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ABSTRACT

To tackle the issue of hallucination in generative question answering
(GQA)—where the generated answer is nonsensical or unfaithful to the provided
document—we introduce a novel framework called evidence-enhanced triplet gen-
eration (EATQA). This framework incentivizes the model to generate all possible
combinations of 〈Question, Evidence, Answer〉 triplets by reversing the source pair
and target label to grasp their logical interrelationships. Specifically, the model
predicts the Answer (A), Question (Q), and Evidence (E) given the QE, EA, and
QA pairs, respectively. Furthermore, we address the distribution gap during the
inference stage to extract knowledge from the evidence more effectively. Our
framework ensures that the model comprehends the logical connections between
queries, evidence, and answers, thereby simultaneously enhancing evidence gen-
eration and question answering capabilities. In this study, we apply the EATQA
framework to the LLama model, demonstrating superior performance compared
to other large language model (LLM)-based methods and hallucination mitigation
techniques on two challenging GQA benchmarks. Further analysis reveals that our
method not only preserves the pre-existing knowledge within the LLM but also
reduces hallucination and produces more accurate answers.

1 INTRODUCTION

Large language models (LLMs) signify a pivotal advancement in the pursuit of general artificial
intelligence (Brown et al., 2020; Touvron et al., 2023; Chowdhery et al., 2023). Despite their
remarkable performance across a broad range of tasks, these models continue to encounter several
challenges, such as hallucination (Tonmoy et al., 2024) and difficulties in processing long contexts
(Jin et al., 2024). In the context of document-based generative question answering (GQA) (Lewis &
Fan, 2018), models sometimes produce answers that are inconsistent with the source document or
do not align with the query, a phenomenon known as hallucination (Gunjal et al., 2024; Liu et al.,
2024). Recent studies have employed external models to retrieve pertinent information in an attempt
to enhance the factual accuracy of generated responses. Nonetheless, the inherent mismatch between
the retriever and the LLM can lead to the inclusion of superficially relevant information that does not
contribute meaningfully to answering the question (Salemi & Zamani, 2024).

To enhance logical reasoning and minimize the inclusion of misleading information, we emphasize
the identification of supporting evidence in document-based question answering (QA). Departing
from the traditional retrieve-then-read approach, we employ a unified triplet generation framework
where a large language model (LLM) simultaneously generates evidence and answers. Within this
framework, pairs of ⟨question, evidence, answer⟩ are inputted into specific instructions to produce
the remaining element. This approach leverages evidence to reconstruct the question, ensuring that
the model grasps its logical relationships to both the question and the answer, rather than relying on
superficial relevance.

Consider an example from the MultiRC dataset (Khashabi et al., 2018), illustrated in Figure 1. The
question posed is, “After the Osprey resumed flights, how long did it take for the Air Force to begin
using the aircraft?” The answer cannot be derived from a single sentence within the document. To
accurately respond, the model must identify multiple pieces of evidence: “Osprey resumed flights
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in 2002” and “Air Force began using Ospreys in 2008 after testing the aircraft in 2006” and then
determine that the answer is “4 years” If the model is misled by incorrect evidence such as “Marines
developed the aircraft in Iraq in 2007” it will arrive at the incorrect answer, “5 years” Moreover, when
guided by the correct evidence, the model can accurately reconstruct the original question, since the
correct evidence encompasses sufficient information. In contrast, incorrect evidence leads to the
reconstruction of a question like “How long did it take for the Marines to begin using the aircraft...”-a
question inconsistent with the original. This demonstrates that accurate evidence is vital for effective
question answering, and the reconstruction of the question based on evidence and answer serves as
an indicator of evidence validity.

⋯ Sent 9: The Army began 
developing the Osprey in 1985, 
though the program was 
nearly scrapped in 1989 when 
then-Secretary of Defense 
Dick Cheney sought to cancel 
it. ⋯ Sent 12: A redesign was 
ordered on the Osprey, and it 
resumed flights in 2002. Sent 
13: The Air Force began using 
Ospreys in 2008 after testing 
the aircraft in 2006. Sent 14: 
They were first deployed by 
the Marines in Iraq in 2007 
after 18 years and $20 billion 
in development.

document
After the Osprey resumed flights how long did it 
take for the Air Force to begin using the aircraft?

question

Evidence: Sent 12 [it resumed flights in 2002], 
Sent13: [testing the aircraft in 2006].
Answer: From 2002 to 2006, 4 years
Reconstructed question: How long did it take 
for the Air Force to begin using the aircraft after 
the Osprey resumed flights?

correct evidence

distracting evidence
Evidence: Sent 12 [it resumed flights in 2002], 
Sent14: [first deployed by the Marines in Iraq in 
2007].
Answer: From 2002 to 2007, 5 years
Reconstructed question: How long did it take 
for the Marines to deploy the aircraft after the 
Osprey resumed flights?

