
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONLINE LEARNING-GUIDED LEARNING RATE ADAPTA-
TION VIA GRADIENT ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of an optimizer on large-scale deep learning models depends
critically on fine-tuning the learning rate, often requiring an extensive grid search
over base learning rates, schedules, and other hyperparameters. In this paper,
we propose a principled framework called GALA (Gradient Alignment-based
Learning rate Adaptation), which dynamically adjusts the learning rate by tracking
the alignment between consecutive gradients and using a local curvature estimate.
Guided by the convergence analysis, we formulate the problem of selecting the
learning rate as a one-dimensional online learning problem. When paired with
an online learning algorithm such as Follow-the-Regularized-Leader, our method
produces a flexible, adaptive learning rate schedule that tends to increase when
consecutive gradients are aligned and decrease otherwise. We establish a data-
adaptive convergence rate for normalized SGD equipped with GALA in the smooth,
nonconvex setting. Empirically, common optimizers such as SGD and Adam,
when augmented with GALA, demonstrate robust performance across a wide range
of initial learning rates and perform competitively without the need for tuning.

1 INTRODUCTION

Stochastic first-order (SFO) methods such as SGD (Robbins & Monro, 1951), AdaGrad (McMahan
& Streeter, 2010; Duchi et al., 2011), and Adam (Kingma & Ba, 2015) have been the workhorse for
training large-scale models due to their low computational overhead and strong empirical performance.
Essentially, the practical performance of SFO methods relies on two components: the choice of
base learning rate and how the learning rate evolves during training. The initial selection process is
typically done by running a grid search over a range of values, which is referred to as tuning. On
top of that, the evolution of the learning rate throughout the execution is most commonly done by
scaling it externally via a scheduler. Depending on the characteristics of the optimizer, the learning
rate could also be dynamically updated by some internal mechanism during training.

For instance, SGD is often run with a constant learning rate and coupled with a scheduler such as
cosine annealing (Loshchilov & Hutter, 2017), linear decay (Defazio et al., 2023) or step decay (Ge
et al., 2019) that guides the learning rate following a predetermined rule. Similarly, the adaptive
methods update the learning rate internally by accumulating the observed gradients based on a
prescribed rule that usually tends the learning rate below its initial value. Although optimizers have
other parameters such as momentum and weight decay, they are often fixed at the beginning, whereas
the learning rate evolves throughout and thus has a larger impact on the final performance.

However, it is unclear how to choose an “empirically viable” combination of base learning rate,
optimizer, and scheduler, a priori, without tuning over a manually chosen set of parameters. In
practice, this issue is compounded by the fact that hyperparameters are often tuned for only a few
epochs or on a smaller-scale model, and then directly transferred to large-scale experiments. Yet,
it has been documented that early training behaviors can be misleading (Wen et al., 2025) as such
configurations will be far from ideal at the true scale. Therefore, this challenge highlights the need
for a theoretically principled approach to learning rate adaptation that is robust, flexible, and provable.
To put things in perspective, we highlight three key drawbacks of common approaches in this domain.

Robustness: Many optimizers, such as SGD and AdaGrad, are highly sensitive to the initial learning
rate: an excessively large value can lead to divergence, while a very small one results in stagnation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

25 50 75 100 125 150 175 200
Epoch

10
1

10
0

10
1

Tr
ai

ni
ng

 L
os

s

Training Loss vs. Epochs
GALA-SGD
SGD

(a) SGD versus SGD-GALA

25 50 75 100 125 150 175 200
Epoch

10
1

10
0

10
1

Tr
ai

ni
ng

 L
os

s

Training Loss vs. Epochs
GALA-Adam
Adam

(b) Adam versus ADAM-GALA

Figure 1: Training loss comparison for standalone SGD and Adam versus GALA applied on their
learning rates (SGD-GALA and ADAM-GALA, respectively). The curves are obtained by running
the algorithms with initial learning rates [1, 10−1, 10−2, 10−3, 10−4, 10−5].

Ideally, we seek stable performance across a wide range of initial learning rates, allowing for robust
training even with suboptimal initializations.

Adaptivity: In most cases, the value of the learning rate, either through internal dynamics or an
external scheduler, tends to decay over time, limiting flexibility. For instance, the standard AdaGrad
algorithm (McMahan & Streeter, 2010; Duchi et al., 2011) reduces the learning rate below its initial
value, and most commonly used schedulers induce decaying behavior on top of the learning rate. A
more desirable alternative would be a principled and adaptive scheduling mechanism capable of both
increasing and decreasing the learning rate as needed.

Principled: Most theoretical frameworks in this area are grounded in convex optimization. For
instance, AdaGrad and its variants are supported by data-dependent regret bounds derived from
online convex optimization. However, the decaying nature of their learning rate is not necessarily
empirically optimal for non-convex landscapes. Developing a theoretically grounded approach
tailored to non-convex problems is crucial for establishing provable performance guarantees.

While several existing works partially address these three limitations, none meet all the desired
criteria simultaneously, as discussed in detail in Section 1.1.

Our contributions: Our goal is to unify all three ingredients in a single principled framework.
To this end, we propose Gradient Alignment-based Learning rate Adaptation (GALA), an online-
learning guided framework for adjusting the learning rate on-the-fly by carefully monitoring the
evolution of the optimization path. Our main goal with designing this framework is to make algo-
rithms robust to parameter-tuning while maintaining competitive performance. In particular:

1. Motivated by the convergence analysis, we construct a one-dimensional online loss function for
selecting the learning rate, using the alignment between consecutive stochastic gradients and a
local estimate of the gradient Lipschitz constant. The learning rate is then updated by performing
a step for the one-dimensional online problem via any suitable algorithm.

2. Our approach enables dynamic learning rate adaptation: it tends to increase when the gradients are
aligned and decrease when misalignment is detected. We carefully moderate the alignment signal
using a regularization term based on the local gradient Lipschitz estimate, promoting stability.

3. Theoretically, we provide a regret-based analysis and establish convergence guarantees for a
variant of our algorithm for nonconvex objective functions with stochastic gradients.

4. Empirically, our method demonstrates strong, stable performance across a wide range of hyperpa-
rameter settings. We propose a heuristic implementation for other SFO methods.

In fact, Figure 1 provides a glimpse at the performance of our framework when applied to the learning
rates of SGD and Adam. We show that GALA helps mitigate sensitivity to the initialization of the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

learning rate while maintaining a competitive performance with respect to the best-performing runs
of the standalone SGD and Adam.

1.1 RELATED WORK

Classical stochastic first-order methods. Dating back to the seminal work Robbins & Monro (1951),
the theoretical behavior of SGD and its many variants have been extensively studied. Considering
general smooth functions, it is well-known that the learning rate must decrease at a rate of ηt =
O(1/

√
t) where t is the iteration counter and also satisfy ηt ≤ O(1/L). Ghadimi & Lan (2013)

established that SGD with a properly chosen learning rate achieves a complexity of O(ϵ−2 + σ2ϵ−4),
interpolating between deterministic and stochastic rates and matching the lower bounds (Arjevani
et al., 2023). However, the choice of the learning rate depends on the problem parameters, i.e., L, σ,
which are typically unknown and prohibitively difficult to estimate in practice. Similar requirements
are in place for the learning rate when the objective function is ρ-weakly convex (Davis et al., 2020).

Adaptive and parameter-free optimization methods. AdaGrad was introduced in two concur-
rent works McMahan & Streeter (2010); Duchi et al. (2011) for minimizing a sequence of online
convex losses. The main idea is to compute a time-varying learning rate by accumulating squared
norms of stochastic gradients. This fundamental idea paved the way for many algorithms such as
Adam (Kingma & Ba, 2015), RMSProp Tieleman & Hinton (2012), Adadelta Zeiler (2012), and their
variants, which demonstrate strong empirical performance. Beyond the online optimization setup,
they have been shown to automatically adapt to problem-dependent parameters such as smoothness,
noise variance, and bounds on gradients. Their convergence properties have been well-studied for the
convex setting (Levy, 2017; Levy et al., 2018; Kavis et al., 2019; Joulani et al., 2020; Antonakopoulos
et al., 2022; Liu et al., 2023a; Rodomanov et al., 2024) and non-convex setting (Li & Orabona, 2019;
Ward et al., 2020; Li & Orabona, 2020; Kavis et al., 2022; Gadat & Gavra, 2022; Faw et al., 2022;
Attia & Koren, 2023; Liu et al., 2023b).

A downside of the first-generation adaptive methods is the sensitivity to initial learning rate due to
the need to know an estimate to the initial distance, ∥x0 − x∗∥. To remedy this, parameter-free
optimization (Carmon & Hinder, 2022; Ivgi et al., 2023; Khaled et al., 2023; Kreisler et al., 2024;
Attia & Koren, 2024) has gained popularity with a focus on augmenting robustness. Essentially, they
combine AdaGrad-type learning rate with a certificate that estimates the initial distance to the solution.
Although this helps increase from the initial value, the scaling factor is practically bounded, restricting
flexibility. On a related front, a different line of work Malitsky & Mishchenko (2020; 2024); Li
& Lan (2024) studied parameter-free gradient methods with local curvature estimation for convex,
deterministic problems. They are separated from AdaGrad-type methods with a non-monotone
learning rate that estimates the time evolution of local smoothness. A downside to these methods is
empirical stability; if the increasing behavior is not tamed properly, optimization performance could
be unstable, especially for nonconvex problems. Therefore, it is of utmost importance to strike the
right balance between flexibility and stability.

Hypergradient descent. Originally proposed as a heuristic for stochastic optimization in Almeida
et al. (1999), hypergradient descent updates the learning rate by computing the gradient with respect
to the learning rate. It was later rediscovered and adapted to modern deep learning Rubio (2017);
Baydin et al. (2018), with several subsequent works refining this approach Chandra et al. (2022);
Ozkara et al. (2024). Recently, Gao et al. (2024); Chu et al. (2025) provided convergence guarantees
from an online learning perspective, though their analysis is limited to deterministic convex settings.

Online learning-guided methods. Drawing insights from parameter-free online learning Orabona &
Pál (2016), Orabona & Tommasi (2017) reformulate SGD as a coin-betting game and apply a betting
algorithm to eliminate the need for a manually tuned learning rate. They also provide convergence
guarantees for convex and quasi-convex objectives. Cutkosky et al. (2023a) proposed a general
technique for adaptively scaling any base optimization algorithm and learning rate schedule, which
is grounded in a black-box reduction framework from parameter-free online learning Cutkosky &
Orabona (2018). The work most relevant to ours is that of Zhuang et al. (2019), who consider
non-convex stochastic optimization and introduce a surrogate loss technique for selecting the learning
rate. However, their method requires knowledge of problem-dependent parameters (e.g., gradient’s
Lipschitz constant), which limits its flexibility.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

We consider the stochastic optimization problem

min
x∈Rd

F (x) = Eξ∼D[f(x; ξ)],

where f(·; ξ) is a random function indexed by a random variable ξ drawn from distribution D. The
objective function F : Rd → R is assumed to be differentiable, possibly nonconvex and bounded
from below, i.e., F (x) > −∞. Moreover, we make the following standard assumptions:
Assumption 1. The gradient of F is L-Lipschitz continuous, i.e., ∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥
for any x and y.
Assumption 2. The stochastic gradient has bounded variance of σ2, i.e., E[∥∇F (x)−∇f(x; ξ)∥2] ≤
σ2 for any x ∈ Rd.

