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Abstract

Soft prompt tuning techniques have recently001
gained traction as an effective strategy for the002
parameter-efficient tuning of pretrained lan-003
guage models, particularly minimizing the re-004
quired adjustment of model parameters. De-005
spite their growing use, achieving optimal tun-006
ing with soft prompts, especially with smaller007
datasets, remains a substantial challenge. This008
study makes two contributions in this domain:009
(i) we introduce SUPERPOS-PROMPT, a new010
reparameterization technique employing the011
superposition of multiple pretrained vocabu-012
lary embeddings to improve the learning of013
soft prompts. Our experiments across several014
GLUE and SuperGLUE benchmarks consis-015
tently highlight SUPERPOS-PROMPT’s superi-016
ority over Residual Prompt tuning, exhibiting017
an average score increase of +6.4 in T5-Small018
and +5.0 in T5-Base along with a faster con-019
vergence. Remarkably, SUPERPOS-PROMPT020
occasionally outperforms even full fine-tuning021
methods. (ii) Additionally, we demonstrate022
enhanced performance and rapid convergence023
by omitting dropout from the frozen network,024
yielding consistent improvements across vari-025
ous scenarios and tuning methods.026

1 Introduction027

Optimizing deep neural network models generally028

requires substantial data to achieve optimal per-029

formance. This prerequisite has underscored the030

importance of transfer learning in various domains031

of deep learning, including natural language pro-032

cessing (NLP) (Ruder et al., 2019), computer vision033

(Gopalakrishnan et al., 2017), and reinforcement034

learning (Zhu et al., 2023). Transfer learning is an035

approach in which a pre-trained model is adapted036

and fine-tuned for new tasks, particularly when la-037

beled data is limited. Foundation models, denoted038

as Large Language Models (LLMs) in NLP, are039

large models trained on vast datasets utilizing self-040

supervised methodologies (Pfeiffer et al., 2023) act-041

ing as a base for further fine-tuning on new tasks. 042

Over time, the scale of publicly available LLMs 043

has remarkably grown, from BERT’s 340 million 044

parameters (Devlin et al., 2019) to contemporary 045

models housing around 70 billion parameters (Tou- 046

vron et al., 2023). 047

Full fine-tuning of models is one approach to 048

overcoming the challenges posed by limited data at 049

the cost of extensive memory. Parameter-Efficient 050

Transfer Learning (Guo et al., 2021) also known 051

as Parameter-Efficient Fine-tuning (PEFT) (Chen 052

et al., 2023) or Delta-Tuning (Ding et al., 2023), 053

offers a solution to this problem. PEFT involves 054

training a minimal subset of parameters, either se- 055

lected from existing ones or newly added (Lialin 056

et al., 2023). This technique notably reduces mem- 057

ory and storage needs, as only the modified pa- 058

rameters need to be tuned during training and 059

stored post-training. Various mechanisms are em- 060

ployed in PEFT: (i) Adapter: One prominent PEFT 061

technique is ‘Adapter’ training (Houlsby et al., 062

2019), involving the integration of a bottleneck 063

feed-forward network at each transformer block. 064

(ii) LoRA: Another PEFT method, LoRA (Hu 065

et al., 2022), is developed to identify a low-rank 066

delta within specific parameter matrices. (iii) Soft 067

Prompt Tuning Lester et al. (2021) is a further 068

PEFT technique that concatenates a trainable ma- 069

trix to the input embeddings. The columns of this 070

trainable matrix are referred to as soft prompts. Al- 071

though not the leading technique in terms of perfor- 072

mance among other PEFT techniques, soft prompt 073

tuning is renowned for its exceptional parameter 074

efficiency. Soft Prompt Tuning is also the central fo- 075

cus of this paper. Different strategies are proposed 076

for an efficient soft prompt tuning: 077

(i) Prompt layers reparameterization: Residual 078

Prompt Tuning (Razdaibiedina et al., 2023) is an 079

example of reparameterization of prompt layers 080

employing residual reparameterization to stabilize 081

the prompt tuning process. It uses a randomly ini- 082
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tialized autoencoder connected with a residual link.083

