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ABSTRACT

Recent advancements in large language models (LLMs) have resulted in in-
creasingly anthropomorphic language concerning the ability of LLMs to reason.
Whether reasoning in LLMs should be understood to be inherently special is, how-
ever, widely debated. We propose utilizing a representation engineering approach
wherein model activations are read from the residual stream of an LLM when
processing a reasoning task. The activations are used to derive a control vector
that is applied to the model as an inference-time intervention, modulating the rep-
resentational space of the model, to improve performance on the specified task.
We additionally open-source the code for deriving control vectors and analyz-
ing model representations1. The method allows us to improve performance on
reasoning benchmarks and assess how control vectors influence the final logit dis-
tribution of a model via metrics such as KL divergence and entropy. We apply
control vectors to Mistral-7B-Instruct and a range of Pythia models on an induc-
tive, a deductive and mathematical reasoning task. We show that an LLM can,
to a certain degree, be controlled to improve its perceived reasoning ability by
modulating activations. The intervention is dependent upon the ability to reliably
extract the model’s typical state when correctly solving a task. Our results sug-
gest that reasoning performance can be modulated in the same manner as other
information-processing tasks performed by LLMs and demonstrate that we are
capable of improving performance on specific tasks via a simple intervention on
the residual stream with no additional training.

1 INTRODUCTION

Many recent developments in the study of artificial intelligence and more specifically large language
models (LLMs) have focused on improving their ability to solve reasoning tasks. The notion of
reasoning is, however, notoriously hard to ground and define (Chollet, 2019; Pavlick, 2023). While
various forms of reasoning such as inductive, deductive and abductive reasoning are well-defined,
they typically refer to high-level processes – often associated with System 2 thinking – as opposed
to fundamental computational mechanisms (Johnson-Laird, 2008). The increasing scale of LLMs
and better data-curation have yielded better results on standard benchmark datasets leading to
research into the reasoning strategies employed by LLMs; this research generally focuses on model
outputs as opposed to internal states (Mondorf & Plank, 2024). We thus cannot conclude anything
with regards to the processes or representational learning dynamics related to an LLMs ability to
solve reasoning tasks. We propose modeling the typical representations of a simple ”reasoning
process” and utilizing those representations to improve reasoning performance on two reasoning
tasks.

Recent work has shown that it is possible to induce specific types of behavior by manually
modulating a model’s internal states. Researchers have assessed editing LLM knowledge in MLP
layers of transformers (Meng et al., 2023a;b) and have mapped entire computational circuits within
models (Wang et al., 2022). More interestingly, it has been shown that we do not need to investigate

1Github repository link will be made available here.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

specific MLP or attention layers, but can instead look at the residual stream of an LLM. By modu-
lating the residual stream in a meaningful way it is possible to induce different types of ”behavioral”
traits such as honesty, truthfulness and emotional valence. These types of behavior can be conceived
as directions in the representational space of an LLM (Liu et al., 2023; Hendel et al., 2023; Todd
et al., 2024). Additionally, modulating the residual stream has also been used to improve the ability
of transformer models trained to play the board games chess and othello (Karvonen, 2024; Nanda
et al., 2023). A similar approach was utilized by Anthropic for their Golden Gate Claude model
in which they steered an LLM towards acting as the Golden Gate bridge (Templeton et al., 2024).
The above research highlights the efficacy of the approach as well as the broad potential applications.

As a novel contribution, we directly analyze the ability to improve reasoning using a repre-
sentation engineering approach. We specifically assess whether the residual stream of LLMs
contains valuable (and actionable) information as to a model’s reasoning ability and whether it
can be used to improve it, similarly to what related work indicates for other types of behavior.
Concretely, we extract activations from the hidden dimension of LLMs, creating a control vector
on the basis of these activations and assessing whether an inference-time intervention can improve
reasoning ability on and across the specific set of tasks we analyze.

The main contribution of this paper is thus an analysis of the effectiveness of perturbing the residual
stream in order to improve a model’s performance on a set of reasoning-related tasks and particularly
address whether this method makes it possible to find a direction in the representational space of
LLMs related to reasoning, and how the intervention affects the representational space of a model.

2 APPROACH

We employ a representation engineering approach, deriving control vectors based on typical model
representations when performing the specified reasoning task. This allows us to assess whether one
can induce better reasoning performance similarly to how one can adjust e.g. the emotional valence
of model outputs (Zou et al., 2023).

