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ABSTRACT

The distributed representations currently used are dense and uninterpretable, lead-
ing to interpretations that themselves are relative, overcomplete, and hard to in-
terpret. We propose a method that transforms these word vectors into reduced
syntactic representations. The resulting representations are compact and inter-
pretable allowing better visualization and comparison of the word vectors and we
successively demonstrate that the drawn interpretations are in line with human
judgment. The syntactic representations are then used to create hierarchical word
vectors using an incremental learning approach similar to the hierarchical aspect
of human learning. As these representations are drawn from pre-trained vectors,
the generation process and learning approach are computationally efficient. Most
importantly, we find out that syntactic representations provide a plausible interpre-
tation of the vectors and subsequent hierarchical vectors outperform the original
vectors in benchmark tests.

1 INTRODUCTION

Distributed representation of words present words as dense vectors in a continuous vector space.
These vectors, generated using unsupervised methods such as Skipgram (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014), have proven to be very useful in downstream NLP tasks such as
parsing (Bansal et al., 2014), named entity recognition (Guo et al., 2014) and sentiment analysis
(Socher et al., 2013). Although semi-supervised models like BERT (Devlin et al., 2018) and ELMO
(Peters et al., 2018) have demonstrated better performance in downstream tasks, the unsupervised
methods are still popular as they are able to derive representations using a raw, unannotated corpora
without the need of massive amounts of compute. However, the major problem with nearly all of
these methods lie within the word representations themselves as their use can be termed as a black-
box approach.

These dense representations comprise of coordinates which by themselves have no meaningful inter-
pretation to humans, for instance, we are unable to distinguish what a ”high” value along a certain
coordinate signifies compared to a ”low” value along the same direction. Additionally, this phe-
nomenon also restricts the ability to compare multiple words against each other with respect to
individual coordinates. It would appear that the numerical values of a word’s representation are
meaningful only with respect to representation of other words, under very specific conditions. So,
is it possible to create a representation that is not only comprised of coordinates that are meaningful
to humans, but is also made of individual coordinates that enable humans to distinguish between
words?

Ideally such a representation would be of reduced size and capable of capturing the meaning of
the word along absolute coordinates i.e coordinates whose values are meaningful to humans and
can be compared against other coordinates. A common absolute that encompasses all words in the
vocabulary are the eight parts of speech, namely noun, verb, adjective, adverb, pronoun, preposition,
conjunction and interjection. The parts of speech explain the role of a particular word within the
given context and with a coarse grained approach, all words can be classified as at least one part
of speech. This work, precisely describes the representation of words in a vector space where each
coordinate corresponds to one of the eight parts of speech, derived from the pre-trained word vectors
via post processing. Such representation would be able to capture the absolute syntactic meaning of
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a word. For instance, the syntactic representation for the words ”right” and ”I” can be visualized in
figure 1.

(a) Syntactic Representation for right (b) Syntactic Representation for I

Figure 1: Examples of Syntactic Representations

These Syntactic Representations are continuous and highly reduced transformations of the original
representations. These representations isolate the syntactic regularities existing within the large
original word vectors and when used together in a incremental learning approach as Hierarchical
Vectors, outperforms the original vectors in benchmark tests. Hierarchical Vectors utilize the basics
of human learning by emulating the hierarchical aspect of learning. As human learning begins
with a simple introduction, branches out to tougher topics and further extends to more complex
studies in a hierarchical pattern, the incremental approach used in our work intends to emulate such
pattern in word vectors. For this, we have generated unigram Syntactic Representations which act
as the foundation of learning and further extend to pre-trained vectors as composite vectors. For
any downstream evaluation, the model was trained using a composite representation built using the
syntactic representation followed by the original vector.

Our work introduces a novel approach focusing on isolating syntactic regularities within word vec-
tors, deliberately avoiding state-of-the-art contextual information. Consequently, a notable limita-
tion emerges as the model struggles with handling polysemy in words. However, this limitation
aligns with the primary aim of this research, laying the groundwork for a fundamental shift in model
interpretability and black-box nature of language models. Our methodology, instead of challeng-
ing the state-of-the-art directly, aims to use isolated regularities instead of automatically learned
hidden representations, thereby questioning the status-quo. This approach aims to bridge the gap
between performance and opacity of language models. In the subsequent sections, we elaborate on
our methodology and present experimental results illustrating the effectiveness of our approach.