2.1 BACKGROUND: ONLINE LEARNING

Let us briefly introduce the online learning framework and establish the groundwork necessary within
the context of our approach. In the online learning framework, a learner makes decisions iteratively
over rounds. At each round t = 1, · · · , T :

1. The learner makes a decision xt ∈ X from a bounded set of actions;
2. The environment/adversary reveals the loss function ℓt(·);
3. The learner suffers the loss ℓt(xt).

The learner chooses its action xt in round t prior to observing the loss ℓt(·). The performance of the
learner is measured by regret, which is defined as the difference between the cumulative loss of the
learner compared against a fixed action x:

RegT (x) =
∑T

t=1
(ℓt(xt)− ℓt(x)). (1)

The goal is to achieve sublinear regret, i.e., RegT (x) = o(T), such that the time average of regret
goes to zero as T → ∞, meaning the learner performs as well as the fixed strategy in the limit.

3 ONLINE LEARNING RATE SELECTION

We begin by introducing a simplified template that outlines our design. Our primary goal is to provide
insight into the idea of gradient alignment, explain our adaptive strategy, and establish the foundation
for the online learning formulation of the learning rate. Consider the SGD update rule

xt+1 = xt − ηtgt(xt), gt(xt) = ∇f(xt; ξt), (2)

where ξt ∼ D is a random sample drawn from the distribution D at iteration t. Our goal is to choose
a sequence of learning rates guided by the progress of the algorithm, as measured by the function
value difference F (xt+1) − F (xt). At this point, we deviate from the classical analysis; inspired
by Cutkosky et al. (2023b), we apply the fundamental theorem of calculus to get

F (xt+1)− F (xt) = ⟨∇t,xt+1 − xt⟩ = −ηt⟨∇t,gt(xt)⟩, (3)

where ∇t =
∫ 1

0
∇F (xt + λ(xt+1 − xt)) dλ denotes the average gradient along the line segment

between xt and xt+1. Note that the right-hand side of (3) concerns the alignment between the
gradients ∇t and gt(xt) and serves as a useful signal for adjusting the learning rate. When the
alignment term is positive, it indicates that the gradients point in similar directions and increasing
the learning rate may lead to greater progress. Conversely, a negative alignment implies opposing
directions, in which case a smaller learning rate may be more appropriate.

However, computing ∇t is generally intractable, as it involves the true gradient and an integral. A
key observation in Zhang et al. (2020); Cutkosky et al. (2023b) is that an unbiased estimate of ∇t

can be constructed by evaluating the gradient at a random point along the line segment. Specifically,
let λt be a random variable uniformly distributed over [0, 1], and let ξ′t be an independent sample

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1: SGD-GALA
Input: Initial point x0, initial learning rate η0, maximum learning rate ηmax, δ > 0

1 for t = 0 to T do
2 Sample ξt ∼ D and compute gt(xt) = ∇f(xt; ξt)
3 xt+1 = xt − ηtgt(xt)
4 Sample ξ′t ∼ D and compute g′

t(xt) = ∇f(xt; ξ
′
t)

5 Sample st ∼ Uniform[0, 1], compute wt = xt + st(xt+1 − xt) and g′
t(wt) = ∇f(wt; ξ

′
t)

6 Compute Lt =
∥g′

t(wt)−g′
t(xt)∥

∥wt−xt∥

7 ηt+1 = clip[0,ηmax]

(∑t
s=0⟨g

′
s(ws),gs(xs)⟩

δ+
∑t

s=0 Ls∥gs(xs)∥2

)
8 end

from the distribution D. Then for wt = xt + λt(xt+1 − xt) and g′
t(wt) = ∇f(wt; ξ

′
t), we have

∇t = Eλt
[∇F (wt)] = Eλt,ξ′t

[g′
t(wt)], which implies

F (xt+1)− F (xt) = −ηt Eλt,ξ′t
[⟨g′

t(wt),gt(xt)⟩]. (4)

To maximize the decrease in the function value, Eq. (4) suggests that a natural objective is to minimize
−ηt Eλt,ξ′t

[⟨g′
t(wt),gt(xt)⟩]. However, this approach comes with two issues. Let us begin with the

first point, which is related to the convergence metric. This approach only leads to an upper bound on
1
T

∑T−1
t=0 E[⟨g′

t(wt),gt(xt)⟩], which does not directly provide a meaningful bound on gradient norm
of F , which is the standard metric we would like to obtain. Our idea is to decompose the inner product
as ⟨g′

t(wt),gt(xt)⟩ = ⟨g′
t(xt),gt(xt)⟩ + ⟨g′

t(wt) − g′
t(xt),gt(xt)⟩, where g′

t(xt) = ∇f(xt; ξ
′
t).

Note that the first term leads to E[⟨g′
t(xt),gt(xt)⟩] = E[∥∇F (xt)∥2] and the second term can be

controlled using the Lipschitz constant of the gradient.

The second issue is that the minimization of the right-hand side of Eq. (4) with respect to the learning
rate ηt is an implicit problem. The objective depends on the interpolated point wt, which could be
determined only after the learning rate ηt is chosen. The solution is to cast the learning rate selection
as an online learning problem, and derive a sequence of online loss functions that will govern the
selection process. We combine and formalize both ideas in the following lemma.

Lemma 1. Define the local gradient Lipschitz estimate Lt =
∥g′

t(wt)−g′
t(xt)∥

∥wt−xt∥ and the surrogate loss
function

ℓt(η) ≜ −η⟨g′
t(wt),gt(xt)⟩+ 0.5Lt∥gt(xt)∥2η2. (5)

Suppose that Assumption 2 holds and Lt ≤ Lmax for any t ≥ 0 with probability one. Then we have

T−1∑
t=0

E[(η−η2Lmax)∥∇F (xt)∥2] ≤ E[F (x0)−F (xT)+L
maxTη2σ2+

T−1∑
t=0

(ℓt(ηt)− ℓt(η))]. (6)

As shown in (5), our surrogate loss function ℓt(η) consists of two terms. The first term measures the
alignment between two consecutive (stochastic) gradients g′

t(wt) and gt(xt), and the second term is
a quadratic regularization term that depends on our local estimate of the Lipschitz constant Lt. The
online nature of the problem is due to the fact that both g′(wt) and Lt can only be computed after the
learning rate ηt is chosen. Moreover, η in (6) is the comparator of our online learning problem and it
can be chosen arbitrarily in our analysis. If we achieve a low regret for the online learning problem
(as we show in Section 4), then a proper choice of η will lead to a complexity of O(ϵ−2 + σ2ϵ−4).
Remark 1. Our approach is inspired by both Cutkosky et al. (2023b) and Zhuang et al. (2019).
Compared to Cutkosky et al. (2023b), the key difference is that their method uses online learning to
guide the choice of the update direction, whereas we focus on selecting the learning rate. In contrast
to Zhuang et al. (2019), our method differs in two major ways: (i) we estimate the local gradient
Lipschitz constant on the fly, instead of relying on a global Lipschitz estimate; and (ii) for the first
term, we use the alignment between two stochastic gradients evaluated at different points wt and xt,
while Zhuang et al. (2019) use gradients at the same point.

The next step is using an online learning algorithm that will operate on the loss sequence ℓt to update
our learning rate ηt. Since the loss functions are quadratic in their input, we have several options to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

choose from. As an example, the Follow-the-Regularized-Leader (FTRL) algorithm is given by

ηt+1 = argmin
η∈[0,ηmax]

{
t∑

s=0

ℓs(η) +
δ

2
η2

}
,

where ηmax is the maximal learning rate and δ ≥ 0 is a user-defined constant to ensure stability.
Using the loss in (5) and the FTRL update, we obtain a closed-form expression for ηt+1:

ηt+1 = clip[0,ηmax]

(∑t
s=0⟨g′

s(ws),gs(xs)⟩
δ +

∑t
s=0 Ls∥gs(xs)∥2

)
, (7)

where clip[0,ηmax](·) denotes the operation that clips a real-valued input to the interval [0, ηmax].
Remark 2. The learning rate incorporates directional information along the optimization path through
the alignment term: when the gradients are aligned, the learning rate is encouraged to increase;
when they are misaligned, it decreases. Additionally, the quadratic regularization term moderates the
learning rate update based on the magnitude of observed gradients. Note that this adaptive behavior
is an inherent feature of our online learning-guided learning rate and holds by default for various
choices of online learners, such as OGD (Zinkevich, 2003; Orabona, 2019).
Remark 3. For numerical stability, we pick FTRL as our choice of online learner to update the
learning rate of the algorithm but FTL is also applicable since the surrogate losses are quadratic. In
either case, the resulting update for the learning rate is independent of the initialization; only the very
first step is taken using the base learning rate.

4 CONVERGENCE ANALYSIS

In this section, we analyze a variant of our proposed method in Algorithm 1 and establish its
convergence rate for stochastic nonconvex optimization. Instead of using the standard SGD update
rule in (2), we adopt the normalized SGD with momentum (Cutkosky & Mehta, 2020). As we will
show, the main theoretical advantage of using a normalized update is that it simplifies the surrogate
loss function, making the regret bound easier to establish. Specifically, we consider the update rule

xt+1 = xt − ηtmt/∥mt∥, mt = (1− α)mt−1 + α∇f(xt; ξt), (8)

where α ∈ (0, 1] is the momentum parameter. The normalization step ensures that the learning rate ηt
directly controls the distance between xt+1 and xt, thus promoting stability. However, normalization
can also amplify the noise in the stochastic gradient. To mitigate this, we apply an exponential moving
average in (8), which reduces variance and is governed by the momentum parameter α. Due to the
different update rule in (8), the surrogate loss function must be modified accordingly. Specifically,
we define a new surrogate loss function as

ℓNt (η) = −η
〈
g′
t(wt),

mt

∥mt∥

〉
+
(1
2
max{Lt,M}+ 4(1− α)L̃t

3α

)
η2, (9)

where M > 0 is a user-defined constant and L̃t =
∥g′

t(xt+1)−g′
t(xt)∥

∥xt+1−xt∥ is a second local gradient
Lipschitz estimate. There are three main differences compared with (5). First, the linear term in
(9) measures the alignment between the gradient g′

t(wt) and the normalized update direction mt

∥mt∥ ,
rather than with the stochastic gradient gt(xt). In addition, the quadratic term is independent of the
norm of the stochastic gradient ∥gt(xt)∥ due to the normalization step. Moreover, it includes an
additional regularization term that depends on the momentum parameter α and the local gradient
Lipschitz estimate L̃t, which arises from the analysis of momentum. In the following theorem, we
establish the convergence rate of the update rule in (8) in terms of the regret with respect to the new
surrogate loss in (9). The proof can be found in Appendix C.
Remark 4. The quantityM is introduced to ensure that the surrogate loss function in (9) isM -strongly
convex, to facilitate the regret analysis later in Lemma 2. This is also a design choice to ensure
numerical stability in a similar spirit to the δ parameter in Adam step size.

Theorem 1. Let {xt}T−1
t=0 be generated by the update rule in (8) and ηt ≤ ηmax for all t.

