
SuperPos-Prompt: Enhancing Soft Prompt Tuning of Language Models
with Superposition of Multi Token Embeddings

Anonymous ACL submission

Abstract

Soft prompt tuning techniques have recently001
gained traction as an effective strategy for the002
parameter-efficient tuning of pretrained lan-003
guage models, particularly minimizing the re-004
quired adjustment of model parameters. De-005
spite their growing use, achieving optimal tun-006
ing with soft prompts, especially with smaller007
datasets, remains a substantial challenge. This008
study makes two contributions in this domain:009
(i) we introduce SUPERPOS-PROMPT, a new010
reparameterization technique employing the011
superposition of multiple pretrained vocabu-012
lary embeddings to improve the learning of013
soft prompts. Our experiments across several014
GLUE and SuperGLUE benchmarks consis-015
tently highlight SUPERPOS-PROMPT’s superi-016
ority over Residual Prompt tuning, exhibiting017
an average score increase of +6.4 in T5-Small018
and +5.0 in T5-Base along with a faster con-019
vergence. Remarkably, SUPERPOS-PROMPT020
occasionally outperforms even full fine-tuning021
methods. (ii) Additionally, we demonstrate022
enhanced performance and rapid convergence023
by omitting dropout from the frozen network,024
yielding consistent improvements across vari-025
ous scenarios and tuning methods.026