Multi-headed 
self-attention

Add & Norm

Feed-forward 
layer

Add & Norm

1x 
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( ... )
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(a) Traditional representation of transformer ar-
chitecture as introduced by Vaswani et al. (2017).
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(b) Conceptual reframing of the transformer archi-
tecture as discussed by Elhage et al. (2021).

Figure 1: A conceptual reframing of transformer information processing emphasizing the impor-
tance of the residual stream. As opposed to focusing on the operations done by each computational
block, this framing emphasizes each computational block as reading from and writing to a residual
stream that is represented in the hidden dimension of a transformer model.

In most LLMs, the transformer architecture comprises an embedding layer followed by n computa-
tional blocks finally followed by an output layer of token logits from which a new token is generated
via a softmax function over the logits (Vaswani et al., 2017). Following arguments by Elhage et al.
(2021) as well as recent related research (Templeton et al., 2024), we highlight the residual stream

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

as a key component of the transformer, and emphasize that the fundamental operation of the trans-
former is representation transformation. This conceptual reframing is illustrated in figure 1. The
operations done by a single layer in any given transformer can be described as in equation 1 without
the term cℓ + α.

yℓ = LayerNorm (xℓ + Att(xℓ))

xℓ+1 = LayerNorm (yℓ + MLP(yℓ)) + cℓ · α
(1)

xℓ is the hidden dimension activation vector at the ℓ’th layer, yℓ the activations after the scaled
dot-product attention-mechanism and xℓ+1 the activations after the MLP transformation. Recent
work has illustrated the efficacy of analyzing and manipulating the residual stream by e.g. using
sparse autoencoders to extract features from residual stream activations (Huben et al., 2023), which
strongly suggests that the residual stream is a better level of analysis than single neurons (or cohorts
of neurons) due partly to the issue of polysemanticity. Targeting the residual stream has also been
proposed as a solution to cross-layer superposition: the notion that features are smeared across many
hidden layers of a deep neural network (Bricken et al., 2023; Templeton et al., 2024). We extract the
representation after each layer at the final token of a task example. From these extracted activations
we derive layer-specific control vectors. Applying the control vector is the simple addition of adding
the cℓ · α term to the standard transformer operation as illustrated in equation 1.

2.1 CONTROL VECTORS

A control vector can be trained in multiple ways based on the extracted model activations. The sim-
plest way is by creating a reading vector, which is merely the average over the extracted activations.
Given a set of prompts P , a model with L layers, and Hℓ(Pi) as the hidden state of the residual
stream for the ℓ’th layer and the i’th prompt, the reading vector is described as follows:

cℓ =
1

|P |

|P |∑
i=1

Hℓ(Pi) (2)

Related work indicates that for extracting a desired behavior from an LLM it is best to use contrastive
pairs. Contrastive pairs entails looking at the representations for positive and a negative prompt. For
the case of say, emotional valence, it could entail examples of ’happy’ prompts and examples of ’sad’
prompts. For the case of reasoning we look at examples of successful reasoning and unsuccessful
reasoning – see subsection 3.1. This ensures that the control vectors are based on a difference
in representations (Zou et al., 2023). The control vector can thus be scaled to induce the desired
behavior or its opposite. Given a set of contrastive pairs of positive and negative prompts P± =
(P+, P−), we define the control vector as:

cℓ =
1

|P±|

|P±|∑
i=1

(
Hℓ

(
P+
i

)
−Hℓ

(
P−
i

))
(3)

Another method for training control vectors involves applying Principal Component Analysis (PCA)
to the contrastive activations (Zou et al., 2023). PCA finds directions in the data that account for
the most variance, with the first component indicating the direction in the data explaining maxi-
mum variance. The intuition is that the difference between these contrasting representations will
contribute significantly to the variance in the activations, and the first principal component should
thus approximate the direction in the activation space that most effectively distinguishes between
the desired outcome and its contrast. This direction can then be used as the control vector. Similar
to reading vectors using contrastive pairs the PCA control vector is defined in the following manner.

cℓ = PCA
({

Hℓ

(
P+
i

)
−Hℓ

(
P−
i

)
∀ i ∈

[
1, . . . ,

∣∣P±∣∣]})
(1)

(4)

A key consideration is how much one wishes to modulate representations (controlled by α), as too
strong modulation could result in non-sensical outputs. When creating control vectors of the reading
type, an α = 1 is equivalent to adding a ”full” activation vector to the signal as ||cℓ|| ≃ ||Hℓ||
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which follows from equation 2. However, when applying PCA we get ||cℓ|| = 1. To account for
the difference we implement an up-scaling of PCA-based control vectors which is dependent on the
actual norm of extracted residual stream activations (see A.1).