Recall that Lt =
∥g′

t(wt)−g′
t(xt)∥

∥wt−xt∥ , L̃t =
∥g′

t(xt+1)−g′
t(xt)∥

∥xt+1−xt∥ , and the surrogate loss ℓNt (η) de-

fined in (9). Moreover, define the regret RegNT ≜ maxη∈[0,ηmax]

∑T−1
t=0 (ℓNt (ηt) − ℓNt (η)), the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

initial function value gap ∆F ≜ F (x0) − F (x∗), the average Lipschitz estimate Lavg
T =

max
{
E
[
1
T

∑T−1
t=0 max{Lt,M}

]
,E
[
1
T

∑T−1
t=0 L̃t

]}
. Then for α = min{ 1

σ
√
T
, 1}, it holds that

1

T

T−1∑
t=0

E[∥∇F (xt)∥] = O
(σ1/2(Lavg

T (∆F + E[RegNT]))1/2

T 1/4
+

σ2

√
T

+

√
Lavg
T (∆F + E[RegNT])√

T

+
∆F + E[RegNT]

ηmaxT

)
.

Remark 5. In Theorem 1, the choice of α is made to obtain the best dependence on both T and σ.
We note that assuming knowledge of T is standard in the literature and typically not restrictive in
practice. If σ is unknown, one could choose α = 1/

√
T and still obtain the same convergence rate,

albeit with a worse dependence on σ.

The rate in Theorem 1 depends on the regret of the associated online learning problem. Hence, we
propose to use an online algorithm to adaptively update the learning rate ηt in (8). Note that the
loss function in (9) is strongly convex and thus a logarithmic regret is possible. For best theoretical
guarantees, we use optimistic FTRL (Rakhlin & Sridharan, 2013; Steinhardt & Liang, 2014; Mohri &
Yang, 2016):

ηt+1 = argmin
η∈[0,ηmax]

{
t∑

s=0

ℓt(η) +
δ

2
η2 + ht+1(η)

}
, (10)

where ht+1(·) is a hint function that aims to approximate the next loss function ℓt+1. Specifically,
note that mt+1 is already known at the time when we select ηt+1. Hence, we set ht+1(η) =
−η⟨gt+1(xt+1),

mt+1

∥mt+1∥ ⟩, which yields the following closed-form update rule:

ηt+1 = clip[0,ηmax]

(∑t
s=0⟨g′

s(ws),ms/∥ms∥⟩+ ⟨gt+1(xt+1),mt+1/∥mt+1∥⟩
δ +

∑t
s=0(max{Ls,M}+ 8(1−α)

3α L̃s)

)
.

We bound the regret of the above update rule in the following lemma (see Appendix D for the proof).
Lemma 2. Let ηmax =

√
αη̄ for some given η̄. Suppose that max{Lt, L̃t} ≤ Lmax hold for any t

with probability one. Then we have

E[RegNT] = O
(
η̄2max{Lmax,M} log

(
1 +

max{Lmax,M}
αδ

T
)
+
σ2

M
log T

)
.

Remark 6. (Dependence on η0). Note that the convergence rate in Theorem 1 and the regret bound
in Lemma 2 do not explicitly depend on the initial learning rate η0; instead, η0 influences the bound
indirectly via the initial gradient Lipschitz estimates L0, L̃0. As a result, our method is robust to
a wide range of initializations, as demonstrated in the experiments in Section 5. In contrast, the
convergence rate of SGD has the form ∆F+η2

0σ
2

η0

√
T

, so when η0 is too small/large multiplicatively slows
down the rate.

Combining Theorem 1 and Lemma 2, up to logarithmic factors, we have established that our method
achieves a convergence rate of O(σ

1/2

T 1/4 + 1√
T
), which matches the rate in Cutkosky & Mehta (2020)

with a constant learning rate. Moreover, the convergence rate in Theorem 1 is in terms of the average
and maximum Lipschitz estimates, which can be much smaller than the global constant L in Cutkosky
& Mehta (2020). Notably, we achieve this by adaptively selecting the learning rate instead of using a
predefined constant. Finally, we remark that our convergence results are comparable to those obtained
for AdaGrad (Faw et al., 2022; Attia & Koren, 2023; Liu et al., 2023b), with the key distinction that
our learning rate can both increase and decrease, while the AdaGrad rate is monotonically decreasing.
Remark 7. (Role of ηmax). The parameter ηmax is introduced primarily for theoretical purposes,
allowing us to apply FTRL and its standard regret guarantee. In practice, we remove the clipping step
in Eq. (7), and hence ηmax is not required as a hyperparameter in our experiments.

5 NUMERICAL EXPERIMENTS

We present our results of applying GALA on training a residual network (He et al., 2016) on the
CIFAR-10, CIFAR-100 (Krizhevsky, 2009) and Flower102 (Nilsback & Zisserman, 2008) as well as

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

a Vision Transformer (Dosovitskiy et al., 2021) on Tiny-ImageNet (Stanford CS231n, 2015). We
begin with the practical considerations we adopted for efficiency and performance of the algorithms.

5.1 IMPLEMENTATION DETAILS

SGD with GALA. When applying GALA to augment the standard SGD update rule, we introduce
the following three key modifications to Algorithm 1:

1. Instead of sampling a random point wt from the segment (cf. Line 5), we set wt = xt+1.
2. To evaluate the alignment at time t, we compute both gradients with the same mini-batch ξt+1;

i.e., we use ⟨∇f(xt+1; ξt+1),∇f(xt; ξt+1)⟩ as the first term of the surrogate loss in (5).
3. We omit the clipping step in the learning rate update (7), thus eliminating the hyperparameter ηmax.

Among these modifications, the first and third are mainly for simplicity. In contrast, the second plays a
crucial role in the empirical performance of our method, as discussed in the Appendix. Incorporating
these changes, the learning rate update rule using FTRL becomes:

Lt =
∥∇f(xt+1; ξt+1)−∇f(xt; ξt+1)∥

∥xt+1 − xt∥
, ηt+1 =

∑t
s=0⟨∇f(xs+1; ξs+1),∇f(xs; ξs+1)⟩∑t

s=0 Ls∥gs(xs)∥2
. (11)

Adam with GALA. In addition to SGD, we also adapt our GALA to Adam optimizer (Kingma &
Ba, 2015). Specifically, the standard Adam update rule is given by

mt = β1mt−1 + (1− β1)∇f(xt; ξt), vt = β2vt−1 + (1− β2)∇f(xt; ξt)
2,

dt =
mt√
δ + vt

, xt+1 = xt − ηtdt,

where all operations are element-wise, and we omit bias correction terms for simplicity. To select the
learning rate ηt for Adam, we modify the surrogate loss function in (5) as follows: (i) we replace
the SGD direction ∇f(xt; ξt) with the Adam update direction dt; (ii) we substitute ∇f(wt; ξ

′
t) with

∇f(xt; ξt), so that the gradient alignment term involves the inner product of stochastic gradients
computed on the same mini-batch ξt; (iii) we estimate Lt using the same heuristic as in (11). These
modifications lead to the following learning rate update rule:

ηt+1 =

∑t
s=0⟨ds,∇f(xs; ξs)⟩∑t

s=0 Ls∥ds∥2
.

Remark 8. GALA uses one sample per iteration, same as SGD, Adam, and other optimizers. On the
other hand, it makes one more gradient call to compute the gradient Lipschitz estimate, similar to
AdGD.

5.2 RESULTS ON RESNET-18 AND VIT-TINY

Model and dataset. We use the torchvision implementation of the ResNet-18 model and
train it on CIFAR-10, CIFAR-100 and Flower102. We apply random cropping and horizontal
flipping as data augmentations during training. For ViT-Tiny, we use the timm implementation
with pretrained weights and finetune it on Tiny-ImageNet-200. The training uses a richer set of
augmentations, including random cropping, horizontal flipping, color jitter, random erasing, and the
auto augmentation for ImageNet from torchvision.

Optimizers. We apply GALA on SGD and Adam, denoted as SGD-GALA and ADAM-GALA,
respectively. For ResNet-18 experiments, we compare them against SGD, Adam, as well as parameter-
free algorithms such as Mechanic (Cutkosky et al., 2023a), AdGD (Malitsky & Mishchenko, 2020),
Prodigy (Mishchenko & Defazio, 2024) and D-Adaptation (Defazio & Mishchenko, 2023) on Adam.
For ViT-Tiny, we compared our GALA variants against SGD, AdamW, and Prodigy.

Setup. Starting from the same initial model parameters, we run each method with initial learning
rates from [10−8, 1] and fix all other parameters at default values, which we report in Appendix E.
For ResNet-18, we run all algorithms for 200 epochs with a training batch size of 128, a constant
learning rate schedule and zero weight decay. For ViT-Tiny, we train for 100 epochs but increase the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

GALA-SGD GALA-Adam SGD Prodigy Mechanic D-AdaptAdam Adam AdGD

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

10

20

30

40

50

60

70

80

90

Fi
na

l T
es

t A
cc

ur
ac

y

Final Test Accuracy vs. Initialization

(a) CIFAR-10

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

10

20

30

40

50

60

Fi
na

l T
es

t A
cc

ur
ac

y

Final Test Accuracy vs. Initialization

(b) CIFAR-100

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

10

20

30

40

50

60

Fi
na

l T
es

t A
cc

ur
ac

y

Final Test Accuracy vs. Initialization

(c) Flower102

Figure 2: Performance of optimizers in terms of final test accuracy for training ResNet-18 on
CIFAR-10, CIFAR-100 and Flower102 from different initial learning rates.

GALA-SGD GALA-Adam SGD Prodigy AdamW

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

10
1

10
0

Fi
na

l T
ra

in
in

g
Lo

ss

Final Training Loss vs. Initialization

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

20

40

60

80

100

Fi
na

l T
ra

in
 A

cc
ur

ac
y

Final Train Accuracy vs. Initialization

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

10

20

30

40

50

60

70

80

90

Fi
na

l T
es

t A
cc

ur
ac

y

Final Test Accuracy vs. Initialization

Figure 3: Training loss, training and test accuracy for training ViT-Tiny on Tiny-ImageNet.

batch size to 1024 to maximize GPU capabilities. We use a cosine schedule with weight decay of
0.05 for AdamW, SGD and Prodigy, while SGD-GALA and ADAM-GALA are run with a constant
schedule and zero weight decay.

Due to space limitations, we present a representative subset of our experiments. We provide an
extensive empirical study in Section E with more convergence plots and learning rate analysis.

Results for ResNet-18. In Figure 2, we show the final test accuracy with respect to initial learning
rates when training ResNet-18. SGD-GALA and ADAM-GALA perform consistently across a
range of initial learning rates and are competitive with the best-performing method. We validate that
GALA enables its base optimizer to achieve competitive performance for a wider range of initial
values, improving stability for very large/small initializations.

In comparison, AdGD also demonstrates stable performance both for testing (and training). While
GALA variants tend to have consistent performance, AdGD has a slight advantage with the test
accuracy for CIFAR-10 and Flower102. Note that official AdGD implementation requires an ad-
ditional mechanism to limit the growth of the learning rate, introducing an extra hyperparameter.
We observe that AdGD performs poorly for the CIFAR-100 dataset due to unstable learning rate
evolution (see Figure 10c in Section E). Mechanic shows better performance for large initial values,
which deteriorates noticeably as the learning rate gets smaller. Both Prodigy and D-Adaptation show
one of the best performances when the initial step size is small; however, the performance drops
sharply when the initialization is larger than 10−3.

