 + λj2)

(
1− e(λl2

+λj2)T

1− e(λl2
+λj2)h

− T

h

)
− 1

(λl2 + λj2)
2

(
e(λl2

+λj2)T − 1− (λl2 + λj2)T
)]

.

In the following computations, we will use C̄ and C(λl1 , λj1 , λl2 , λj2) to represent some constants
that are not depending on h, T,B.

The expectation I1 (M,h, T, λl1 , λj1 , λl2 , λj2 , α) is computed exactly the same way as in the
proof of Theorem 1 by using the expectation results Eq. (35) and Eq. (36). Notice that the ex-
pectation result Eq. (35) (when s = t) has the same order in t as the expectation Eq. (25).
Moreover, the two expectations Eq. (36) and Eq. (26) have the same orders in s and t. Thus,
I1 (M,h, T, λl1 , λj1 , λl2 , λj2 , α) has the same orders in h, T,B as the scalar MSE, i.e.

I1 (M,h, T, λl1 , λj1 , λl2 , λj2 , α) =
(
C̄1 + C1 (λl1 , λj1 , λl2 , λj2)O(T )

)
T 2h2 +O(h3)

+
(
C̄2 + C2 (λl1 , λj1 , λl2 , λj2)O(T )

) T 5

hB
+O

(
1

B

)
The expectation I2 (M,h, T, λl1 , λj1 , λl2 , λj2 , α, β) can be computed directly and has the result:

I2 (M,h, T, λl1 , λj1 , λl2 , λj2 , α, β) =

(
e(λl1

+λj1)T − 1
)(

e(λl2
+λj2)T − 1

)
h2

4 (λl1 + λj1) (λl2 + λj2)
+O(h3)

=

(
1

4
T 2 + C3(λl1 , λj1 , λl2 , λj2)O(T 3))

)
h2 +O(h3) .

The expectation I3 (M,h, T, λl1 , λj1 , λl2 , λj2 , α, β) can be computed as follows:
I3 (M,h, T, λl1 , λj1 , λl2 , λj2 , α, β)

=
h2

M

n∑
k=0

(
e(λl1

+λl2)kh − 1
)(

e(λj1
+λj2)kh − 1

)
h2

(λl1 + λl2) (λj1 + λj2)
+

h2

M

∑
k<q

eλl1
kh+λl2

qh+λj1kh+λj2qh

(λl1 + λl2) (λj1 + λj2)

(
1− e−(λl1

+λl2)kh
)(

1− e−(λj1
+λj2)kh

)
h2

M

∑
k<q

eλl1
qh+λl2

kh+λj1qh+λj2kh

(λl1 + λl2) (λj1 + λj2)

(
1− e−(λl1

+λl2)kh
)(

1− e−(λj1
+λj2)kh

)
=
(
C̄4 + C4 (λl1 , λj1 , λl2 , λj2)O(T )

) T 5

hB
+O

(
1

B

)
.

Thus, the final result is obtained by the expression of MSE in Eq. (34), Eq. (38) and the above
computations. Again, we rely on symbolic computation to obtain the expression and corresponding
Taylor approximations and include the notebooks of all derivations in the supplementary material.

The extension from Theorem 2 to the discounted finite-horizon results can be done in the same way
as in the above proof (add the discount factor γ in V̂M ) by using the expectation cost for any λ1 and
λ2: ∫ T

0

γtE
[∫ t

0

eλ1(t−u) dw(u)

∫ s

0

eλ2(−u) dw(u)

]
dt

=
1

(λ1 + λ2)

(
γT e(λ1+λ2)T − 1

log (γ) + (λ1 + λ2)
− γT − 1

log (γ)

)
.
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D.2 PROOF OF COROLLARY 4

Proof. We shall follow the similar proof as in the proof of Theorem 2 and the proof of Theorem 3.