Figure 1: One example from MultiRC dataset. Red denotes
supporting evidence and green denotes misleading sentences.

To alleviate the hallucination and
enhance the logical reasoning be-
tween the question, evidence and
answers, we propose our Evidence
enhAnced Triplet generation frame-
work (EATQA), which includes three
instruction tuning tasks to predict all
the combinations of 〈Question, Ev-
idence, Answer〉 triplet by flipping
the source pair and the target label to
understand their logical relationships,
i.e., predict A(Answer), Q(Question),
and E(Evidence) given a QE, EA, and
QA pairs, respectively. We reduce
the distribution gap between evidence-
aware and evidence-absent QA set-
tings through distribution bridging,
thereby facilitating knowledge distil-

lation from evidence and addressing challenges at the inference stage when evidence sentences cannot
be explicitly derived.

We conduct experiments in a variety of widespread document-based GQA datasets with diverse
answer types, including MultiRC and QASPER, based on different sizes of LLMs. Compared with
different sizes of the backbone model, our unified triplet generation framework shows significant
improvement on the two datasets, becoming the new state-of-the-art. Further analysis demonstrates
the ability of our approach to tackle longer document with more sentences. Additionally, we observe
a positive correlation in the performance of the three subtasks within the triplet generation framework,
indicating the efficacy of unifying the generation of all components with a single LLM in this
framework.

We conclude our contributions as follows: 1. We highlight the evidence generation to alleviate
hallucinations of LLM in GQA task. Instead of utilizing another LM as the retriever, which may
introduce misleading information, we propose the unified evidence enhanced triplet generation
framework including three instruction tuning tasks to improve the logical reasoning ability of LLM
for GQA task. 2. We propose the self-reasoning module, including the two phrase of candidate
generation and correctness verify, which constructs the faithful and informative evidences for training
without external annotation. 3. We conduct experiments on a wide variety of multi-hop QA datasets
including MultiRC and QASPER with different sizes of LLM, and demonstrate the effectiveness over
existing methods. 4. Additional experiments confirm the effectiveness of our unified triplet generation
framework in both evidence retrieval and question answering. Furthermore, our method not only
retains the prior knowledge encapsulated within the LLM but also effectively reduces hallucinations
for questions that extend beyond the model’s internal knowledge base.

2 RELATED WORK

Generative question answering (GQA) aims to generate an abstractive answer rather than extract an
answer to a given question from provided passages (Fan et al., 2019; Li et al., 2021). Early works
on GQA mostly tried to improve the faithfulness of the answer by investigating reliable external
knowledge sources or incorporating multiple information sources. Yin et al. (2015) propose Neural
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Generative Question Answering, an end-to-end model that generates answers to simple factoid
questions based on the knowledge base, while Bi et al. (2019) propose the Knowledge-Enriched
Answer Generator (KEAG) to generate a natural answer by integrating facts from four different
information sources, namely, questions, passages, vocabulary, and knowledge.

Recent works focus more on the conditional generation model. Li et al. (2021) propose Rationale-
Enriched Answer Generator (REAG), in which they add an extraction task to obtain the rationale
for an answer at the encoding stage, and the decoder is expected to generate the answer based on
both the extracted rationale and original input. Su et al. (2022) propose a framework named RBG
(read before generate), to jointly models answer generation with machine reading. They augment the
generation model with fine-grained, answer-related salient information predicted by the MRC module,
to enhance answer faithfulness. Such methods can exploit and utilize the information in the original
input better, while they require the extra effort of building models to extract that information. CAD
(Shi et al., 2023) follows a contrastive output distribution that amplifies the difference between the
output probabilities when a model is used with and without context. RHO (Ji et al., 2023) introduce
local and global knowledge-grounding techniques into dialogue generation and further utilize a
conversational reasoning model to re-rank the generated responses.

Our approach differs from these methods in 4 folds: 1. The external information incorporated by
existing baselines may be surface relevant but does not contain the information to support query
answering, which introduces distraction for model generation. However our ability of generating
informative evidences and conducting query reasoning improve as training proceeding. 2. In existing
baselines, the correctly exploit of external information beyond the internal knowledge to solve the
query of model remains a challenge. However, our model needs to generate the evidence sentence
from the document instead of internal knowledge, so it is trained to focus more on the document which
mitigates hallucination. 3. Our method does not need external pretrained retriever or well-designed
knowledge base to mitigate the hallucination of backbone model. 4. We provide the theory analysis
to explain and demonstrate the effectiveness of our method design.

3 METHODOLOGY

In this section, we begin by introducing self-reasoning module to derive the faithful and informative
evidences for training. Subsequently, we introduce the unified triplet generation framework designed
to predict all possible combinations of ⟨Question, Evidence, Answer⟩ triplets by interchanging
the source pair and target label to understand their logical interrelationships. These processes are
illustrated in Figure 2, presented sequentially from top to bottom.