Results for ViT-Tiny. The robustness of GALA is better displayed with the ViT experiments;
SGD-GALA improves the performance of SGD from all initializations and shows almost the same
performance for all values. ADAM-GALA shows a similar performance improvement particularly
for the initialization regimes where AdamW performs poorly, while the best-performing AdamW is
better than that of ADAM-GALA. One configuration of AdamW has (one of) the best performance,
while this is achieved for a very narrow range of learning rates (from 10−4 to 10−3). Prodigy has
strong performance for small initializations but the same degradation happens for learning rates larger
than 10−3. Note that for ViT setup, SGD-GALA has the best test accuracy from any initialization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

25 50 75 100 125 150 175 200
Epoch

10
1

10
0

Tr
ai

ni
ng

 L
os

s

Training Loss vs. Epochs

GALA-SGD
Hypergradient

(a) CIFAR-10

25 50 75 100 125 150 175 200
Epoch

10
1

10
0

Tr
ai

ni
ng

 L
os

s

Training Loss vs. Epochs

GALA-SGD
Hypergradient

(b) Flower-102

Figure 4: Comparison of training loss between SGD-GALA and hypergradient descent from
different initial learning rates.

Comparison with hypergradient descent. Hypergradient descent method (HGD) does not have
convergence guarantees beyond the deterministic, convex setting; however, due to its relevance to
our method, we present a comparative empirical study. Unlike our method, HGD comes with an
additional hyperparameter: hypergradient learning rate which is used for the gradient update on the
actual learning rate ηt. We trained ResNet-18 models on CIFAR-10 and Flower-102 datasets and
selected initial value for the actual learning rate η0 and the hypergradient step size γt from the set
{1, 10−1, 10−2, 10−3, 10−4, 10−5} (a total of 36 runs per dataset). For both datasets, HGD diverged
(from all initial learning rates) when the hypergradient learning rate is relatively large ({1, 0.1} for
CIFAR-10 and 1 for Flower102). The behavior is more stable as the hypergradient step size gets
smaller, however, this would impact the convergence speed of the algorithm as the learning rate
ηt evovles slowly and the decrease in loss value would stagnate for most initializations. To give
an advantage to HGD, we picked the best performing hypergradient learning rate for each dataset
(10−5 for both) and plot the comparison with our method for the same range of step size values η0 in
Figure 4.

0 20000 40000 60000 80000
Iterations

10
7

10
6

10
5

10
4

10
3

10
2

10
1

Le
ar

ni
ng

 R
at

e
(

t)

GALA-Adam Learning Rate vs. Iterations

1e-08
1e-05
0.0001
0.001
0.01
0.1
1.0

Figure 5: ADAM-GALA’s learning rate evo-
lution for training ResNet-18 on CIFAR-100.

Evolution of the learning rate. In Figure 5, we show
how the learning rate evolves for ADAM-GALA. When
initialized with a large learning rate, GALA tends to re-
duce it; this might be followed by an increasing regime
or a sustained decrease depending on the base value.
Conversely, it increases the learning rate when initial-
ized with a small value, which is the ultimate mechanism
that enables it to recover from very small initializations.
This adaptive behavior arises from the use of an online
learning algorithm to select the learning rate, allowing
it to adjust dynamically rather than follow a fixed sched-
ule. An interesting observation is that the learning rate
for ADAM-GALA, in the majority of cases, initially
approaches a value between 10−3 and 10−4, which, ac-
cording to Figure 2, corresponds to the best fixed step
size choices when running Adam. As a result of this learning rate adaptation, we observe more
consistent convergence paths for methods coupled with GALA.

6 CONCLUSION

In this paper, we propose a principled framework, GALA, that dynamically adjusts the learning rate
based on gradient alignment and a local curvature estimate. Motivated by convergence analysis, we
formulate learning rate selection as a one-dimensional online learning problem and solve it using
an online learning algorithm. We establish convergence guarantees for normalized SGD equipped
with GALA and conduct preliminary experiments demonstrating that, when combined with SGD or
Adam, our method yields robust performance across a wide range of initial learning rates.

One potential limitation of our work is that the convergence analysis is established for one instantiation
of GALA and our experiments focus on its integration with SGD and Adam. An interesting future
venue is to extend our framework to a broader class of optimizers.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Luís B Almeida, Thibault Langlois, José D Amaral, and Alexander Plakhov. Parameter adaptation
in stochastic optimization. In On-line learning in neural networks, pp. 111–134. Cambridge
University Press, 1999.

Kimon Antonakopoulos, Dong Quan Vu, Volkan Cevher, Kfir Yehuda Levy, and Panayotis Mer-
tikopoulos. UnderGrad: A universal black-box optimization method with almost dimension-free
convergence rate guarantees. In ICML ’22: Proceedings of the 39th International Conference on
Machine Learning, 2022.

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake E. Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1):165–
214, 2023. doi: 10.1007/s10107-022-01822-7.

Amit Attia and Tomer Koren. SGD with AdaGrad stepsizes: Full adaptivity with high probability to
unknown parameters, unbounded gradients and affine variance. In International Conference on
Machine Learning, pp. 1147–1171. PMLR, 2023.

Amit Attia and Tomer Koren. How free is parameter-free stochastic optimization? In Proceedings of
the 41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. In International Conference on
Learning Representations, 2018.

Yair Carmon and Oliver Hinder. Making SGD parameter-free. In Po-Ling Loh and Maxim Raginsky
(eds.), Proceedings of Thirty Fifth Conference on Learning Theory, volume 178 of Proceedings of
Machine Learning Research, pp. 2360–2389. PMLR, 02–05 Jul 2022.

Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and Erik Meijer. Gradient descent: The ultimate
optimizer. Advances in Neural Information Processing Systems, 35:8214–8225, 2022.

Ya-Chi Chu, Wenzhi Gao, Yinyu Ye, and Madeleine Udell. Provable and practical online learning
rate adaptation with hypergradient descent. arXiv preprint arXiv:2502.11229, 2025.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International conference
on machine learning, pp. 2260–2268. PMLR, 2020.

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning in
banach spaces. In Conference On Learning Theory, pp. 1493–1529. PMLR, 2018.

Ashok Cutkosky, Aaron Defazio, and Harsh Mehta. Mechanic: A learning rate tuner. Advances in
neural information processing systems, 36:47828–47848, 2023a.

Ashok Cutkosky, Harsh Mehta, and Francesco Orabona. Optimal, stochastic, non-smooth, non-convex
optimization through online-to-non-convex conversion. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023b.

Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D. Lee. Stochastic subgradient
method converges on tame functions. Found. Comput. Math., 20(1):119–154, February 2020.
ISSN 1615-3375. doi: 10.1007/s10208-018-09409-5.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by D-adaptation. In Interna-
tional Conference on Machine Learning, pp. 7449–7479. PMLR, 2023.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. Optimal linear decay
learning rate schedules and further refinements. arXiv preprint arXiv:2310.07831, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai, and
Rachel Ward. The power of adaptivity in SGD: Self-tuning step sizes with unbounded gradients
and affine variance. In Conference on Learning Theory, pp. 313–355. PMLR, 2022.

Sébastien Gadat and Ioana Gavra. Asymptotic study of stochastic adaptive algorithms in non-convex
landscape. Journal of Machine Learning Research, 23(228):1–54, 2022.

Wenzhi Gao, Ya-Chi Chu, Yinyu Ye, and Madeleine Udell. Gradient methods with online scaling,
2024.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule: A
near optimal, geometrically decaying learning rate procedure for least squares. Advances in neural
information processing systems, 32, 2019.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning, pp. 14465–14499. PMLR,
2023.

Pooria Joulani, Anant Raj, Andras Gyorgy, and Csaba Szepesvari. A simpler approach to accelerated
optimization: iterative averaging meets optimism. In Hal Daumé III and Aarti Singh (eds.), Pro-
ceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 4984–4993. PMLR, 13–18 Jul 2020.

Ali Kavis, Kfir Y. Levy, Francis Bach, and Volkan Cevher. Unixgrad: A universal, adaptive algorithm
with optimal guarantees for constrained optimization. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems
32, pp. 6260–6269. Curran Associates, Inc., 2019.

Ali Kavis, Kfir Yehuda Levy, and Volkan Cevher. High probability bounds for a class of nonconvex
algorithms with AdaGrad stepsize. In International Conference on Learning Representations,
2022.

Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. DoWG unleashed: An efficient universal
parameter-free gradient descent method. Advances in Neural Information Processing Systems, 36:
6748–6769, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference for Learning Representations (ICLR), 2015.

Itai Kreisler, Maor Ivgi, Oliver Hinder, and Yair Carmon. Accelerated parameter-free stochastic
optimization. In Shipra Agrawal and Aaron Roth (eds.), Proceedings of Thirty Seventh Conference
on Learning Theory, volume 247 of Proceedings of Machine Learning Research, pp. 3257–3324.
PMLR, 30 Jun–03 Jul 2024.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Kfir Y. Levy. Online to offline conversions, universality and adaptive minibatch sizes. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pp. 1613–1622, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and accelera-
tion. In Neural and Information Processing Systems (NeurIPS), December 2018.

Tianjiao Li and Guanghui Lan. A simple uniformly optimal method without line search for convex
optimization, 2024.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In The 22nd international conference on artificial intelligence and statistics, pp. 983–992.
PMLR, 2019.

Xiaoyu Li and Francesco Orabona. A high probability analysis of adaptive SGD with momentum. In
Workshop on Beyond First Order Methods in ML Systems at ICML’20, 2020.

Zijian Liu, Ta Duy Nguyen, Alina Ene, and Huy Nguyen. On the convergence of adagrad(norm)
on \mathbb{R}^d: Beyond convexity, non-asymptotic rate and acceleration. In The Eleventh
International Conference on Learning Representations, 2023a.

Zijian Liu, Ta Duy Nguyen, Thien Hang Nguyen, Alina Ene, and Huy Nguyen. High probability
convergence of stochastic gradient methods. In International Conference on Machine Learning,
pp. 21884–21914. PMLR, 2023b.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. In Proceed-
ings of the 37th International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Yura Malitsky and Konstantin Mishchenko. Adaptive proximal gradient method for convex opti-
mization. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. COLT 2010, pp. 244, 2010.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. In International Conference on Machine Learning, pp. 35779–35804. PMLR, 2024.

Mehryar Mohri and Scott Yang. Accelerating online convex optimization via adaptive prediction. In
Artificial Intelligence and Statistics, pp. 848–856. PMLR, 2016.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. Advances in
Neural Information Processing Systems, 29, 2016.

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
coin betting. Advances in neural information processing systems, 30, 2017.

Kaan Ozkara, Can Karakus, Parameswaran Raman, Mingyi Hong, Shoham Sabach, Branislav Kveton,
and Volkan Cevher. Mada: Meta-adaptive optimizers through hyper-gradient descent. In Forty-first
International Conference on Machine Learning, 2024.

Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In Conference
on Learning Theory, pp. 993–1019. PMLR, 2013.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951. doi: 10.1214/aoms/1177729586.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Anton Rodomanov, Ali Kavis, Yongtao Wu, Kimon Antonakopoulos, and Volkan Cevher. Universal
gradient methods for stochastic convex optimization. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024.