Continuing from Eq. (38), in infinite-horizon discounted setting, we have

I1 (M,h, T, λl1 , λj1 , λl2 , λj2 , γ, α)

= E

{[
h

M

M∑
i=1

N−1∑
k=0

γkh

(∫ kh

0

eλl1
(kh−s) dw(i)

α (s)

)(∫ kh

0

eλj1
(kh−s) dw(i)

α (s)

)

−
∫ ∞

0

γtE
[(∫ t

0

eλl1
(t−s) dwα(s)

)(∫ t

0

eλj1
(t−s) dwα(s)

)]
dt

]
×[

h

M

M∑
i=1

N−1∑
k=0

γkh

(∫ kh

0

eλl2
(kh−s) dw(i)

α (s)

)(∫ kh

0

eλj2
(kh−s) dw(i)

α (s)

)

−
∫ ∞

0

γtE
[(∫ t

0

eλl2
(t−s) dwα(s)

)(∫ t

0

eλj2
(t−s) dwα(s)

)]
dt

]}
,

and

I2 (M,h, T, λl1 , λj1 , λl2 , λj2 , γ, α, β)

=

[
h

(λl1 + λj1)

(
1− γT e(λl1

+λj1)T

1− γhe(λl1
+λj1)h

− 1− γT

1− γh

)
− 1

(λl1 + λj1)

(
1

log (γ)
− 1

log (γ) + λl1 + λj1

)]

×

[
h

(λl2 + λj2)

(
1− γT e(λl2

+λj2)T

1− γhe(λl2
+λj2)h

− 1− γT

1− γh

)
− 1

(λl2 + λj2)

(
1

log (γ)
− 1

log (γ) + λl2 + λj2

)]
,

and

I3 (M,h, T, λl1 , λj1 , λl2 , λj2 , r, α, β)

= E

{[
h

M

M∑
i=1

N−1∑
k=0

γkh

(∫ kh

0

eλl1
(kh−s) dw(i)

α (s)

)(∫ kh

0

eλj1
(kh−s) dw

(i)
β (s)

)]
×[

h

M

M∑
i=1

N−1∑
k=0

γkh

(∫ kh

0

eλl2
(kh−s) dw(i)

α (s)

)(∫ kh

0

eλj2 (kh−s) dw
(i)
β (s)

)]}
.

Similar arguments as in proof of Theorem 2, we can conclude I1 (M,h, T, λl1 , λj1 , λl2 , λj2 , α) has
the same orders in h,B, T as the MSE result in Theorem 3.

Moreover, let Ci(λl1 , λj1 , λl2 , λj2 , γ, T )’s are some constants that depend on λl1 , λj1 , λl2 , λj2 , γ, T ,
then

I2 (M,h, T, λl1 , λj1 , λl2 , λj2 , γ, α, β)

= σ4γ2T (C1(λl1 , λj1 , λl2 , λj2 , γ, T ) + C2(λl1 , λj1 , λl2 , λj2 , γ, T )h)

+ σ4γT
(
C3(λl1 , λj1 , λl2 , λj2 , γ, T )h

2 + C4(λl1 , λj1 , λl2 , λj2 , γ, T )h
3
)

+ σ4

(
1

144
+ γTC5(λl1 , λj1 , λl2 , λj2 , γ, T )

)
h4 +O(h5) ,
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and

I3 (M,h, T, λl1 , λj1 , λl2 , λj2 , γ, α, β)

=
h2

M

N−1∑
k=0

(
e(λl1

+λl2)kh − 1
)(

e(λj1+λj2)kh − 1
)
h2γ2kh

(λl1 + λl2) (λj1 + λj2)
+

h2

M

∑
k<q

eλl1
kh+λl2

qh+λj1
kh+λj2

qh

(λl1 + λl2) (λj1 + λj2)

(
1− e−(λl1

+λl2)kh
)(

1− e−(λj1+λj2)kh
)
γ(k+q)h

h2

M

∑
k<q

eλl1
qh+λl2

kh+λj1
qh+λj2

kh

(λl1 + λl2) (λj1 + λj2)

(
1− e−(λl1

+λl2)kh
)(

1− e−(λj1+λj2)kh
)
γ(k+q)h

= C6 (λl1 , λj1 , λl2 , λj2 , γ, T )
T 5

hB
+O

(
1

B

)
.

The result in this Corollary is obtained by combining the above results. And we include the note-
books of all derivations in the supplementary material.

D.3 THE CASE WHEN A IS A GENERAL STABLE MATRIX

Lemma 3 (MSE when A is a general stable matrix ). Let A be a stable n × n matrix with distinct
eigenvalues λ1, · · · , λm and corresponding multiplicities q1, · · · , qm. There exist some constants
{C̄i}mi=1, C̄0 and Cj(λ1, · · · , λm, γ, T )’s, such that the mean-squared error of the Monte-Carlo
estimator in different setting satisfies

(1) Finite-Horizon undiscounted setting:

MSET ∈ [

m∑
i=1

qiC̄iMSET (h,B, λi), C1(λ1, · · · , λm, T )σ4T 2h2

+

(
C̄2 + C3(λ1, · · · , λm, T )O(T )

)
σ4T 2n+3

Bh
+O(h3) +O(

1

B
)] , (39)

where MSET (h,B, λi) is the mean-squared error of the Monte-Carlo estimator in Theorem 1 by
replacing the drift a by λi.