Question: After the Osprey resumed 
flights how long did it take for the Air 
Force to begin using the aircraft?

Prompt: generate
the evidence⋯ Document

LLM

Evidence : ··· The Air Force ···
testing the aircraft in 2006

Answer :  From 
2002 to 2006, 4 
years

Prompt:  reconstruct 
the question ⋯

LLM

Question: After the Osprey resumed 
flights how long did it take for the Air 
Force to begin using the aircraft?

Evidence :  Sent 
12 & Sent 13

Prompt:  answer 
the question ⋯ Document

LLM

Question

Answer

Evidence

question

doc
inference

evidence

question

Answer :  From 
2002 to 2006, 4 
years

train

Figure 2: Model overview of EATQA.

The motivation behind the triplet generation framework is rooted in the idea that, according to
Bayesian formulation:

P(a|q, e, d) = P(a, q, e, d)
P(q, e, d)

=
P(a, d)P(e|a, d)P(q|e, a, d)

P(q, e, d)
(1)
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where d, q, e, a denote the document, question, evidence and answer. The posterior probability of
accurately answering a question is positively proportional to the probability of generating evidence
and reconstructing the question. This relationship suggests that enhancing evidence generation and
question recovery can directly improve the reliability and accuracy of question answering. We assume
the evidence sentences contain the sufficient information to reconstruct the question, i.e. P(q|e, a) =
P(q|e, a, d).
To establish the feasibility of our framework, we illustrate its functionality using query restoration as
an example. In Figure 1, if the model is only provided with the answer “4 years” it faces difficulty in
accurately reconstructing the query due to the potential presence of multiple sentences within the
document that involve the phrase “4 years” However, when supplied with evidence sentences that
highlight the key events, such as “Osprey resumed flights” and “Air Force began using the aircraft”
the model can derive the essential components of the query. This enables our query restoration
module to function effectively, thereby enhancing the model’s ability to organize information and
accurately reconstruct the query.

3.1 PRELIMINARY

The task of document-based generative question answering (GQA) involves producing an answer to a
natural language question, relying on information from a document composed of multiple sentences.
The model can be formulated as a function of

fM(a) =

na∏
i=1

P(ai|a0, a1, a2, · · · , ai−1,q,D) (2)

where na denotes the answer length, q denotes the query, D denotes the document including multiple
sentences and a0 denotes the begin-of-speech (BOS) token. Generally the answer has flexible forms
which can not be directly extracted from the document.

3.2 SELF-REASONING

In the absence of annotated evidence within the GQA dataset, we adopt the principle that accurate
evidence should fully encapsulate the information necessary to address the query independently of
the document. Consequently, we employ the LLM to reason from its generated evidence. Specifically,
we introduce a methodology termed self-reasoning, which involves two components: candidate
generation and correctness verification.

During candidate generation, the LLM is instructed to produce candidate evidence supporting the
query answering. This includes the original text from the document, while out-of-document candidates
are filtered out to ensure the maintenance of factual accuracy. Though the filtered candidates are
faithful, they do not necessarily contain the needed information for query (uninformative). In the
correctness verification stage, the LLM provides a response to the query based on the initially
generated candidates respectively. Evidence that fails to contain the required information will lead to
incorrect answers. Therefore, we evaluate the predicted answer against the correct answer denoted as
a∗, so as to eliminate evidence that may be factually accurate but lacks informative value:

ei = M [pe, D, q, si] (3)
ai = M [pa, q, ei] (4)
e = {ei|ai = a∗} (5)

where si denotes the i-th random seed to sample for the evidence generation, pe denotes the prompt
to generate evidence from the document to answer the query, pa denotes the prompt to generate the
answer based on the query and evidence, and e denotes the filterer evidences for further training. To
this end, we construct the faithful and informative evidences for training without external tool.

3.3 TRIPLET GENERATION PARADIGM

Our triplet generation paradigm composes 3 modules, including Answer-Aware Evidence Generation
(QAE), Evidence-Enhanced Question Answering (QEA), Evidence-Aware Question Restoration
(EAQ). QAE enables the model to focus on the document, extracting critical information directly
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from the text rather than relying on prior knowledge. QEA allows the model to leverage the available
evidence effectively, ensuring that answers are grounded in the provided information and minimizing
the risk of hallucination. EAQ facilitates the integration of evidence-derived information into the
reasoning process, supporting more accurate and contextually relevant question restoration.

3.3.1 ANSWER-AWARE EVIDENCE GENERATION (QAE)

In this part, we model the probability of supporting evidence extraction for the query-answer pair
P(e|a, d). We design a specific instruction for the LLM to generate evidence that supports both
the query and the corresponding answer. Therefore, the input to model is the instruction, source
document, the query and the corresponding answer. The output of model is the supporting evidence.
The specific instruction is “generate the relevant evidence from the document to answer the following
question” and we insert the document, question and answers into the template in Figure 5.

