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Abstract

Recent research has shown that aligning fine-grained text descriptions with localized image
patches can significantly improve the zero-shot performance of pre-trained vision-language
models (e.g., CLIP). However, we find that both fine-grained text descriptions and localized
image patches often contain redundant information, making text-visual alignment less
effective. In this paper, we tackle this issue from two perspectives: View Refinement and
Description refinement, termed as Bi-refinement for Fine-grained Text-visual Alignment
(BiFTA). View refinement removes redundant image patches with high Intersection over
Union (IoU) ratios, resulting in more distinctive visual samples. Description refinement
removes redundant text descriptions with high pairwise cosine similarity, ensuring greater
diversity in the remaining descriptions. BiFTA achieves superior zero-shot performance on 6
benchmark datasets for both ViT-based and ResNet-based CLIP, justifying the necessity to
remove redundant information in visual-text alignment. Our code is available at: https:
//anonymous.4open.science/r/BiFTA-TMLR-Re-submission.

1 Introduction

Drawing from the profound strides made in large-scale pre-training within natural language processing
(Radford et al., 2018; 2019; Devlin et al., 2019; Brown et al., 2020), the CLIP model (Radford et al., 2021)
aligns vast collections of images with their corresponding natural language captions (e.g., “a photo of a
{label}”) into a unified embedding space using large datasets. The scaling of the pre-training data in CLIP
empowers the model to deliver considerable performance in zero-shot classification (Radford et al., 2021).
CLIP performs zero-shot classification by computing cosine similarity scores between image representations
and textual label prompts so that the final prediction is determined based on the distribution of these
similarity scores (He & Peng, 2017; Liang et al., 2020; Radford et al., 2021). To push the limits of CLIP’s
zero-shot capabilities, several studies (Menon & Vondrick, 2023; Pratt et al., 2023) leverage the generative
capabilities of Large Language Models (LLMs) to produce fine-grained, label-specific textual descriptions via
prompt templates (e.g., “describe what does a/an {label} look like”). Under this framework, CLIP model
computes and integrates the cosine similarity scores between visual representation of the input image and each
generated textual descriptions. By enriching the textual modality, these refined prompts significantly boost
CLIP’s zero-shot classification accuracy. Recently, Li et al. (2024) propose weighted visual-text cross alignment
score (WCA), which calculates and integrates a weighted cross-alignment score between LLM-generated
label-specific descriptions and cropped image patches. By effectively refining the synergy between visual
and textual representations, this cross-alignment scoring mechanism achieves the state-of-the-art (SOTA)
zero-shot performance on several downstream tasks.

However, as demonstrated in Figure 1, we observe that both the LLM-generated textual descriptions and
the randomly cropped image patches often exhibit redundant content. Such redundancy may introduce
disproportionate contributions to the cross-alignment score computation, thereby compromising the accuracy
of the resulting alignment. In specific, following WCA (Li et al., 2024), we use random cropping to obtain
localized image patches of an image sample (e.g., a border collie), as depicted in Figure 1. We find that
these image patches often include certain redundant views exhibiting exceptionally high pairwise cosine
similarities (i.e., approaching to 1), which is attributed to the randomness in the cropping method. Similarly,
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Figure 1: Weaknesses of weighted visual-text cross alignment (Li et al., 2024). Weakness 1: Pairwise
similarity scores of highly overlapping crop bounding boxes. We demonstrate that image patches
A, B, and C, exhibiting significant overlap and redundancy, which provide limited semantic information
and consequently contribute minimally to accurate classification. Weakness 2: Redundant textual
descriptions generated by LLM. We gather textual descriptions from previous work and demonstrate that
a significant portion of these descriptions are redundant for a given category, thereby diluting the contribution
of meaningful and informative descriptions.

we observe that the diversity of LLM-generated textual descriptions is often restricted by the invariant
label-integrated prompt template, which directly leads to generate redundant text responses (see Figure 1).
In Figure 2, we further examine how the aforementioned redundancies affect the accuracy of cross-alignment
score computation, using the state-of-the-art WCA scoring method as a representative example. We observe
from the heatmap that the WCA score corresponding to the ground-truth label becomes more dominant
after removing redundant image patches through a simple Intersection over Union (IoU) filter. Since the
WCA score is computed by aggregating similarity scores between image patches and the textual description,
redundant patches introduce repetitive contributions that accumulate disproportionately in the final score.
By contrast, after applying IoU filter, the resulting WCA score distribution better aligns with the correct
prediction. Furthermore, we find that as the IoU constraint becomes stricter (e.g., IoU = 0.5), the accuracy
of the WCA score improves correspondingly. These findings suggest that randomly cropping image patches
without enforcing overlap constraints may be suboptimal for accurately computing the cross-alignment score.
Hence, these observations motivate us to remove redundant information within these image patches and
textual descriptions.

To this end, we propose Bi-refinement for Fine-grained Text-visual Alignment (BiFTA), a new method
to tackle the above-mentioned issue from two perspectives: view refinement and description refinement.
Specifically, VR uses IoU as the filter metric to efficiently identify and eliminate redundant cropped image
patches based on their overlaps of the bounding box. We aim to remove image patches with high IoU
ratios, making the remaining visual samples more distinctive. In contrast, Description Refinement (DR) first
computes the pairwise cosine similarity of the textual descriptions at the representation level, aiming to filter
out redundant ones. Then, we select top-k textual descriptions that have the highest cosine similarities with
the label caption (“a photo of a/an {label}”) from the remaining ones.

Through extensive evaluations across six benchmark datasets, we show that BiFTA outperforms baseline
methods by notably improving the zero-shot classification accuracy for both ViT-based and ResNet-based
CLIP, justifying the necessity to remove redundant information in visual-text alignment. We summarize the
main contributions of our work as follows:
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Ground Truth: Goose

Figure 2: We select an ImageNet image of a goose and display the Top-10 predictions ranked by WCA scores.
The scores are normalized using softmax and its distribution is visualized using color intensity. The results
show that applying an IoU-based filter to eliminate duplicated image patches significantly enhances the
precision of WCA scoring.

• We observe that localized image patches and fine-grained textual descriptions often contain redundant
information, making current SOTA visual-text cross-alignment methods less effective.

• We propose an efficient data refinement method, namely BiFTA, to mitigate such redundancy through
VR and DR, enhancing the alignment between visual and textual modalities.

• We empirically show that BiFTA outperforms baseline methods by achieving significant improvements
in zero-shot classification accuracy across 6 benchmark datasets with various CLIP backbones.

2 Related Work

Zero-shot learning for Vision-Language Models. Vision-language models (VLMs) have shown their
emergent capabilities on image captioning, visual question answering and image classification, which are
not specifically pre-trained or explicitly finetuned for these downstream tasks (Radford et al., 2021; Cho
et al., 2021; Wang et al., 2021; Kim et al., 2021; Xue et al., 2021; Li et al., 2022a; Alayrac et al., 2022).
CLIP (Radford et al., 2021) demonstrates that integrating large-scale pre-training on image-text pairs with
a contrastive loss function could enable zero-shot transfer to downstream tasks by simply using natural
language prompts. Similarly, ALIGN (Jia et al., 2021) further demonstrates robust representation learning
capability of VLMs by pre-training on noisy image-text pairs at large scale. By increasing the scale of the
pre-training data and model size, Florence (Yuan et al., 2021) introduces a unified vision-language foundation
model capable of zero-shot image classification and retrieval. On the other hand, CoCa (Yu et al., 2022)
combines contrastive and generative objectives to improve zero-shot generalization across diverse tasks. The
scaling of pre-training data and the contrastive learning paradigm contribute to deeper visual-text alignment
and visual understanding of the model.