(ii) Pre-trained prompts as initial states: another084

strategy involves using pre-trained prompts as ini-085

tial states for new prompts. An example is Soft086

Prompt Transfer (SPoT) (Vu et al., 2022), which087

trains a prompt on one or more source tasks and088

then utilizes it to initialize the prompt for a target089

task. The selection of appropriate source tasks is090

crucial in this approach, and a retrieval algorithm091

is employed to identify similar tasks in a semantic092

task space.093

(iii) Combined approach: approaches like In-094

trinsic Prompt Tuning (IPT) (Qin et al., 2021),095

ATTEMPT (Asai et al., 2022), PANDA (Zhong096

et al., 2022), or MPT (Wang et al., 2023) combine097

usage of both reparameterization and pre-trained098

soft prompts. IPT decomposes the pre-trained soft099

prompts of diverse NLP tasks into a shared low-100

dimensional subspace by training an autoencoder.101

Subsequently, the decoder part of the autoencoder102

is utilized to facilitate learning new prompts in re-103

duced dimensions. ATTEMPT trains an attention104

layer to combine the right pre-trained prompts us-105

ing softmax. PANDA uses a knowledge distillation106

technique to transfer the “knowledge” from the107

source prompt to the target prompt. MPT trains a108

single transferable prompt by distilling knowledge109

from multiple task-specific source prompts.110

The training of soft prompts presents notable111

challenges as highlighted in several studies (Qin112

et al., 2021; Li and Liang, 2021); particularly, (i)113

fine-tuning soft prompts is optimization-intensive,114

particularly with limited data and smaller model115

sizes in T5 family between 50 to 300 million pa-116

rameters (Lester et al., 2021); (ii) although typi-117

cally trainable, soft prompts converge considerably118

slower compared to full fine-tuning and other delta-119

tuning methods (Ding et al., 2022). These issues120

constitute the primary focus of our work.121

The contributions of our work can be summa-122

rized in two folds: (i) we propose SUPERPOS-123

PROMPT, an innovative reparameterization tech-124

nique that formulates prompts as superpositions125

on multiple token embeddings. These token em-126

beddings are sampled vectors from the embedding127

layer of the language model. This approach en-128

ables enhanced stability in prompt tuning using129

diverse information emanating from multiple token130

embeddings. This strategy facilitates the learning131

of a new task representation utilizing a combina-132

tion of multiple task embeddings. We show that133

SUPERPOS-PROMPT approach almost consistently134

outperforms existing relevant soft prompt tuning 135

approaches in 13 Glue and SuperGlue benchmark- 136

ing tasks. (ii) Our research indicates that omitting 137

dropout (Srivastava et al., 2014) from the origi- 138

nal network can yield more efficient and expedited 139

convergence in prompt tuning. To the best of our 140

knowledge, this observation has not been addressed 141

in prior studies. 142

2 Background 143

Full Fine-tuning involves starting with pre-trained 144

weights and then adjusting all of these weights 145

based on the training data of the new tasks. For 146

example, if we have a new classification dataset T 147

and the weights of our model, written as θ, we aim 148

to miximize the log likelihood using pre-trained 149

weights as our starting point. 150

max
θ

∑
X,y∈T

logPθ(y | X)

Parameter-Efficient Fine-tuning involves adding 151

new weights or tune only subset of original weights 152

without changing the other parameters θ. if we 153

denote θ′ as our new parameters it means: 154

max
θ′

∑
X,y∈T

logPθ(y | X; θ′)

Prompt tuning is a type of Parameter-Efficient
Fine-tuning (PEFT) method where new weights are
added only to the model’s input by concatenation,
without altering θ. In simpler terms, it implies
that we search only in the parameter space P to
optimize our model:

max
P

∑
X,y∈T

logPθ(y | [P |X])

To explain further, if we have a sequence of l 155

tokens, like {x1, x2, ..., xl}, the model first turns 156

the tokens into a matrix X ∈ Re×l, where l is the 157

number of input tokens and e is the dimension of 158

the embedding space. The goal is to find the best 159

soft prompts for our task. These soft prompts are 160

written as P ∈ Re×n, where n is the number of 161

the soft prompts. The model then takes the joined 162

matrix [P |X] ∈ Re×(n+l) as input (Lester et al., 163

2021). This is illustrated in Figure 1.(a). 164

3 Approach 165

Our objective is to enhance the model’s ability 166

to learn and refine soft prompts effectively utiliz- 167

ing multiple token embeddings. This technique 168
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is grounded in the observation that initiating the169

prompt with token representations is generally170

more beneficial compared to beginning with ran-171

dom vectors (Lester et al., 2021). However, a ques-172

tion arises: how can we employ more than one173

token embedding for each prompt embedding? We174

address this issue by adopting a superposition—a175

weighted sum of several chosen tokens for each176

prompt embedding, as illustrated in Figure 1.(b).177

SuperPos-Prompt: We start by randomly select-
ing m unique token embeddings from the token
embedding layer, denoted as e1, e2, ..., em. These
are organized as columns of the matrix E ∈ Re×m.
To compute each prompt token pi, this matrix is
multiplied by a vector p′

i ∈ Rm. During our tuning
process, both the matrix E and each p′

i are jointly
optimized.