As for the loss function, by Bayesian Formula (Mises, 1942) we derive

log(P(e, q, d)) = log

∫
P(e, q, a, d)da

= log

∫
q(a|e, q)P(e, q, a, d)

q(a|e, q) da

≥
∫

q(a|e, q) log(P(e, q, a, d)
q(a|e, q) )da

= Eq(a|e,q) log(
P(e, q, a, d)
q(a|e, q) )

= Eq(a|e,q) log(
P(a, q, d)P(e|a, q)

q(a|e, q) )

= Eq(a|e,q) log(P(e|a, q)) + Eq(a|e,q) log(
P(a, q, d)
q(a|e, q) )

= Eq(a|e,q) log(P(e|a, q)) + Eq(a|e,q) log(
P(a|q, d)
q(a|e, q) ) + Eq(a|e,q) log(P(q, d))

= Eq(a|e,q) log(P(e|a, q))−KL(P(a|q, d)||q(a|e, q)) + log(P(q, d))

(6)

where q(a|e, q) denotes the probability of answer a to the question q holds based on the evidence
e, which is produced by the same backbone in our method with specific prompt, KL denotes
Kullback-Leibler divergence (Van Erven & Harremos, 2014). To maximize the evidence extraction
probability, we should maximize the probability of evidence supporting the question-answer pair
P(e|a, q) and minimize the distribution distance between question answering with or without evidence
KL(P(a|q, d)||q(a|e, q)). Considering the correct evidences contain identical information as the
original document for the query reasoning, the second term KL(P(a|q, d)||q(a|e, q)), named as
“distribution bridging”, narrows down the gap between prediction based on the evidences and
document, It enables LLM to make full use of evidences information to reason for answers. we utilize
cross-entropy loss function to optimize the probability P(e|a, q):

LQAE = − logP(e | D,q,a) = −
Ne−1∑
t=0

logP (et+1 | D,q,a, e≤t) (7)

where D denotes the document, Ne denotes the length of the evidence, P (e1 | D,q,a, e≤0) :=
P (e1 | D,q,a).

3.3.2 EVIDENCE-ENHANCED QUESTION ANSWERING (QEA)

In this part, we task LLM with generating answers based on the corresponding question and the
relevant evidence. The instruction provided is “generate the correct answers for the following question
based on the document and the evidence support the answers to the question”, and we incorporate the
instruction, document, question and evidence into the template in Figure 5, as inputs into the LLM.
The objective function formulated as:

Lseq = − logP(a | D,q, e) = −
Na−1∑
t=0

logP (at+1 | D,q, e, a≤t) (8)

5
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where Na denotes the length of the answers, P (a1 | D,q, e, a≤0) := P (a1 | D,q, e). This task
can be seen as the main task of EATQA and enables the model to derive the answers based on the
question and evidence. On the other hand, to narrow the gap between training and inference, we
minimize the second term of Eq.6: KL(P(a|d, q)||q(a|e, q)). When the evidences are incomplete
or have misleading information, the model resorts to the original document for the answer, which
improves the robustness of training stage. Therefore, the loss function of this part is:

LQEA = LSeq + αkl ·KL(P(a|d, q)||q(a|e, q)) (9)
where αkl denotes the hyper-parameter to tune.

3.3.3 EVIDENCE-AWARE QUESTION RESTORATION (EAQ)

In this part, we aim to model the probability of P(q|e, a) and instruct the LLM to recover the question
based on the evidence-answer pair. The prompt given is “reconstruct the question based on the
answers and corresponding supporting evidence”, and we integrate the prompt, document, evidence
and answers into the template in Figure 5. The objective function is formulated as:

LEAQ = − logP(q | D, e,a) = −
Nq−1∑
t=0

logP (qt+1 | D, e,a, q≤t) (10)

where Nq denotes the length of the question, P (q1 | D, e,a, q≤0) := P (q1 | D, e,a). Considering
the incorrect evidence does not contain the full information of the original question, this objective
helps to enhance the casual relations between evidence and answers.

3.4 TRAINING AND INFERENCE

With the unified optimization of all three EATQA objectives, our model captures the logical relations
between question, evidence and answers. Based on the probability induction:

logP(a|q, e, d) ∝ log(P(a|d, q)) + log(P(e|a, d)) + log(P(q|e, a, d))
The overall objective is the weighted accumulation:

LTriplet = α1LQAE + α2LQEA + α3LEAQ (11)
where α1, α2 and α3 are tuneable hyper-parameters.

Because of the design of distribution bridging, we do not need to first generate the evidence based on
the question and then construct QEA template to Table 5. Instead, we can directly instruct the model
to generate the answer from the original document, which keeps the inference efficiency.