The derivation of control vectors is thus a relatively simple process that does not induce a
large computational overhead, we simply need to extract activations while performing inference on
a given task to control and improve the outputs of LLMs without any further training.

3 EVALUATION & ANALYSIS

3.1 EXPERIMENT

For IOI we create 2, 000 examples for each condition of the following form:

Mary[A] and John[B] went to the store. John[B] gave the groceries to Mary[A].

This task is inductive as multiple answers could be correct, we are however interested in controlling
the model to generate a desired name and pose this as an inductive inference problem. We study
four different conditions: ABBA (A), BABA (B), ABBA-Long (AL) and BABA-Long (BL).

bAbI comprises various reasoning tasks, one related to deductive reasoning of which there are 2, 000
examples. The questions have the following format2:

Passage: Mice are afraid of wolves. Gertrude is a mouse. Cats are afraid of sheep.
Question: What is Gertrude afraid of? Answer: Wolf

GSM8K consists of high quality grade school math problems on which relatively capable LLMs still
struggle. The questions are of the following format:

Question: ”Natalia sold clips to 48 of her friends in April, and then she sold half
as many clips in May. How many clips did Natalia sell altogether in April and
May?” Answer: ”Natalia sold (48/2 = 48/2 = 24) 24 clips in May. Natalia sold
(48 + 24 = 48 + 24 = 72) 72 clips altogether in April and May. #### 72”

We provide a fully detailed example of a question from the GSM8K dataset in A.3. For GSM8K we
use a total sample of 400 prompts to derive the control vectors. For each dataset we do a train/test
split, stratify labels and derive the control vector based on model representations when it generates
outputs on examples from the train split and test model performance with a control vector applied
on the test set.

In order to produce the contrastive pairs we need positive and negative prompt examples. For the
positive examples, an obvious method might be to select all cases where the model successfully
solves a task, making sure that the class labels are balanced so as to ensure that the model isn’t
biased towards a specific answer. A prompt for unsuccessful reasoning is less clear however. We
propose multiple schemes to elicit representations typical of poor reasoning. 1) A naive approach
entails asking a model to produce an incorrect answer. This was found during testing to be a poor
scheme since producing the wrong answer when prompted to might be considered good reasoning.
2) Taking examples where the model answers a question incorrectly, this approach does however
have pitfalls. In some cases an answer is not actually wrong, but simply not the correct token we
were envisioning. As an example in the IOI task ”Mary[A] and John[B] went to the store. John[B]

gave the groceries to Carl[C].” Carl isn’t necessarily wrong, it just isn’t the token we expected. 3)
The third scheme consists of simply creating negative prompts that are 75 random character strings
sampled from A to z. While this scheme doesn’t introduce a natural contrast it provides ”a point of
reference” in terms of model representations and empirically works better than merely using reading
vectors. We test scheme 2) and 3) in the following experiments.

We carry out multiple experiments applying the intervention to the residual stream of various LLMs
at the middle layer at varying scales of α and assess how this influences performance on the three

2Questions are generally more complicated than this example. See A.2 for more details.
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datasets. When deriving control vectors we get a control vector for each layer, previous work how-
ever indicates that only applying the vectors to the middle layer is enough to induce strong changes
to model outputs (Templeton et al., 2024). We generally assess the impact of the intervention at
α ∈ [−1, 1] at increments of 0.1, but look at a range of [−3, 3] for Mistral-7B-Instruct.

3.2 EVALUATION METRICS

We benchmark performance by investigating the output logits of a constrained set of potential re-
sponses, where the potential responses are the collection of all answers in the dataset, similarly to
what is done in the lm-eval framework (Sutawika et al., 2024). We do not use an exact-match met-
ric as it is particularly error-prone in 0-shot prompt scenarios for smaller LLMs, where the desired
structure of the output is unknown to the model. This results in verbose and prosaic language gen-
erated by the model to potentially be labeled as inaccurate despite providing correct answers. This
issue is less pronounced in few-shot prompting.