pi = Ep′
i =

 | | |
e1 e2 · · · em
| | |

 |
p′
i

|


=

m∑
j=1

p′ijej

During our experiments, we noticed a problem
where the inclusion of weight decay in the opti-
mizer led to a reduction in the norm of E, resulting
in significant information loss in this layer. To
combat this, we reparameterize the matrix E as
the sum of two matrices: Efreeze and ∆E. In this
arrangement, only ∆E is adjusted while Efreeze re-
mains constant. This strategy effectively counters
the negative impact of weight decay on the original
embeddings, allowing the model to learn a ∆E
with a lower norm and thus minimally altering the
embeddings. For initialization, the matrix ∆E is
set as a zero matrix.

E = Efreeze +∆E ∆Einit = 0e×m

In our experiments, we employed identical initial
token embeddings for each prompt while permit-
ting each to adapt uniquely, yielding independent
∆Ei for every prompt. The final formula to com-
pute each prompt pi is delineated below and the
illustration is provided in Figure 1.(f):

pi = (Efreeze +∆Ei)p
′
i

3.1 Comparison to similar prompt tuning178

approaches179

Intrinsic Prompt Tuning (IPT) (Qin et al., 2021)180

involves training an autoencoder during the Multi-181

task Subspace Finding phase. Post this phase, the182

decoder part of the autoencoder is employed in the 183

training of new prompts, a stage referred to as In- 184

trinsic Subspace Tuning (Figure 1.(d)). In contrast, 185

our approach, SUPERPOS-PROMPT, sidesteps this 186

complexity. We construct the decoder layer by uti- 187

lizing token embeddings selected directly from the 188

embedding layer. This step negates the need for 189

pre-trained soft prompts and the associated training 190

of an autoencoder, as illustrated in Figure 1.(e). 191

ATTEMPT (Asai et al., 2022) also has similari- 192

ties with our method, but it relies on pretrained 193

source prompts instead of token embeddings, and 194

employs softmax weighting instead of superposi- 195

tion. Through our experiments, we noticed that 196

utilizing superposition is more efficient than soft- 197

max weighting as we showed in §A.2. 198

Residual Prompt Tuning: Our approach shares 199

similarities with Residual Prompt Tuning (Raz- 200

daibiedina et al., 2023), as both employ reparam- 201

eterization to achieve improved and more rapid 202

convergence, avoiding the use of pretrained soft 203

prompts. However, Residual Prompt Tuning uti- 204

lizes an encoder-decoder model with a residual con- 205

nection and is tuned end-to-end, as shown in Figure 206

1.(c). In contrast, our model is simpler, having only 207

half the components to tune. It consists only of an 208

up-projection layer, and by using pretrained token 209

embeddings to initialize the decoder’s weights, it 210

offers a more advantageous starting point. 211

We evaluate our method against vanilla prompt 212

tuning (Lester et al., 2021), residual prompt tuning 213

(Razdaibiedina et al., 2023), and ATTEMPT (Asai 214

et al., 2022). We intentionally excluded IPT (Qin 215

et al., 2021) from our comparison. The exclusion 216

is due to IPT’s requirement for 100 pre-trained 217

source prompts to train an auto-encoder. Since they 218

utilize BART (Lewis et al., 2020) as their backbone 219

model, their autoencoder was incompatible with 220

our framework. Training a new auto-encoder was 221

not feasible as we lacked access to the necessary 222

100 pre-trained source prompts. 223

4 Experiments 224

4.1 dataset 225

In previous studies, smaller datasets have pre- 226

sented substantial challenges for prompt tuning 227

techniques (Ding et al., 2022). To effectively 228

contrast various methods, we have selected sev- 229

eral tasks/datasets from both GLUE (Wang et al., 230

2019b) and SuperGLUE (Wang et al., 2019a), 231

comprising both small and large datasets. The 232
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Figure 1: Overview of different prompt tuning methods: (a.) Simple Prompt Tuning: This method adjusts the
prompt embeddings, P , which are then concatenated with the input embeddings. (b.) SUPERPOS-PROMPT Tuning:
Employs a mixture of embeddings as a weighted sum, ej ; 1 ≤ j ≤ m, based on their weight in p′

i. All ejs and vector
p′
i are co-tuned. (c.) Residual Prompt Tuning: Utilizes an autoencoder with residual connection reparametrization.