4 EXPERIMENTS

4.1 DATASETS

We evaluate on a diverse variety of widespread benchmark multi-hop QA datasets, including MultiRC
(Khashabi et al., 2018), QASPER (Dasigi et al., 2021), NQ Kwiatkowski et al. (2019), HotpotQA
Yang et al. (2018), TriviaQA Joshi et al. (2017), StrategyQA Geva et al. (2021) across different
domains. We utilize Exact Match (EM) and F1 scores (Opitz & Burst, 2019) to evaluate our method.
The F1 score measures the overlap of answer tokens between the predicted and ground-truth answer.
EM is more strict which awards point if any of the annotated answers is generated exactly.

4.2 IMPLEMENTATION DETAILS

We conduct experiments with LLama2 (Touvron et al., 2023) from 7B to 13B as the LLM. To reduce
computation cost and keep prior knowledge in LLM, we use LoRA (Hu et al., 2021), which freezes
the pretrained model weights and injects trainable rank decomposition matrices into each layer of the
LLM. We tune the parameters based on the develop set and the parameters α1, α2, α3 in Eq. 11 and
αkl in Eq. 9 are tuned from [0.1, 0.3, 0.5, 0.7, 1.0], and set to 0.3, 1.0, 0.3 and 0.5 in our method. We
use AdamW as optimizer and the initial learning rate is set to 3e-5. GPT-3 reports few shot results
with 32 examples in the prompt without parameter updating. Because the maximum input length
of LLama2 is 4096 and the average context length of QASPER is about 16K, we utilize position
interpolation (Chen et al., 2023) to extend the context length to 32K.
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4.3 BASELINES

We compare our method with existing widespread LLMs including T5-11B (Raffel et al., 2020),
Flan-137B (Wei et al., 2021), Vega2-6B (Zhong et al., 2022), GPT-3 (few shot) (Brown et al., 2020),
LoRAMoE (Dou et al., 2023), PaLM 540B (Anil et al., 2023) for MultiRC. For QASPER, we compare
our method with LLM-based long context methods, AttenWalker (Nie et al., 2023), ChatGLM3-6B-
32k (Du et al., 2021), SE-Mistral-7B Jin et al. (2024), VCC-3B (Zeng et al., 2024) and TOVA-7B
(Oren et al., 2024) For hallucination mitigation methods, we compare our approach against RAG
Lewis et al. (2020) with Dense Passage Retriever (DPR) (Karpukhin et al., 2020), CAD (Shi et al.,
2023), RHO (Ji et al., 2023) using the same backbone. These 3 methods are representative methods of
3 different categories of hallucination mitigation: retrieval Augmented Generation, Introducing New
Decoding Strategy, and Utilization of Knowledge Graph (KG). In Table 1, CAD and RHO results
are reproduced with the code provided in original paper using the same backbone with ours for fair
comparison.

4.4 EFFECTIVE TRIPLET GENERATION

Methods MultiRC QASPER #Para.EM F1 F1
GPT-3 (32 shot) 30.5 75.4 - 175B
Flan-T5 - 83.4 - 137B
T5 63.1 88.1 - 11B
ERNIE-3.0 63.2 88.6 - 10B
PALM 63.6 88.7 - 540B
SE-Mistral-7B - - 39.3 7B
TOVA-7B - - 42.0 7B
ChatGLM3-6B-32k - - 43.3 6B
LLama2-7B 57.2 86.1 42.4 7B
RAG 58.1 86.7 43.9 7B
CAD 58.2 87.2 43.1 7B
RHO 59.4 87.3 43.2 7B
EAT-QA-7B 61.8 88.5 45.4 7B
LLama2-13B 62.0 87.9 45.1 13B
RAG 63.1 88.1 44.9 13B
CAD 63.5 88.3 45.8 13B
RHO 64.2 88.4 45.9 13B
EATQA-13B 65.6 89.8 48.1 13B

Table 1: Results on MultiRC and QASPER dataset com-
pared with competitive LLM methods. “#Para.” denotes
the parameter number in the model. We conduct 5 ex-
periments with different random seeds and our method
significantly beats the prior SOTA, with p-value less than
0.001.

From Table 1, compared with the back-
bone, our method improves by 4.6 EM
and 2.4 F1 on 7B-scale model as well
as 3.6 EM and 1.9F1 on 13B-scale
model. It demonstrates the effectiveness
of our evidence enhanced triplet gen-
eration framework on document based
GQA. Moreover, our method with 13B
parameters outperforms the 540B PaLM
finetuning by 2.0 EM and 1.1 F1, becom-
ing the new state-of-the-art. Our method
with 7B-scale model has achieved the
comparable performance on F1 with
larger models like T5-xxl and Flan-T5.

From Table 1 compared with the back-
bone, our method improves by 3.0 F1
on 7B-scale model. QASPER contains
more rigorous samples and existing hal-
lucination mitigation methods struggle
to improve the performance. It demon-
strates the effectiveness of our method
on challenging long document QA.

5 ABLATION,
GENERALIZATION AND
HALLUCINATION MITIGATION

5.1 ABLATION

In this part, we investigate the effectiveness of different modules in our method, including QAE, EAQ
and the distribution bridging.