2 RELATED WORKS

The previous works of interpretability for word embeddings have generally incorporated the idea
of sparse and overcomplete vectors (Faruqui et al., 2015)Subramanian et al. (2018)Panigrahi et al.
(2019). Some work have considered the use of semantic differentials to create overcomplete vectors.
(Mathew et al., 2020)(Engler et al., 2023) Both of these techniques are based on the idea of trans-
formation into higher dimensional vectors which provide better representation of the pre-trained
vector. The fundamental problems with these interpretations are producing transformations which
are still inherently uninterpretable i.e they would require further transformations like dimensionality
reduction or qualitative analysis to be understood. On, the other end of the spectrum, works such
as Berger (2020) and Wang et al. (2023) produce visual interpretations, which are mostly useful
for analysis of vectors or the vector space than on downstream tasks. Furthermore, post-processing
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works such as Mu et al. (2017) and Aboagye et al. (2022) focus on interpretations for specific tasks
rather than on the underlying word representations.

Our work aims to find the balance between these works to introduce two novel ideas. First, a
visualized syntactic representation focused on coarse grained eight parts of speech which can be
understood by almost anyone. Secondly hierarchical vectors, built as learning from smaller uni-
gram Syntactic Representation and followed by larger pre-trained vector, emulating the hierarchical
human learning process of starting from simple concepts then branching out to related complexities.

3 SYNTACTIC REPRESENTATIONS

The primary objective of generating Syntactic Representations is to convert the dense, continuous
word vectors into meaningful vectors with reduced dimensions. These vectors are derived from the
original vectors through post-processing methods. Let V be the size of the vocabulary. X ∈ RV×L

is the matrix created by stacking V word vectors of size L, trained using an arbitrary unsupervised
word embedding estimator. This matrix represents the original word vectors that will be transformed
into syntactic representations.

The fundamental idea behind constructing Syntactic Representations is to first establish the syntac-
tic subspace and then project the original word vectors onto this syntactic subspace. To build the
syntactic subspace, we leverage linguistic knowledge obtained from a pre-constructed linguistic re-
source, WordNet (Miller, 1995). WordNet is an extensive lexical database of English, categorizing
nouns, verbs, adjectives, and adverbs into sets of cognitive synonyms (synsets), each expressing a
distinct concept. We gather words belonging to each part of speech from WordNet and supplement
them with frequently used words from other parts of speech to construct the syntactic subspace.

Let N denote the set of word vectors for all nouns in WordNet that are also present in the vocabulary.
The Noun coordinate of the change of basis matrix, i.e., the transition matrix C for the syntactic
subspace S, can then be obtained as:

C1,: =

V∑
i=1

ni

V
(1)

where n ∈ N represents an individual word vector in N.

These coordinates are calculated across all eight parts of speech and stacked to form the transition
matrix for the syntactic subspace, C ∈ R(V∩W)×8, where W is the vocabulary of all words in Word-
Net . Let v ∈ V be a word in the vocabulary. For v to be projected into the syntactic subspace, it is
necessary that v ∈ V ∩ W.

CT · Sv,: = Xv,: (2)

Sv,: = (CT )+ ·Xv,: (3)
where (CT )+ denotes the Moore-Penrose generalized inverse of the transpose of the transition
matrix (Ben-Israel & Greville, 2003).

Therefore, the Syntactic Representations for any word v ∈ V ∩ W can be generated as shown in
equation 3. We use the equation to generate three models of Syntactic Representations which have
been explained in detail in Appendix A

4 HIERARCHICAL VECTORS

In this work, we introduce Hierarchical Vectors, composite vectors formed by combining derived
Syntactic Representations with the original word representations. The central idea behind Hierar-
chical Vectors is to emulate the human learning process. As humans, we acquire knowledge and
wisdom incrementally, gradually developing our understanding, mastering skills, and adapting to
changes in our environment. This incremental learning process, while valuable, inadvertently gives
rise to bias as a de facto aspect of human behavior.

However, the predominant approach in most NLP models relies on word vectors that encapsulate
syntactic regularities, semantic nuances, and various linguistic subtleties, all compressed into static
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representations. While these pre-trained word vectors provide a strong foundation for language
understanding, they often lack the adaptability, interpretability, and means for quantifying bias.