(d.) Intrinsic Subspace Tuning: Employs a pre-trained decoder to map lower-dimension prompts to the model’s
dimension. (e.) SUPERPOS-PROMPT can also be interpreted as a linear up-projection initialized with sampled
embeddings. (f.) SUPERPOS-PROMPT Tuning full calculation consist of an addition to prevent weight-decay
negative effects and matrix multiplication to calculate superposition of embeddings.

datasets employed in our study are the Quora Ques-233

tion Pairs (QQP) (DataCanary et al., 2017), Ques-234

tion NLI (QNLI), MultiNLI (MNLI) (Williams235

et al., 2018), The Stanford Sentiment Treebank236

(SST-2) (Socher et al., 2013), Semantic Textual237

Similarity Benchmark (STS-B) (Cer et al., 2017),238

Microsoft Research Paraphrase Corpus (MRPC)239

(Dolan and Brockett, 2005), The Corpus of Linguis-240

tic Acceptability (CoLA) (Warstadt et al., 2019),241

Multi-Sentence Reading Comprehension (Mul-242

tiRC) (Khashabi et al., 2018), Recognizing Tex-243

tual Entailment (RTE), CommitmentBank (CB),244

Choice Of Plausible Alternatives (COPA) (Gordon245

et al., 2012), Words in Context (WiC) (Pilehvar and246

Camacho-Collados, 2019), and BoolQ (Clark et al., 247

2019). 248

4.2 Base language model 249

In this study, we employ the T5 model family for 250

conducting experiments (Raffel et al., 2020). Our 251

approach to the classification task involves condi- 252

tional generation, wherein the output comprises a 253

string of tokens, each symbolizing a class label. 254

This study exclusively modifies the encoder seg- 255

ment of the T5 model by integrating soft prompts. 256

Given the constraints of computational resources, 257

our analysis is confined to the small and base model 258

sizes. Specifically, we deploy two LM-adapted ver- 259
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sions of T5v1.1, namely t5-small-lm-adapt and260