Textual prompt engineering in VLMs. By scaling the training data, VLMs can learn and understand
diverse visual concepts, which can then be transferred to downstream tasks through specific textual label
prompting (Radford et al., 2021; Jia et al., 2021; Yuan et al., 2021; Li & Liang, 2021; Singh et al., 2022;
Zhou et al., 2022; Shu et al., 2022; Cui et al., 2025). The LLM-integrated textual description generation
shows a great generalization ability comparing with existing prompt-learning methods, which often overfit to
training data (Li et al., 2022b; Wang et al., 2022; Wu et al., 2023; Tanwisuth et al., 2023). CLIP (Radford
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et al., 2021) achieves zero-shot classification by generating classification weights through encoding textual
descriptions that uses CLIP template and categories via its text encoder. It then compares these text
embeddings with image features extracted by the image encoder to determine the most likely class. Zhou
et al. (2022) discover that manually prompt tuning is a time-consuming task and propose CoOp, which
models context words with continuous vectors. Subsequently, Menon & Vondrick (2023); Pratt et al. (2023)
automatically generates textual category-specific descriptions by leveraging LLMs with different prompt
templates. These textual descriptions can accurately reflect visual features of images in each category. More
recently, retrieval-augmented generation (RAG) is proposed to help to generate accurate descriptions of
categories, which is a training-free framework that can be directly integrated during inference time (Yu
et al., 2024; Chan et al., 2024; Guo et al., 2024). It retrieves semantically relevant documents by computing
embedding vector similarity and provides the retrieved information as supplementary context to LLMs,
enabling more accurate and informed responses.

Fine-grained visual-text alignment. Weighted visual-text cross alignment (WCA) (Li et al., 2024) has
done empirical observation on the embedding alignment between visual patches and textual descriptions. It
uses random crops to augment image samples and utilizes cosine similarity to extract informative patches.
Similarly, it utilizes distinctive textual descriptions from LLM to cross-align with the image patches. There
are uncertainties when cropping samples randomly, and the textual descriptions are not corresponding to
fine-grained image patches. AttrVR (Cai et al., 2025) uses descriptive and distinctive attributes of each
categories from LLM outputs. In our method, we augment the textual descriptions by integrating various
description generation methods to further select the high-quality textual descriptions.

3 Preliminary

CLIP Zero-shot Classification. CLIP (Radford et al., 2021) is a pre-trained VLM that consists of a
text encoder ftxt : T → Z and an image encoder fimg : X → Z, where T is a discrete text space, X is a
continuous image space and Z ⊆ Rn is a shared n-dimensional embedding space. These encoders take an
image X ∈ X and a text T ∈ T as input pair (X, T ), mapping them into the shared latent space Z. Then
the similarity score between the image and text embedding is calculated as:

simCLIP(X, T ) = cos(Zi, Zt)/τ, with Zi = fimg(X), and Zt = ftxt(T ),

where cos(·, ·) denotes the cosine similarity such that cos(Zi, Zt) = Zi·Zt

∥Zi∥∥Zt∥ and τ is a temperature parameter.

For downstream classification tasks, the text encoder of CLIP model receives a label prompt string T̂y (e.g.,
“This is a photo of a/an [y]”), where y ∈ Y. Subsequently, CLIP model predicts the label which maximizes
the probability of pCLIP(Y | X), given by:

arg max
y∈Y

pCLIP(Y = y | X) =
exp

(
simCLIP(X, T̂y)

)∑
y′∈Y exp

(
simCLIP(X, T̂y′)

) .

Here, the label y that maximizes the conditional probability pCLIP(Y = y | X) will be chosen, where the
visual and textual representations exhibit the highest similarity within the embedding space Z. This enables
zero-shot classification capability on CLIP model, as it can generalize to unseen categories without additional
fine-tuning.

Weighted Cross-Alignment (WCA). WCA is a scoring method specifically designed to improve the
visual-text cross-alignment capability of the CLIP model (Li et al., 2024). First, an original image X = x is
randomly cropped with a window size ranging from [α, β] ∈ [0, 1] for n times. It obtain n cropped image
patches denote as Ii = rnd_crop(x), i ∈ [0, n], where rnd_crop(·) is the random cropping function that
obtains localized visual features (Li et al., 2024). On the other hand, WCA would prepare m textual
descriptions T1, T2, . . . , Tm generated by LLMs, which encompass descriptive features of each category y ∈ Y .
The textual descriptions are collected by leveraging a LLM with manually crafted prompt templates, such as
“Describe what a/an category looks like." (Pratt et al., 2023). Then the visual-text similarity score matrix
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Figure 3: An Overview of BiFTA. To reduce potential redundancy in views and descriptions, the randomly
cropped views undergo filtering with the IoU filter (Section 4.1), while the randomly sampled description
texts are processed using the CoS filter (Section 4.2) when computing the similarity between a single image
and a single label. The similarity score is then calculated on the refined views and descriptions.

can be presented as: simCLIP(I1, T1) · · · simCLIP(I1, Tm)
...

. . .
...

simCLIP(In, T1) · · · simCLIP(In, Tm)

 ,

where simCLIP(Ii, Tj) represents the similarity scores between a specific textual description Tj and an image
patches Ii. When applying WCA, the overall similarity score between image x and label y is as follows:

simWCA(X = x, Y = y) =
n∑

i=1

m∑
j=1

wivj simCLIP(Ii, Tj), (1)

where wi and vj are weights for image patch Ii and textual description Tj , respectively. They are obtained
from the similarity between Ii and the original image x, or Tj and the label prompt string T̂y, i.e., wi =
softmax

(
cos(fimg(x), fimg(Ii))

)
and vj = softmax

(
cos(ftxt(T̂y), ftxt(Tj))

)
. WCA effectively aligns visual-text

pairs with aforementioned weights (Li et al., 2024). However, redundant information may appear in image
patches and textual descriptions, leading to the weaknesses shown in Figure 1.

4 BiFTA: View Refinement and Description Refinement

The BiFTA framework seeks to eliminate redundant information from two primary perspectives: (1) VR
(Section 4.1), which removes overlapping image patches based on IoU scores; and (2) DR (Section 4.2), which
integrates multiple methods for generating fine-grained textual descriptions and filters semantically similar
embeddings using cosine similarity scores. An overview of BiFTA is illustrated in Figure 3. Our approach
integrates efficient data filtering and refinement techniques to refine cross-aligned image-text pairs, ultimately
enhancing the quality and accuracy of image classification. Furthermore, in Section 4.4, we formalize the
concept of Redundant Views/Descriptions and BiFTA-deduplicated set.