To address these limitations, we introduce Hierarchical Vectors, which embrace the concept of in-
cremental learning. This approach entails an initial phase of learning from the reduced Syntactic
Representations, followed by the gradual incorporation of the broader original word vectors into the
learning process. By employing the incremental learning concept, we aim to isolate the syntactic
regularities from the original word vectors, leading to a more refined and enriched representation
of the linguistic structures present in the data. This strategic use of incremental learning aids in
disentangling the syntactic regularities from the original word vectors, ultimately enhancing their
expressiveness and depth. We present the following two models of Hierarchical vectors: Overcom-
plete and Weighted, which have been explained in detail in Appendix B.

5 EXPERIMENTAL SETUP

As our work does not require any raw text corpus for the generation of representations, we use
two popular pretrained word vector representations, Word2Vec (Mikolov et al., 2013) with 300
dimensions, trained on 3 million words of the Google News dataset and GloVe (Pennington et al.,
2014) trained on 2.2 Million words of the Common Crawl dataset.

We use the three models of syntactic representations with the two hierarchical vectors to produce six
subsequent hierarchical vectors of each of these pretrained vectors. These vectors are then compared
against the respective original vectors and their vector siblings. It is important to reiterate that the
major intention of this work is to isolate the syntactic regularities from the dense, continuous word
vectors to enable interpretation, without improving the performance of the embedding. Rather, we
intend to interpret the word vectors without any loss in performance. The notations used henceforth
have been explained in Appendix B.3.

6 EVALUATION

6.1 BENCHMARK DOWNSTREAM TEST

We use the generated Hierarchical Vectors to perform the following benchmark downstream tasks:
news classification, noun phrase bracketing, question classification, capturing discriminative at-
tributes, sentiment classification and word similarity. An array of models such as SVC, Random
Forest Classifier, Logistic Regression, etc have been used to evaluate the vectors. These tasks are
described in detail in Appendix C.

6.2 EFFECTS OF TRANSFORMATION

The effects of transformation have been quantified by evaluating their performances to the per-
formance of the respective base vector. Table 1 shows consistent performance of all iterations of
Hierarchical Vectors across both base representations. Notably, we observe that the WOA vector
demonstrates a significant performance boost, excelling in multiple tasks and, on average, outper-
forming the original Word2Vec vector. Similarly, GOL also demonstrates excellent performance,
outperforming the Glove vector. We have included the results from the POLAR framework (Mathew
et al., 2020) to provide an existing baseline, as it is the most recent work similar to ours. This result
includes the highest value between Word2Vec w/ POLAR and GloVe w/ POLAR.

The exceptions are on the intrinsic word similarity tasks, as presented in Table 7, where the trans-
formed vectors perform worse than the base vectors across various datasets. The assessment of
word similarity relies on the Spearman rank correlation coefficient ρ, calculated between the human
annotated score and the cosine similarity of the word vector pair. However, it’s crucial to note that
word similarity tests primarily serve as an indicator of vector quality. Additionally, as per the work
of Faruqui et al. (2016), which illustrates low correlation between word similarity score and extrin-
sic evaluations, we can observe the same while comparing Tables 1 and 7. Thus, we contend that
these similarity scores can be deprioritized in favor of the vectors demonstrated efficacy in practical
applications. The similarity scores are summarized in Appendix D.
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Table 1: Performance of the Hierarchical Word Vectors across different downstream tasks. Scores
represent the observed accuracy as %.

Vectors Sports
Acc.

Relig.
Acc.

Comp.
Acc.

NP
Acc.

Discr.
Acc.

TREC
Acc.