t5-base-lm-adapt (Lester et al., 2021).261

Previous research, including studies such as the262

Residual Prompt and ATTEMPT, have highlighted263

concerns regarding the stability and tuning diffi-264

culties of T5v1.1-LM adapt when used as a back-265

bone for prompt tuning tasks (Razdaibiedina et al.,266

2023; Asai et al., 2022). These studies eventu-267

ally switched to the original T5 checkpoint. How-268

ever, utilizing the pretrained T5 original checkpoint269

raises concerns. Since this checkpoint is already270

trained on the GLUE and SuperGLUE datasets, the271

model does not need to learn a new task, only re-272

quiring the appropriate prompt to utilize previously273

acquired knowledge (Raffel et al., 2020). This sit-274

uation may produce misleading results, obscuring275

the true performance and meaningfulness of the276

ultimate comparison. Therefore we implemented277

and tested their methods using the provided hyper-278

paremeters on T5v1.1-LM adapt.279

4.3 Ablation Study280

In SuperPos prompt tuning, a key hyperparameter281

is the number of tokens sampled for superposition,282

denoted as m. Figure 2.(c) shows the impact of dif-283

ferent m values on the performance of SUPERPOS-284

PROMPT across various tasks. On the x-axis, we285

display the number of tokens (m), and the y-axis286

shows the highest performance score achieved. We287

observe that an increase in the number of sam-288

pled tokens generally leads to better results, but289

improvements tend to level off after reaching 128290

tokens. Based on this finding, we set the number291

of sampled tokens in our method to 128.292

4.4 Experiment Setup293

For our experiments, the following configurations294

were employed:295

All of Prompt Tuning Methods: We appended 10296

prompt tokens to the input. Each method was tested297

under two conditions: with and without dropout,298

running for a total of 80 epochs. No learning rate299

scheduler was used, and the AdamW optimizer300

(Loshchilov and Hutter, 2019) was employed.301

Simple Prompt Tuning: Prompts were initialized302

by sampling 10 unique token embeddings from the303

embedding layer, using a learning rate of 0.01 and304

a weight decay of 0.01.305

Residual Prompt Tuning: Prompts were initial-306

ized by sampling 10 unique token embeddings from307

the embedding layer, with a learning rate of 0.3 and308

a weight decay of 0.01, as specified in the original309

paper (Razdaibiedina et al., 2023), we set the bot- 310

tleneck size to 128 to be comparable to our method. 311

ATTEMPT (Asai et al., 2022): Ptarget prompts 312

were initialized by sampling ten unique token em- 313

beddings from the embedding layer. To avoid leak- 314

age between training and testing data, we excluded 315

QQP, QNLI, MNLI, SST-2 datasets from the evalu- 316

ation, as these task pretrained prompts were used 317

during the training of new prompts. To align with 318

the hyperparameters from the original ATTEMPT 319

paper, the learning rate is set to 0.3, with a weight 320

decay of 0.00001, and a bottleneck size of G set to 321

100. 322

SuperPos Prompt Tuning: Prompts in superposi- 323

tion were initialized with 128 unique token embed- 324

dings, shared across all 10 prompt tokens. The 325

learning rate was 0.01 with a weight decay of 326

0.00001. 327

Full Fine-tuning: We opted for a lower learning 328

rate of 0.00001 to preserve the original weights 329

more effectively. 330

The experiments described above required ap- 331

proximately 1000 GPU hours on A100 GPUs with 332

80GB of RAM for training the T5 models, base and 333

small, which have 247,577,856 and 76,961,152 334

number of parameters, respectively. We imple- 335

mented the models in PyTorch using the Hugging- 336

Face library. 337

5 Results 338

Our experimental results are compiled in Table 339

1. Runs generating invalid labels, a possible con- 340

sequence of conditional generation, are denoted 341

with † and scored as 0. Standard metrics from the 342

GLUE and SuperGLUE benchmarks are used for 343

each task. 344

Impact of Dropout: As shown in Figure 2.(a) and 345

Table 1 eliminating dropout from the frozen model 346

enhanced not only the performance of the model 347

but also accelerated convergence. This trend was 348

also evident in experiments with Residual Prompt, 349

ATTEMPT, and SUPERPOS-PROMPT tuning meth- 350

ods. We hypothesize that dropout, being a form 351

of regularization to prevent overfitting, may exces- 352

sively constrain prompt tuning. Since tuning only 353

10 prompts inherently limits flexibility, additional 354

dropout may lead to underperformance. 355

SuperPos-Prompt Performance: According to 356

Table 1, SUPERPOS-PROMPT excelled over Resid- 357

ual Prompt tuning, showing a significant average 358

score increase of +6.4 in T5v1.1-Small and +5 359
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D
ro

po
ut GLUE SuperGLUE

Task→ QQP QNLI MNLI SST-2 STS-B MRPC CoLA MultiRC RTE CB COPA WiC BoolQ Avg.

Method↓ F1/Acc. Acc. Acc. Acc. PCC/ρ F1/Acc. MCC F1a/EM Acc. F1/Acc. Acc. Acc. Acc. -

T5v1.1 Small LM-Adapted

Simple PT ✓ 58.2/65.5 50.6 33.2 79.4 9.8/7.9 81.2/68.4 0.0 † 17.3/0.3 52.3 0.0/0.0 † 0.0 † 50.6 62.2 37.1

Simple PT ✗ 70.8/75.3 72.8 50.7 84.9 0.0/0.0 † 82.5/71.3 0.0 † 22.6/0.6 49.1 0.0/0.0 † 0.0 † 57.4 62.6 41.5

ATTEMPT ✓ - - - - 0.0/0.0 † 0.0/0.0 † 0.0 † 0.0/0.0 † 52.0 0.0/0.0 † 58.0 0.0 † 0.0 † -

ATTEMPT ✗ - - - - 83.3/83.2 0.0/0.0 † 0.0 † 0.0/0.0 † 59.9 0.0/0.0 † 57.0 64.3 0.0 † -

Residual PT ✓ 70.6/74.9 61.8 34.6 82.8 69.7/72.4 81.9/71.1 0.5 59.9/0.8 52.7 49.6/71.4 56.0 52.4 62.3 54.9

Residual PT ✗ 73.3/78.2 79.2 60.7 85.1 80.8/80.6 88.3/83.3 20.6 59.8/4.4 59.6 68.6/73.2 56.0 58.2 64.7 63.8

SuperPos PT ✓ 74.4/79.9 82.9 66.7 88.8 82.9/82.8 88.4/82.6 23.4 59.9/0.8 58.5 39.6/60.7 56.0 58.6 62.4 63.3