Does question restoration matter? In this ablation, we remove the module of question restoration
and investigate its effect on question answering. In table 2, removing question restoration will drop
1.6 EM and 1.4 F1 with 7B model, as well as 1.4 EM and 1.1 F1 with 13B model. Considering
the context is not inputted into model in the query restoration module, the model has to utilize
the information in evidence to recover the question. This module enhances the ability to integrate
multiple pieces of information in evidence sentences, and understand logical relation between query,
answer and evidence for LLM, which shows the effectiveness for GQA.

7
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Probability LLama2 EATQA
P(YA|Q = Ŷ ) 34.8 37.1
P(YA|Q,D = Ŷ |YA|Q = Ŷ ) 88.8 85.8
P(YA|Q,D = Ŷ |YA|Q ̸= Ŷ ) 48.7 52.2

Table 3: Prior knowledge mitigation and hallucination mitigation. YA|Q denotes the answer generated
based on the vanilla query by QA model, which reflects the prior knowledge of LLM. YA|Q,D denotes
the answer generated based on the query and document. Ŷ denotes the golden answer.

Does evidence generation matter? In this ablation, we remove the module of evidence generation
and investigate its effect on GQA. In Table 2, removing evidence restoration will drop 1.0 EM and 0.8
F1 with 7B model, as well as 1.1 EM and 1.2 F1 with 13B model. Evidence extraction encourages
the model to reason for the supporting facts that entail the question-answer pair, which enhances the
understanding of logical relation among query, answer and evidence. Removing evidence generation
decreases the attention of model pays to the important facts in the document.

Should we narrow down the distance between P(a|dq) and q(a|e, q)? In this ablation, we remove
the KL-divergence loss in Eq.6 in training. In inference stage, we input the predicted evidence and
the query to derive the answer. In Table 2, removing KL loss will drop 0.8 EM and 0.9 F1 with 7B
model, as well as 1.0 EM and 0.7 F1 with 13B model. Though keeping effective performance, the
distribution bridging distills the knowledge of evidence and narrows down the gap between training
and inference, avoiding first retrieving the evidence and then inputting the evidence alongside the
query into model to reason for the answer.

5.2 DIFFERENT DOCUMENT LENGTHS AND SENTENCE NUMBER

Methods EM F1 #Para.
w/ LLama2-7B

backbone 57.2 86.1 7B
-Question Restoration 60.2 87.1 7B
-Evidence Generation 60.8 87.7 7B
-KL 61.0 87.6 7B
EATQA-7B 61.8 88.5 7B

w/ LLama2-13B
backbone 62.0 87.9 13B
-Query Restoration 64.2 88.7 13B
-Evidence Generation 64.5 88.6 13B
-KL 64.6 89.1 13B
EATQA-13B 65.6 89.8 13B

Table 2: Ablation results with LLama2 from 7B to 13B
on MultiRC dataset.

In this part, we assess our performance
on cases with varying document lengths
and sentence numbers comparing with
the backbone. For this purpose, we di-
vide the MultiRC development set into
4 distinct groups, categorized based on
the document length and sentence num-
ber respectively, and apply F1 to evalu-
ate the performance of different models.
Groups are indexed by the ascending or-
der of document length, i.e., Group 1
denotes cases in the percentile interval
0-0.25 of the full dataset and Group 4
denotes cases in the percentile interval
0.75-1.0. Therefore, groups 3 and 4 have
longer documents than groups 1 and 2.

Generally, our model derives significant
improvement over LLama2-13B in groups with different document lengths and sentence numbers. It
demonstrates the effectiveness of our evidence enhanced triplet generation framework on document-
based GQA. In Table 4, EATQA outperforms LLama2 by 3.5 and 1.5 F1 in groups 3 and 4, as well
as 1.8 and 1.2 F1 in groups 1 and 2. In Table 7, EATQA outperforms LLama2 by 3.4 and 2.7 F1 in
groups 3 and 4. Longer context brings the difficulty for model to capture important information about
the query and derive the correct answer. Our method enhances the capture of supporting information
from the document, which mitigates the hallucination about distracting information.

5.3 PERFORMANCE ON EVIDENCE GENERATION

Not only deriving effectiveness on GQA, our method also shows improvement on evidence generation.
In Table 5, comparing with sequentially generating evidence and answer, our method outperforms by
3.1 on 7B and 2.5 F1 on 13B. Considering our method first generates the evidence and integrates the
information of evidence for answers, the evidences serve as the basis of reasoning process.

P(a|q, e, d) ∝ P(e|a, d)P(q|e, a, d)
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Group 1 2 3 4
Length 379 486 587 726
LLama2 88.3 90.7 82.9 87.8
EATQA 90.5 91.9 86.4 89.3

Table 4: Results on MultiRC dataset grouped
by different document lengths. Groups are in-
dexed by the ascending order of document
length, i.e., Group 1 denotes cases in the
percentile interval 0-0.25 of the full dataset.
“length” denotes the average document length
in the specific percentile interval and we uti-
lize F1 to evaluate the model performance.