Senti.
Acc. Average

Word2Vec 93.97 83.33 76.19 81.61 59.12 86.8 82.43 80.49

Hierarchical
Overcomplete
Word2Vec

WOA 96.61 86.89 82.63 78.25 56.55 89.40 82.21 81.79

WOI 93.59 85.77 76.71 79.37 59.09 87.60 82.92 80.72

WOL 95.48 85.77 81.34 80.72 54.41 89.60 80.78 81.16

Hierarchical
Weighted
Word2Vec

WWA 94.22 84.10 75.16 79.60 59.12 86.20 82.48 80.12

WWI 94.10 85.77 75.68 79.15 59.12 87.00 82.92 80.53

WWL 94.22 84.10 74.65 79.6 59.12 86.20 82.48 80.05

GloVe 96.61 88.28 82.24 81.39 65.06 87.20 82.65 83.34

Hierarchical
Overcomplete
GloVe

GOA 95.35 87.59 84.68 77.13 60.96 85.40 82.10 81.89

GOI 95.73 88.15 81.34 79.60 65.11 88.00 82.58 82.93

GOL 95.73 88.56 84.17 80.27 60.96 90.20 83.68 83.37

Hierarchical
Weighted
GloVe

GWA 96.48 88.56 80.57 76.46 65.02 84.4 82.52 82.00

GWI 96.23 88.01 80.57 79.82 65.06 87.20 80.36 82.46

GWL 96.11 88.70 76.19 78.70 65.02 84.6 82.48 81.69

POLAR 95.10 85.20 80.20 76.10 63.80 96.40 82.10 82.7

6.3 EFFECT OF WORD LIST SIZE

Figure 2: Sport Classification Accuracy per size of word list.

As Syntactic Representations are built using directions recovered form list of words, we have eval-
uated the effect of word list size on some benchmark tests. As the number of occurring words per
each class is different i.e naturally nouns, verbs, adverbs and adjectives occur more frequently than
pronouns, conjunctions, prepositions and interjections, we have used repeated instances of words to
build the higher list sizes. The results in figure 6 surprisingly showed that the change of accuracy
was not consistent with the change in size of word list. We have credited this phenomenon to the
larger pre-trained vector having more power over the smaller Syntactic Representation.

The effect of word size list in remaining text classification tasks can be found in Appendix E.
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6.4 TEST FOR STATISTICAL SIGNIFICANCE

To demonstrate that the observed results were not a case of chance, we have performed a statistical
significance test. As suggested by the work of Bouckaert & Frank (2004), we have used 100 runs
of random sampling paired with the corrected paired lower-tailed student-t test (Nadeau & Bengio,
1999). We have used this method to check for statistical significance as it considers the ability
to replicate results as more important than Type I or Type II errors. Table 2 shows the statistical
significance of the generated results.

Hypothesis:
H0 : µword2vec − µhierarchical = 0

H1 : µword2vec − µhierarchical < 0
(4)

Table 2: Test for Statistical Significance of the results of the benchmark tests. The degree of freedom
for the test is 99 and the considered level of significance (α) is 10%. The scores bolded in the table
indicate the tests for which the drawn results are statistically significant.

Sports
Accuracy

Religion
Accuracy

Computer
Accuracy

NP
Accuracy

TREC
Accuracy

Sentiment
Accuracy

Word2Vec Mean 95.17 87.63 76.53 82.37 73.56 79.74

Word2Vec S.D. 1.18 2.19 2.35 1.54 1.25 0.89

Hierarchical Mean 97.82 92.09 83.02 81.33 80.90 79.94

Hierarchical S.D. 0.89 1.73 2.22 1.45 1.08 1.01

t-statistic -2.14 -2.14 -2.34 0.69 -6.07 -0.21

p-value 0.02 0.02 0.01 0.75 0.00 0.42

Glove Mean 95.51 87.69 78.41 81.38 72.02 79.80

Glove S.D. 1.18 2.20 2.41 1.65 1.31 0.96

Hierarchical Mean 97.84 91.23 85.73 80.43 78.05 77.82

Hierarchical S.D. 0.91 2.02 1.83 1.57 1.09 0.94

t-statistic -2.20 -1.49 -2.93 0.66 -4.54 1.94

p-value 0.02 0.06 0.00 0.74 0.00 0.97

6.5 EFFECT ON SINGULAR VALUES

Following the works of Mu et al. (2017) and Dubossarsky et al. (2020), we perform an evaluation
on the singular values of the representation matrices, obtained via Singular Value Decomposition
(SVD). The results presented in table 3 display the performance of vectors in a two example tasks
accompanied with their largest singular value and condition number. The condition number rep-
resents the ratio of the largest singular value to the effective smallest singular value.(Dubossarsky
et al., 2020). We can see that the transformation results in high condition number for overcomplete
vectors suggests that these vectors may have captured noise, and might need the application of noise
reduction techniques.(Ford, 2015) However, the resulting vectors have smaller largest singular num-
ber, while maintaining performance, indicating that the post-processing has resulted in successful
capture of syntactic regularities and reduction of semantic nuances.