We thus use few-shot examples of the task when extracting the activations, in part to alleviate the
above-stated issues, but more importantly because LLMs have been shown to be in-context learners
(Brown et al., 2020). We furthermore cannot expect to be able to improve a model on a task it
cannot adequately solve when the method of improving a model is derived directly from it’s own
hidden states. For the GSM8K task the model generates a full response with a reasoning trace and
we use a decoding scheme to extract the final answer.

Beyond benchmarking the model outputs, we aim to understand the distribution changes as
control vectors are applied. We analyze this by examining summary statistics of the resulting
distributions and comparing them to the original model. We specifically focus on Kullback-Leibler
(KL) divergence between the logit distribution of a model with and without the intervention applied
at various α levels, providing a metric for distribution change magnitude:

DKL(P∥Pα) =
∑
x∈X

P (x) log

(
P (x)

Pα(x)

)
(5)

where P is the original logit distribution and Pα is the modified logit distribution. We addition-
ally look at model entropy as a function of α, revealing whether the model becomes more or less
confident with increasing α:

H(X) = −
∑
x∈X

Pα(x) logPα(x) (6)

Finally, we assess the average probability for correct versus incorrect answers as a function of α.
This is done to assess how the intervention concretely influences the token probability distribution.

P̄ correct
α =

1

N

N∑
i=1

Pα(ŷi|xi) (7)

P̄ incorrect
α = 1− P̄ correct

α (8)
where N is the number of samples, ŷ is the predicted answer to the input xi, and where ŷ is con-
strained to the list of potential answers.

These metrics yield insights into how the control vector intervention affects model states. If a certain
level of control creates a disproportionate spike in the KL divergence it would suggest a certain
threshold in terms of bringing the model completely out of it’s usual state. We expect a somewhat
linear increase in KL divergence as α increases. Entropy indicates the uncertainty contained in
a probability distribution; we expect that if the control vector improves task accuracy the entropy
should drop as the probability mass concentrates on the correct answer token. Finally, assessing
the probability mass concentrated at the correct token tells us concretely whether we are generally
(across many samples) improving the ability to correctly solve the task.

If we observe decreasing entropy and increased probability on correct tokens as accuracy increases
this suggests that the control vector intervention is working as intended. However, if the metrics
do not align and we observe for instance decreased entropy but no increase in accuracy it might
indicate that we are affecting the model in unintended ways.
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We do not train any models, but extract control vectors based on hidden states of the mod-
els. We evaluate model performance with the intervention on the test set and derive the control
vectors from activations based on the training set. We do this to avoid data contamination although
we cannot be certain that the training data of the models we use have not been contaminated
indirectly.

3.3 MODELS

We work with models from the Pythia suite developed by EleutherAI (Biderman et al., 2023). We
specifically look at two models, namely Pythia-1.4B and Pythia-2.8B. We analyze these models
based on initial benchmarking studies and because this range allows us to analyze the efficacy of
the representation engineering approach across different scales. We additionally test the approach
on Mistral-7b-Instruct to scale the approach to a larger more capable model and to assess how the
control vectors affect an instruction-fine-tuned model.

3.4 RESULTS

In this section we report results for Pythia-1.4B, Pythia-2.8B and Mistral-7B-Instruct with the PCA
derived control vectors applied. We generally see improved performance across models and tasks,
although there are differences in the optimal value of α as well as whether to scale the control vector
negatively or positively.

PYTHIA

We train control vectors on the signal extracted from the A condition and apply them across exper-
imental conditions. We observe slight generalization across tasks for both Pythia-1.4B and Pythia-
2.8B as seen in 9a and 2a, results for Pythia-1.4B are in A.4. Pythia-2.8B improves accuracy slightly
when the control vector is applied across conditions, with some variation in α, and KL divergence
increases quadratically as α is increased in both directions, see figure 2b. The intervention is mostly
effective for B and BL suggesting that the control vectors are encoding position-sensitive informa-
tion of the indirect-object to be generated. These findings are corroborated by the entropy analysis
which indicates a slight decrease as accuracy increases, however, we observe that as entropy de-
creases KL divergence increases. We furthermore see that the probability mass on average accu-
mulates slightly around the correct answer with an increase in α in figure 2d although the average
change in probability on the correct token is minute. We report only on the IOI task for Pythia
models as they were not capable of adequately solving neither the bAbI or GSM8K tasks.