SuperPos PT ✗ 79.1/83.3 85.3 71.7 89.8 84.0/84.0 89.9/85.8 38.9 66.6/16.7 64.6 73.6/76.8 58.0 65.7 68.9 70.2

Full Fine-tuning ✓ 87.4/90.5 89.5 82.9 92.1 85.8/85.5 89.6/84.8 42.0 68.5/19.3 66.1 47.9/69.6 57.0 66.5 71.1 71.7

T5v1.1 Base LM-Adapted

Simple PT ✓ 54.3/38.2 50.5 34.8 85.0 0.0/0.0 † 81.2/68.4 0.0 † 2.5/0.3 53.1 0.0/0.0 † 0.0 † 50.6 62.6 35.3

Simple PT ✗ 0.0/0.0 † 76.9 0.0 † 92.2 0.0/0.0 † 82.0/70.6 24.8 55.6/2.1 53.4 0.0/0.0 † 59.0 57.7 0.0 † 36.1

ATTEMPT ✓ - - - - 0.0/0.0 † 0.0/0.0 † 44.6 0.0/0.0 † 56.0 0.0/0.0 † 55.0 0.0 † 0.0 † -

ATTEMPT ✗ - - - - 0.0/0.0 † 0.0/0.0 † 53.7 67.5/17.8 56.0 0.0/0.0 † 0.0 † 69.0 70.1 -

Residual PT ✓ 72.1/75.0 58.0 34.8 91.3 81.6/81.7 82.0/70.3 0.0 † 59.9/0.8 52.7 43.6/64.3 58.0 54.2 62.8 56.0

Residual PT ✗ 76.1/81.4 83.3 70.7 92.7 86.2/86.1 87.4/82.8 44.7 63.9/11.3 70.0 82.6/80.4 60.0 64.3 65.3 70.8

SuperPos PT ✓ 79.0/83.1 79.2 76.5 94.0 86.2/86.6 89.1/83.6 45.4 68.7/18.2 57.4 44.8/66.1 58.0 58.3 62.3 68.0

SuperPos PT ✗ 81.9/86.3 89.8 81.0 94.2 88.6/88.5 89.7/85.5 56.5 72.9/24.9 70.4 78.3/82.1 62.0 67.6 74.0 75.8

Full Fine-tuning ✓ 88.3/91.1 92.7 88.1 94.8 90.1/89.8 91.9/88.2 53.0 76.2/35.3 72.9 53.5/76.8 57.0 69.3 78.9 76.7

Table 1: Results on some tasks from GLUE and SuperGLUE dataset set with 10-token prompts and training for 80
epochs. For tasks with two metrics, the average score is reported. Numbers marked with † means that T5 model
doesn’t converge to always generate valid labels. So the score will be zero. The full fine-tuning are reported as a
comparsion baseline.

in T5v1.1-Base. Our method has superior perfor-360

mance on most tasks that ATTEMPT were tested361

on. In some cases, it even surpassed full fine-tuning362

methods. A more detailed comparison of some se-363

lected tasks learning curves, based on T5v1.1 Base364

LM-Adapted experiments, is available in Figure365

2.(b). Among the compared methods, SUPERPOS-366

PROMPT generally achieved better performance367

and faster convergence. All learning curves are368

without dropout variant of that methods as most369

of the time this variant reached their best perfor-370

mances, as detailed in Table 1.371

Other Prompt Tuning Methods Performances:372

The performance of Residual Prompt and AT-373

TEMPT did not meet the levels reported in their374

respective papers. This discrepancy may stem from375

their use of T5 checkpoints trained specifically on376

these tasks. Unable to replicate their results, we377

tested our method using identical checkpoint and378

found it surpassed their reported numbers. For379

more details, see §A.1.380

Stability Analysis: To compare the stability of381

various methods, we normalized and scaled the382

performance of each task across these methods.383

This process, referred to as “standardized overall384

scoring”, is described by Yu et al. (2023) and is385

Method↓ Dropout Small Base

Simple PT ✓ 17.1±26.4 17.2±25.2

Simple PT ✗ 28.9±29.5 30.8±32.6

Residual PT ✓ 44.7±31.3 49.5±32.8

Residual PT ✗ 65.9±20.0 83.2±10.2

SuperPos PT ✓ 66.9±17.8 75.9±18.5

SuperPos PT ✗ 81.7±9.7 93.6±4.7

Full FT ✓ 85.2±9.0 97.4±5.7

Table 2: Mean and standard deviation of standardized
overall scoring across thirteen different tasks. This table
facilitates a comparison of method stability, where a
lower standard deviation indicates higher stability across
tasks. Note: ATTEMPT results are excluded as it was
not evaluated on four tasks from thirteen tasks.