Model 7B 13B
LLama2 59.8 62.7
Joint decoding 60.3 63.1
EATQA 63.4 65.6

Table 5: Performance on evidence generation
in MultiRC dataset. We utilize token-level
F1 score as the evaluation metric. “LLama”
denotes instructing the LLM to generate the
evidence only. “Joint Decoding” denotes se-
quentially generating evidence and answer.

Fixing the ability of information integration, the evaluation of evidences shows the ability of capturing
key information beyond the distracting contents of the document so that generating faithful and
correct answer instead of hallucination. Therefore, we demonstrate our evidence enhanced triplet
generation paradigm significantly improves the ability of hallucination mitigation.

5.4 HALLUCINATION MITIGATION

Considering the prior knowledge within LLM, we observe for some “already-known” questions,
the model can generate the correct answer without the document, such as “What is gravity’s role in
space?”. We utilize P(YA|Q = Ŷ ) to evaluate the internal knowledge of model. When the model
can not generate the correct answer without the document, the model resorts to the document rather
than internal knowledge. The probability P(YA|Q,D = Ŷ |YA|Q ̸= Ŷ ) denote that the model rely
on the document to give the faithful answer beyond the incorrect internal knowledge, which can be
utilized to evaluate the ability of hallucination mitigation (Qiu et al., 2023). In Table 3, our model
significantly mitigates the hallucination while keeping prior knowledge to solve the “already-known”
questions. In Tabl 8, we utilize GPT-4 to evaluate the hallucination rate of evidence generated and
reasoning result, which also demonstrates our effectiveness over hallucination mitigation.

5.5 CORRELATION BETWEEN DIFFERENT MODULES

In this part, we explore the correlation of model performance in query answering (QEA), evidence
generation (QAE) and query restoration (EAQ) on data samples. To mitigate the bias of extreme
sample, we classify the samples in development set into 50 groups with same size based on the QEA
F1. We take the average F1 score of all samples in the group as its overall F1 score. We respectively
draw the scatter plot of each pair of QEA, QAE, EAQ score versus the other and fit with linear
function. In Figure 3. we find the QAE score and EAQ score are directly proportional to QEA
score. In our triplet generation framework, with better performance in evidence generation and query
restoration, the model derives better performance in query answering. This shows the effectiveness
of our EATQA, which enhances the understanding of LLM about logical relations between query,
evidence and answer.

5.6 GENERALIZATION ON DIVERSE DATASETS

Following REACT (Yao et al., 2022), we utilize 2000 samples as the training set. In Table 6, our
method derives significant improvement over existing hallucination mitigation methods on diverse
multi-hop QA datasets.

5.7 ATTENTION WEIGHTS

In this part, we compute the average attention weights about query to document and evidence in
the query answering task in respective layers of the transformer block. We conduct statistics on
the development set of the MultiRC dataset with 13B model. In evidence-aware query answering,
the model assigns about twice as much as attention weights to evidence token than context token.
It shows the evidence contains denser information to derive the answer. Our implementation of
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Model NQ HotpotQA TriviaQA StrategyQA
Llama2 45.5 41.3 69.6 62.4
RAG 46.3 42.1 70.3 62.9
REACT 46.8 43.2 70.7 64.1
CAD 47.2 43.1 70.5 64.0
RHO 47.6 42.9 71.1 63.8
EATQA 49.1 44.9 73.4 65.2

Table 6: Performance on diverse datasets. We utilize F1 to evaluate NQ, HotpotQA and TriviaQA,
and use accuracy to evaluate StrategyQA.

distribution bridging distills the abundant information in evidence to evidence-absent query answering
in inference phrase. In the EAQ, the token-average attention weights of generated query paid to
evidence are comparable to answer texts. Considering the evidence contains more tokens than the
answer, this finding underscores the crucial role that evidence plays in the feasibility of the EAQ task.

5.8 COMPUTATION COST.

Considering the length of evidences is much less than the document (about 10% of the document
length), and the transformer computation cost are quadratic relation to the input length, our evidence
enhanced triplet generation paradigm will not significantly increase the computation cost. In practice,
the baseline llama2 finetuning costs about 5 hours and our method costs about 7 hours with one
A100 gpu. Considering our significant improvement over informative evidence generation as well
as faithful answer reasoning, it shows the effectiveness of our evidence enhanced triplet generation
paradigm. In inference stage, our method needs no more computation cost compared with vanilla
Llama finetuning.

ev
id
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answer

QEA vs QAE

qu
es
tio
n

answer

QEA vs EAQ

qu
es
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n

evidence

QAE vs EAQ

Figure 3: Performance relevance between 3 modules in our method with 13B backbone. QEA denotes
evidence-aware question answering, EAQ denotes evidence-grounded query restoration and QAE
denotes answer-aware evidence retrieval.
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Figure 4: Attention weights about different layers with 13B backbone. The left graph denotes the
attention weights of query to document and evidence in Evidence-Enhanced Question Answering
stage; the right denotes the attention weights of generated query to evidence and answer in Evidence-
Aware Question Restoration stage.