MISTRAL

We see similar results for Mistral as for Pythia-2.8B on bAbI, see figure 3. We improve the logit-
based accuracy and KL divergence increases quadratically. We do, however, observe a slight upward
trend in entropy against our expectations of how the intervention should affect the final logit distribu-
tion when it successfully improves a model’s accuracy. We assess performance on the bAbI dataset
as IOI is too simple relative to the performance of the model.

We additionally find that the control vector intervention is capable of improving performance on
the GSM8K task; the approach successfully improves the model’s ability to solve the task with a
negative α as indicated by figure 4. While model representations are not very robust to the inter-
vention (based on the jagged trend line), we do find that the intervention works. The KL divergence
and entropy measures look quite different for GSM8K, although there does seem to be a positive
correlation between the metrics.

Finally we assess how control vectors derived from the bAbI task influences performance on
GSM8K evaluation and vice-versa. In figure 5 we report the results of of this experiment. We
find an almost identical increase in accuracy on the GSM8K test set when a bAbI control vector is
applied, and see similar trends in the KL divergence and entropy plots. We also find that a GSM8K
control vector improves performance on the bAbI task, see A.5. This suggests that the representa-
tion from which we derive the control vector captures aspects of the information-processing a model
performs when solving a reasoning benchmark task.
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(a) Logit based accuracy on the IOI task. (b) KL Divergence by α.

(c) Entropy by α. (d) Probability mass by α.

Figure 2: Pythia-2.8B results. Results from PCA derived control vectors. Slight improvement across
most conditions and more stable model representations than the smaller model.

(a) Logit based accuracy on the bAbI task. (b) KL Divergence by α.

(c) Entropy by α. (d) Probability mass by α.

Figure 3: Mistral-7B results. Results from PCA-based control vectors.
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(a) Accuracy on GSM8K for Mistral-7B-Instruct

(b) KL Divergence by α. (c) Entropy by α.

Figure 4: Mistral-7B results. Results from PCA-based control vectors.

(a) Accuracy on GSM8K for Mistral-7B-Instruct

(b) KL Divergence by α. (c) Entropy by α.

Figure 5: Mistral-7B results. Results from PCA-based CVs trained on bAbI evaluated on GSM8K.
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Figure 6: Full responses created by Mistral-7B-Instruct at α = 0 and α = −2.6. The model
seemingly changes it’s reasoning trace to reach the correct answer.

We additionally analyze how model responses change when the intervention is applied with the
optimal α for a specific model and task. We report two examples in figure 6 that showcase how
Mistral-7B-Instruct generates a different reasoning trace that results in the correct answer being
generated as opposed to when no control is applied (see also figure 8 in A.3 for an incorrect exam-
ple). More generally, we observe that differently sized models are affected differently by different
levels of α. Whether this is because of larger models being more robust to changes in their repre-
sentations or merely the fact that only modifying the middle layer representations is a smaller part
of a larger model is an open question.

In summary we find that control vectors can successfully be used to modify the representation of
LLMs to improve performance on the specified tasks for all models, although to varying degrees.
The finding that the intervention works for a task as complicated as GSM8K is especially affirming,
and even more so the finding that it works across tasks. The qualitative examples showcase that
applying the interventions retains a model’s ability to generate coherent text and that it is not merely
inducing the generation of a specific subset of tokens; an important results for the intervention to be
applicable outside of research which focuses on increasing performance on benchmark datasets.

4 DISCUSSION

In this paper, we study the ability of LLMs to solve reasoning tasks by modeling this ability as a
direction in the models’ residual stream. Fundamentally, training control vectors relies on the rep-
resentations learned by an LLM and the ability to modify these in a way that preserves a model’s
ability to generate semantically meaningful text. Similar approaches have been applied to modify
the ”sentiment” of model outputs while maintaining semantic coherency. This research has espe-
cially focused on inducing feelings of positivity and negativity effectively creating control vectors
equivalent to pre-pending a prompt with ”Pretend you are feeling [X]” (Liu et al., 2023; Hendel
et al., 2023). We have similarly shown that we are capable of modulating the representational space
of LLMs to boost performance on a simple task while maintaining the model’s fundamental ability
to generate coherent text. This finding hints that the ”ability” of LLMs to perform well on reasoning
tasks is encoded similarly to other model states, such as generating semantically positive or negative
outputs. Given prior literature, our ability to modify the outputs of an LLM via the residual stream
is in and of itself not a surprising finding; the main contribution of the paper is that we can improve
on reasoning tasks of varying complexity by nudging a model towards a specific state.