David Martınez Rubio. Convergence analysis of an adaptive method of gradient descent. University
of Oxford, Oxford, M. Sc. thesis, 2017.

Stanford CS231n. Tiny imagenet visual recognition challenge. https://tiny-imagenet.
herokuapp.com/, 2015. Stanford CS231n Course Project.

Jacob Steinhardt and Percy Liang. Adaptivity and optimism: An improved exponentiated gradient
algorithm. In International conference on machine learning, pp. 1593–1601. PMLR, 2014.

Tijmen Tieleman and G Hinton. Divide the gradient by a running average of its recent magnitude.
coursera: Neural networks for machine learning. Technical Report, 2012.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. Journal of Machine Learning Research, 21(219):1–30, 2020.

Kaiyue Wen, David Hall, Tengyu Ma, and Percy Liang. Fantastic pretraining optimizers and where
to find them. arXiv preprint arXiv:2509.02046, 2025.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Suvrit Sra, and Ali Jadbabaie. Complexity of
finding stationary points of nonconvex nonsmooth functions. In International Conference on
Machine Learning, pp. 11173–11182. PMLR, 2020.

Zhenxun Zhuang, Ashok Cutkosky, and Francesco Orabona. Surrogate losses for online learning of
stepsizes in stochastic non-convex optimization. In International Conference on Machine Learning,
pp. 7664–7672. PMLR, 2019.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the Twentieth International Conference on International Conference on Machine
Learning, ICML’03, pp. 928–935. AAAI Press, 2003. ISBN 1577351894.

14

https://tiny-imagenet.herokuapp.com/
https://tiny-imagenet.herokuapp.com/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A EXTENDED RELATED WORK

Classical stochastic first-order methods. Dating back to the seminal work Robbins & Monro (1951),
the theoretical behavior of SGD and its many variants have been extensively studied. Considering
general smooth functions, it is well-known that the learning rate must decrease at a rate of ηt =
O(1/

√
t) where t is the iteration counter and also satisfy ηt ≤ O(1/L). Ghadimi & Lan (2013)

established that SGD with a properly chosen learning rate achieves a complexity of O(ϵ−2 + σ2ϵ−4),
interpolating between deterministic and stochastic rates and matching the lower bounds (Arjevani
et al., 2023). However, the choice of the learning rate depends on the problem parameters, i.e., L, σ,
which are typically unknown and prohibitively difficult to estimate in practice. Similar requirements
are in place for the learning rate when the objective function is ρ-weakly convex (Davis et al., 2020).

Adaptive and parameter-free optimization methods. AdaGrad was introduced in two concur-
rent works McMahan & Streeter (2010); Duchi et al. (2011) for minimizing a sequence of online
convex losses. The main idea is to compute a time-varying learning rate by accumulating squared
norms of stochastic gradients. This fundamental idea paved the way for many algorithms such as
Adam (Kingma & Ba, 2015), RMSProp Tieleman & Hinton (2012), Adadelta Zeiler (2012), and their
variants, which demonstrate strong empirical performance. Beyond the online optimization setup,
they have been shown to automatically adapt to problem-dependent parameters such as smoothness,
noise variance, and bounds on gradients. Their convergence properties have been well-studied for the
convex setting (Levy, 2017; Levy et al., 2018; Kavis et al., 2019; Joulani et al., 2020; Antonakopoulos
et al., 2022; Liu et al., 2023a; Rodomanov et al., 2024) and non-convex setting (Li & Orabona, 2019;
Ward et al., 2020; Li & Orabona, 2020; Kavis et al., 2022; Gadat & Gavra, 2022; Faw et al., 2022;
Attia & Koren, 2023; Liu et al., 2023b). A downside of the first-generation adaptive methods is the
sensitivity to initial learning rate, dampening the practical benefits of their data-adaptive design.

To remedy this, parameter-free optimization (Carmon & Hinder, 2022; Ivgi et al., 2023; Khaled
et al., 2023; Kreisler et al., 2024; Attia & Koren, 2024) has gained popularity with a focus on
augmenting robustness. Essentially, they multiply AdaGrad-type learning rate with a scaling factor
that iteratively improves the initial learning rate estimate. Although this helps increase from the initial
value, the scaling factor is practically bounded, restricting flexibility. On a related front, a different
line of work Malitsky & Mishchenko (2020; 2024); Li & Lan (2024) study parameter-free gradient
methods with local curvature estimation for convex, deterministic problems. They are separated
from AdaGrad-type methods with non-monotone learning rate that estimates time evolution of local
smoothness. A downside to these methods is empirical stability; when the increasing behavior is
not tamed properly, optimization performance might be unstable especially for nonconvex problems.
Therefore, it is of utmost importance to strike the right balance between flexibility and stability.

Hypergradient descent. Originally proposed as a heuristic for stochastic optimization in Almeida
et al. (1999), hypergradient descent updates the learning rate by computing the gradient with respect
to the learning rate. It was later rediscovered and adapted to modern deep learning Rubio (2017);
Baydin et al. (2018), with several subsequent works refining this approach Chandra et al. (2022);
Ozkara et al. (2024). Recently, Gao et al. (2024); Chu et al. (2025) provided convergence guarantees
from an online learning perspective, though their analysis is limited to deterministic convex settings.

Online learning-guided methods. Drawing insights from parameter-free online learning Orabona &
Pál (2016), Orabona & Tommasi (2017) reformulate SGD as a coin-betting game and apply a betting
algorithm to eliminate the need for a manually tuned learning rate. They also provide convergence
guarantees for convex and quasi-convex objectives. Cutkosky et al. (2023a) proposed a general
technique for adaptively scaling any base optimization algorithm and learning rate schedule, which
is grounded in a black-box reduction framework from parameter-free online learning Cutkosky &
Orabona (2018). The work most relevant to ours is that of Zhuang et al. (2019), who consider
non-convex stochastic optimization and introduce a surrogate loss technique for selecting the learning
rate. However, their method requires knowledge of problem-dependent parameters (e.g., gradient’s
Lipschitz constant), which limits its flexibility.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B PROOF OF LEMMA 1

Recall from (4) that F (xt+1) − F (xt) = −ηt Eλt,ξ′t
[⟨g′

t(wt),gt(xt)⟩]. We now decompose the
right-hand side as ⟨g′

t(wt),gt(xt)⟩ = ⟨g′
t(xt),gt(xt)⟩+⟨g′

t(wt)−g′
t(xt),gt(xt)⟩, where g′

t(xt) =
∇f(xt; ξt). For the first term, since ξt and ξ′ are independent samples from the distribution D, it
holds that E[⟨g′

t(xt),gt(xt)⟩] = E[∥∇F (xt)∥2]. Moreover, for the second term, it follows from
Cauchy-Schwarz inequality and the definition of Lt that

⟨g′
t(wt)− g′

t(xt),gt(xt)⟩ ≥ −∥g′
t(wt)− g′

t(xt)∥∥gt(xt)∥ = −Lt∥wt − xt∥∥gt(xt)∥.
Since wt = xt + λt(xt+1 − xt) and λt ∈ [0, 1], we further have ∥wt − xt∥ = λt∥xt+1 − xt∥ ≤
∥xt+1 − xt∥ = ηt∥gt(xt)∥, which leads to ⟨g′

t(wt) − g′
t(xt),gt(xt)⟩ ≥ −Ltηt∥gt(xt)∥2. By

combining both results, we obtain that

E[⟨g′
t(wt),gt(xt)⟩] ≥ E[∥∇F (xt)∥2]− E[Ltηt∥gt(xt)∥2].

Hence, taking expectations on both sides of (4), we can write

E[F (xt+1)− F (xt)] = −E[ηt⟨g′
t(wt),gt(xt)⟩]

= −E[(ηt − η)⟨g′
t(wt),gt(xt)⟩]−η E[⟨g′

t(wt),gt(xt)⟩]
≤−E[(ηt − η)⟨g′

t(wt),gt(xt)⟩]−η E[∥∇F (xt)∥2]+η E[Ltηt∥gt(xt)∥2].
(12)

Moreover, from Young’s inequality ηηt ≤ η2

2 +
η2
t

2 , the last term in (12) can be bounded by

Ltηηt∥gt(xt)∥2 ≤ Lt∥gt(xt)∥2η2

2 +
Lt∥gt(xt)∥2η2

t

2 . Thus, we obtain

E[F (xt+1)− F (xt)] ≤ −η E[∥∇F (xt)∥2]− E[(ηt − η)⟨g′
t(wt),gt(xt)⟩] + E[Lt∥gt(xt)∥2η2]

+ E
[
Lt∥gt(xt)∥2η2t

2
− Lt∥gt(xt)∥2η2

2

]
= −η E[∥∇F (xt)∥2] + η2 E[Lt∥gt(xt)∥2] + E[ℓt(ηt)− ℓt(η)], (13)

where in the last equality we used the definition of the surrogate loss function in (5). Moreover, Since
Lt ≤ Lmax for any t ≥ 0 with probability one, we have E[Lt∥gt(xt)∥2] ≤ Lmax E[∥gt(xt)∥2] ≤
Lmax(E[∥∇F (xt)∥2] + σ2). Plugging this bound in (13) and rearranging, we obtain

E[(η − η2Lmax)∥∇F (xt)∥2] ≤ E[F (xt)− F (xt+1)] + Lmaxη2σ2 + E[ℓt(ηt)− ℓt(η)].

Summing the above inequality from t = 0 to t = T − 1 yields (6). This completes the proof.

C PROOF OF THEOREM 1

We divide the proof of Theorem 1 into the following three steps.

Step 1: Following similar arguments as in the proof of Lemma 1, we first bound the function value
decrease after one iteration. Its proof can be found in Section C.1.

Lemma 3. For any η > 0, we have E[F (xt+1)− F (xt)] ≤ E
[
−η

3∥∇F (xt)∥+max{Lt,M}η2 +
8η
3 ∥mt −∇F (xt)∥

]
+ E

[
−(ηt − η)

〈
g′(wt),

mt

∥mt∥

〉
+ max{Lt,M}

2 (η2t − η2)
]
.

In the above bound, the first bracketed term shows up in the analysis of normalized SGD with
momentum in Cutkosky & Mehta (2020); it is the upper bound we get when choosing ηt = η.
Moreover, the second term in the bracket captures the difference between the actual learning rate ηt
and the comparator η. It will be incorporated into the surrogate loss function and be bounded by the
regret.

Step 2: Next, we controls the approximation error E[∥mt − ∇F (xt)∥] incurred by exponential
moving averaging.

Lemma 4. Define L̃t =
∥g′

t(xt+1)−g′
t(xt)∥

∥xt+1−xt∥ . Then we have
∑T−1

t=0 E[∥mt − ∇F (xt)∥] ≤ σ
α +

σ
√
αT + 1−α

α

∑T−2
t=0 E[L̃tηt].

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Lemma 4 upper bounds the approximation error in terms of the learning rate ηt. As we shall see in
the next step, this term will also be incorporated into our surrogate loss and be bounded by the regret.