1 Introduction027

Optimizing deep neural network models generally028

requires substantial data to achieve optimal per-029

formance. This prerequisite has underscored the030

importance of transfer learning in various domains031

of deep learning, including natural language pro-032

cessing (NLP) (Ruder et al., 2019), computer vision033

(Gopalakrishnan et al., 2017), and reinforcement034

learning (Zhu et al., 2023). Transfer learning is an035

approach in which a pre-trained model is adapted036

and fine-tuned for new tasks, particularly when la-037

beled data is limited. Foundation models, denoted038

as Large Language Models (LLMs) in NLP, are039

large models trained on vast datasets utilizing self-040

supervised methodologies (Pfeiffer et al., 2023) act-041

ing as a base for further fine-tuning on new tasks. 042

Over time, the scale of publicly available LLMs 043

has remarkably grown, from BERT’s 340 million 044

parameters (Devlin et al., 2019) to contemporary 045

models housing around 70 billion parameters (Tou- 046

vron et al., 2023). 047

Full fine-tuning of models is one approach to 048

overcoming the challenges posed by limited data at 049

the cost of extensive memory. Parameter-Efficient 050

Transfer Learning (Guo et al., 2021) also known 051

as Parameter-Efficient Fine-tuning (PEFT) (Chen 052

et al., 2023) or Delta-Tuning (Ding et al., 2023), 053

offers a solution to this problem. PEFT involves 054

training a minimal subset of parameters, either se- 055

lected from existing ones or newly added (Lialin 056

et al., 2023). This technique notably reduces mem- 057

ory and storage needs, as only the modified pa- 058

rameters need to be tuned during training and 059

stored post-training. Various mechanisms are em- 060

ployed in PEFT: (i) Adapter: One prominent PEFT 061

technique is ‘Adapter’ training (Houlsby et al., 062

2019), involving the integration of a bottleneck 063

feed-forward network at each transformer block. 064

(ii) LoRA: Another PEFT method, LoRA (Hu 065

et al., 2022), is developed to identify a low-rank 066

delta within specific parameter matrices. (iii) Soft 067

Prompt Tuning Lester et al. (2021) is a further 068

PEFT technique that concatenates a trainable ma- 069

trix to the input embeddings. The columns of this 070

trainable matrix are referred to as soft prompts. Al- 071

though not the leading technique in terms of perfor- 072

mance among other PEFT techniques, soft prompt 073

tuning is renowned for its exceptional parameter 074

efficiency. Soft Prompt Tuning is also the central fo- 075

cus of this paper. Different strategies are proposed 076

for an efficient soft prompt tuning: 077

(i) Prompt layers reparameterization: Residual 078

Prompt Tuning (Razdaibiedina et al., 2023) is an 079

example of reparameterization of prompt layers 080

employing residual reparameterization to stabilize 081

the prompt tuning process. It uses a randomly ini- 082

1

tialized autoencoder connected with a residual link.083

(ii) Pre-trained prompts as initial states: another084

strategy involves using pre-trained prompts as ini-085

tial states for new prompts. An example is Soft086

Prompt Transfer (SPoT) (Vu et al., 2022), which087

trains a prompt on one or more source tasks and088

then utilizes it to initialize the prompt for a target089

task. The selection of appropriate source tasks is090

crucial in this approach, and a retrieval algorithm091

is employed to identify similar tasks in a semantic092

task space.093

(iii) Combined approach: approaches like In-094

trinsic Prompt Tuning (IPT) (Qin et al., 2021),095

ATTEMPT (Asai et al., 2022), PANDA (Zhong096

et al., 2022), or MPT (Wang et al., 2023) combine097

usage of both reparameterization and pre-trained098

soft prompts. IPT decomposes the pre-trained soft099

prompts of diverse NLP tasks into a shared low-100

dimensional subspace by training an autoencoder.101

Subsequently, the decoder part of the autoencoder102

is utilized to facilitate learning new prompts in re-103

duced dimensions. ATTEMPT trains an attention104

layer to combine the right pre-trained prompts us-105

ing softmax. PANDA uses a knowledge distillation106

technique to transfer the “knowledge” from the107

source prompt to the target prompt. MPT trains a108

single transferable prompt by distilling knowledge109

from multiple task-specific source prompts.110

The training of soft prompts presents notable111

challenges as highlighted in several studies (Qin112

et al., 2021; Li and Liang, 2021); particularly, (i)113

fine-tuning soft prompts is optimization-intensive,114

particularly with limited data and smaller model115

sizes in T5 family between 50 to 300 million pa-116

rameters (Lester et al., 2021); (ii) although typi-117

cally trainable, soft prompts converge considerably118

slower compared to full fine-tuning and other delta-119

tuning methods (Ding et al., 2022). These issues120

constitute the primary focus of our work.121

The contributions of our work can be summa-122

rized in two folds: (i) we propose SUPERPOS-123

PROMPT, an innovative reparameterization tech-124

nique that formulates prompts as superpositions125

on multiple token embeddings. These token em-126

beddings are sampled vectors from the embedding127

layer of the language model. This approach en-128

ables enhanced stability in prompt tuning using129

diverse information emanating from multiple token130

embeddings. This strategy facilitates the learning131

of a new task representation utilizing a combina-132

tion of multiple task embeddings. We show that133

SUPERPOS-PROMPT approach almost consistently134

outperforms existing relevant soft prompt tuning 135

approaches in 13 Glue and SuperGlue benchmark- 136

ing tasks. (ii) Our research indicates that omitting 137

dropout (Srivastava et al., 2014) from the origi- 138

nal network can yield more efficient and expedited 139

convergence in prompt tuning. To the best of our 140

knowledge, this observation has not been addressed 141

in prior studies. 142

2 Background 143

Full Fine-tuning involves starting with pre-trained 144

weights and then adjusting all of these weights 145

based on the training data of the new tasks. For 146

example, if we have a new classification dataset T 147

and the weights of our model, written as θ, we aim 148

to miximize the log likelihood using pre-trained 149

weights as our starting point. 150

max
θ

∑
X,y∈T

logPθ(y | X)

Parameter-Efficient Fine-tuning involves adding 151

new weights or tune only subset of original weights 152

without changing the other parameters θ. if we 153

denote θ′ as our new parameters it means: 154

max
θ′

∑
X,y∈T

logPθ(y | X; θ′)

Prompt tuning is a type of Parameter-Efficient
Fine-tuning (PEFT) method where new weights are
added only to the model’s input by concatenation,
without altering θ. In simpler terms, it implies
that we search only in the parameter space P to
optimize our model:

max
P

∑
X,y∈T

logPθ(y | [P |X])

To explain further, if we have a sequence of l 155

tokens, like {x1, x2, ..., xl}, the model first turns 156

the tokens into a matrix X ∈ Re×l, where l is the 157

number of input tokens and e is the dimension of 158

the embedding space. The goal is to find the best 159

soft prompts for our task. These soft prompts are 160

written as P ∈ Re×n, where n is the number of 161

the soft prompts. The model then takes the joined 162

matrix [P |X] ∈ Re×(n+l) as input (Lester et al., 163

2021). This is illustrated in Figure 1.(a). 164

3 Approach 165

Our objective is to enhance the model’s ability 166

to learn and refine soft prompts effectively utiliz- 167

ing multiple token embeddings. This technique 168

2

is grounded in the observation that initiating the169

prompt with token representations is generally170

more beneficial compared to beginning with ran-171

dom vectors (Lester et al., 2021). However, a ques-172

tion arises: how can we employ more than one173

token embedding for each prompt embedding? We174

address this issue by adopting a superposition—a175

weighted sum of several chosen tokens for each176

prompt embedding, as illustrated in Figure 1.(b).177

SuperPos-Prompt: We start by randomly select-
ing m unique token embeddings from the token
embedding layer, denoted as e1, e2, ..., em. These
are organized as columns of the matrix E ∈ Re×m.
To compute each prompt token pi, this matrix is
multiplied by a vector p′

i ∈ Rm. During our tuning
process, both the matrix E and each p′

i are jointly
optimized.

pi = Ep′
i =

 | | |
e1 e2 · · · em
| | |

 |
p′
i

|


=

m∑
j=1

p′ijej

During our experiments, we noticed a problem
where the inclusion of weight decay in the opti-
mizer led to a reduction in the norm of E, resulting
in significant information loss in this layer. To
combat this, we reparameterize the matrix E as
the sum of two matrices: Efreeze and ∆E. In this
arrangement, only ∆E is adjusted while Efreeze re-
mains constant. This strategy effectively counters
the negative impact of weight decay on the original
embeddings, allowing the model to learn a ∆E
with a lower norm and thus minimally altering the
embeddings. For initialization, the matrix ∆E is
set as a zero matrix.

E = Efreeze +∆E ∆Einit = 0e×m

In our experiments, we employed identical initial
token embeddings for each prompt while permit-
ting each to adapt uniquely, yielding independent
∆Ei for every prompt. The final formula to com-
pute each prompt pi is delineated below and the
illustration is provided in Figure 1.(f):