6 CONCLUSION

In this paper, we propose the unified triplet generation framework including three instruction tuning
tasks to improve the logical reasoning ability of LLM for GQA task. We conduct experiments on
a variety of widespread document-based QA datasets with different sizes of LLM, and outperform
existing hallucination mitigation methods.
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A APPENDIX

1. Input templates of different modules in EATQA. We experiment multiple prompts and choose
the optimal.

Prompt: retrieve the relevant evidence from the document to answer the 
following question
Document: < 𝑠𝑠1 > < 𝑠𝑠2 > ⋯ < 𝑠𝑠𝑛𝑛 >
Question: <question>
Answer: The answer is < 𝑎𝑎1 > < 𝑎𝑎2 > ⋯ < 𝑎𝑎𝑚𝑚 >

Prompt: generate the correct answers for the following question and the 
evidences
Document: < 𝑠𝑠1 > < 𝑠𝑠2 > ⋯ < 𝑠𝑠𝑛𝑛 >
Question: <question>
Evidences: < 𝑠𝑠𝑖𝑖1 > < 𝑠𝑠𝑖𝑖2 > ⋯  < 𝑠𝑠𝑖𝑖𝑘𝑘 >

Prompt: reconstruct the question based on the answers and 
corresponding supporting evidences
Document: < 𝑠𝑠1 > < 𝑠𝑠2 > ⋯ < 𝑠𝑠𝑛𝑛 >
Evidences: < 𝑠𝑠𝑖𝑖1 > < 𝑠𝑠𝑖𝑖2 > ⋯  < 𝑠𝑠𝑖𝑖𝑘𝑘 >
Answer: The answer is < 𝑎𝑎1 > < 𝑎𝑎2 > ⋯ < 𝑎𝑎𝑚𝑚 >

QA->E

QE->A

EA->Q

Figure 5: Input templates of EATQA.

2. Results on MultiRC dataset grouped by different sentence numbers in the document.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Group 1 2 3 4
number 10.8 13.5 16.0 18.3
LLama2 87.5 85.1 85.8 89.0
EATQA 90.7 84.3 89.2 91.7

Table 7: Results on MultiRC dataset grouped by different sentence numbers in the document. Groups
are indexed by the ascending order of sentence number. “number” denotes the average sentence
number in the specific percentile interval. We utilize F1 to evaluate the model performance.

model Llama2 RAG CAD RHO EATQA
hal-rate ↓ 27.5 24.3 25.6 22.8 17.2

Table 8: Evaluation results with GPT-4.

3. Hallucination evaluation with external tool. To more comprehensively demonstrate our ability
of hallucination mitigation. We follow Lei et al. (2023) to utilize GPT-4 to act as an external judge.
We append the generated evidence and reasoning result as the input and prompt GPT-4 to evaluate
the hallucination rate against the document and query on MuitiRC dataset. Based on the above result,
our method significantly outperforms the existing baselines in decreasing the hallucination rate. In
our triplet generation paradigm, considering the evidences are included in the document, our model
relies on the document to derive supporting information instead of internal prior knowledge in the
evidence generation module. Moreover, the “distribution bridging” module enables our model to
make faithful prediction based on the informative evidences beyond other distracting contents in the
document. In general, our model focuses on the faithful and informative evidences to conduct the
reasoning process, which mitigates the hallucination.

4. Dataset statistics. MultiRC creates multi-domain multi-hop questions, where documents across
various domains are selected from multiple datasets. Each instance consists of a document including
about 15 sentences. All instances were constructed such that it is not possible to answer a question
correctly without gathering information from multiple sentences. QASPER includes 5049 questions
over 1585 Natural Language Processing papers in the academic research domain focusing on entire
papers, which is designed to facilitate document-grounded, information-seeking QA. QASPER
contains a variety of answer types, including extractive, abstractive, yes/no, and unanswerable
questions.

5. Model Architecture. EATQA is built on the widespread LLM, Llama (Touvron et al., 2023)
with a few additional learnable parameters. we additionally adopt several trainable adapter tokens
p = [p1, p2, · · · , pNp

] which are prepended to the key and value of each self-attention layer, where Np

is the number of adapter tokens. So the number of trainable parameters of EATQA 7B is 4.5M, only
0.06% of total parameters of LLama 7B. With such a few trainable parameters, EATQA effectively
preserves LLMs’ prior knowledge and the casual reasoning ability to understand the logical relations
between the question, evidence and answer. EATQA consists of three objectives: answer-aware
evidence generation, evidence-enhanced query answering and evidence-aware query restoration.
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