Step 3: By summing the inequality in Lemma 3 from t = 0 to t = T − 1 and applying Lemma 4, we
obtain

E[F (xT)− F (x0)]

≤ −η
3
E
[T−1∑
t=0

∥∇F (xt)∥
]
+ E

[T−1∑
t=0

max{Lt,M}
]
η2 +

8η

3
E
[T−1∑
t=0

∥mt −∇F (xt)∥
]

+

T−1∑
t=0

E
[
−(ηt − η)

〈
g′(wt),

mt

∥mt∥

〉
+

max{Lt,M}
2

(η2t − η2)
]

≤ −η
3
E
[T−1∑
t=0

∥∇F (xt)∥
]
+ E

[T−1∑
t=0

max{Lt,M}
]
η2 +

8η

3
(
σ

α
+ σ

√
αT) +

8(1− α)

3α
E
[T−2∑
t=0

L̃tηtη
]

+

T−1∑
t=0

E
[
−(ηt − η)

〈
g′(wt),

mt

∥mt∥

〉
+

max{Lt,M}
2

(η2t − η2)
]
.

Moreover, by Young’s inequality, we have L̃tηtη ≤ L̃t

2 η
2
t +

L̃t

2 η
2 = L̃tη

2 + (L̃t

2 η
2
t − L̃t

2 η
2). Using

∆F = F (x0)− F (x∗) ≥ F (x0)− F (xT) and recalling the definition of ℓNt in (9), we obtain

0 ≤ −η
3

T−1∑
t=0

E[∥∇F (xt)∥] +
8η

3
(
σ

α
+ σ

√
αT) + E

[T−1∑
t=0

max{Lt,M}+
8(1− α)

∑T−1
t=0 L̃t

3α

]
η2

+ E[
T−1∑
t=0

(ℓNt (ηt)− ℓNt (η))] + E[∆F].

Now for any η ∈ [0, ηmax], we can upper bound
∑T−1

t=0 (ℓNt (ηt)− ℓNt (η)) ≤ RegNT by definition, and
hence we can choose the value of η freely from the interval [0, ηmax] in the above bound. We now
consider the following cases:

(i) Case I: we have
∑T−1

t=0 E[∥∇F (xt)∥] ≤ 16(σα + σ
√
αT);

(ii) Case II: we have
∑T−1

t=0 E[∥∇F (xt)∥] ≥ 16(σα + σ
√
αT). This further implies that

0 ≤ −η
6

T−1∑
t=0

E[∥∇F (xt)∥]+E
[T−1∑
t=0

max{Lt,M}+
8(1− α)

∑T−1
t=0 L̃t

3α

]
η2+E[RegNT +∆F].

(14)
Moreover, we set the value of η as

η = min

{ ∑T−1
t=0 E[∥∇F (xt)∥]

E[12
∑T−1

t=0 max{Lt,M}+ 32(1−α)
α

∑T−1
t=0 L̃t]

, ηmax

}
. (15)

This again leads to two subcases depending on the value of η:

• If η takes the first value in (15), we obtain from (14) that

1

12

(
∑T−1

t=0 E[∥∇F (xt)∥])2

E[12
∑T−1

t=0 max{Lt,M}+ 32(1−α)
α

∑T−1
t=0 L̃t]

≤ E[RegNT +∆F].

To simplify the notation, let M = ∆F + RegNT . With some algebraic manipulation and
using the fact that

√
a+ b ≤

√
a+

√
b, we obtain

T−1∑
t=0

E[∥∇F (xt)∥] ≤ 12

√√√√E[M]E
[T−1∑
t=0

max{Lt,M}
]
+8

√
6(1− α)

α

√√√√E[M]E
[T−1∑
t=0

L̃t

]
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• If η takes the second value in (15), then η = ηmax ≤∑T−1
t=0 E[∥∇F (xt)∥]

E[12
∑T−1

t=0 max{Lt,M}+ 32(1−α)
α

∑T−1
t=0 L̃t]

. In this case, we obtain from (14) that

ηmax

12

T−1∑
t=0

E[∥∇F (xt)∥] ≤ E[M] ⇒
T−1∑
t=0

E[∥∇F (xt)∥] ≤
12E[M]

ηmax
.

Combining the upper bounds in all cases and using the definition of Lavg
T , we can deduce that

T−1∑
t=0

E[∥∇F (xt)∥] ≤ 16(
σ

α
+σ

√
αT)+12

√
E[M]Lavg

T T+8

√
6(1− α)

α

√
E[M]Lavg

T T +
12E[M]

ηmax
.

(16)
Finally, we can choose the parameter α to optimize the above upper bound. Specifically, we let

α = min
{ 1

σ
√
T
, 1
}
.

If 1
σ
√
T

≤ 1, then we have 16σ
α ≤ 16σ2

√
T , 16σ

√
αT ≤ 16σ1/2T 3/4, and

8
√

6(1−α)
α

√
E[M]Lavg

T T ≤ 8
√
6σ1/2(Lavg

T E[M])1/2T 3/4. Otherwise, if 1
σ
√
T
> 1, then α = 1

and we have 16σ
α = 16σ ≤ 16√

T
, 16σ

√
αT ≤ 16σT ≤ 16

√
T , and 8

√
6(1−α)

α

√
E[M]Lavg

T T = 0.
Hence, combining both cases, we conclude that

16(
σ

α
+ σ

√
αT) + 8

√
6(1− α)

α

√
E[M]Lavg

T T

≤ 16(σ2 + 2)
√
T + (16 + 8

√
6(Lavg

T E[M])1/2)σ1/2T 3/4.

By using the above bound and dividing both sides by T in (16), we arrive at

1

T

T−1∑
t=0

E[∥∇F (xt)∥] ≤
(16 + 8

√
6(Lavg

T E[M])1/2)σ1/2

T 1/4
+

16(σ2 + 2)√
T

+ 12

√
Lavg
T E[M]√
T

+
12E[M]

ηmaxT
.

This completes the proof of Theorem 1.

C.1 PROOF OF LEMMA 3

Similar to the arguments in Section 3, we first apply the fundamental theorem of calculus to
get F (xt+1) − F (xt) = ⟨∇t,xt+1 − xt⟩ = −ηt⟨∇t,

mt

∥mt∥ ⟩. Since ∇t = Eλt
[∇F (wt)] =

Eλt,ξ′t
[g′

t(wt)], we further have

F (xt+1)− F (xt) = −ηt E
λt,ξ′t

[〈
g′
t(wt),

mt

∥mt∥

〉]
. (17)

Next, we decompose the right-hand side of (17) as〈
g′
t(wt),

mt

∥mt∥

〉
=
〈
g′
t(xt),

mt

∥mt∥

〉
+
〈
g′
t(wt)− g′

t(xt),
mt

∥mt∥

〉
≥
〈
g′
t(xt),

mt

∥mt∥

〉
− ∥g′

t(wt)− g′
t(xt)∥,

where we used Cauchy-Schwarz inequality in the last step. Using the definition of Lt, we have

∥g′
t(wt)− g′

t(xt)∥ ≤ Lt∥wt − xt∥ = Ltλt∥xt+1 − xt∥ ≤ Ltηt ≤ max{Lt,M}ηt. (18)

Moreover, since g′
t(xt) and mt are independent conditioned on xt, we further have

E[⟨g′
t(xt),

mt

∥mt∥ ⟩] = E[⟨∇F (xt),
mt

∥mt∥ ⟩], which is further lower bounded in the following lemma.

Lemma 5. We have ⟨∇F (xt),
mt

∥mt∥ ⟩ ≥
1
3∥∇F (xt)∥ − 8

3∥mt −∇F (xt)∥.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. Our proof is inspired by (Cutkosky & Mehta, 2020, Lemma 2). We consider two cases:

(i) If ∥mt − ∇F (xt)∥ ≤ 1
2∥∇F (xt)∥, then by the triangle inequality, we have ∥mt∥ ≤

3
2∥∇F (xt)∥. Therefore, we have

1

∥mt∥
⟨∇F (xt),mt⟩ =

1

∥mt∥
(∥∇F (xt)∥2 + ⟨∇F (xt),mt −∇F (xt)⟩)

≥ 1

∥mt∥
(∥∇F (xt)∥2 −

1

2
∥∇F (xt)∥2) ≥

1

3
∥∇F (xt)∥,

where we used ∥mt − ∇F (xt)∥ ≤ 1
2∥∇F (xt)∥ in the first inequality and ∥mt∥ ≤

3
2∥∇F (xt)∥ in the second one. Since 8

3∥mt − ∇F (xt)∥ ≥ 0, the result in Lemma 5
holds under this case.

(ii) Otherwise, if ∥mt − ∇F (xt)∥ > 1
2∥∇F (xt)∥, we can instead use Cauchy-Schwarz in-

equality to bound

1

∥mt∥
⟨∇F (xt),mt⟩ ≥ −∥∇F (xt)∥ =

1

3
∥∇F (xt)∥ −

4

3
∥∇F (xt)∥

≥ 1

3
∥∇F (xt)∥ −

8

3
∥mt −∇F (xt)∥,

where we used ∥mt −∇F (xt)∥ > 1
2∥∇F (xt)∥ in the last inequality.

This completes the proof.

Combining (18) and Lemma 5, we obtain that

E
[〈

g′
t(wt),

mt

∥mt∥

〉]
≥ E

[1
3
∥∇F (xt)∥ −

8

3
∥mt −∇F (xt)∥ −max{Lt,M}ηt

]
.

Hence, it further follows from (17) that

E[F (xt+1)− F (xt)] = −E
[
(ηt − η)

〈
g′
t(wt),

mt

∥mt∥

〉]
− η E

[〈
g′
t(wt),

mt

∥mt∥

〉]
≤ −E

[
(ηt − η)

〈
g′
t(wt),

mt

∥mt∥

〉
− η∥∇F (xt)∥

3
+

8η∥mt −∇F (xt)∥
3

+ max{Lt,M}ηtη
]
.

By using Young’s inequality ηtη ≤ η2
t

2 + η2

2 and rearranging, we obtain the inequality in Lemma 3.

C.2 PROOF OF LEMMA 4

From the update rule in (8), we can write

mt −∇F (xt) = (1− α)(mt−1 −∇F (xt−1)) + α(∇f(xt; ξt)−∇F (xt))

+ (1− α)(∇F (xt−1)−∇F (xt)).
(19)

Define the stochastic gradient error et = ∇f(xt; ξt)−∇F (xt). By Assumption 2, we have E[et] = 0
and E[∥et∥2] ≤ σ2. Moreover, by multiplying both sides of (19) with (1− α)−t, we have

(mt −∇F (xt))(1− α)−t = (mt−1 −∇F (xt−1))(1− α)−t+1 + αet(1− α)−t

+ (∇F (xt−1)−∇F (xt))(1− α)−t+1.

Note that we set m0 = ∇f(x0; ξ0). Thus, by summing the above inequality, we obtain

(mt −∇F (xt))(1− α)−t = e0 +

t∑
s=1

esα(1− α)−s +

t∑
s=1

(∇F (xs−1)−∇F (xs))(1− α)−s+1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Therefore, it follows from the triangle inequality that

∥mt−∇F (xt)∥ ≤ ∥e0∥(1−α)t+

∥∥∥∥∥
t∑

s=1

esα(1− α)t−s

∥∥∥∥∥+
t∑

s=1

∥∇F (xs−1)−∇F (xs)∥(1−α)t−s+1.