4.1 View Refinement

As shown in Section 3, in WCA, for a single image x, a set of randomly cropped image patches V =
{I1, I2, . . . , In} is created for subsequent cross-alignment. However, as illustrated in Figure 1, the random
cropping method frequently selects the same region or adjacent regions for cropping, which could affect the
classification results. Therefore, without changing the size of the set |V |, we make |V | into a queue to store
all the image patches. Then we employ a filtering function fIoU(·) to ensure that each newly cropped image
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patch added to the current V does not have excessive overlap areas with the existing images in current queue.
For a newly cropped image Ii = rnd_crop(x), the filtering function can be expressed as:

fIoU(Ii, V ) =
{

1 ∀I ∈ V, IoU(I, Ii) < 1− δ
0 ∃I ∈ V, IoU(I, Ii) ≥ 1− δ

, (2)

where IoU(·) is the Jaccard index1 (i.e., intersection over union) between two image patches, and 1− δ is a
hyperparameter representing the IoU threshold detailed in Section 5. When fIoU(Ii, V ) = 0, the view set V
remains unchanged. However, if fIoU(Ii, V ) = 1, V will be appended with the new view Ii, i.e., V ← V ∪{Ii}.
Thus, by maintaining the size of V consistent with WCA, our method effectively introduces a greater number
of semantically independent views.

4.2 Description Refinement

In previous works, CuPL (Pratt et al., 2023) used label-integrated prompt templates such as “Describe what
a/an [label] looks like” to obtain various appearance descriptions of different classes. Meanwhile, AttrVR
(Cai et al., 2025) employs prompts like “Describe the appearance of [task] [label]” to obtain DesAttr (which
describes intra-class features) and DistAttr (which distinguishes inter-class features). Both methods involve
manual filtering to remove noise from low-quality generations. As they are built upon LLM-based generation
with carefully designed templates, the resulting textual descriptions are semantically aligned and comparable
in granularity instead of heterogeneous. Accordingly, we initiate the DR process by taking the union of the
two description sets produced by CuPL and AttrVR, treating it as a form of data augmentation. For a
given label y, let us denote the three sets of descriptions as T CuPL(y), T Des(y), T Dist(y), respectively. We can
then formulate the equation as:

T CuPL(y) = fLLM(y|[cupl_prompt]), T Des(y) = fLLM(y|[des_prompt]), T Dist(y) = fLLM(y|[dist_prompt]),

where fLLM(·) returns the LLM output given queries, and cupl_prompt, des_prompt, dist_prompt are
aforementioned prompts used by these methods.

Similar to the VR, in order to alleviate the redundancy when obtaining description set D = {T1, T2, . . . , Tm},
we also employ a filtering function fCoS(·, ·) during random sampling. When sampling text Ti ∈ T CuPL(y) ∪
T Des(y) ∪ T Dist(y), the filter function fCoS(Ti, D)–which determines whether new sampled Ti should be
included in current set D–can be represented as fCoS(Ti, D) = fCS(Ti, D) · fTopK(Ti, D), which consists of a
filter fCS(·, ·) that removes similar descriptions:

fCS(Ti, D) =
{

1 ∀T ∈ D, cos
(
ftxt(T ), ftxt(Ti)

)
< 1− ϵ

0 ∃T ∈ D, cos
(
ftxt(T ), ftxt(Ti)

)
≥ 1− ϵ

,

and another filter fTopK(·, ·) for eliminating noisy or irrelevant descriptions:

fTopK(Ti, D) =
{

1 Ti ∈ Top-k
(
cos(ftxt(T̂y), ftxt(T )) | T ∈ D

)
0 Ti /∈ Top-k

(
cos(ftxt(T̂y), ftxt(T )) | T ∈ D

) ,

where ϵ is a hyperparameter representing the threshold, Top-k(·) returns the set of variable T s corresponding
to the top k function values, and T̂y is the label prompt string (e.g. “This is a photo of a/an [label]”).

The use of fCS(·, ·) ensures that the selected description set contains as little repetitive or redundant textual
content as possible. The use of fTopK(·, ·) minimizes the presence of distracting descriptions in the candidate
description set (e.g., noisy text generated by an LLM). When fCoS(Ti, D) = 0, the description set D remains
unchanged. However, if fCoS(Ti, D) = 1, D will be appended with the new description Ti, i.e., D ← D ∪ {Ti}.

In conclusion, DR first forms a unified description pool by combining two high-quality description sets, then
removes duplicate pairs and only keeps the top-k semantically matching pieces into our description pool.
As a result, the textual descriptions become more diverse under fixed set size |D|, improving the effective
utilization of informative descriptions.

1https://en.wikipedia.org/wiki/Jaccard_index
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4.3 Overall Pipeline

The overall pipeline of BiFTA is illustrated in Figure 3. From the Image Flow illustrated in the figure, BiFTA
performs VR to the randomly cropped image patches. Each patch is stored in a fixed size queue V , while
each image patch is filtered using the IoU filter fIoU, as defined in Eq. 2. From the Text Flow illustrated on
the other side of the figure, BiFTA conducts DR on a set of textual descriptions. The candidate texts are
first filtered by the CoS filter fCoS and then ranked according to their top-k similarity scores with the label
prompt. Finally, the similarity between the refined views and descriptions is computed using Eq. 1 to yield
the final prediction. The detailed algorithm is provided in Appendix A.

4.4 Concept Formalization

In this section, we formally define the concept of Redundant Views/Descriptions in Definition 1 and the
Deduplicated Set in Definition 2.

Definition 1. (Redundant Views/Descriptions). Assuming Ii and Ij are two views of image x, if IoU(Ii, Ij) ≥
1 − δ, where 1 − δ is the IoU threshold, then Ii and Ij are considered to have significant overlap and are
regarded as redundant views of each other. Similarly, for textual descriptions Tp and Tq associated with label
y, if

cos
(
ftxt(Tp), ftxt(Tq)

)
≥ 1− ϵ,

where 1− ϵ is the cosine similarity threshold, then the two descriptions are considered nearly identical and
thus mutually redundant.

Definition 2. (BiFTA-Deduplicated Set). Given a set of views V = {I1, I2, . . . , In} of size n, V is a
deduplicated view set if and only if

∀ Ii, Ij ∈ V, IoU(Ii, Ij) < 1− δ.

Similarly, for a set of textual descriptions D = {T1, T2, . . . , Tm} containing m elements, D is a deduplicated
description set if and only if

∀Tp, Tq ∈ D, cos
(
ftxt(Tp), ftxt(Tq)

)
< 1− ϵ.

Through Definition 2 and Sections 4.1–4.3, we conclude that the view and description sets used by BiFTA
satisfy the deduplicated set constraints. In contrast, the view and description sets employed by WCA do not
meet these constraints, as no explicit deduplication is enforced during random image cropping or description
sampling.

5 Experiment

First, we outline the complete experimental settings in Section 5.1. In summary, we evaluate the refinement
performance of BiFTA through extensive experiments on 6 benchmark datasets and 5 different backbone
architectures of the CLIP model. To further demonstrate the generalizability of our framework, we additionally
conduct experiments on other VLM architectures in Appendix B, including ALIGN (Jia et al., 2021),
AltLIP (Chen et al., 2022), GroupViT (Xu et al., 2022), and SigLIP (Zhai et al., 2023), which suggest that
BiFTA consistently improves cross-alignment methods. In Section 5.2, we primarily present the zero-shot
classification performance of the CLIP model with a ViT-B/32 backbone across 6 downstream tasks. The
rest experimental results for other CLIP backbones are provided in Tables 11-13 in Appendix B. In Section
5.3, we conduct ablation studies to validate the design principles of VR and DR. For completeness, we further
explore alternative refinement strategies in Appendix E. Finally, the limitations of our work are discussed in
Appendix G.
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Table 1: Zero-shot classification accuracy (%) across various baseline methods with the pre-trained CLIP
model (ViT-B/32). We report the averaged results and standard deviations σ of 20 runs, with the improvement
∆(%) over the top-performing baseline WCA highlighted in green. The results of our method are highlighted
and we use bold to represent the best-performing method.