employed in evaluating Large Language Models 386

(LLMs). To determine stability, we calculated the 387

mean and standard deviation of these scores for 388

each method over thirteen tasks. A method demon- 389

strating a lower standard deviation suggests greater 390

stability, indicating consistent performance across 391

various tasks. As shown in Table 2, our method 392

has a standard deviation half that of the RESID- 393

UAL PROMPT, thus exhibiting superior stability in 394
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Figure 2: This figure illustrates results from our experiment using ‘T5v1.1 Base LM-Adapted’ as the foundation. (a)
Learning curves comparing dropout effects on SuperPos-Prompt for selected tasks. (b) Learning curves comparing
various prompt tuning methods across selected tasks, conducted without dropout. (c) Ablation study on the effect
of sampled token count (m) for SuperPos-Prompt, with the x-axis representing sample token count and the y-axis
indicating peak performance for the relevant metric. (d) Analysis of cosine similarity in superposition weights for
each prompt token across all tasks.
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prompt tuning tasks, closely rivaling stability of395

full fine-tuning.396

Analysis on Learned SuperPos-Prompt: We per-397

formed a cosine similarity analysis on the learned398

superposition weights (p′
i) for each prompt across399

different tasks. The resulting similarity matrices400

are presented in Figure 2.(d). Each prompt’s to-401

ken similarity matrix reveals distinct patterns, sug-402

gesting unique task-specific encodings. However,403

we found no clear correlation between these pat-404

terns and the task descriptions. Notably, tasks with405

limited data and fewer training steps, such as CB,406

COPA, and RTE, tend to have the most distinctive407

prompts.408

6 Conclusions409

In this work, we made two primary contributions410

that enhance the field of prompt tuning for language411

models, especially when fine-tuning datasets are412

small and existing soft prompt tuning approaches413

fall short.414

First, we observed a notable improvement415

in the efficiency and speed of convergence in416

prompt tuning upon excluding dropout from the417

frozen network. This observation, which has not418

been explored in existing literature, holds consis-419

tently across most scenarios, enhancing the per-420

formance of RESIDUAL PROMPT, ATTEMPT, and421

SUPERPOS-PROMPT tuning methods. Our findings422

underscore the importance of continually reassess-423

ing established network parameters and practices424

to unearth potential enhancements.425

Our second key contribution was the introduc-426

tion of SUPERPOS-PROMPT, a novel reparame-427

terization technique for soft prompt tuning. This428

method, leveraging the superpositions of sampled429

pretrained token embeddings, enhances stability in430

prompt tuning and obviates the need for pre-trained431

source prompts. SUPERPOS-PROMPT consistently432

outperformed Residual Prompt tuning, showcasing433

an average score increase of +6.4 in T5-Small and434

+5.0 in T5-Base across all thirteen GLUE and Su-435

perGLUE benchmarks used in this study. Remark-436

ably, SUPERPOS-PROMPT not only exceeded the437

performance of Residual Prompt tuning but also,438

in certain instances, showed superior performance439

to the full fine-tuning approach. Additionally, we440

observed a clear correlation between the number of441

sampled tokens on SUPERPOS-PROMPT and per-442

formance scores, with an optimal plateau at 128443

tokens.444

Looking forward, the exploration of integrat- 445

ing pre-trained source prompts stands as a promis- 446

ing avenue for further enhancing model perfor- 447

mances. We anticipate that our work will spur 448

innovative and more efficient uses of pre-trained 449

source prompts in the future, reinforcing the im- 450

portance of this research in the ever-evolving field 451

of language model tuning and optimization. Fu- 452

ture work includes a more extensive comparison 453

of SUPERPOS-PROMPT with a broader range of 454

prompting techniques in different dataset scenarios, 455

an endeavor constrained in this study by computa- 456

tional resource limitations. Additionally, while this 457

study exclusively explored language models, we 458

anticipate the extension of this approach to addi- 459

tional foundation models across various modalities, 460

as well as multimodal foundation models. 461

7 Limitations 462

While our proposed SuperPos − Prompt en- 463

hances soft prompt tuning of language models, it 464

has several limitations that must be acknowledged. 465

Firstly, we have exclusively tested the T5 encoder- 466

decoder architecture, which is also frequently ex- 467

plored in similar works. However, this approach 468

can be more broadly applied to both encoder and de- 469

coder architectures. Secondly, our focus was on the 470

GLUE and SuperGLUE evaluations, similar to the 471

mainstream works in this area. Nonetheless, evalu- 472

ations on generation tasks, which present more sig- 473

nificant challenges, are also necessary. Lastly, we 474

faced hardware limitations in verifying the results 475

with large-scale models, on the order of billions of 476

parameters. 477
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A Appendix736