(20)
By Jensen’s inequality and the fact that {ξs}ts=1 are i.i.d. sampled from D, we have E[∥e0∥] ≤√
E[∥e0∥2] = σ and

E

∥∥∥∥∥
t∑

s=1

esα(1− α)t−s

∥∥∥∥∥ ≤

√√√√E
∥∥∥ t∑
s=1

esα(1− α)t−s
∥∥∥2 ≤

√√√√ t∑
s=1

σ2α2(1− α)2(t−s).

Moreover, it also follows from Jensen’s inequality that E[∥∇F (xs−1) − ∇F (xs)∥] ≤
E[∥∇f(xs; ξs) − ∇f(xs−1; ξs)∥] = L̃s−1∥xs − xs−1∥ = L̃s−1ηs−1. Hence, by taking the ex-
pectation on both sides of (20), we further have

E[∥mt −∇F (xt)∥] ≤ σ(1− α)t + σα

√√√√ t∑
s=1

(1− α)2(t−s) +

t∑
s=1

E[L̃s−1ηs−1](1− α)t−s+1

≤ σ(1− α)t + σα

√
1

1− (1− α)2
+

t−1∑
s=0

E[L̃sηs](1− α)t−s

≤ σ(1− α)t + σ
√
α+

t−1∑
s=0

E[L̃sηs](1− α)t−s.

By summing the above inequality from t = 0 to t = T − 1, we obtain that
T−1∑
t=0

E[∥mt −∇F (xt)∥] ≤ σ

T−1∑
t=0

(1− α)t + σ
√
αT +

T−1∑
t=0

t−1∑
s=0

E[L̃sηs](1− α)t−s

Since
∑T−1

t=0 (1 − α)t ≤ 1
α and

∑T−1
t=0

∑t−1
s=0 E[L̃sηs](1 − α)t−s =

∑T−2
s=0

∑T−1
t=s+1 E[L̃sηs](1 −

α)t−s ≤ 1−α
α

∑T−2
s=0 E[L̃sηs], we obtain Lemma 4.

D PROOF OF LEMMA 2

As discussed in Section 4, our update for η can be viewed as an instance of the optimistic FTRL
algorithm. Therefore, we can invoke the convergence bound in (Orabona, 2019, Theorem 7.39),
where ψ1 = · · · = ψT = δ

2η
2 and ℓ̃t+1(η) = −η⟨gt+1(xt+1),

mt+1

∥mt+1∥ ⟩. Moreover, note that
δ
2η

2 +
∑t

s=0 ℓ
N
t (η) is (δ +

∑t
s=0(max{Ls,M} + 8(1−α)

3α L̃s))-strongly convex, and |(ℓNt)′(ηt) −
ℓ̃′t(ηt)| = | − ⟨g′

t(wt) − gt(xt),
mt

∥mt∥ ⟩ + max{Lt,M}ηt + 8(1−α)
3α L̃tηt| ≤ ∥g′

t(wt) − gt(xt)∥ +
max{Lt,M}ηt + 8(1−α)

3α L̃tηt. Hence, we have

T−1∑
t=0

(ℓt(ηt)− ℓt(η)) ≤
δ

2
η2 +

T−1∑
t=0

(max{Lt,M}ηt + 8(1−α)
3α L̃tηt + ∥g′

t(wt)− gt(xt)∥)2

2δ + 2
∑t

s=0(max{Ls,M}+ 8(1−α)L̃s

3α)
. (21)

Moreover, by the triangle inequality and the definition of Lt, we have ∥g′
t(wt) − gt(xt)∥ =

∥∇f(wt; ξ
′
t) − ∇f(xt; ξt)∥ ≤ ∥∇f(wt; ξ

′
t) − ∇f(xt; ξ

′
t)∥ + ∥∇f(xt; ξ

′
t) − ∇f(xt; ξt)∥ ≤

Ltηt + ∥∇f(xt; ξ
′
t)−∇f(xt; ξt)∥. So we can further bound the summand in (21) by

(2max{Lt,M}ηt + 8(1−α)
3α L̃tηt + ∥∇f(xt; ξ

′
t)−∇f(xt; ξt)∥)2

2δ + 2
∑t

s=0(max{Ls,M}+ 8(1−α)L̃s

3α)

≤
η2t (2max{Lt,M}+ 8(1−α)

3α L̃t)
2 + ∥∇f(xt; ξ

′
t)−∇f(xt; ξt)∥2

δ +
∑t

s=0(max{Ls,M}+ 8(1−α)L̃s

3α)
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

In the following, we will upper bound the two sums
T−1∑
t=0

η2t (2max{Lt,M}+ 8(1−α)
3α L̃t)

2

δ +
∑t

s=0(max{Ls,M}+ 8(1−α)L̃s

3α)
and

T−1∑
t=0

∥∇f(xt; ξ
′
t)−∇f(xt; ξt)∥2

δ +
∑t

s=0(max{Ls,M}+ 8(1−α)L̃s

3α)

separately.

By our assumption, max{Lt, L̃t} ≤ Lmax with probability one and ηt ≤ ηmax. Thus, we can derive
T−1∑
t=0

η2t (2max{Lt,M}+ 8(1−α)
3α L̃t)

2

δ +
∑t

s=0(max{Ls,M}+ 8(1−α)L̃s

3α)
(22)

≤ 28(ηmax)2max{Lmax,M}
3α

T−1∑
t=0

max{Lt,M}+ 8(1−α)L̃t

3α

δ +
∑t

s=0(max{Ls,M}+ 8(1−α)L̃s

3α)
. (23)

Now we can apply the following lemma.

Lemma 6. For any nonnegative sequence {at}T−1
t=0 and δ > 0, it holds that

∑T−1
t=0

at

δ+
∑t

s=0 as
≤

log
(
1 +

∑T−1
t=0 at

δ

)
.

Proof. For any t ≥ 0, we have at

δ+
∑t

s=0 as
= 1− δ+

∑t−1
s=0 as

δ+
∑t

s=0 as
≤ log(

δ+
∑t

s=0 as

δ+
∑t−1

s=0 as
), where we used the

fact that 1− x ≤ log(1x) for any x ≥ 0. Hence, by summing the inequality from t = 0 to t = T − 1

we obtain
∑T−1

t=0
at

δ+
∑t

s=0 as
≤ log(

δ+
∑T−1

t=0 at

δ) = log(1 +
∑T−1

t=0 at

δ).

Hence, by applying Lemma 6 to (22), we get
T−1∑
t=0

η2t (2max{Lt,M}+ 8(1−α)
3α L̃t)

2

δ +
∑t

s=0(max{Ls,M}+ 8(1−α)L̃s

3α)

≤ 28(ηmax)2max{Lmax,M}
3α

log
(
1 +

∑T−1
t=0 (max{Lt,M}+ 8(1−α)L̃t

3α)

δ

)
≤ 28(ηmax)2max{Lmax,M}

3α
log
(
1 +

11max{Lmax,M}
3αδ

T
)
.

By our choice of ηmax =
√
αη̄, it becomes O

(
η̄2max{Lmax,M} log

(
1 + max{Lmax,M}

αδ T
))

. For

the second term, since 1
t+1

∑t
s=0 max{Ls,M} ≥M , using Assumption 2, we have

E
[T−1∑
t=0

∥∇f(xt; ξ
′
t)−∇f(xt; ξt)∥2

δ +
∑t

s=0(max{Ls,M}+ 8(1−α)L̃s

3α)

]
≤

T−1∑
t=0

E[∥∇f(xt; ξ
′
t)−∇f(xt; ξt)∥2]

M(t+ 1)

=

T−1∑
t=0

2σ2

M(t+ 1)
≤ 2σ2

M
(1 + log(T)).

Lemma 2 now follows from combining the above two bounds.

E ADDITIONAL EXPERIMENTS AND DETAILS

In this section, we discuss additional implementation details, present the seeded runs for the experi-
ments in the main text, and include additional results on two other datasets from torchvision.

E.1 IMPLEMENTATION DETAILS

Hardware Our experiments were conducted on a cluster with NVIDIA A100 GPUs (96GB mem-
ory) and 120GB system RAM. The CIFAR-10 experiments with multiple random seeds required
approximately 96 GPU hours, and both the CIFAR-100 and the Flower102 experiments required
approximately 192 GPU hours.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Additional hyperparameters Since our main focus is on adaptive learning rate selection, we set
all other hyperparameters to their standard default values. Specifically, for ADAM-GALA, we fix
β1 = 0.9, β2 = 0.999, and δ = 10−8, consistent with the settings used for Adam and AdamW. For
SGD with momentum, we set the momentum parameter to 0.9. While training ViT-Tiny, we set the
weight decay for AdamW and SGD to be 0.05, and we kept it 0 for SGD-GALA and ADAM-GALA.

Resnet-18 experiments use a constant learning rate schedule for all algorithms. We observe that a
popular schedule, such as cosine, does not change the relative behavior and hence we report the
results for a constant learning rate schedule. For the ViT-Tiny experiment, we follow the standard in
the literature and run AdamW and SGD with cosine schedules, while we used a constant schedule for
our GALA variants to demonstrate the learning rate adaptation without external intervention.

Mechanic The Mechanic algorithm, proposed in Cutkosky et al. (2023a), provides a general
framework for adaptively selecting the learning rate of any base optimizer. At each iteration, it
proceeds as follows:

• Sample ξt ∼ D and compute the stochastic gradient gt = ∇f(xt; ξt);
• Use gt to compute the update direction ut via the base optimizer and update the cumulative

direction ∆t+1 = ∆t + ut;
• An internal online learner selects a learning rate st+1;
• Update the iterate: xt+1 = x1 + st+1∆t+1.

For example, if the base optimizer is SGD, then ut = −ηgt. In our experiments, we apply Mechanic
to both SGD and its momentum variant and vary the initial learning rate η, using the official im-
plementation available at https://github.com/optimizedlearning/mechanic. Since
the performance of standard and momentum versions were comparable, we only include the Mechanic
on SGD without moment in order to preserve readability of the plots.

AdGD The update rule of AdGD in Malitsky & Mishchenko (2020) for the stochastic setting is
given by

ηt = min

{√
1 + α

ηt−1

ηt−2
ηt−1,

∥xt − xt−1∥
2∥∇f(xt; ξt)−∇f(xt−1; ξt)∥

}
,

xt+1 = xt − ηt∇f(xt; ξt),

(24)

where α = 1 in the original algorithm, which is analyzed under deterministic gradients. In practice,
the authors recommend using smaller values of α to improve stability and avoid spikes in the loss
curve. For example, they report that for ResNet-18 on CIFAR-10, setting α = 0.02 yields the best
performance. Following their recommendation, we use this value in all of our experiments.

D-Adaptation and Prodigy Among the class of parameter-free methods, D-Adaptation (Defazio &
Mishchenko, 2023) and Prodigy (Mishchenko & Defazio, 2024) are considered to be state-of-the-art
with 3 million downloads each on GitHub. The goal of parameter-free optimization is to eliminate the
dependence on the initial learning rate by approximating the initial distance to the solution. Essentially,
the step size is based on the AdaGrad step size with a certificate for initial distance, i.e., ∥x0−x∗∥, that
iteratively improves every step. Note that the algorithm still requires an initial value for the certificate,
d0, which is equivalent to the initial learning rate. We keep all the other parameters of both algorithms
the same as in the GitHub implementation and the paper. We downloaded and installed the official
algorithm packages from https://github.com/facebookresearch/dadaptation for
D-Adaptation and https://github.com/konstmish/prodigy for Prodigy.