(2) Finite-Horizon discounted setting:

MSET ∈ [

m∑
i=1

qiC̄iMSET (h,B, γ, λi), C4(λ1, · · · , λm, γ, T )σ4γ2TT 2h2

+ C5(λ1, · · · , λm, γ, T )σ4γTh3 + C6(λ1, · · · , λm, T )σ4h4

+
(C7(λ1, · · · , λm, γ, T ))σ4T 2n−1

Bh
+O(h5) +O(

1

B
)] , (40)

where MSET (h,B, γ, λi) is the mean-squared error of the Monte-Carlo estimator in Lemma 2 by
replacing the drift a by λi.

(3) Infinite-Horizon discounted setting:

MSE∞ ∈ [

m∑
i=1

qiC̄iMSE∞(h,B, γ, λi),

(C8(λ1, · · · , λm, γ, T ) + C9(λ1, · · · , λm, γ, T )h)σ4γ2T

+
(
C10(λ1, · · · , λm, γ, T )h2 + C11(λ1, · · · , λm, γ, T )h3

)
σ4γT

+ C12(λ1, · · · , λm, T )σ4h4 +
(C13(λ1, · · · , λm, γ, T ))σ4T 2n−1

Bh

+O(h5) +O(
1

B
)] , (41)

where MSE∞(h,B, γ, λi) is the mean-squared error of the Monte-Carlo estimator in Theorem 3 by
replacing the drift a by λi.
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Proof. As we can see the proof of Lemma 2 is based on the proof of Theorem 1 with adding a
discount factor γ, and the proof of Theorem 3 is based on the proof of Lemma 2 with the decompo-
sition Eq. (17). By using the same flow direction, it is sufficient to show the result in case (1) and
the results in case (2) and (3) follows.

Consider the decomposition of MSET in finite-horizon undiscounted setting:

MSET = E
[
(V̂M − VT )

2
]

= E
[(

V̂M − E
[
V̂M

]
+ E

[
V̂M

]
− VT

)2]
= E

[
V̂ 2
M

]
− E

[
V̂M

]2
︸ ︷︷ ︸

Part1

+
(
E
[
V̂M

]
− VT

)2
︸ ︷︷ ︸

Part2

Before the analysis of part 1 and part 2, we will introduce the following mean-squared error notations
for the finite-horizon undiscounted scalar case with drift λi:

MSET (h,B, λi) = Var(h, λi) + Approximation(h,B, λi) , (42)

where Var(h, λi) = E
[
V̂ 2
M

]
− E

[
V̂M

]2
and Approximation(h,B, λi) =

(
E
[
V̂M

]
− VT

)2
.

For part 1:

E
[
V̂ 2
M

]
=

h2

M

∑
i,j,k,l

E
[
Xi(kh)

⊤QXi(kh)Xj(lh)
⊤QXj(lh)

]
=

h2

M2

∑
i,j,k,l

[
E
[
Xi(kh)

⊤QXi(kh)
]
E
[
Xj(lh)

⊤QXj(lh)
]
+ 2tr

{
QE

[
Xi(kh)Xj(lh)

⊤]}2]
= h2

∑
k,l

E
[
X(kh)⊤QX(kh)

]
E
[
Xj(lh)

⊤QX(lh)
]
+

2h2

M

∑
k

tr
{
QE

[
X(kh)X(kh)⊤

]}2
+

4h2

M

∑
k<l

tr
{
QE

[
X(kh)X(lh)⊤

]}2
, (43)

where the second equality is based on Isserlis’ theorem and the trace operation.

Notice that E
[
V̂M

]2
= h2

∑
k,l E

[
X(kh)⊤QX(kh)

]
E
[
X(lh)⊤QX(lh)

]
, thus

E
[
V̂ 2
M

]
− E

[
V̂M

]2
=

2h2

M

∑
k

tr
{
QE

[
X(kh)X(kh)⊤

]}2
+

4h2

M

∑
k<l

tr
{
QE

[
X(kh)X(lh)⊤

]}2
To analyze the above form, we decompose the matrix A by it Jordan form, i.e. A = P−1JP for
some inevitable matrix P and J = diag(Ji, · · · , Jm), where Ji is the Jordan block corresponding
to the eigenvalue λi.