pi = (Efreeze +∆Ei)p
′
i

3.1 Comparison to similar prompt tuning178

approaches179

Intrinsic Prompt Tuning (IPT) (Qin et al., 2021)180

involves training an autoencoder during the Multi-181

task Subspace Finding phase. Post this phase, the182

decoder part of the autoencoder is employed in the 183

training of new prompts, a stage referred to as In- 184

trinsic Subspace Tuning (Figure 1.(d)). In contrast, 185

our approach, SUPERPOS-PROMPT, sidesteps this 186

complexity. We construct the decoder layer by uti- 187

lizing token embeddings selected directly from the 188

embedding layer. This step negates the need for 189

pre-trained soft prompts and the associated training 190

of an autoencoder, as illustrated in Figure 1.(e). 191

ATTEMPT (Asai et al., 2022) also has similari- 192

ties with our method, but it relies on pretrained 193

source prompts instead of token embeddings, and 194

employs softmax weighting instead of superposi- 195

tion. Through our experiments, we noticed that 196

utilizing superposition is more efficient than soft- 197

max weighting as we showed in §A.2. 198

Residual Prompt Tuning: Our approach shares 199

similarities with Residual Prompt Tuning (Raz- 200

daibiedina et al., 2023), as both employ reparam- 201

eterization to achieve improved and more rapid 202

convergence, avoiding the use of pretrained soft 203

prompts. However, Residual Prompt Tuning uti- 204

lizes an encoder-decoder model with a residual con- 205

nection and is tuned end-to-end, as shown in Figure 206

1.(c). In contrast, our model is simpler, having only 207

half the components to tune. It consists only of an 208

up-projection layer, and by using pretrained token 209

embeddings to initialize the decoder’s weights, it 210

offers a more advantageous starting point. 211

We evaluate our method against vanilla prompt 212

tuning (Lester et al., 2021), residual prompt tuning 213

(Razdaibiedina et al., 2023), and ATTEMPT (Asai 214

et al., 2022). We intentionally excluded IPT (Qin 215

et al., 2021) from our comparison. The exclusion 216

is due to IPT’s requirement for 100 pre-trained 217

source prompts to train an auto-encoder. Since they 218

utilize BART (Lewis et al., 2020) as their backbone 219

model, their autoencoder was incompatible with 220

our framework. Training a new auto-encoder was 221

not feasible as we lacked access to the necessary 222

100 pre-trained source prompts. 223

4 Experiments 224

4.1 dataset 225

In previous studies, smaller datasets have pre- 226

sented substantial challenges for prompt tuning 227

techniques (Ding et al., 2022). To effectively 228

contrast various methods, we have selected sev- 229

eral tasks/datasets from both GLUE (Wang et al., 230

2019b) and SuperGLUE (Wang et al., 2019a), 231

comprising both small and large datasets. The 232

3

Figure 1: Overview of different prompt tuning methods: (a.) Simple Prompt Tuning: This method adjusts the
prompt embeddings, P , which are then concatenated with the input embeddings. (b.) SUPERPOS-PROMPT Tuning:
Employs a mixture of embeddings as a weighted sum, ej ; 1 ≤ j ≤ m, based on their weight in p′

i. All ejs and vector
p′
i are co-tuned. (c.) Residual Prompt Tuning: Utilizes an autoencoder with residual connection reparametrization.

(d.) Intrinsic Subspace Tuning: Employs a pre-trained decoder to map lower-dimension prompts to the model’s
dimension. (e.) SUPERPOS-PROMPT can also be interpreted as a linear up-projection initialized with sampled
embeddings. (f.) SUPERPOS-PROMPT Tuning full calculation consist of an addition to prevent weight-decay
negative effects and matrix multiplication to calculate superposition of embeddings.