6.6 EFFECT ON EMBEDDING SPACE

We observe that the transformed Syntactic Representation provide better syntactic grouping. Even
though, the word2vec embedding space is able to group nouns fairly well, the transformed space
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Table 3: Performance of the Hierarchical Word Vectors across different downstream tasks. Scores
represent the observed accuracy as %.

Vectors
News

Classification
Accuracy

Sentiment
Accuracy

Largest
Singular Value

Condition
Number

Word2Vec 84.50 82.43 777.92 5.47

WOA 88.71 82.21 198.91 >100000

WWA 84.49 82.48 161.92 5.68

Glove 89.04 82.65 1689.99 4.78

GOA 89.21 82.10 1561.38 >100000

GWA 88.54 82.52 681.57 10.05

better represents all parts of speech, as indicated clearly by the intra-group cohesion and inter-group
isolation in figure 3.

(a) Embedding space of Word2Vec (b) Transformed Embedding Space

Figure 3: Effect of transformation on the embedding space

7 INTERPRETABILITY

Our work has stated that the reduced Syntactic Representations allow the words to be compared
along an absolute scale while the coordinates also signify the part of speech of the word. To prove
this, first we subject the words to a classification experiment based on the words in WordNet. Fur-
thermore, following Faruqui et al. (2015), we conduct a qualitative analysis focusing on individual
coordinates.

7.1 WORD CLASSIFICATION

The word classification experiment seeks to examine the extent to which the generated Syntactic
Representations are coherent to the word’s part of speech, as given by an oracle. For this experi-
ment, we consider WordNet to be the oracle. We extract all words present in WordNet to generate
respective Interpretable Syntactic Representations, as described in section A.2. The dimension of
Interpretable Syntactic Representation with value ”1” is selected as the predicted label, for eg, in
figure 1 the label of right is noun and that of I is pronoun.

As WordNet contains words which have more than one label, we conduct the classification in two
ways: Partial and Complete. The Partial classification considers words belonging to only one part of
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Table 4: Performance of the Interpretable Syntactic Representations on word classification task. The
scores are described as per the four parts of speech in the oracle per each dataset.

Dataset Pos
Word2Vec Glove

Precision Recall F1-score Precision Recall F1-score

Partial

Noun 0.80 0.90 0.85 0.75 0.96 0.84

Verb 0.82 0.80 0.81 0.88 0.80 0.84

Adjective 0.80 0.72 0.75 0.88 0.54 0.67

Adverb 0.87 0.49 0.63 0.88 0.84 0.86

Accuracy 80.33% 79.21%

Complete

Noun 0.76 0.82 0.79 0.72 0.88 0.79

Verb 0.56 0.66 0.60 0.62 0.68 0.65

Adjective 0.74 0.67 0.70 0.81 0.52 0.63

Adverb 0.81 0.45 0.58 0.82 0.82 0.82

Accuracy 73.00% 73.58%

speech while the Complete classification considers all words. The classification results can be seen
in table 4. The respective confusion matrices are presented in Appendix F.

Figure 4: Word Classification Accuracy per size of word list.

As the oracle is restrained to four parts of speech, the interpretation suffers from the same issue. To
overcome this, we have presented a coarse grained eight class classification in Appendix G using the
Google Text Normalization Challenge - English Language dataset1. The 36 tags were conflated to 8
and evaluated using the aforementioned technique. From the results, we can see that the number of
pronouns, conjunctions, prepositions and interjections are very low. Thus, as in an even fine grained
approach the number of samples per class would be even lower, we have not pursued interpretations
in terms of modals, determiners, etc.

The effect of size of Syntactic Representation on Interpretability have been presented in figure 4.
We can clearly see that the Interpretable Syntactic Representations drawn from a larger word list
preform better than their counterparts.

7.2 QUALITATIVE EVALUATION OF INTERPRETABILITY

Following Faruqui et al. (2015), we perform a qualitative evaluation of interpretability. Given a
vector with interpretable dimensions, it is necessary that the top-ranking words for that dimension

1https://kaggle.com/competitions/text-normalization-challenge-english-language
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Table 5: Top-ranked words per dimension for Interpretable Syntactic Representations.