Notice that eJ(kh−s) = diag(eJ1(kh−s), · · · , eJm(kh−s)), where

eJi(kh−s) = eλi(kh−s)


1 kh− s (kh−s)2

2! · · · (kh−s)qi−1

(qi−1)!

1 kh− s · · · (kh−s)qi−2

(qi−2)!

. . .
...
1

 .

Combining with the fact that for any k, l,

E
[
X(kh)X(lh)⊤

]
=

∫ kh∧lh

0

eA(kh−s)eA
⊤(lh−s) ds

=

∫ kh∧lh

0

P−1eJ(kh−s)PP⊤eJ
⊤(lh−s)P−⊤ ds ,
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we can conclude that for any k ≤ l, tr
{
QE

[
X(kh)X(lh)⊤

]}
is a linear combination of L1,i,j and

L2,i,j for all i, j, where

L1,i,j := C1,i,j

∫ kh

0

e(λi(kh−s)+λj(lh−s)) ds

= C1,i,j
eλikh + eλj

λi + λj

(
1− e−(λi+λj)kh

)
L2,i,j := C2,i,j

∫ kh

0

e(λi(kh−s)+λj(lh−s))(kh− s)q̃i(lh− s)q̃j ds ,

where C1,i,j , Ci,j are some constants and q̃i ∈ {0, · · · , qi − 1}, q̃j ∈ {0, · · · , qj − 1}.

For the integral in L2,i,j , as q̃i + q̃j ≤ n− 1, we can have the inequality:∫ kh

0

e(λi(kh−s)+λj(lh−s))(kh− s)q̃i(lh− s)q̃j ds

≤ Tn−1

∫ kh

0

e(λi(kh−s)+λj(lh−s)) ds . (44)

Since

tr
{
QE

[
X(kh)X(lh)⊤

]}2
=

∑
i1,j1,i2,j2

∑
k,l

∏
l1,l2∈{1,2}

Ll1,i1,j1Ll2,i2,j2 ,

and all the terms are nonnegative. We drop all terms that include L2,i,j factor and only include the
L2
1,i,i with k = l terms in the lower bound of part 1. That is to say, the lower bound of part 1 is∑m
i=1 qiC̄iVar(h, λi).

The upper bound of part 1 can be obtained by replacing all L1,i,j factors by L2,i,j and use the bound

given in Eq. (44). This leads to the upper bound for part 1 is (C̄2+C3(λ1,··· ,λm,T )O(T ))σ4T 2n+5

Bh +

O( 1
B ).

For Part 2, let g(t) = E
[
X(t)⊤QX(t)

]
on [0, T ]. Then E

[
V̂M

]
is the left Riemann sum approxi-

mation of g(t), by the property of Riemann approximation,

|E
[
V̂M

]
− VT | ≈ 2hTg(T ) +O(h2) ,

where

g(T ) = tr
{
QE

[
X(T )X(T )⊤

]}
= σ2tr

{
Q

∫ T

0

eA(t−s)eA
⊤(t−s) ds

}
,

which is a constant depends on λ1, · · · , λm, T . Thus

(E
[
V̂M

]
− VT )

2 ≈ C1(λ1, · · · , λm, T )σ4T 2h2 +O(h3) ,

which has the same order in h as the scalar case in finite-horizon undiscounted setting. Thus the
result in Eq. (39) is obtained by combining part 1 bounds and part 2 approximation.

As we explained in the beginning of this proof, in the finite-horizon discounted setting, we will
follow the similar arguments as in the proof of Eq. (39) to obtain result Eq. (40).

For the infinite-horizon discounted setting, the corresponding part 1 in the MSE∞ is the same as the
part 1 in MSET of Eq. (40). The part 2 is approximated by using the decomposition Eq. (17) and
the fact that

Vt,∞ =

∫ ∞

T

γtE
[
X(t)⊤QX(t)

]
dt = γTC(r, T, λ1, · · · , λm) .
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To verify VT,∞ is O(γT ), one can find the bounds of VT,∞ by using the similar arguments in the
above proof of Eq. (39) and the following inequality:∫ t

0

e(λi+λj)(t−s)(t− s)q̃i+q̃j ds

≤ tn−1

∫ t

0

e(λi+λj)(t−s) ds =
tn−1

(λi + λj)

(
e(λi+λj)t − 1

)
.