datasets employed in our study are the Quora Ques-233

tion Pairs (QQP) (DataCanary et al., 2017), Ques-234

tion NLI (QNLI), MultiNLI (MNLI) (Williams235

et al., 2018), The Stanford Sentiment Treebank236

(SST-2) (Socher et al., 2013), Semantic Textual237

Similarity Benchmark (STS-B) (Cer et al., 2017),238

Microsoft Research Paraphrase Corpus (MRPC)239

(Dolan and Brockett, 2005), The Corpus of Linguis-240

tic Acceptability (CoLA) (Warstadt et al., 2019),241

Multi-Sentence Reading Comprehension (Mul-242

tiRC) (Khashabi et al., 2018), Recognizing Tex-243

tual Entailment (RTE), CommitmentBank (CB),244

Choice Of Plausible Alternatives (COPA) (Gordon245

et al., 2012), Words in Context (WiC) (Pilehvar and246

Camacho-Collados, 2019), and BoolQ (Clark et al., 247

2019). 248

4.2 Base language model 249

In this study, we employ the T5 model family for 250

conducting experiments (Raffel et al., 2020). Our 251

approach to the classification task involves condi- 252

tional generation, wherein the output comprises a 253

string of tokens, each symbolizing a class label. 254

This study exclusively modifies the encoder seg- 255

ment of the T5 model by integrating soft prompts. 256

Given the constraints of computational resources, 257

our analysis is confined to the small and base model 258

sizes. Specifically, we deploy two LM-adapted ver- 259

4

sions of T5v1.1, namely t5-small-lm-adapt and260

t5-base-lm-adapt (Lester et al., 2021).261

Previous research, including studies such as the262

Residual Prompt and ATTEMPT, have highlighted263

concerns regarding the stability and tuning diffi-264

culties of T5v1.1-LM adapt when used as a back-265

bone for prompt tuning tasks (Razdaibiedina et al.,266

2023; Asai et al., 2022). These studies eventu-267

ally switched to the original T5 checkpoint. How-268

ever, utilizing the pretrained T5 original checkpoint269

raises concerns. Since this checkpoint is already270

trained on the GLUE and SuperGLUE datasets, the271

model does not need to learn a new task, only re-272

quiring the appropriate prompt to utilize previously273

acquired knowledge (Raffel et al., 2020). This sit-274

uation may produce misleading results, obscuring275

the true performance and meaningfulness of the276

ultimate comparison. Therefore we implemented277

and tested their methods using the provided hyper-278

paremeters on T5v1.1-LM adapt.279

4.3 Ablation Study280

In SuperPos prompt tuning, a key hyperparameter281

is the number of tokens sampled for superposition,282

denoted as m. Figure 2.(c) shows the impact of dif-283

ferent m values on the performance of SUPERPOS-284

PROMPT across various tasks. On the x-axis, we285

display the number of tokens (m), and the y-axis286

shows the highest performance score achieved. We287

observe that an increase in the number of sam-288

pled tokens generally leads to better results, but289

improvements tend to level off after reaching 128290

tokens. Based on this finding, we set the number291

of sampled tokens in our method to 128.292

4.4 Experiment Setup293

For our experiments, the following configurations294

were employed:295

All of Prompt Tuning Methods: We appended 10296

prompt tokens to the input. Each method was tested297

under two conditions: with and without dropout,298

running for a total of 80 epochs. No learning rate299

scheduler was used, and the AdamW optimizer300

(Loshchilov and Hutter, 2019) was employed.301

Simple Prompt Tuning: Prompts were initialized302

by sampling 10 unique token embeddings from the303

embedding layer, using a learning rate of 0.01 and304

a weight decay of 0.01.305

Residual Prompt Tuning: Prompts were initial-306

ized by sampling 10 unique token embeddings from307

the embedding layer, with a learning rate of 0.3 and308

a weight decay of 0.01, as specified in the original309

paper (Razdaibiedina et al., 2023), we set the bot- 310

tleneck size to 128 to be comparable to our method. 311

ATTEMPT (Asai et al., 2022): Ptarget prompts 312

were initialized by sampling ten unique token em- 313

beddings from the embedding layer. To avoid leak- 314

age between training and testing data, we excluded 315

QQP, QNLI, MNLI, SST-2 datasets from the evalu- 316

ation, as these task pretrained prompts were used 317

during the training of new prompts. To align with 318

the hyperparameters from the original ATTEMPT 319

paper, the learning rate is set to 0.3, with a weight 320

decay of 0.00001, and a bottleneck size of G set to 321

100. 322

SuperPos Prompt Tuning: Prompts in superposi- 323

tion were initialized with 128 unique token embed- 324

dings, shared across all 10 prompt tokens. The 325

learning rate was 0.01 with a weight decay of 326

0.00001. 327

Full Fine-tuning: We opted for a lower learning 328

rate of 0.00001 to preserve the original weights 329

more effectively. 330

The experiments described above required ap- 331

proximately 1000 GPU hours on A100 GPUs with 332

80GB of RAM for training the T5 models, base and 333

small, which have 247,577,856 and 76,961,152 334

number of parameters, respectively. We imple- 335

mented the models in PyTorch using the Hugging- 336

Face library. 337

5 Results 338

Our experimental results are compiled in Table 339

1. Runs generating invalid labels, a possible con- 340

sequence of conditional generation, are denoted 341

with † and scored as 0. Standard metrics from the 342

GLUE and SuperGLUE benchmarks are used for 343

each task. 344

Impact of Dropout: As shown in Figure 2.(a) and 345

Table 1 eliminating dropout from the frozen model 346

enhanced not only the performance of the model 347

but also accelerated convergence. This trend was 348

also evident in experiments with Residual Prompt, 349

ATTEMPT, and SUPERPOS-PROMPT tuning meth- 350

ods. We hypothesize that dropout, being a form 351

of regularization to prevent overfitting, may exces- 352

sively constrain prompt tuning. Since tuning only 353

10 prompts inherently limits flexibility, additional 354

dropout may lead to underperformance. 355

SuperPos-Prompt Performance: According to 356

Table 1, SUPERPOS-PROMPT excelled over Resid- 357

ual Prompt tuning, showing a significant average 358

score increase of +6.4 in T5v1.1-Small and +5 359

5

D
ro

po
ut GLUE SuperGLUE

Task→ QQP QNLI MNLI SST-2 STS-B MRPC CoLA MultiRC RTE CB COPA WiC BoolQ Avg.

Method↓ F1/Acc. Acc. Acc. Acc. PCC/ρ F1/Acc. MCC F1a/EM Acc. F1/Acc. Acc. Acc. Acc. -

T5v1.1 Small LM-Adapted

Simple PT ✓ 58.2/65.5 50.6 33.2 79.4 9.8/7.9 81.2/68.4 0.0 † 17.3/0.3 52.3 0.0/0.0 † 0.0 † 50.6 62.2 37.1

Simple PT ✗ 70.8/75.3 72.8 50.7 84.9 0.0/0.0 † 82.5/71.3 0.0 † 22.6/0.6 49.1 0.0/0.0 † 0.0 † 57.4 62.6 41.5

ATTEMPT ✓ - - - - 0.0/0.0 † 0.0/0.0 † 0.0 † 0.0/0.0 † 52.0 0.0/0.0 † 58.0 0.0 † 0.0 † -

ATTEMPT ✗ - - - - 83.3/83.2 0.0/0.0 † 0.0 † 0.0/0.0 † 59.9 0.0/0.0 † 57.0 64.3 0.0 † -

Residual PT ✓ 70.6/74.9 61.8 34.6 82.8 69.7/72.4 81.9/71.1 0.5 59.9/0.8 52.7 49.6/71.4 56.0 52.4 62.3 54.9

Residual PT ✗ 73.3/78.2 79.2 60.7 85.1 80.8/80.6 88.3/83.3 20.6 59.8/4.4 59.6 68.6/73.2 56.0 58.2 64.7 63.8

SuperPos PT ✓ 74.4/79.9 82.9 66.7 88.8 82.9/82.8 88.4/82.6 23.4 59.9/0.8 58.5 39.6/60.7 56.0 58.6 62.4 63.3

SuperPos PT ✗ 79.1/83.3 85.3 71.7 89.8 84.0/84.0 89.9/85.8 38.9 66.6/16.7 64.6 73.6/76.8 58.0 65.7 68.9 70.2

Full Fine-tuning ✓ 87.4/90.5 89.5 82.9 92.1 85.8/85.5 89.6/84.8 42.0 68.5/19.3 66.1 47.9/69.6 57.0 66.5 71.1 71.7

T5v1.1 Base LM-Adapted

Simple PT ✓ 54.3/38.2 50.5 34.8 85.0 0.0/0.0 † 81.2/68.4 0.0 † 2.5/0.3 53.1 0.0/0.0 † 0.0 † 50.6 62.6 35.3

Simple PT ✗ 0.0/0.0 † 76.9 0.0 † 92.2 0.0/0.0 † 82.0/70.6 24.8 55.6/2.1 53.4 0.0/0.0 † 59.0 57.7 0.0 † 36.1

ATTEMPT ✓ - - - - 0.0/0.0 † 0.0/0.0 † 44.6 0.0/0.0 † 56.0 0.0/0.0 † 55.0 0.0 † 0.0 † -

ATTEMPT ✗ - - - - 0.0/0.0 † 0.0/0.0 † 53.7 67.5/17.8 56.0 0.0/0.0 † 0.0 † 69.0 70.1 -

Residual PT ✓ 72.1/75.0 58.0 34.8 91.3 81.6/81.7 82.0/70.3 0.0 † 59.9/0.8 52.7 43.6/64.3 58.0 54.2 62.8 56.0

Residual PT ✗ 76.1/81.4 83.3 70.7 92.7 86.2/86.1 87.4/82.8 44.7 63.9/11.3 70.0 82.6/80.4 60.0 64.3 65.3 70.8

SuperPos PT ✓ 79.0/83.1 79.2 76.5 94.0 86.2/86.6 89.1/83.6 45.4 68.7/18.2 57.4 44.8/66.1 58.0 58.3 62.3 68.0

SuperPos PT ✗ 81.9/86.3 89.8 81.0 94.2 88.6/88.5 89.7/85.5 56.5 72.9/24.9 70.4 78.3/82.1 62.0 67.6 74.0 75.8

Full Fine-tuning ✓ 88.3/91.1 92.7 88.1 94.8 90.1/89.8 91.9/88.2 53.0 76.2/35.3 72.9 53.5/76.8 57.0 69.3 78.9 76.7