Method ImageNet CUB Oxford Pets DTD Food101 Place365
CLIP 62.05 51.21 85.04 42.93 82.60 38.51

CLIP-E 63.37 52.74 87.38 43.83 83.93 39.28
CLIP-D 63.01 52.69 84.46 44.20 84.12 39.90
Waffle 63.30 52.04 85.50 42.98 83.98 39.47
CuPL 64.37 49.76 87.03 47.50 84.20 39.08
WCA 66.49 56.74 89.05 49.89 86.11 40.55

BiFTA (ours) 66.83±0.04 58.24±0.17 89.74±0.14 53.22±0.26 86.43±0.06 41.55±0.06
∆ +0.34 +1.50 +0.69 +3.33 +0.32 +1.00

5.1 Experimental Settings

Datasets. To evaluate BiFTA, we conduct experiments on 6 downstream classification tasks under a zero-shot
setting, including: (1) ImageNet (Deng et al., 2009), a large-scale dataset comprising 1,000 diverse object
classes; (2) CUB (Welinder et al., 2010), a fine-grained dataset of 200 bird species, focusing on subtle visual
distinctions; (3) Oxford Pets (Parkhi et al., 2012), a dataset of 37 pet categories; (4) DTD (Cimpoi et al.,
2014), a texture dataset containing 47 categories of materials and surfaces; (5) Food101 (Bossard et al.,
2014), a dataset of 101 food categories; and (6) Place365 (Zhou et al., 2017), a scene recognition dataset with
365 categories of indoor and outdoor environments. These datasets span a wide range of categories, which
encompass various visual domains such as scenes, textures, food, animals and fine-grained objects. Thus, the
evaluation ensures the robustness and generalizability of BiFTA across various real-world applications.

Baselines. We evaluate the performance of BiFTA by comparing it with 6 competitive baselines on zero-shot
classification: (1) CLIP (Radford et al., 2021), a naive approach that incorporates a manually crafted label
prompt; (2) Ensemble CLIP (CLIP-E) (Radford et al., 2021), an advance approach that incorporates a series
of label prompts; (3) CLIP-D (Menon & Vondrick, 2023), an approach that utilizes category descriptions
generated by a LLM instead of label prompting approach; (4) Waffle (Roth et al., 2023), a novel approach
that replaces LLM-generated category descriptions with random word descriptions; (5) CuPL (Pratt et al.,
2023), a method that leverages LLM and improves the quality and variety of textual descriptions compared
with CLIP-D; (6) WCA (Li et al., 2024), a recently proposed method that computes cross-alignment scores
between localized image patches and fine-grained textual descriptions.

Implementation Details. We primarily use the pre-trained CLIP model for main experiments, including
both Vision Transformer (ViT) and ResNet backbone architectures, specifically ViT-B/32, ViT-B/16, ViT-
L/14, RN-50 and RN-101. These architectures are selected to enable a thorough analysis of the proposed
method across varying scales and complexities. We keep the shared hyperparameters consistent with the
settings in WCA (Li et al., 2024): we use n = 60 for the patch queue length |V | and m = 50 for the number
of textual descriptions per category. We keep the cropping window size consistent with WCA, ranging from
[αlow, βhigh], where αlow = 0.5 and βhigh = 0.9 across all experiments. Additionally, we store the embeddings
of localized image patches during the initial execution (Li et al., 2024), which allows them to be reused when
evaluating different sets of textual descriptions, thereby significantly reducing computational costs.

5.2 Zero-shot Classification Results

Tables 1 to 2 present the zero-shot classification results across six downstream tasks, with each table
corresponding to a different CLIP backbone architecture.

In Table 1, the classification performance of CLIP (B/32) underscores the consistent superiority of BiFTA over
all baselines. In specific, BiFTA achieves a 3.33% improvement in accuracy over the WCA scoring method
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Table 2: Zero-shot classification accuracy (%) across various baseline methods with the pre-trained CLIP
model (ViT-L/14). We report the averaged results and standard deviations σ of 20 runs, with the improvement
∆(%) over the top-performing baseline WCA highlighted in green. The results of our method are highlighted
and we use bold to represent the best-performing method.

Method ImageNet CUB Oxford Pets DTD Food101 Place365
CLIP 73.48 62.12 93.24 52.61 92.55 39.63

CLIP-E 75.52 62.53 93.62 55.43 93.07 40.55
CLIP-D 75.03 63.26 93.30 55.05 93.03 40.55
Waffle 75.31 62.27 91.55 54.31 93.33 40.89
CuPL 76.62 62.15 94.33 60.59 93.37 40.77
WCA 77.32 65.12 94.67 61.74 93.93 42.19

BiFTA (ours) 77.82±0.04 65.67±0.13 94.96±0.10 62.45±0.26 93.97±0.04 42.98±0.05
∆ +0.50 +0.55 +0.29 +0.71 +0.04 +0.79

Table 3: The average Zero-shot classification accuracy (%) over five different CLIP backbones across all
downstream benchmarks. Improvements are shown in green.

Dataset WCA BiFTA ∆

ImageNet 68.10 68.91 +0.81
CUB 55.31 56.05 +0.74
Oxford Pets 90.34 90.38 +0.04
DTD 52.77 54.52 +1.75
Food101 87.04 87.18 +0.14
Place365 40.22 41.15 +0.93

Table 4: Average classification accuracy (%) across various baseline methods with different CLIP models.
The improvements ∆(%) over the top-performing baseline (i.e., WCA) are highlighted in green. We use
bold to represent the best-performing method and underlined to represent the second-best method.

Model Architecture CLIP CLIP-E CLIP-D Waffle CuPL WCA BiFTA
(ours) ∆

ViT-B/32 60.39 61.76 61.40 61.21 62.16 64.81 66.00 +1.19
ViT-B/16 63.59 64.51 64.67 64.34 66.09 67.87 68.29 +0.42
ViT-L/14 68.94 70.12 69.87 69.61 71.31 72.50 72.98 +0.48

RN-50 56.97 58.64 58.39 57.92 60.01 62.00 62.54 +0.54
RN-101 59.14 60.50 59.22 58.89 59.04 61.14 62.03 +0.89

Table 5: Comparison of Top-1 accuracy (%) across alternative VLM architectures under zero-shot classification
setting. All models are evaluated on the ImageNet-1K benchmark.

VLMs Vanilla Vanilla_E Vanilla_D Waffle CuPL WCA BiFTA

ALIGN 65.24 65.79 65.08 65.22 66.24 66.61 67.15
AltLIP 73.79 74.86 74.48 74.29 75.74 76.20 76.88

GroupViT 37.11 42.72 40.10 40.42 44.53 45.27 45.31
SigLIP 76.18 76.22 76.51 76.10 77.04 77.40 77.74
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Sample Views of

Ours (w/ IoU Filter)

Sample Views of

WCA

Sample Descriptions of Ours (w/ CoS Filter)

Sample Descriptions of WCA

• Geese are waterfowl with long necks and webbed 

feet.

• A goose is a large bird with a long necks and 

webbed feet.

• A goose is a waterfowl with a long necks and 

webbed feet. 

• The object goose is a medium-sized bird with a 

plump, elongated body.

• Geese are waterfowl with long necks and webbed 

feet.

• The object goose is a bird that typically has a long, 

slender body covered in feathers.