Dimension Top Ranking Words

Noun vpnvpn, northbrook, florida, michigan, maryland, oregon, nj, illinois, missouri, wash-
ington, virginia

Verb personlise, journal, profile, repairs, reorganize, demoralize, marginalize, disassemble,
retool, list, decompile

Adjective sporophores, leptonic, savourest, scarious, formless, unspiritual, unipotent, undeformed,
unworldly, nonsubstantive

Adverb jacketss, agitatedly, moodily, ponderously, conspiratorially, inelegantly, cockily,
somberly, indelicately, bmtron

Pronoun unto, hath, believeth, saith, thy, heareth, knoweth, receiveth, thou, thine, whosoever,
doeth, thyself, keepeth, saidst

Conjunction checkour, checkthese, nevertheless, additionally, nonetheless, chymbers, lynters, how-
ever, tyrryts, chyrits, also

Preposition across, between, toward, million, around, over, billion, from, through, approximately,
onto, towards, ranging, per, into

Interjection ahhh, ahh, hahaha, awww, ohh, oooh, hahahaha, haha, ohhh, omg, hahah, gosh, ooh,
awwww, yay

exhibit semantic or syntactic groupings. As we have worked to isolate syntactic regularities from
pre-trained representations, we perform this evaluation to test for syntactic grouping of the top-
ranking words along all coordinates.

As shown in table 5, we find that the representations are able to produce excellent syntactic group-
ings and the produced groups are coherent with the built dimension. Faruqui et al. (2015) was able
to present qualitative analysis using semantic groupings without any labels, however our work uses
a coarse-grained approach to produce better interpretations based on predetermined labels.

8 LIMITATION

The major limitation of our work is Polysemy. As we have used non-contextual embeddings as
base vectors, our work cannot distinguish senses. However, the counter to this is that our method
also does not conflate the word to one part of speech as we use a most likely definition to select
the label using Interpretable Syntactic Representation. Furthermore, our work also demonstrates the
syntactic boost received by applying isolated syntactic regularities along with the pre-trained vector.
This presents a new possible dimension of adding context on top of non-contextual vectors to avoid
existing problems in state-of-the-art embedding generators.

9 CONCLUSION

In conclusion, our findings offer a novel approach to embedding learning in the realm of natural
language processing. By focusing on isolating and refining syntactic regularities within word vec-
tors, we provide a new path forward in the field. Our work demonstrates the potential for presenting
compact and visualizable representations which can also be used for downstream tasks. Our work
presents the major evidence that word embeddings can be supplemented by isolated regularities to
improve performance in specific tasks while maintaining performance overall, potentially suggest-
ing a solution to the status-quo with a new dimension of context on top of non-contextual vectors.
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A TYPES OF SYNTACTIC REPRESENTATIONS

A.1 ABSOLUTE SYNTACTIC REPRESENTATIONS

These Syntactic Representations are the actual outcomes obtained through post-processing of the
original vectors. Unlike conventional normalization, which scales data to a specific range, we inten-
tionally preserve these representations in their unnormalized form. The absolute representations for
all parts of speech are constructed based on the words within each category from WordNet, ensuring
that these words are also included in the vocabulary of the arbitrary word vector generator.
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A.2 INTERPRETABLE SYNTACTIC REPRESENTATIONS

These Syntactic Representations are thoughtfully presented in an interpretable format, ensuring their
accessibility and utility. They are derived using a normalization process that scales them to a range
between 0.5 and 1 to ensure that each coordinate in the representation has a value. In this normalized
context, the value 1 serves as a clear indicator that the vectors correspond to a specific class.

If S represents the Syntactic Representations, the Interpretable Syntactic Representation, I , for
coordinate i can be calculated as:

Ii =
Iintermediate + 1

2
(5)

where,

Iintermediate =
Si −min{S}

max{Si} −min{S}
(6)

A.3 L2 NORMALIZED SYNTACTIC REPRESENTATIONS

These Syntactic Representations have been meticulously normalized such that their all the square
sum of the coordinate values equals to one. The process of normalization is crucial as it ensures that
the representations are consistent and comparable.

If S represents the Syntactic Representations, the L2 Normalized Syntactic Representation, L, for
coordinate i can be calculated as:

Li =
Si√∑8
k=1 S

2
k

(7)

B TYPES OF HIERARCHICAL VECTORS

B.1 OVERCOMPLETE HIERARCHICAL VECTORS

We leverage both the Syntactic Representations and the original vectors of a word to generate Over-
complete Hierarchical Vector for that word. Let V s ∈ R1×8 and V r ∈ R1×L represent the Syntactic
Representation and the original representation of the word v, respectively. The Overcomplete
Hierarchical Vectors for v can then be computed as follows:

V o = V s ⊗ V r (8)

where ⊗ represents the Kronecker product and V o ∈ R1×(8×L) represents the Overcomplete Hier-
archical Vectors.