Table 1: Results on some tasks from GLUE and SuperGLUE dataset set with 10-token prompts and training for 80
epochs. For tasks with two metrics, the average score is reported. Numbers marked with † means that T5 model
doesn’t converge to always generate valid labels. So the score will be zero. The full fine-tuning are reported as a
comparsion baseline.

in T5v1.1-Base. Our method has superior perfor-360

mance on most tasks that ATTEMPT were tested361

on. In some cases, it even surpassed full fine-tuning362

methods. A more detailed comparison of some se-363

lected tasks learning curves, based on T5v1.1 Base364

LM-Adapted experiments, is available in Figure365

2.(b). Among the compared methods, SUPERPOS-366

PROMPT generally achieved better performance367

and faster convergence. All learning curves are368

without dropout variant of that methods as most369

of the time this variant reached their best perfor-370

mances, as detailed in Table 1.371

Other Prompt Tuning Methods Performances:372

The performance of Residual Prompt and AT-373

TEMPT did not meet the levels reported in their374

respective papers. This discrepancy may stem from375

their use of T5 checkpoints trained specifically on376

these tasks. Unable to replicate their results, we377

tested our method using identical checkpoint and378

found it surpassed their reported numbers. For379

more details, see §A.1.380

Stability Analysis: To compare the stability of381

various methods, we normalized and scaled the382

performance of each task across these methods.383

This process, referred to as “standardized overall384

scoring”, is described by Yu et al. (2023) and is385

Method↓ Dropout Small Base

Simple PT ✓ 17.1±26.4 17.2±25.2

Simple PT ✗ 28.9±29.5 30.8±32.6

Residual PT ✓ 44.7±31.3 49.5±32.8

Residual PT ✗ 65.9±20.0 83.2±10.2

SuperPos PT ✓ 66.9±17.8 75.9±18.5

SuperPos PT ✗ 81.7±9.7 93.6±4.7

Full FT ✓ 85.2±9.0 97.4±5.7

Table 2: Mean and standard deviation of standardized
overall scoring across thirteen different tasks. This table
facilitates a comparison of method stability, where a
lower standard deviation indicates higher stability across
tasks. Note: ATTEMPT results are excluded as it was
not evaluated on four tasks from thirteen tasks.

employed in evaluating Large Language Models 386

(LLMs). To determine stability, we calculated the 387

mean and standard deviation of these scores for 388

each method over thirteen tasks. A method demon- 389

strating a lower standard deviation suggests greater 390

stability, indicating consistent performance across 391

various tasks. As shown in Table 2, our method 392

has a standard deviation half that of the RESID- 393

UAL PROMPT, thus exhibiting superior stability in 394

6

Figure 2: This figure illustrates results from our experiment using ‘T5v1.1 Base LM-Adapted’ as the foundation. (a)
Learning curves comparing dropout effects on SuperPos-Prompt for selected tasks. (b) Learning curves comparing
various prompt tuning methods across selected tasks, conducted without dropout. (c) Ablation study on the effect
of sampled token count (m) for SuperPos-Prompt, with the x-axis representing sample token count and the y-axis
indicating peak performance for the relevant metric. (d) Analysis of cosine similarity in superposition weights for
each prompt token across all tasks.