Figure 4: A visualization comparing the effectiveness of VR and DR in BiFTA against WCA. Left: with an
IoU filter, the cropped samples exhibit diverse and distinctive localized features. Right: with a CoS filter,
the texts can describe various local features of a category.

on the DTD dataset, which consists of diverse texture patterns. This improvement stems from the inherent
challenge of the dataset: textual patterns in DTD are often homogeneous, where random cropping strategy
tends to produce semantically similar regions. In BiFTA, VR systematically eliminates redundant image
patches through the IoU filter function. The image patch queue V is thereby maintained as a deduplicated
set consisting of semantically independent candidates. In Eq. 1, each selected image patch is assigned a
corresponding visual weight wi. This weight factor ensures that discriminative visual features dominate the
computation of the cross-alignment score, thereby enhancing the model’s robustness against repetitive patterns
such as the textures in DTD dataset. The text weight factor vj follows analogously, where it highlights
semantically distinctive textual descriptions. In Table 2, we observe that BiFTA consistently outperforms all
baseline methods when evaluated with a large-scale backbone (ViT-L/14). Notably, it achieves a (+0.50%)
improvement on ImageNet, which is a significant gain for such a high-capacity model. Notably, BiFTA yields
only marginal improvements on large-scale datasets, such as the +0.04% gain reported in Table 2. The results
obtained with the other CLIP backbones and alternative VLM architectures are reported in Appendix B. To
provide a more holistic assessment of model performance, we further report results averaged over five different
CLIP backbones across all downstream benchmarks in Table 3. While the average improvements over WCA
on certain large-scale datasets remain modest (e.g., +0.04% on Oxford Pets and +0.14% on Food101), prior
work has shown that large-scale, high-diversity benchmarks tend to saturate more quickly than smaller or
more homogeneous datasets (e.g., DTD or CUB) so that making incremental performance gains less visually
prominent (Menon & Vondrick, 2023; Roth et al., 2023). Overall, the averaged results indicate that our
method consistently outperforms the baseline across diverse downstream benchmarks. In Table 4, we report
the performance of each CLIP backbone averaged over all evaluated benchmarks to provide a complementary
view of the results. In specific, BiFTA achieves an average improvement of 0.42% to 1.19% across different
CLIP backbones compared to WCA. BiFTA exhibits similar trend observed in original WCA that smaller
backbone models (e.g., ViT-B/32) exhibit more significant improvements (+1.19%) comparing with their
larger counterparts (e.g., ViT-L/14), (+0.48%). This trend highlights BiFTA’s ability to greater enhance
weaker backbone representations, leading to relatively larger gains on smaller models.

In Table 5, we report a supplementary experiment that evaluates the performance of BiFTA under alternative
VLM architectures. This consistency underscores the adaptability and effectiveness of our refinement method
when applied to a diverse range of VLMs. For ease of distinguishing VLM names from method names, we
denote CLIP and its two variants (CLIP-E and CLIP-D) as Vanilla, Vanilla_E, and Vanilla_D in Table 5.
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Figure 5: Left: Accuracy of using alternative IoU thresholds on DTD dataset with CLIP (B/32). Right:
Accuracy of changing the size of |V | on DTD dataset with CLIP (B/32).
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Figure 6: Comparing VR with different description sets and strategies on BiFTA. The results are averaged
across 3 image encoder backbones of the CLIP model, where ‘mix’ is the strategy BiFTA finally utilized for
VR.

For a clearer visual comparison, Figure 4 illustrates the differences between BiFTA and WCA. On the left,
given an image of a goose, BiFTA successfully filters out semantically independent regions (e.g., head, wings,
neck, and fur), whereas WCA usually produces overlapping image patches (e.g., repeated neck regions or
background noise) so that ignores valuable features. This highlights how VR mitigates feature redundancy
through IoU-guided filtering. On the right, text samples describing a goose are presented. Descriptions
refined by the CoS Filter are notably more diverse and distinctive: semantically meaningful prompts such as
“plump, elongated body” and “a long, slender body” are preserved, while redundant phrases like “long necks
and webbed feet” are pruned. This demonstrates the effectiveness of DR in promoting semantic diversity
among textual inputs.

5.3 Hyperparameter Analysis and Ablation Studies

VR hyperparameter tuning. Figure 5 illustrates the impact of varying hyperparameter values on
downstream performance: IoU threshold η = 1 − δ and patch queue length N = |V |. On the left, the
classification accuracy varies as the η changes, with accuracy gradually rising and then dropping as η increases,
which suggest that a moderate η is needed to achieve an optimal performance. In practice, a lower η will result
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Table 6: Ablation study on the DR hyperparameters: cosine threshold ϵ and Top-k selection using ViT-B/32
on ImageNet-1K.

(ϵ, k) w/ DR Acc. (%)

(0.90, 10) 65.02±0.07
(0.95, 20) 66.45±0.04
(0.99, 30) 66.70±0.04
(0.99, 40) 66.84±0.05
(0.99, 50) 66.83±0.04

in a critic cut-off to the cropped image patches, which often results in the deduplicated queue V containing
an insufficient number of samples. To simply address this limitation, we re-sample from the existing queue
until N samples are obtained. However, this procedure inevitably introduces redundant patches into V ,
thereby violating the principle of maintaining a deduplicated set. As shown in the left panel of Figure 5,
this trend further indicates that redundant information can adversely affect downstream task performance.
Notably, VR becomes ineffective as η approaches 1 due to the overly loose restriction on the cut-off. The
performance exhibits a decreasing trend once IoU exceeds 0.80, which is expected since the views are no
longer effectively constrained by our VR. The right panel of Figure 5 shows that increasing the queue length
N has a consistently positive impact on classification accuracy, whereas the increasing trend reaches a plateau
at N = 60. For consistency, we set η = 0.80 and N = 60 across all experiments.

DR hyperparameter tuning. We conduct an ablation study on the cosine similarity threshold ϵ and
the Top-k selection strategy used in DR. Using the ViT-B/32 CLIP model on ImageNet-1K, we evaluate
zero-shot performance under different combinations of (ϵ, k) pairs. Rather than varying a single parameter
independently, we consider (ϵ, k) pairs, as a strict cosine threshold alone may leave an insufficient number
of textual descriptions in the pool. For all main experiments, we adopt (ϵ = 0.99, k = 50), as specified in
Section 5.1. In Table 6, the ablation results show that retaining a larger number of textual descriptions generally
leads to improved performance, underscoring the importance of preserving sufficient semantic diversity. In
contrast, overly restrictive cosine thresholds discard a substantial portion of candidate descriptions, resulting
in reduced diversity and degraded performance. Overall, the setting (ϵ = 0.99, k = 50) provides a favorable
balance between diversity and redundancy, which yields stable and strong performance across benchmarks.

Ablation studies of alternative DR strategies. Figure 6 presents the ablation results of using different
sets of textual descriptions. These descriptions are generated by LLMs with various prompt template designs,
as introduced in Section 4.2. Among all settings, only the mixed description set from our DR demonstrates
consistently superior performance across most downstream tasks, with results averaged over three CLIP
backbones: ViT-B/32, ViT-B/16, and ViT-L/14. The dashed line indicates the average performance of
WCA, which is the strongest baseline method. Relatively, BiFTA achieves varying degrees of improvement
depending on the description set. Notably, descriptions generated with RAG-prompt templates perform
unsatisfactorily compared with other sets, and details of their implementation are provided in Appendix C.
We provide more ablation results of using different sets of textual descriptions in Appendix D. In addition,
CuPL is equivalent to applying only the VR component of BiFTA, we also provide quantitative result in
Table 7. This suggests that even refining a single modality (the visual side) is sufficient to improve zero-shot
image classification performance.