B.2 WEIGHTED HIERARCHICAL VECTORS

We use the coordinate values in the Syntactic Representations as weights for the original vector
of the word, to generate the Weighted Hierarchical Vector for that word. Let V s ∈ R1×8 and
V r ∈ R1×L represent the Syntactic Representation and the original representation of the word v,
respectively. Each coordinate of the Weighted Hierarchical Vector for v can then be computed as
follows:

V w
j: =

8∑
i=1

V s
i: × V r

j:

8
(9)

where j ∈ [a, b].

The coordinates for the Weighted Hierarchical Vectors are calculated as the element-wise weighted
average of the original vector by the Syntactic Representations. The resulting Weight Hierarchical
Vector will be of the same dimension as the original vector, i.e V w ∈ R1×L.
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B.3 NOTATIONS

Table 6: Notations and their respective meanings

NOTATION

W : Pretrained Word2Vec Representations

WOA : Hierarchical Overcomplete Absolute Word2Vec

WOI : Hierarchical Overcomplete Interpretable Word2Vec

WOL : Hierarchical Overcomplete L2 Word2Vec

WWA : Hierarchical Weighted Absolute Word2Vec

WWI : Hierarchical Weighted Interpretable Word2Vec

WWL : Hierarchical Weighted L2 Word2Vec

G : Pretrained GloVe Representations

GOA : Hierarchical Overcomplete Absolute GloVe

GOI : Hierarchical Overcomplete Interpretable GloVe

GOL : Hierarchical Overcomplete L2 GloVe

GWA : Hierarchical Weighted Absolute GloVe

GWI : Hierarchical Weighted Interpretable GloVe

GWL : Hierarchical Weighted L2 GloVe

C BENCHMARK DOWNSTREAM TESTS

C.1 NEWS CLASSIFICATION

Following Faruqui et al. (2015), we use the 20 news-groups dataset2 and consider three binary
classification tasks, namely on the Sports dataset, Religion dataset and the Computer dataset. Each
of these tasks consisted of classifying the dataset into two distinct classes: Hockey vs Baseball
for the Sports dataset with a training/validation/test split of 957/240/796, Atheism vs Christian for
the Religion dataset with a training/validation/test split of 863/216/717 and IBM vs Mac for the
Computer dataset with a training/validation/test split of 934/234/777. As in, Subramanian et al.
(2018), we use the average of the Hierarchical Vectors of the words in a given sentence as features
for classification.

C.2 NOUN PHRASE BRACKETING

We evaluate the generated Hierarchical Vectors on the NP Bracketing task (Lazaridou et al., 2013),
where a noun phrase of three words is categorized as either left beacketed or right bracketed. For
instance, given a noun phrase monthly cash flow, the task is to decide whether the phrase is {(monthly
cash) (flow)} or {(monthly) (cash flow)}. We used the dataset consisting of 2,227 noun phrases, built
using the Penn Treebank (Marcus et al., 1993), in a training/validation/test split of 1602/179/446 data
instances. We performed the task by obtaining the feature vector by averaging over the vectors of
words in the phrase. SVC (with both Linear and RBF kernel), Random Forest Classifier and Logistic
Regression was used for the task, and we use the model with highest validation accuracy for tesing
purposes.

2http://qwone.com/∼jason/20Newsgroups/
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C.3 CAPTURING DISCRIMINATIVE ATTRIBUTES

The Capturing Discriminative Attributes task was proposed by Krebs et al. (2018) as a novel task
for semantic difference detection, as Task 10 of the SemEval 2018 workshop. The fundamental un-
derstanding behind this task was to check if an attribute could be used to discriminate between two
concepts. For instance, the model must be able to determine that straps is the discriminating attribute
between two concepts, sandals and gloves. This task is a binary classification task on the given Se-
mEval 2018 Task 10 dataset consisting of triplets (in the form (concept1, concept2, attribute)) with a
train/test/validation split of 17501/2722/2340. As suggested in Krebs et al. (2018), we use the unsu-
pervised distributed vector cosine baseline on the entire data regardless of the training/validation/test
split. The main idea is that cosine similarity between the attribute and each concept must enable in
discriminating between the concepts.