4.1 IMPLICATIONS

While there are many questions to be answered regarding reasoning in LLMs and many open ques-
tions wrt. to our findings and experiments, they suggest that reasoning performance can be modu-
lated similarly to how we can modulate the emotional valence of generated text or a model’s ability
to play chess. The development of the past couple of years has been impressive and has in some ways

9
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flipped beliefs within the field in terms of what we thought machine learning models trained solely
on text data were capable of. Whether current model architectures are at all capable of anything like
the System 2 thinking done by humans seems unlikely, although much work is being undertaken
to make LLMs reason ”properly” (see e.g. the most recent model from OpenAI (OpenAI, 2024)) -
whether any of these approaches amounts to reasoning in the traditional sense is still up for debate,
especially as reasoning, as we’ve alluded to, is such a hard term to ground and define.

4.2 REASONING

While we acknowledge the deep philosophical questions surrounding the nature of reasoning, our
work takes a deliberately narrow empirical approach. We investigate whether specific manipulations
of model representations can improve performance on tasks that require reasoning-like behaviors,
without making strong claims about the nature of reasoning itself. We do not attempt to define
reasoning. Instead, we are interested in using tasks that are recognized and categorized as being
related to ’reasoning’, be it inductive, deductive, mathematical, or in theory anything else. These
tasks differ in their prompt lengths and in how surface-level the correct solutions are (i.e, whether
the solutions requires reasoning through intermediate steps or calculations). In the IOI task, the
answer is present in the text, but needs to be inductively recalled, in the bAbI tasks the answers are
also in the prompt, but requires computing through one or more intermediate steps to achieve the
answer. Finally, in GSM8K, the answers are not present in the text anymore, and they also require
parsing the results through multiple intermediate calculations. Through this exploration, we aim to
identify actionable strategies for enhancing model performance across a spectrum of reasoning tasks
of scaling complexity, irrespective of how reasoning is formally defined.

4.3 LIMITATIONS

While this paper showcases how representation engineering can successfully be used to induce better
reasoning behavior on an inductive, deductive, and a mathematical task, we see certain limitations.
We assess a limited scope of models, models that are smaller than production-level state-of-the-art
models. Working with smaller models has however provided the opportunity to assess the emer-
gence of capabilities and symmetries as models are scaled. Working with models that were devel-
oped specifically for interpretability research furthermore opens the door for future research into the
internal model dynamics related to LLM reasoning. And while the biggest model comprises a mere
7 billion parameters, Mistral-7B-Instruct is relatively capable.

The IOI reasoning task is furthermore a relatively simple task, which has both advantages and dis-
advantages. The results indicate that a task such as IOI may even be too simple to elicit a general
representation. The task is mostly interesting to our research when models cannot correctly answer
every question, a very hard balance to strike. Hence the switch to the bAbI and GSM8K datasets, and
the Mistral-7B-Instruct model for additional experimentation. However, a simple task also limits the
scope of potential errors, which results in a cleaner picture of model behavior.

We furthermore suggest first steps towards creating contrastive pairs for reasoning to be used in
representation engineering research, we however call for future work to focus on understanding how
to optimally derive control vectors from model representations.

4.4 CONCLUSION

We successfully used the technique of representation engineering by first training control vectors
on a training set of reasoning related tasks and secondly intervening on the middle layer of the
residual stream during inference. This allowed us to improve the performance of Pythia and Mistral
models on a simple inductive task (IOI), the deductive bAbI task, and finally the GSM8K dataset.
We illustrate how control vectors, trained using contrastive prompts, can be used to control and
direct the output of LLMs, as well as how these modifications affect the internal representations of
these models. Future research directions entail applying the intervention to much larger models, to
more general tasks, to test different contrastive schemes as well as exploring ways of embedding this
methodology into the models. In conclusion, our experiments indicate that reasoning can in part be
understood to be encoded in the residual stream, similarly to how emotional valence or the Golden
Gate feature is encoded in the residual stream of models developed by Anthropic.
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STATEMENT OF REPRODUCIBILITY