Ablation studies of BiFTA w/o VR and DR. We also compare the experimental results of the WCA
scoring method with a complete version of BiFTA and partial BiFTA in Table 7. We demonstrate that
applying BiFTA refinement to a single modality is sufficient to improve cross-alignment performance. For
ImageNet and Food101 datasets, the models often exhibit better performance with BiFTA w/o DR, which
indicates our merged description set might not be an optimal description set. Overall, BiFTA with dual
refinements achieves the highest average improvement across all three CLIP backbones, as shown in Table 7.
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Table 7: Ablation studies of comparing the performance of WCA and BiFTA between single modality
refinement (w/o VR and w/o DR) and full refinements, using CLIP models (B/32, B/16 and L/14). VR:
View Refinement; DR: Description Refinement. The best result for a single dataset across each model is
underlined, and the best averaged results (%) are highlighted in bold.

Methods ImageNet CUB Oxford
Pets DTD Food101 Place365 Avg.

B/32

WCA 66.49 56.74 89.05 49.89 86.11 40.55 64.81
BiFTA (w/o VR) 66.51 58.11 88.56 51.27 86.41 41.80 65.44
BiFTA (w/o DR) 66.77 56.94 89.17 50.51 87.46 40.85 65.28

BiFTA (ours) 66.83 58.24 89.74 53.22 86.43 41.55 66.00

B/16

WCA 71.05 59.87 92.13 52.87 89.99 41.33 67.87
BiFTA (w/o VR) 70.67 59.36 90.58 51.36 90.20 42.23 67.40
BiFTA (w/o DR) 71.10 59.91 91.83 53.56 90.38 42.11 68.15

BiFTA (ours) 71.14 60.06 91.67 54.64 90.11 42.12 68.29

L/14

WCA 77.32 65.12 94.67 61.74 93.93 42.19 72.50
BiFTA (w/o VR) 77.14 65.46 94.63 62.09 93.94 42.51 72.63
BiFTA (w/o DR) 77.89 65.56 94.78 62.17 94.04 42.58 72.84

BiFTA (ours) 77.82 65.67 94.96 62.45 93.97 42.98 72.98

Table 8: Performance comparison among two alternative View Refinement (VR) strategies.

VR ImageNet CUB Oxford Pets DTD Food101 Place365 Avg.
fIoU 66.77 56.94 89.17 50.51 87.46 40.85 65.28

fCLIP 66.93 55.41 88.48 52.10 88.21 40.94 65.35

Table 9: Performance comparison among two alternative Description Refinement (DR) strategies.

DR ImageNet CUB Oxford Pets DTD Food101 Place365 Avg.
fTF−IDF 66.38 58.05 88.74 51.25 86.19 42.14 65.46

fCS 66.51 58.11 88.56 51.27 86.41 41.80 65.44

fCLIP(Ii, V ) =
{

1 ∀I ∈ V, cos
(
fimg(I), fimg(Ii)

)
< 1− ϵ

0 ∃I ∈ V, cos
(
fimg(I), fimg(Ii)

)
≥ 1− ϵ

,

fTF-IDF(Ti, D) =
{

1 ∀T ∈ D, cos
(
femb(T ), femb(Ti)

)
< 1− ϵ

0 ∃T ∈ D, cos
(
femb(T ), femb(Ti)

)
≥ 1− ϵ

,

Exploring Alternative Refinement Strategies. Table 8 - 9 illustrate the result of the downstream tasks
by utilizing alternative VR/DR strategies. For alternative VR strategies, we first attempt to directly use the
image encoder of the CLIP model fimg to obtain the embeddings of each image patch. Then we incorporate
the same cosine similarity function to remove redundant image patches, as shown in Eq. 3. As a result,
fCLIP offers slight improvements in zero-shot classification on downstream tasks. However, computing image
patch embeddings is highly computationally intensive, since each sample must be divided into N patches.
To make our framework practical, data refinement procedure should be designed in a lightweight manner
that minimizes additional computational overhead. In contrast, fIoU achieves a favorable balance between
efficiency and performance. We additionally explore an alternative VR strategy based on grid cropping
instead of random cropping in Appendix E, which is a more computational efficient approach.

For alternative DR strategies, we leverage TF-IDF to encode the text descriptions into text embeddings (Jones,
2004), denoted as femb. Then, we incorporate femb into a compositional function fTF-IDF to eliminate duplicate

13



Under review as submission to TMLR

Table 10: Runtime time of WCA and BiFTA.

Execution per image Time

Generate and encode 100 crops 226.08 ms ± 10.07 ms
IoU filtering 20.61 ms ± 7.77 ms

Total time 246.69 ms ± 14.10 ms

text descriptions, as shown in Eq. 3. Similar to the proposed fCoS in Section 4.2, we obtain the final filtering
function f(Ti, D) = fTF-IDF(Ti, D) ·fTopK(Ti, D). The results indicate that the two DR strategies yield nearly
identical performance. Nevertheless, both consistently outperform the baselines. The core of DR lies in
leveraging the fTopK function to select the most semantically relevant descriptions to the label prompt after
an initial filtering step with either fCS or fTF-IDF. Overall, lightweight yet principled refinement strategies
are sufficient to yield competitive gains without incurring excessive computational overhead.

5.4 Runtime Comparison

BiFTA introduces only minor offline preprocessing costs and no additional inference-time overhead. First,
VR adds an IoU-based filtering step to the random-crop procedure, incurring an average of 20.61 ms per
image compared to 226.08 ms for crop generation and encoding, as shown in Table 10. The patch embeddings
are cached and reused during subsequent inference (Li et al., 2024). Then, DR is performed entirely offline
via cosine-similarity filtering and Top-k selection, requiring only an average of 42.36±8.65 ms per category.
Overall, both VR and DR introduce only minor, one-time offline preprocessing costs, and BiFTA incurs no
additional inference-time overhead compared to WCA.

6 Conclusion

In this work, we identified a critical limitation in existing fine-grained visual-text alignment methods: the
presence of redundant information in both localized image patches and LLM-generated textual descriptions.
To address this, we propose BiFTA, a novel framework that introduces two key innovations: (1) VR via
IoU-based filtering to eliminate spatially overlapping image patches, and (2) DR through cosine similarity
thresholding to remove semantically redundant textual descriptions. Our experiments across 6 benchmark
datasets demonstrate that BiFTA consistently outperforms state-of-the-art methods in zero-shot classification
accuracy over the previous methods. The ablation studies validate the necessity of both components: IoU
filtering ensures diverse visual features, while cosine-based text pruning enhances semantic specificity. Owing
to its flexible design, BiFTA naturally supports both single-modality and dual-modality refinement, and can
be readily applied to broader prompt-learning frameworks beyond WCA. Importantly, the refinement process
is decoupled from downstream methodologies, which enables broad applicability across diverse tasks and
settings.
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A Appendix 1: Additional Algorithms for the BiFTA Implementation

Algorithm 1 Zero-Shot Classification Pipeline of BiFTA
1: Input Query image I0 ∈ RH×W ×3; labels y ∈ Y; hyperparameters: a patch queue Q, crop count N ,

textual description count M , a label prompt T̂y, and pre-trained CLIP model with encoders fimg(·)
(image) and ftxt(·) (text).