Then the components in
∫∞
T

γtE
[
X(t)X(t)⊤

]
dt is lower bounded by∫∞

T
rt

(λi+λj)

(
e(λi+λj)t − 1

)
dt and upper bounded by

∫∞
T

rttn−1

(λi+λj)

(
e(λi+λj)t − 1

)
dt. By

the celebrating approximation of incomplete gamma function when T is large, we have∫ ∞

T

rttn−1

(λi + λj)

(
e(λi+λj)t − 1

)
dt ≈ rTTn−1

(λi + λj)

(
e(λi+λj)T − 1

)
.

Followed by

VT,∞ = tr

{
Q

∫ ∞

T

γtE
[
X(t)X(t)⊤

]
dt

}
,

we can obtain that VT,∞ = γTC(r, T, λ1, · · · , λm).

This result leads to the fact that part 2 is

(C8(λ1, · · · , λm, γ, T ) + C9(λ1, · · · , λm, γ, T )h)σ4γ2T +
(
C10(λ1, · · · , λm, γ, T )h2

+C11(λ1, · · · , λm, γ, T )h3
)
σ4γT + C12(λ1, · · · , λm, T )σ4h4 +O(h5) ,

which coincides with the Var(hλi) in the infinite-horizon discounted scalar case. The results in (3)
then follows.

E TRADE-OFF IN LQR WITH DENSE DIAGONALIZABLE MATRICES
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Figure 4: Mean-squared error trade-off in LQR with random symmetric diagonalizable drift matrices
A. The matrices A{1,2,3,4,5} in each plot were generated by randomly sampling an eigendecom-
position and then using it to compute the drift matrix A. The eigenvalues are uniformly sampled on
bounded disjoint intervals and the eigenvectors are sampled randomly from the classical compact
groups detailed in Mezzadri (2006). Note the matrices in (a) and (b) are not equal.

Recall that in Fig. 1(b) and Fig. 1(c), the drift matrices A were scaled identity matrices. In this
section, we show empirically that the trade-off persists when A is a dense, stable matrix which
aligns with our theoretical results Theorem 2 and Corollary 4. Fig. 4 clearly shows a trade-off for
10 randomly sampled 3× 3 dense, stable matrices. The procedure for randomly sampling a systems
starts with uniformly sampling two eigenvalues from disjoint, bounded intervals, λ1 ∈ [−1.5,−1.0)
and λ3 ∈ (−1.0,−0.75]. The final eigenvalue is set to be λ2 = −1.0. Note that since all the
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eigenvalues sampled are negative, any matrix whose eigenvalues are λ1, λ2, λ3 is said to be stable.
Next, we randomly sample an orthogonal matrix Q using a built-in SCIPY (Virtanen et al., 2020)
routine, ORTHO GROUP.RVS. Now let Λ = diag(λ1, λ2, λ3), the random, dense, stable matrix A is
defined as A = Q⊤ΛQ.

F EXPERIMENTAL DETAILS

We summarize the environment-specific parameters in Table 1 for the nonlinear-system experiments.

Table 1: The setup of the environments. *: In MuJoCo environments in OpenAI Gym, δt =
timestep ∗ frame skip. δt = 0.001 seconds for the proxies to the continuous-time environments.
Note that ‘timestep’ (the step size of the MuJoCo dynamics simulation) and ‘frame skip’ (the algo-
rithmic step size) are two quantities in the implementation of OpenAI Gym MuJoCo environments.

Environment Episode Length Original* Horizon T
(steps) δt (seconds)

Pendulum 200 0.05 10
BipedalWalker 500 0.05 10
InvertedDoublePendulum 1000 0.05 50
Pusher 1000 0.05 50
Swimmer 1000 0.04 40
Hopper 1000 0.008 8
HalfCheetah 1000 0.05 50
Ant 1000 0.05 50

Environment B0 h

Pendulum 10k [0.001, 0.002, 0.004, 0.01, 0.02, 0.04, 0.1]
BipedalWalker 10k [0.001, 0.002, 0.004, 0.01, 0.02, 0.04, 0.1]
InvertedDoublePendulum 25k [0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4, 1]
Pusher 25k [0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4, 1]
Swimmer 20k [0.002, 0.004, 0.01, 0.02, 0.04, 0.1]
Hopper 8k [0.001, 0.002, 0.004, 0.01, 0.02, 0.04, 0.1]
HalfCheetah 25k [0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4]
Ant 25k [0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4]
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