C.4 QUESTION CLASSIFICATION (TREC)

To assist in Question Answering, Li & Roth (2002) proposed a dataset to categorize a given ques-
tion into one of six different classes, eg. whether the question is about a person, some numeric
information or a certain location. The TREC dataset is made up of 5452 labeled questions as the
training dataset and a test dataset of 500 questions. By isolating 10% as the validation dataset, we
have a training/validation/test split of 4906/546/500 questions. As in previous tasks, we construct
the feature vector by averaging over the vectors of the constituent words in the question. We train
with different classification models and perform the test using the model with the highest reported
validation accuracy.

C.5 SENTIMENT ANALYSIS

The Semantic Analysis task involves testing the semantic property of the word vectors by catego-
rizing a given sentence into a positive or negative class. This test is performed using the Stan-
ford Sentiment Treebank dataset (Socher et al., 2013) which consists of a training/dev/test split of
6920/872/1821 sentences. We generate the feature vector by averaging over all constituent words of
the sentence, only on the data instances with non-neutral labels, and report the test accuracy obtained
by the model with the highest validation accuracy.

C.6 WORD SIMILARITY

The Word Similarity test intends to capture the closeness between a pair of related words. We
use an array of datasets namely, Simlex-999 (Hill et al., 2015), WS353, WS353-S and WS353-R
(Finkelstein et al., 2001), MEN (Bruni et al., 2014) and MT-771 (Halawi et al., 2012). Each pair of
data in all of these datasets are annotated a human generated similarity score. We compute the cosine
similarity of all of the pairs of words in each of the above dataset and report the Spearman’s rank
correlation coefficient ρ between the model generated similarity and the human annotated similarity.
Only the pairs where both words were present in the vocabulary have been considered for this test.
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D RESULT OF WORD SIMILARITY EXPERIMENTS

Table 7: Performance of the Hierarchical Word Vectors across different word similarity tasks. Scores
represent ρ as %

Vectors Simlex-
999 WS353 WS353-S WS353-R MEN MT-771

Word2Vec 44.20 69.41 77.71 62.19 78.2 67.13

Hierarchical
Overcomplete
Word2Vec

WOA 36.89 58.8 69.58 49.79 58.46 51.39

WOI 43.94 69.13 77.39 62.00 78.03 66.99

WOL 24.00 40.67 52.64 27.60 43.02 25.88

Hierarchical
Weighted
Word2Vec

WOA 44.20 69.41 77.71 62.19 78.2 67.13

WOI 44.20 69.41 77.71 62.19 78.2 67.13

WOL 44.20 69.41 77.71 62.19 78.2 67.13

GloVe 40.83 71.24 80.15 64.43 80.49 71.53

Hierarchical
Overcomplete
GloVe

GOA 29.81 58.51 71.86 46.19 68.57 56.30

GOI 40.45 71.27 80.30 64.42 80.52 71.43

GOL 29.81 58.51 71.86 46.19 68.57 56.30

Hierarchical
Weighted
GloVe

GWA 40.33 71.24 80.15 64.43 80.49 71.44

GWI 40.83 71.24 80.15 64.43 80.49 71.53

GWL 40.33 71.24 80.15 64.43 80.49 71.44

E EFFECT OF WORD LIST SIZE

Figure 5: Religion Classification Accuracy per size of word list.
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Figure 6: Computer Classification Accuracy per size of word list.

F WORD CLASSIFICATION WORDNET

Accuracy = 79.21%
(a) Partial Word Classification for Glove

Accuracy = 80.33%
(b) Partial Word Classification for Word2Vec

Accuracy = 73.58%
(c) Complete Word Classification for Glove

Accuracy = 73.00%
(d) Complete Word Classification for Word2Vec

Figure 7: Result of the Word Classification experiment. Accuracy represents the ratio of number of
true positive predictions to number of total predictions made in %.

16



Under review as a conference paper at ICLR 2024

G WORD CLASSIFICATION GOOGLE

Accuracy = 60.11%
(a) Eight Class Word Classification using Glove

Accuracy = 58.78%
(b) Eight Class Classification using Word2Vec

Figure 8: Result of the Word Classification experiment. Accuracy represents the ratio of number of
true positive predictions to number of total predictions made in %.
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