2: Initialize Q← [I1] by Eq. 2
# Step 1: View Refinement

3: for i = 2 to N do
4: Generate Ii by Eq. 2
5: Check Is_Redundant(Ii) by Algo. 2
6: Is_Redundant(Ii) == false, Q.push(Ii)
7: Compute wi = softmax(cos(fimg(I0), fimg(Ii)))
8: end for

# Step 2: Description Refinement
9: for y ∈ Y do

10: Obtain T y = {Tj}J
j=1 where J > M

11: Remove Tj ∈ T y based on Algo. 3
12: Obtain T̃ y ⊆ T y from Line (11)
13: Initialize T̂y

14: Select top-M T s by arg maxT ∈T̃ y cos(ftxt(T ), ftxt(T̂y))
15: Compute vj for all {Tj}M

j=1 via vj = softmax(cos(ftxt(T̂y), ftxt(Tj))
16: Compute simy

WCA via Eq. 1
17: end for
18: Output y∗ = arg maxy∈Y simy

WCA

Algorithm 2 Implementation of Redundant Image Patch Filtering
1: Input: A patch queue Q contains all the previous saved image patches, a new cropped image patch Ii,

an IoU threshold η = 1− δ.
2: Initialize Is_Redundant == false
3: for k = 1 to |Q| do
4: Compute ηk = IoU(Ii, Q[k])
5: if ηk ≥ η then
6: Is_Redundant← true, break
7: end if
8: end for
9: Output: Is_Redundant

Algorithm 3 Implementation of Redundant Textual Description Filtering
1: Input: A set of textual descriptions of label y, T y = {Tj}J

j=1, where J is the number of descriptions in
the merged textual description set; τ = 1− ϵ is the tolerance for the duplicate texts, setting to 1.0, ftxt is
a text encoder.

2: for j = 1 to J − 1 do
3: for k = j + 1 to J do
4: Compute S = cos(ftxt(Tj), ftxt(Tk))
5: if S ≥ τ then
6: Remove Tk from T y

7: end if
8: end for
9: end for

10: Obtain T̃ y = T y

11: Output: T̃ y
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B Appendix 2: More Experimental Results

Table 11: Zero-shot classification accuracy (%) across various baseline methods with the pre-trained CLIP
model (ViT-B/16). We report the averaged results and standard deviations σ of 20 runs, with the improvement
∆(%) over the top-performing baseline WCA highlighted in green and red. The results of our method are
highlighted and we use bold to represent the best-performing method.

Method ImageNet CUB Oxford Pets DTD Food101 Place365
CLIP 66.74 56.01 88.14 42.98 88.40 39.27

CLIP-E 68.37 56.16 89.10 45.27 88.83 40.30
CLIP-D 68.04 57.08 87.52 46.17 88.85 40.34
Waffle 68.12 56.89 86.51 44.68 89.06 40.76
CuPL 69.61 56.42 91.14 50.53 88.98 39.83
WCA 71.05 59.87 92.13 52.87 89.99 41.33

BiFTA (ours) 71.14±0.04 60.06±0.15 91.67±0.11 54.64±0.16 90.11±0.05 42.12±0.04
∆ +0.09 +0.19 -0.46 +1.77 +0.12 +0.79

Table 12: Zero-shot classification accuracy (%) across various baseline methods with the ResNet-based CLIP
model (RN-50). We report the averaged results and standard deviations σ of 20 runs, with the improvement
∆(%) over the top-performing baseline WCA highlighted in green. The results of our method are highlighted
and we use bold to represent the best-performing method.

Method ImageNet CUB Oxford Pets DTD Food101 Place365
CLIP 58.15 45.67 83.65 38.67 78.62 37.04

CLIP-E 59.82 46.58 85.66 41.22 80.82 37.73
CLIP-D 59.62 47.76 83.70 42.23 79.92 37.13
Waffle 59.82 46.76 83.54 38.88 80.74 37.77
CuPL 61.43 47.91 87.05 47.39 80.50 37.78
WCA 62.82 50.16 88.40 49.45 81.25 38.91

BiFTA (ours) 63.54±0.06 50.43±0.17 88.74±0.12 51.41±0.22 81.39±0.09 39.70±0.06
∆ +0.72 +0.27 +0.34 +1.96 +0.14 +0.79

Table 13: Zero-shot classification accuracy (%) across various baseline methods with the ResNet-based CLIP
model (RN-101). We report the averaged results and standard deviations σ of 20 runs, with the improvement
∆(%) over the top-performing baseline WCA highlighted in green and red. The results of our method are
highlighted and we use bold to represent the best-performing method.

Method ImageNet CUB Oxford Pets DTD Food101 Place365
CLIP 61.26 49.34 84.96 40.05 82.44 36.77

CLIP-E 62.31 49.65 86.97 43.62 83.64 37.81
CLIP-D 60.65 50.29 82.53 42.82 83.25 35.75
Waffle 61.25 48.05 83.70 40.05 82.48 37.83
CuPL 61.43 42.85 87.63 43.83 82.74 35.77
WCA 62.82 44.64 87.43 49.91 83.92 38.11

BiFTA (ours) 65.24±0.05 45.86±0.12 86.81±0.15 50.87±0.23 84.02±0.05 39.40±0.06
∆ +2.42 +1.22 -0.62 +0.96 +0.10 +1.29

Tables 11 - 13 provide the results of utilizing alternative architectures of the CLIP backbone. The results
show that BiFTA consistently outperforms baselines on downstream tasks with the ResNet-based backbone
models, which evidently shows that our framework is able to generalize on various CLIP style models.
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C Appendix 3: RAG-based Text Generation

We further explore an alternative prompt design based on Retrieval-Augmented Generation (RAG) to enrich
textual descriptions with external knowledge. Specifically, we construct a knowledge database from a pre-
processed Wikipedia corpus2, which contains approximately 1.8 million documents. All documents are
truncated, tokenized, and encoded into embedding vectors using the text-embedding-ada-002 model, and
subsequently stored in the ChromaDB vector database for semantic retrieval.

Due to practical constraints, we utilize a subset of approximately 150k documents in our experiments, as
indexing the entire corpus would require prohibitively long preprocessing time. Given a query prompt,
documents are retrieved based on cosine similarity between the prompt embedding and document embeddings.
The retrieved documents are then concatenated with the prompt template and fed into a GPT model to
generate the final textual descriptions.

However, as shown in Figure 6, this RAG-based description generation strategy yields inferior performance
when applied to CLIP-based zero-shot classification. We attribute this behavior to two key factors. First,
Wikipedia articles typically contain long and diverse contextual information, while the retrieval queries are
short prompt templates, making cosine-similarity-based retrieval less effective at identifying visually relevant
content. Second, and more importantly, Wikipedia articles often focus on encyclopedic knowledge—such
as historical background, taxonomy, or cultural context—rather than fine-grained visual attributes that are
critical for visual discrimination. For instance, the Wikipedia entry for a Persian cat primarily discusses
breeding history and popularity, but provides limited information about localized visual characteristics.

These observations suggest that simply scaling the size of a generic Wikipedia-based database is unlikely
to substantially improve performance under the current retrieval and alignment framework. Instead, a
more promising direction lies in designing category-aware or attribute-centric RAG strategies that retrieve
documents explicitly aligned with patch-level visual semantics. We view such designs as an important avenue
for future work, which would require a systematic investigation of suitable external resources and retrieval
mechanisms tailored to visual recognition tasks.