We are committed to aiding reproducibility of our work and encourage further research in this direc-
tion. The source code for our implementation, developed as an internal framework, will be published
alongside this paper to facilitate this process. Our framework is built as a wrapper around PyTorch,
enabling easy extraction of hidden dimension representations and application of control vectors.
The models described in section 3.3 were loaded using the HuggingFace API and details on model
version are described there. The training process for control vectors is detailed in section 2.1. The
calculation of experimental results, including all metrics used, is thoroughly described in section
3.2. Information about datasets used, including any preprocessing steps, can be found in section 3.1
and A.2.

Upon publication, we will make our code publicly available through GitHub, along with documen-
tation to guide users through the setup and execution of experiments.
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A APPENDIX

A.1 CONTROL VECTOR NORMS

As can be gathered from equation 2 any control vector will have a norm that is equivalent to the
average of the hidden dimension activations at a given layer of the model. For the contrastive pairs
(equation 3) it will be equivalent to the norm one gets when subtracting the ”opposite” state from
the ”desired” state. This is however not the case for the control vector based on a PCA, because a
standard PCA implementation scales the output vector to have an L2 norm of 1. We cannot know the
exact size of ||Hℓ|| as this is dependent on the learned parameters γ and β of the LayerNormfunction.
Assuming γ = 1 and β = 0, which are the usual initial values (Ba et al., 2016), a rough estimate of
the norm of the hidden dimension, d, is ||Hℓ|| =

√
d, the value however varies a lot dependent on

the model and between layers. We therefore scale the PCA control vectors by ||Hℓ|| of the training
data to allow for a more direct comparison between the control vector methods. As indicated by
figure 7 we get identical norms for the two methods, while the actual control vectors are different.

(a) Reading Contrast CV - Pythia 1.4b (b) Reading Contrast CV - Pythia 2.8b

(c) PCA Contrast CV - Pythia 1.4b (d) PCA Contrast CV - Pythia 2.8b

Figure 7: Control Vector Norms

A.2 DATA

INDIRECT-OBJECT-IDENTIFICATION (IOI)

The IOI task examples were generated using the following schema:

[A] and [B] went to the [location]. [B] gave the [object] to [A].

In the BABA (B) condition the schema was:

[B] and [A] went to the [location]. [B] gave the [object] to [A].

We provide an example here, also shown in 3.1.

Mary[A] and John[B] went to the store. John[B] gave the groceries to Mary[A].

Examples are split into (X, y) pairs of the following form and fed to the model with X as the input
and y as the correct generation:

13
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(”Mary and John went to the store. John gave the groceries to”, ” Mary”)

When extracting model representations (X, y) pairs are combined into a single string containing the
input prompt and the correct answer. When evaluating the performance of the derived control vector
the models only receives X, and we evaluate whether the token with the highest logit of the potential
answers is equivalent to the correct label, y. We used an 80/20 train-test split to train and evaluate
the performance on control vectors. We do not perform any additional pre-processing.

BABI DATASET

We used the bAbI dataset, focusing on task 15, which involves simple deductive reasoning. Each
example in the dataset consists of: 1) A passage containing factual statements, 2) a question based
on the passage and 3) the correct answer. We provide an example here.

Passage: Mice are afraid of wolves. Gertrude is a mouse. Cats are afraid of sheep.
Winona is a mouse. Sheep are afraid of wolves. Wolves are afraid of cats. Emily
is a mouse. Jessica is a wolf.
Question: What is Gertrude afraid of?
Answer: Wolf

Examples are split into (X, y) pairs of the following form and fed to the model with X as the input
and y as the correct generation:

(”Passage:\nCats are afraid of wolves.\nGertrude is a mouse.\nJessica is a
cat.\nQuestion: What is Jessica afraid of?\n”, ” wolf”)

When extracting model representations (X, y) pairs are combined into a single string containing the
input prompt and the correct answer. When evaluating the performance of the derived control vector
the models only receives X, and we evaluate whether the token with the highest logit of the potential
answers is equivalent to the correct label, y. We used an 80/20 train-test split to train and evaluate
the performance on control vectors.

We do not perform any additional pre-processing and have downloaded the data directly from
https://huggingface.co/datasets/Muennighoff/babi.