A.1 T5 original checkpoint737

As noted earlier, some studies like Residual Prompt738

and ATTEMPT used the original T5 checkpoint,739

trained on these tasks, instead of the T5v1.1 LM-740

Adapted checkpoint. Our replication efforts with741

the T5v1.1 LM-Adapted checkpoint yielded unsat-742

isfactory results. Consequently, we also adopted743

the original T5 checkpoint in our method for a fair744

comparison. As illustrated in Table 3, our approach745

outperformed results that were reported in these746

studies. This outcome is significant, especially con-747

sidering that the ATTEMPT method utilized ten748

times more prompt tokens and also used pre-trained749

source prompts for initialization.750

A.2 Softmax Effect751

In our experiments, we also applied a softmax func-
tion to the superposition weights. This approach
aligns more closely with an attention mechanism,
effectively computing an expected value. The math-
ematical representation is as follows:

pi = E Softmax(p′
i) =

∑m
j=1 exp (p

′
ij)ej∑m

j=1 exp (p
′
ij)

However, this modification resulted in diminished752

performance, as indicated in Table 3. Therefore we753

didn’t use softmax in our main experiments.754

A.3 GPT3 few-shot performance755

For comparison purposes, we conducted experi-756

ments on these datasets using the GPT-3.5-turbo757

model. The model was evaluated with in-context758

learning, employing 1-shot examples from each759

category. The results can be found in Table 3.760
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#
Pr

om
pt

s

So
ft

m
ax

D
ro

po
ut GLUE SuperGLUE

Task→ QQP QNLI MNLI SST-2 STS-B MRPC CoLA MultiRC RTE CB COPA WiC BoolQ Avg.

Method↓ F1/Acc. Acc. Acc. Acc. PCC/ρ F1/Acc. MCC F1a/EM Acc. F1/Acc. Acc. Acc. Acc. -

T5 Base

SuperPos PT 10 ✗ ✗ 87.8/90.8 93.5 86.0 94.4 90.2/90.1 92.4/89.5 59.7 77.7/40.9 80.1 97.4/96.4 66.0 67.6 81.3 81.2
ATTEMPT ⋆ 100 ✓ ✓ -/90.3 93.0 84.3 93.2 89.7/- -/85.7 57.4 74.4/- 73.4 -/78.6 - 66.8 78.8 -

Residual PT ⋆ 10 ✗ ✓ - - - - - - - 59.3 70.4 79.2 58.3 66.8 77.9 -

T5v1.1 Small LM-Adapted

SuperPos PT 10 ✗ ✗ 79.1/83.3 85.3 71.7 89.8 84.0/84.0 89.9/85.8 38.9 66.6/16.7 64.6 73.6/76.8 58.0 65.7 68.9 70.2
SuperPos PT 10 ✓ ✗ 69.6/75.2 76.0 42.7 82.9 45.5/43.3 82.4/73.0 4.6 47.5/0.9 52.0 49.9/71.4 57.0 56.4 62.3 54.9

T5v1.1 Base LM-Adapted

SuperPos PT 10 ✗ ✗ 81.9/86.3 89.8 81.0 94.2 88.6/88.5 89.7/85.5 56.5 72.9/24.9 70.4 78.3/82.1 62.0 67.6 74.0 75.8

GPT-3.5-Turbo

1 Shot 76.3/79.2 70.9 58.5 94.0 34.6/34.1 84.6/77.0 46.1 77.9/34.1 70.8 55.6/62.5 95.0 58.8 69.6 67.1

Table 3: This table presents additional results and comparisons, including those from the SuperPos prompt method
trained on the T5 Base checkpoint. Results from methods marked with ⋆ are sourced from their respective papers
(Asai et al., 2022; Razdaibiedina et al., 2023). It also shows the impact of softmax application and GPT-3.5-Turbo’s
one-shot performance across various datasets. Unreported values are indicated by ‘-’. In the residual prompt tuning
study, tasks with two metrics are reported as an average score, not separately.
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