D Appendix 4: Extra Ablation Studies

Table 14: The ablation study on α. This experiment is evaluated on the ImageNet dataset by leveraging
CLIP (B/32). We set the upper bound β to 0.9 and report the Top-1 Accuracy (%).

β = 0.9
α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
WCA 66.48±0.07 66.57±0.07 66.61±0.06 66.72±0.07 66.49±0.07 66.85±0.04 66.92±0.04 66.93±0.05
Ours 66.93±0.06 66.97±0.05 67.05±0.08 67.24±0.04 66.83±0.04 66.88±0.04 66.61±0.04 66.55±0.07

Table 15: The ablation study on β. This experiment is evaluated on the ImageNet dataset by leveraging
CLIP (B/32). We set the lower bound α to 0.5 and report the Top-1 Accuracy (%).

α = 0.5
β

0.6 0.7 0.8 0.9 1
WCA 61.77±0.06 63.21±0.05 64.45±0.05 66.49±0.07 66.06±0.08
Ours 64.40±0.07 65.46±0.07 65.91±0.05 66.83±0.04 66.73±0.08

Table 14 - 15 compare the Top-1 accuracy (%) of the WCA scoring method and BiFTA when varying the
cropping size lower bound α and upper bound β. In Table 14, the results reveal a significant performance gap
when the crop window range is large (e.g., [0.1, 0.9]). As α increases, image patches are cropped with larger

2https://huggingface.co/datasets/Salesforce/wikitext/viewer/wikitext-103-v1
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window sizes, which reduces the effectiveness of the view filtering under stricter IoU thresholds. In Table 15,
as β increases, there are more image patches with larger areas. We observe a consistent upward trend in
accuracy as β increases for both methods. The performance gap gets more pronounced when β is smaller.
For example, at β = 0.6, BiFTA achieves a 2.6% higher classification accuracy than WCA. This suggests that
when the cropping windows are smaller, redundant small patches have a more significant negative impact on
the weighted scores, whereas this issue is effectively addressed by integrating the VR introduced in BiFTA.

Based on Figure 6 in Section 5.3, we provide supplementary results for each backbone. Figures 7 to 9 present
the classification accuracy across all downstream tasks for 4 description sets. Each sub-figure represents the
results obtained from CLIP ViT-B/32, ViT-B/16 and ViT-L/14, respectively. In conclusion, the mixed set of
descriptions, combining the CuPL and AttrVR descriptions and filtering them based on CoS function and
top-k similarities, demonstrates superior performance compared to other description sets.
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Figure 7: Results of exploring textual description studies, using the results of CLIP (B/32). “RAG” computes
similarity using RAG-generated descriptions. “attrVR” uses both descriptive and distinctive texts to calculate
similarity. “CuPL” directly employs descriptions from the CuPL method. “mix” combines “attrVR” and
“CuPL” descriptions.
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Figure 8: Results of exploring textual description studies, using the results of CLIP (B/16).
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Figure 9: Results of exploring textual description studies, using the results of CLIP (L/14).
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E Appendix 5: Alternative VR strategy: Grid Crop

Table 16: Zero-shot classification performance of WCA with different grid-crop configurations using ViT-B/32
across multiple benchmarks.

WCA (ViT-B/32) CUB Food101 DTD Oxford Pets ImageNet Place365 Avg. acc.

Grid crop (3×3) 36.77±0.15 68.09±0.08 46.03±0.20 76.43±0.18 50.67±0.05 33.88±0.05 51.98
Grid crop (4×4) 29.18±0.20 57.21±0.11 43.48±0.28 66.60±0.36 43.89±0.05 31.88±0.07 45.37
Grid crop (5×5) 21.83±0.23 45.19±0.09 40.19±0.38 56.24±0.36 37.65±0.11 29.34±0.09 38.41

Table 17: Zero-shot classification performance of VR with different grid-crop configurations using ViT-B/32
across multiple benchmarks.

VR (ViT-B/32) CUB Food101 DTD Oxford Pets ImageNet Place365 Avg. acc.

Grid crop (3×3) 38.59±0.22 68.70±0.08 48.06±0.25 77.13±0.23 50.92±0.07 35.05±0.06 53.08
Grid crop (4×4) 31.65±0.27 57.88±0.08 44.86±0.25 67.73±0.25 44.17±0.08 33.01±0.06 46.55
Grid crop (5×5) 23.65±0.27 46.20±0.18 42.28±0.38 57.33±0.26 37.78±0.08 30.47±0.07 39.62

Compared to approaches that rely on CLIP embedding similarity for patch selection, grid cropping is more
computationally efficient, and the resulting cropped patches are inherently non-overlapping. As shown in
Tables 16 and 17, BiFTA consistently outperforms WCA under grid-crop-based VR settings. Nevertheless, grid
cropping itself leads to noticeable performance degradation compared to random cropping, with classification
accuracy consistently decreasing as the grid resolution increases. This trend can be attributed to the reduced
patch size induced by finer grid partitioning, where smaller patches contain substantially less semantic
information and lead to worse cross alignment. A similar pattern is also observed in Table 14. Overall,
while grid cropping serves as a viable alternative VR baseline, these results further demonstrate that BiFTA
remains robust and consistently surpasses WCA across diverse VR configurations.

F Appendix 6: Utilizing advanced LLM

Table 18: Comparison using textual descriptions generated by a more advanced language model.

Description set ImageNet (%)

Original 66.83±0.04
GPT-4o 66.64±0.04

We further investigate the impact of using a stronger language model for description generation by constructing
an alternative set of textual descriptions for ImageNet categories using gpt-4o3. To ensure a fair comparison,
we adopt five representative prompt templates from CuPL and AttrVR and generate ten description samples
per prompt for each class. The corresponding results are reported in Table 18.

We observe a slight performance degradation compared to the original description set, suggesting that although
more advanced language models may produce richer or more detailed descriptions, such improvements do
not directly translate into better performance under the current cross-alignment scoring framework. This
result indicates that the effectiveness of description refinement is not solely determined by the strength of the
language model, but also by how well the generated descriptions align with patch-level visual representations.
These findings point to an interesting future direction: designing prompt templates that are explicitly tailored
to localized visual features, which may further enhance the effectiveness of description refinement.

3https://platform.openai.com/docs/models/gpt-4o
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G Appendix 7: Limitation

One potential limitation we observed is that the textual descriptions generated by the LLM do not consistently
focus on local features of the object. These descriptions often tend to be generic, making it difficult to
associate specific parts of the text with corresponding local image patches from a human perspective. To
address this, we aim to explore more advanced approaches to generate precise and localized descriptive texts
that better align with the visual details of an image.

On the other hand, while BiFTA generally benefits from incorporating more diverse visual views and textual
descriptions, its effectiveness relies on the assumption that increased patch diversity improves fine-grained
cross-modal alignment. In practice, we observe that this assumption may not always hold uniformly across all
benchmarks. For instance, on Oxford Pets, BiFTA sometimes exhibits a slight performance drop compared to
WCA, suggesting that certain patches filtered as redundant may still contain class-discriminative information.
This observation highlights a limitation of the current refinement strategy: it does not explicitly distinguish
between truly redundant patches and visually similar yet semantically important ones. Identifying such
cases and developing adaptive refinement mechanisms that better preserve informative visual cues remain
important directions for future work.
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