7

prompt tuning tasks, closely rivaling stability of395

full fine-tuning.396

Analysis on Learned SuperPos-Prompt: We per-397

formed a cosine similarity analysis on the learned398

superposition weights (p′
i) for each prompt across399

different tasks. The resulting similarity matrices400

are presented in Figure 2.(d). Each prompt’s to-401

ken similarity matrix reveals distinct patterns, sug-402

gesting unique task-specific encodings. However,403

we found no clear correlation between these pat-404

terns and the task descriptions. Notably, tasks with405

limited data and fewer training steps, such as CB,406

COPA, and RTE, tend to have the most distinctive407

prompts.408

6 Conclusions409

In this work, we made two primary contributions410

that enhance the field of prompt tuning for language411

models, especially when fine-tuning datasets are412

small and existing soft prompt tuning approaches413

fall short.414

First, we observed a notable improvement415

in the efficiency and speed of convergence in416

prompt tuning upon excluding dropout from the417

frozen network. This observation, which has not418

been explored in existing literature, holds consis-419

tently across most scenarios, enhancing the per-420

formance of RESIDUAL PROMPT, ATTEMPT, and421

SUPERPOS-PROMPT tuning methods. Our findings422

underscore the importance of continually reassess-423

ing established network parameters and practices424

to unearth potential enhancements.425

Our second key contribution was the introduc-426

tion of SUPERPOS-PROMPT, a novel reparame-427

terization technique for soft prompt tuning. This428

method, leveraging the superpositions of sampled429

pretrained token embeddings, enhances stability in430

prompt tuning and obviates the need for pre-trained431

source prompts. SUPERPOS-PROMPT consistently432

outperformed Residual Prompt tuning, showcasing433

an average score increase of +6.4 in T5-Small and434

+5.0 in T5-Base across all thirteen GLUE and Su-435

perGLUE benchmarks used in this study. Remark-436

ably, SUPERPOS-PROMPT not only exceeded the437

performance of Residual Prompt tuning but also,438

in certain instances, showed superior performance439

to the full fine-tuning approach. Additionally, we440

observed a clear correlation between the number of441

sampled tokens on SUPERPOS-PROMPT and per-442

formance scores, with an optimal plateau at 128443

tokens.444

Looking forward, the exploration of integrat- 445

ing pre-trained source prompts stands as a promis- 446

ing avenue for further enhancing model perfor- 447

mances. We anticipate that our work will spur 448

innovative and more efficient uses of pre-trained 449

source prompts in the future, reinforcing the im- 450

portance of this research in the ever-evolving field 451

of language model tuning and optimization. Fu- 452

ture work includes a more extensive comparison 453

of SUPERPOS-PROMPT with a broader range of 454

prompting techniques in different dataset scenarios, 455

an endeavor constrained in this study by computa- 456

tional resource limitations. Additionally, while this 457

study exclusively explored language models, we 458

anticipate the extension of this approach to addi- 459

tional foundation models across various modalities, 460

as well as multimodal foundation models. 461

7 Limitations 462

While our proposed SuperPos − Prompt en- 463

hances soft prompt tuning of language models, it 464

has several limitations that must be acknowledged. 465

Firstly, we have exclusively tested the T5 encoder- 466

decoder architecture, which is also frequently ex- 467

plored in similar works. However, this approach 468

can be more broadly applied to both encoder and de- 469

coder architectures. Secondly, our focus was on the 470

GLUE and SuperGLUE evaluations, similar to the 471

mainstream works in this area. Nonetheless, evalu- 472

ations on generation tasks, which present more sig- 473

nificant challenges, are also necessary. Lastly, we 474

faced hardware limitations in verifying the results 475

with large-scale models, on the order of billions of 476

parameters. 477

References 478

Akari Asai, Mohammadreza Salehi, Matthew Pe- 479
ters, and Hannaneh Hajishirzi. 2022. ATTEMPT: 480
Parameter-efficient multi-task tuning via attentional 481
mixtures of soft prompts. In Proceedings of the 482
2022 Conference on Empirical Methods in Natu- 483
ral Language Processing, pages 6655–6672, Abu 484
Dhabi, United Arab Emirates. Association for Com- 485
putational Linguistics. 486

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez- 487
Gazpio, and Lucia Specia. 2017. SemEval-2017 488
task 1: Semantic textual similarity multilingual and 489
crosslingual focused evaluation. In Proceedings 490
of the 11th International Workshop on Semantic 491
Evaluation (SemEval-2017), pages 1–14, Vancouver, 492
Canada. Association for Computational Linguistics. 493

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, 494

8

https://doi.org/10.18653/v1/2022.emnlp-main.446
https://doi.org/10.18653/v1/2022.emnlp-main.446
https://doi.org/10.18653/v1/2022.emnlp-main.446
https://doi.org/10.18653/v1/2022.emnlp-main.446
https://doi.org/10.18653/v1/2022.emnlp-main.446
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001

Alex Smola, and Diyi Yang. 2023. Parameter-495
efficient fine-tuning design spaces. arXiv preprint496
arXiv:2301.01821.497

Christopher Clark, Kenton Lee, Ming-Wei Chang,498
Tom Kwiatkowski, Michael Collins, and Kristina499
Toutanova. 2019. BoolQ: Exploring the surprising500
difficulty of natural yes/no questions. In Proceedings501
of the 2019 Conference of the North American Chap-502
ter of the Association for Computational Linguistics:503
Human Language Technologies, Volume 1 (Long and504
Short Papers), pages 2924–2936, Minneapolis, Min-505
nesota. Association for Computational Linguistics.506

DataCanary, hilfialkaff, Lili Jiang, Meg Risdal, Nikhil507
Dandekar, and tomtung. 2017. Quora question pairs.508

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and509
Kristina Toutanova. 2019. BERT: Pre-training of510
deep bidirectional transformers for language under-511
standing. In Proceedings of the 2019 Conference of512
the North American Chapter of the Association for513
Computational Linguistics: Human Language Tech-514
nologies, Volume 1 (Long and Short Papers), pages515
4171–4186, Minneapolis, Minnesota. Association for516
Computational Linguistics.517

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-518
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,519
Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning:520
A comprehensive study of parameter efficient meth-521
ods for pre-trained language models. arXiv preprint522
arXiv:2203.06904.523

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,524
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin525
Chen, Chi-Min Chan, Weize Chen, et al. 2023.526
Parameter-efficient fine-tuning of large-scale pre-527
trained language models. Nature Machine Intelli-528
gence, 5(3):220–235.529

William B. Dolan and Chris Brockett. 2005. Automati-530
cally constructing a corpus of sentential paraphrases.531
In Proceedings of the Third International Workshop532
on Paraphrasing (IWP2005).533

Kasthurirangan Gopalakrishnan, Siddhartha K Khaitan,534
Alok Choudhary, and Ankit Agrawal. 2017. Deep535
convolutional neural networks with transfer learning536
for computer vision-based data-driven pavement dis-537
tress detection. Construction and building materials,538
157:322–330.539

Andrew Gordon, Zornitsa Kozareva, and Melissa Roem-540
mele. 2012. SemEval-2012 task 7: Choice of plau-541
sible alternatives: An evaluation of commonsense542
causal reasoning. In *SEM 2012: The First Joint543
Conference on Lexical and Computational Seman-544
tics – Volume 1: Proceedings of the main conference545
and the shared task, and Volume 2: Proceedings of546
the Sixth International Workshop on Semantic Eval-547
uation (SemEval 2012), pages 394–398, Montréal,548
Canada. Association for Computational Linguistics.549

Demi Guo, Alexander Rush, and Yoon Kim. 2021. 550
Parameter-efficient transfer learning with diff prun- 551
ing. In Proceedings of the 59th Annual Meeting of the 552
Association for Computational Linguistics and the 553
11th International Joint Conference on Natural Lan- 554
guage Processing (Volume 1: Long Papers), pages 555
4884–4896, Online. Association for Computational 556
Linguistics. 557

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 558
Bruna Morrone, Quentin De Laroussilhe, Andrea 559
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 560
Parameter-efficient transfer learning for nlp. In In- 561
ternational Conference on Machine Learning, pages 562
2790–2799. PMLR. 563

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 564
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 565
Weizhu Chen. 2022. LoRA: Low-rank adaptation of 566
large language models. In International Conference 567
on Learning Representations. 568

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, 569
Shyam Upadhyay, and Dan Roth. 2018. Looking 570
beyond the surface:a challenge set for reading com- 571
prehension over multiple sentences. In Proceedings 572
of North American Chapter of the Association for 573
Computational Linguistics (NAACL). 574

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 575
The power of scale for parameter-efficient prompt 576
tuning. In Proceedings of the 2021 Conference on 577
Empirical Methods in Natural Language Processing, 578
pages 3045–3059, Online and Punta Cana, Domini- 579
can Republic. Association for Computational Lin- 580
guistics. 581