E.2 EXPERIMENTS

E.2.1 RESNET-18

Alongside CIFAR-10, we ran experiments with two more datasets, CIFAR-100 Krizhevsky (2009)
and Oxford 102 Flower dataset (Flower102) Nilsback & Zisserman (2008), on ResNet-18. In order
to quantify the error due to randomness, we ran the experiments with three different random seeds,
which we report as error bars. Figure 6, Figure 7, and Figure 8 report the final training loss, training
accuracy, and testing accuracy with respect to different learning rates, respectively.

22

https://github.com/optimizedlearning/mechanic
https://github.com/facebookresearch/dadaptation
https://github.com/konstmish/prodigy

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

GALA-SGD GALA-Adam SGD Prodigy Mechanic D-AdaptAdam Adam AdGD

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

10
1

10
0

Fi
na

l T
ra

in
in

g
Lo

ss

Final Training Loss vs. Initialization

(a) CIFAR-10

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

10
0

10
1

10
2

10
3

Fi
na

l T
ra

in
in

g
Lo

ss

Final Training Loss vs. Initialization

(b) CIFAR-100

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

10
1

10
0

Fi
na

l T
ra

in
in

g
Lo

ss

Final Training Loss vs. Initialization

(c) Flowers102

Figure 6: Final training loss obtained from different initial learning rates for CIFAR-10, CIFAR-100,
and Flower102. We compare the performance of SGD-GALA, ADAM-GALA against SGD, Adam,
AdGD, Mechanic, D-Adaptation(Adam) and Prodigy. We initialize each algorithm with learning
rates [1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−8] and execute 3 seeded runs.

GALA-SGD GALA-Adam SGD Prodigy Mechanic D-AdaptAdam Adam AdGD

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

20

40

60

80

100

Fi
na

l T
ra

in
 A

cc
ur

ac
y

Final Train Accuracy vs. Initialization

(a) CIFAR-10

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

20

40

60

80

100

Fi
na

l T
ra

in
 A

cc
ur

ac
y

Final Train Accuracy vs. Initialization

(b) CIFAR-100

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

20

40

60

80

100

Fi
na

l T
ra

in
 A

cc
ur

ac
y

Final Train Accuracy vs. Initialization

(c) Flowers102

Figure 7: Final training accuracy obtained from different initial learning rates for CIFAR-10,
CIFAR-100, and Flower102. We compare the performance of SGD-GALA, ADAM-GALA against
SGD, Adam, AdGD, Mechanic, D-Adaptation(Adam) and Prodigy. We initialize each algorithm with
learning rates [1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−8] and execute 3 seeded runs.

Across the three different datasets, we observe that our method, SGD-GALA and ADAM-GALA,
remains robust with respect to the initial learning rates and has negligible variance due to random
seeds. SGD and Adam are sensitive to the choice of the initial learning rate; small learning rate
prevents progress while relatively large values yields unpredictable behavior with abrupt changes in
performance.

The results on all three datasets (although more pronounced for CIFAR-10 and CIFAR-100) show
that Mechanic tends to perform better with larger learning rates, but the variance is high with different
random seeds. Interestingly, AdGD fails on CIFAR-100 dataset; as we will discuss later in more
detail over the learning rate evolution of the method, this is likely due to the fact that its learning rate
becomes too large in some scenarios. For other datasets, AdGD shows consistent convergence across
different initialization with great test performance and slightly worse training loss/accuracy. The
behavior of parameter-free methods are quite close to each other for all three datasets. Both Prodigy
and D-Adaptation show one of the best performances for training and testing when the initial step
size is small. however, the performance drops sharply when the initialization is larger than 10−2.

Compared to Mechanic and AdGD, the variance for different seeds is smaller for SGD-GALA and
ADAM-GALA. Among the GALA-variants, SGD-GALA performs better than ADAM-GALA for
larger learning rates.

E.2.2 VIT ON TINY-IMAGENET-200

The robustness provided by GALA framework is better displayed with the ViT experiments; SGD-
GALA improves the performance of SGD from all initializations and shows almost the same
performance for all initializations. ADAM-GALA shows a similar performance improvement

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

GALA-SGD GALA-Adam SGD Prodigy Mechanic D-AdaptAdam Adam AdGD

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

10

20

30

40

50

60

70

80

90

Fi
na

l T
es

t A
cc

ur
ac

y

Final Test Accuracy vs. Initialization

(a) CIFAR-10

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

10

20

30

40

50

60

Fi
na

l T
es

t A
cc

ur
ac

y

Final Test Accuracy vs. Initialization

(b) CIFAR-100

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

10

20

30

40

50

60

Fi
na

l T
es

t A
cc

ur
ac

y

Final Test Accuracy vs. Initialization

(c) Flowers102

Figure 8: Final test accuracy obtained from different initial learning rates for CIFAR-10, CIFAR-100,
and Flower102. We compare the performance of SGD-GALA, ADAM-GALA against SGD, Adam,
AdGD, Mechanic, D-Adaptation(Adam) and Prodigy. We initialize each algorithm with learning
rates [1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−8] and execute 3 seeded runs.

with respect to AdamW, particularly for the initialization regimes where it performs poorly, which
corresponds to small or large initial values of the learning rate. However, we underline that the
best-performing AdamW is better than that of ADAM-GALA.

During training, the best-performing configuration for AdamW is better than that of any other method
we tested, for which we use prescribed set of parameters and such a behavior is expected. However,
SGD-GALA has the best test accuracy, matching and even surpassiong the test perforamnce of
AdamW. An interesting obserbation is that SGD-GALA achieves this performance from any initial
learning rate value, which validates our claims on stability and robustness to initialization.

In all our experiments, GALA provide a trade-off between training performance and robustness to
initialization; for some experiments performance matches the best-performing algorithm while for all
scenarios, GALA variants of standalone method show robustness to variation in initial learning rate.
Prodigy has strong performance from small initializations across the board but a sharp degradation
happens for learning rates larger than 10−3.

GALA-SGD GALA-Adam SGD Prodigy AdamW

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

10
1

10
0

Fi
na

l T
ra

in
in

g
Lo

ss

Final Training Loss vs. Initialization

(a) Final Training Loss

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

20

40

60

80

100

Fi
na

l T
ra

in
 A

cc
ur

ac
y

Final Train Accuracy vs. Initialization

(b) Final Training Accuracy

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Initial Learning Rate

0

10

20

30

40

50

60

70

80

90

Fi
na

l T
es

t A
cc

ur
ac

y

Final Test Accuracy vs. Initialization

(c) Final Test Accuracy

Figure 9: ViT (Tiny variant) on Tiny-ImageNet dataset. We compare SGD-GALA and ADAM-
GALA against SGD, AdamW and Prodigy. Each algorithm is initialized with learning rates
[1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−8] and other parameters are set to default values. The
runs are averaged over 2 random seeds.

E.2.3 LEARNING RATE EVOLUTION

To better understand the convergence behavior of our method, we visualize the learning rate dynamics
during training. We demonstrate the evolution of learning rates for SGD-GALA and ADAM-GALA
for different models and datasets.

As shown in Figure 10a, the learning rate of SGD-GALA evolves similarly and converges to similar
values across a wide range of initialization, excluding extreme cases such as η = 1, 0.1, or 10−8. This
convergence likely explains the robustness of SGD-GALA to the choice of initial learning rate. Also,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000
Iterations

10
5

10
4

10
3

10
2

10
1

10
0

Le
ar

ni
ng

 R
at

e
(

t)

GALA-SGD Learning Rate vs. Iterations

1e-08
1e-05
0.0001
0.001
0.01
0.1
1.0

(a) SGD-GALA

0 20000 40000 60000 80000
Iterations

10
7

10
6

10
5

10
4

10
3

10
2

10
1

Le
ar

ni
ng

 R
at

e
(

t)

GALA-Adam Learning Rate vs. Iterations

1e-08
1e-05
0.0001
0.001
0.01
0.1
1.0

(b) ADAM-GALA

0 10000 20000 30000 40000 50000 60000 70000 80000
Iterations

0

10

20

30

40

50

60

70

Le
ar

ni
ng

 R
at

e
(

t)

AdGD Learning Rate vs. Iterations

1e-08
1e-05
0.0001
0.001
0.01
0.1
1.0

(c) AdGD

Figure 10: Comparison of learning rate evolution for SGD-GALA, ADAM-GALA and AdGD on
the CIFAR-100 dataset, averaged over 3 runs.

in Figure 10b, we observe that, depending on the initial value, the learning rate of ADAM-GALA
adapts over time and can both increase and decrease, consistent with the trend seen in Figure 5
on CIFAR-10. In most cases, the learning rate stabilizes between 10−2 and 10−3, which roughly
corresponds to the best fixed learning rate for Adam according to Figure 8b. By contrast, Figure 10c
shows that the learning rate chosen by AdGD tends to oscillate and frequently becomes excessively
large, which may contribute to its degraded performance. While AdGD performs competitively on
CIFAR-10, its behavior on CIFAR-100 suggests that it may be less robust and that the hyperparameter
α in (24) may require retuning for stable performance on new datasets.

Figure 11 shows the learning rate evolution for ViT + Tiny-ImageNet for SGD-GALA and ADAM-
GALA. For this setup, the learning rate evolution across different initializations demonstrate a more
consistent behavior. Specifically, SGD-GALA converges to the same narrow value range for the
learning rate from different initializations between 1 and 10−8. While doing so, the learning rate
decreases initially and starts increasing for most of the execution. For ADAM-GALA, the behavior
seems a bit more complex; the learning rate fluctuates for a while until it attains a monotonic,
increasing nature. Note that the learning rate for initializations between [10−2, 10−8] converge to
almost the same value with an increasing behavior for the most of the run, while from initial values of
1 and 0.1, the learning rate tends to decrease which hurts the performance as shows in the convergence
plots.

0 2000 4000 6000 8000 10000
Iterations

10
3

10
2

10
1

Le
ar

ni
ng

 R
at

e
(

t)

GALA-SGD Learning Rate vs. Iterations

1e-08
1e-06
1e-05
0.0001
0.001
0.01
0.1
1.0

(a) SGD-GALA

0 2000 4000 6000 8000 10000
Iterations

10
4

10
3

10
2

10
1

Le
ar

ni
ng

 R
at

e
(

t)

GALA-Adam Learning Rate vs. Iterations
1e-08
1e-06
1e-05
0.0001
0.001
0.01
0.1
1.0

(b) ADAM-GALA

Figure 11: Comparison of learning rate evolution for SGD-GALA and ADAM-GALA for training
ViT-Tiny on Tiny-ImageNet, averaged over 2 runs.

F USE OF LARGE LANGUAGE MODELS

We used large language models in limited capacity to help polish phrasing and check grammatical
correctness of select parts of the paper.

25

	Introduction
	Related work

	Preliminaries
	Background: online learning

	Online learning rate selection
	Convergence analysis
	Numerical experiments
	Implementation details
	Results on ResNet-18 and ViT-Tiny

	Conclusion
	Extended related work
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Lemma 3
	Proof of Lemma 4

	Proof of Lemma 2
	Additional experiments and details
	Implementation details
	Experiments
	Resnet-18
	ViT on Tiny-Imagenet-200
	Learning rate evolution

	Use of Large Language Models