1-SHOT PROMPTING

When 1-shot prompting, we simply provide the input prompt with an example of how to solve the
task. The model is prompted with an out-of-distribution example in order not to nudge the model
towards a specific answer. This takes the following form:

Example\nPassage: Giraffes are afraid of lions.\nElephants are afraid of
snakes.\nJohn is a giraffe.\nQuestion: What is John afraid of?\nAnswer:
Lion\n(Passage and question)

INSTRUCTION PROMPTING

Since instruction fine tuned models are able to follow instructions, we found that prompting the
model to output a one word answer made sense, and was also found to work better empirically.

[INST]\n(potential one-shot example)\nPlease give a one word answer as in the
example above. [/INST]\n(Passage and question)

14
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A.3 GSM8K FLIPPED RESPONSE

The following is a concrete example from the experiment with Mistral-7B-Instruct and the PCA-
contrast control vector with α = −2.6. This example showcases how the reasoning trace is still
interact when the intervention is applied, and that something in the intervention leads the model to
accurately end up at the correct answer of 3 as opposed to 2.5. The ”reasoning” in the two samples
is identical until the point where the model generates the text ”which is 1 bolt of white fiber”. This
additional information seemingly allows the model to generate the correct response when finally
answering the question.

Response before intervention:

Question: ”A robe takes 2 bolts of blue fiber and half that much white fiber. How
many bolts in total does it take?”

Correct Answer: 3.0

Predicted Answer: 2.5

Full Response: ” solve this problem, we need to add the amount of blue
and white fiber required for the robe. 1. We know that the robe takes 2 bolts of
blue fiber. 2. We also know that it takes half that much white fiber. 3. So, to find
the total number of bolts required, we can add the blue and white fiber together:
Total bolts = Blue fiber + White fiber. Total bolts = 2 + (1/2) Total bolts = 2.5
Therefore, the robe takes a total of 2.5 bolts.”

Response after intervention:

Question: ”A robe takes 2 bolts of blue fiber and half that much white fiber. How
many bolts in total does it take?”

Correct Answer: 3.0

Predicted Answer: 3.0

Full Response: ” solve this problem, we need to add the amount of blue
and white fiber required for the robe. 1. We know that the robe takes 2 bolts of
blue fiber. 2. We also know that it takes half that much white fiber, which is 1
bolt of white fiber. 3. To find the total number of bolts required, we simply add
the amount of blue and white fiber: Total bolts = Blue fiber + White fiber. Total
bolts = 2 + 1. Total bolts = 3. Therefore, it takes 3 bolts of fiber in total to make
the robe.”

15
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Figure 8: Full responses created by Mistral-7B-Instruct at α = 0 and α = 3. The model seemingly
changes it’s reasoning trace to answer incorrectly.

A.4 ADDITIONAL RESULTS

We train control vectors on the signal extracted from the A condition and apply across experimental
conditions. We observe slight generalization across tasks for both Pythia-1.4B and Pythia-2.8B as
seen in 9a and 2a. Pythia-1.4B improves accuracy when the control vector is applied with positive
α across conditions, and KL divergence is relatively stable in the positive direction and very unsta-
ble in the negative direction resulting in much higher and more varied KL divergence (figure 9b).
These findings are corroborated by the entropy analysis which indicates a slight decrease as accu-
racy increases, but an even stronger drop in entropy as α → −1, suggesting that the intervention
is pushing the probability mass towards a specific incorrect token (figure 9c). We furthermore see
how the probability mass on average accumulates around the correct answer in figure 9d although
the increase with positive α is small.
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(a) Logit based accuracy on the IOI task (b) KL Divergence by α

(c) Entropy by α (d) Probability mass by α

Figure 9: Pythia-1.4B results. Results from PCA derived control vectors. Slight improvements in
accuracy across all conditions, and malleable model representations.

(a) Accuracy on GSM8K for Mistral-7B-Instruct

(b) KL Divergence by α. (c) Entropy by α.

Figure 10: Mistral-7B results. Results from PCA-based CVs on random contrastive pairs.
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A.5 CONTROL VECTOR CROSS-TASK RESULTS

(a) Accuracy on bABI for Mistral-7B-Instruct

(b) KL Divergence by α. (c) Entropy by α.

Figure 11: Mistral-7B results. Results from PCA-based CVs trained on the GSM8K task evaluated
on bAbI.
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