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 582
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 583
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 584
BART: Denoising sequence-to-sequence pre-training 585
for natural language generation, translation, and com- 586
prehension. In Proceedings of the 58th Annual Meet- 587
ing of the Association for Computational Linguistics, 588
pages 7871–7880, Online. Association for Computa- 589
tional Linguistics. 590

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 591
Optimizing continuous prompts for generation. In 592
Proceedings of the 59th Annual Meeting of the Asso- 593
ciation for Computational Linguistics and the 11th 594
International Joint Conference on Natural Language 595
Processing (Volume 1: Long Papers), pages 4582– 596
4597, Online. Association for Computational Lin- 597
guistics. 598

Vladislav Lialin, Vijeta Deshpande, and Anna 599
Rumshisky. 2023. Scaling down to scale up: A guide 600
to parameter-efficient fine-tuning. arXiv preprint 601
arXiv:2303.15647. 602

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 603
weight decay regularization. In International Confer- 604
ence on Learning Representations. 605

9

https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://kaggle.com/competitions/quora-question-pairs
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://aclanthology.org/S12-1052
https://aclanthology.org/S12-1052
https://aclanthology.org/S12-1052
https://aclanthology.org/S12-1052
https://aclanthology.org/S12-1052
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Jonas Pfeiffer, Sebastian Ruder, Ivan Vulić, and606
Edoardo Maria Ponti. 2023. Modular deep learning.607
arXiv preprint arXiv:2302.11529.608

Mohammad Taher Pilehvar and Jose Camacho-Collados.609
2019. WiC: the word-in-context dataset for evalu-610
ating context-sensitive meaning representations. In611
Proceedings of the 2019 Conference of the North612
American Chapter of the Association for Computa-613
tional Linguistics: Human Language Technologies,614
Volume 1 (Long and Short Papers), pages 1267–1273,615
Minneapolis, Minnesota. Association for Computa-616
tional Linguistics.617

Yujia Qin, Xiaozhi Wang, YuSheng Su, Yankai Lin,618
Ning Ding, Zhiyuan Liu, Juanzi Li, Lei Hou, Peng619
Li, Maosong Sun, and Jie Zhou. 2021. Exploring620
low-dimensional intrinsic task subspace via prompt621
tuning. CoRR, abs/2110.07867.622

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-623
ine Lee, Sharan Narang, Michael Matena, Yanqi624
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the625
limits of transfer learning with a unified text-to-text626
transformer. Journal of Machine Learning Research,627
21(140):1–67.628

Anastasiia Razdaibiedina, Yuning Mao, Madian Khabsa,629
Mike Lewis, Rui Hou, Jimmy Ba, and Amjad Alma-630
hairi. 2023. Residual prompt tuning: improving631
prompt tuning with residual reparameterization. In632
Findings of the Association for Computational Lin-633
guistics: ACL 2023, pages 6740–6757, Toronto,634
Canada. Association for Computational Linguistics.635

Sebastian Ruder, Matthew E. Peters, Swabha636
Swayamdipta, and Thomas Wolf. 2019. Transfer637
learning in natural language processing. In Proceed-638
ings of the 2019 Conference of the North American639
Chapter of the Association for Computational640
Linguistics: Tutorials, pages 15–18, Minneapo-641
lis, Minnesota. Association for Computational642
Linguistics.643

Richard Socher, Alex Perelygin, Jean Wu, Jason644
Chuang, Christopher D. Manning, Andrew Ng, and645
Christopher Potts. 2013. Recursive deep models for646
semantic compositionality over a sentiment treebank.647
In Proceedings of the 2013 Conference on Empiri-648
cal Methods in Natural Language Processing, pages649
1631–1642, Seattle, Washington, USA. Association650
for Computational Linguistics.651

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,652
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.653
Dropout: A Simple Way to Prevent Neural Networks654
from Overfitting. Journal of Machine Learning Re-655
search, 15(56):1929–1958.656

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-657
bert, Amjad Almahairi, Yasmine Babaei, Nikolay658
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti659
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton660
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,661
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,662

Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 663
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 664
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 665
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 666
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 667
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 668
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 669
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 670
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 671
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 672
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 673
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 674
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 675
Melanie Kambadur, Sharan Narang, Aurelien Ro- 676
driguez, Robert Stojnic, Sergey Edunov, and Thomas 677
Scialom. 2023. Llama 2: Open foundation and fine- 678
tuned chat models. 679

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’, 680
and Daniel Cer. 2022. SPoT: Better frozen model 681
adaptation through soft prompt transfer. In Proceed- 682
ings of the 60th Annual Meeting of the Association 683
for Computational Linguistics (Volume 1: Long Pa- 684
pers), pages 5039–5059, Dublin, Ireland. Association 685
for Computational Linguistics. 686

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 687
preet Singh, Julian Michael, Felix Hill, Omer Levy, 688
and Samuel Bowman. 2019a. Superglue: A stick- 689
ier benchmark for general-purpose language under- 690
standing systems. Advances in neural information 691
processing systems, 32. 692

Alex Wang, Amanpreet Singh, Julian Michael, Felix 693
Hill, Omer Levy, and Samuel R. Bowman. 2019b. 694
GLUE: A multi-task benchmark and analysis plat- 695
form for natural language understanding. In 7th In- 696
ternational Conference on Learning Representations, 697
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. 698
OpenReview.net. 699

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Roge- 700
rio Feris, Huan Sun, and Yoon Kim. 2023. Multitask 701
prompt tuning enables parameter-efficient transfer 702
learning. In The Eleventh International Conference 703
on Learning Representations. 704

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow- 705
man. 2019. Neural network acceptability judgments. 706
Transactions of the Association for Computational 707
Linguistics, 7:625–641. 708

Adina Williams, Nikita Nangia, and Samuel Bowman. 709
2018. A broad-coverage challenge corpus for sen- 710
tence understanding through inference. In Proceed- 711
ings of the 2018 Conference of the North American 712
Chapter of the Association for Computational Lin- 713
guistics: Human Language Technologies, Volume 714
1 (Long Papers), pages 1112–1122, New Orleans, 715
Louisiana. Association for Computational Linguis- 716
tics. 717

Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao, 718
Daniel Zhang-li, Xin Lv, Hao Peng, Zijun Yao, Xi- 719
aohan Zhang, Hanming Li, Chunyang Li, Zheyuan 720

10

https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
http://arxiv.org/abs/2110.07867
http://arxiv.org/abs/2110.07867
http://arxiv.org/abs/2110.07867
http://arxiv.org/abs/2110.07867
http://arxiv.org/abs/2110.07867
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2023.findings-acl.421
https://doi.org/10.18653/v1/2023.findings-acl.421
https://doi.org/10.18653/v1/2023.findings-acl.421
https://doi.org/10.18653/v1/N19-5004
https://doi.org/10.18653/v1/N19-5004
https://doi.org/10.18653/v1/N19-5004
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=Nk2pDtuhTq
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101

Zhang, Yushi Bai, Yantao Liu, Amy Xin, Nianyi Lin,721
Kaifeng Yun, Linlu Gong, Jianhui Chen, Zhili Wu,722
Yunjia Qi, Weikai Li, Yong Guan, Kaisheng Zeng,723
Ji Qi, Hailong Jin, Jinxin Liu, Yu Gu, Yuan Yao,724
Ning Ding, Lei Hou, Zhiyuan Liu, Bin Xu, Jie Tang,725
and Juanzi Li. 2023. Kola: Carefully benchmarking726
world knowledge of large language models. CoRR,727
abs/2306.09296.728

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and729
Dacheng Tao. 2022. Panda: Prompt transfer meets730
knowledge distillation for efficient model adaptation.731

Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu732
Zhou. 2023. Transfer learning in deep reinforcement733
learning: A survey. IEEE Transactions on Pattern734
Analysis and Machine Intelligence.735

A Appendix736

A.1 T5 original checkpoint737

As noted earlier, some studies like Residual Prompt738

and ATTEMPT used the original T5 checkpoint,739

trained on these tasks, instead of the T5v1.1 LM-740

Adapted checkpoint. Our replication efforts with741

the T5v1.1 LM-Adapted checkpoint yielded unsat-742

isfactory results. Consequently, we also adopted743

the original T5 checkpoint in our method for a fair744

comparison. As illustrated in Table 3, our approach745

outperformed results that were reported in these746

studies. This outcome is significant, especially con-747

sidering that the ATTEMPT method utilized ten748

times more prompt tokens and also used pre-trained749

source prompts for initialization.750

A.2 Softmax Effect751

In our experiments, we also applied a softmax func-
tion to the superposition weights. This approach
aligns more closely with an attention mechanism,
effectively computing an expected value. The math-
ematical representation is as follows:

pi = E Softmax(p′
i) =

∑m
j=1 exp (p

′
ij)ej∑m

j=1 exp (p
′
ij)

However, this modification resulted in diminished752

performance, as indicated in Table 3. Therefore we753

didn’t use softmax in our main experiments.754

A.3 GPT3 few-shot performance755

For comparison purposes, we conducted experi-756

ments on these datasets using the GPT-3.5-turbo757

model. The model was evaluated with in-context758

learning, employing 1-shot examples from each759

category. The results can be found in Table 3.760

11

https://doi.org/10.48550/arXiv.2306.09296
https://doi.org/10.48550/arXiv.2306.09296
https://doi.org/10.48550/arXiv.2306.09296
http://arxiv.org/abs/2208.10160
http://arxiv.org/abs/2208.10160
http://arxiv.org/abs/2208.10160

#
Pr

om
pt

s

So
ft

m
ax

D
ro

po
ut GLUE SuperGLUE

Task→ QQP QNLI MNLI SST-2 STS-B MRPC CoLA MultiRC RTE CB COPA WiC BoolQ Avg.

Method↓ F1/Acc. Acc. Acc. Acc. PCC/ρ F1/Acc. MCC F1a/EM Acc. F1/Acc. Acc. Acc. Acc. -

T5 Base

SuperPos PT 10 ✗ ✗ 87.8/90.8 93.5 86.0 94.4 90.2/90.1 92.4/89.5 59.7 77.7/40.9 80.1 97.4/96.4 66.0 67.6 81.3 81.2
ATTEMPT ⋆ 100 ✓ ✓ -/90.3 93.0 84.3 93.2 89.7/- -/85.7 57.4 74.4/- 73.4 -/78.6 - 66.8 78.8 -

Residual PT ⋆ 10 ✗ ✓ - - - - - - - 59.3 70.4 79.2 58.3 66.8 77.9 -

T5v1.1 Small LM-Adapted

SuperPos PT 10 ✗ ✗ 79.1/83.3 85.3 71.7 89.8 84.0/84.0 89.9/85.8 38.9 66.6/16.7 64.6 73.6/76.8 58.0 65.7 68.9 70.2
SuperPos PT 10 ✓ ✗ 69.6/75.2 76.0 42.7 82.9 45.5/43.3 82.4/73.0 4.6 47.5/0.9 52.0 49.9/71.4 57.0 56.4 62.3 54.9

T5v1.1 Base LM-Adapted

SuperPos PT 10 ✗ ✗ 81.9/86.3 89.8 81.0 94.2 88.6/88.5 89.7/85.5 56.5 72.9/24.9 70.4 78.3/82.1 62.0 67.6 74.0 75.8

GPT-3.5-Turbo

1 Shot 76.3/79.2 70.9 58.5 94.0 34.6/34.1 84.6/77.0 46.1 77.9/34.1 70.8 55.6/62.5 95.0 58.8 69.6 67.1

Table 3: This table presents additional results and comparisons, including those from the SuperPos prompt method
trained on the T5 Base checkpoint. Results from methods marked with ⋆ are sourced from their respective papers
(Asai et al., 2022; Razdaibiedina et al., 2023). It also shows the impact of softmax application and GPT-3.5-Turbo’s
one-shot performance across various datasets. Unreported values are indicated by ‘-’. In the residual prompt tuning
study, tasks with two metrics are reported as an average score, not separately.

12

	Introduction
	Background
	Approach
	Comparison to similar prompt tuning approaches

	Experiments
	dataset
	Base language model
	Ablation Study
	Experiment Setup

	Results
	Conclusions
	Limitations
	Appendix
	T5 original checkpoint
	Softmax Effect
	GPT3 few-shot performance

