Under review as a conference paper at ICLR 2026

ONLINE LEARNING-GUIDED LEARNING RATE ADAPTA-
TION VIA GRADIENT ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of an optimizer on large-scale deep learning models depends
critically on fine-tuning the learning rate, often requiring an extensive grid search
over base learning rates, schedules, and other hyperparameters. In this paper,
we propose a principled framework called GALA (Gradient Alignment-based
Learning rate Adaptation), which dynamically adjusts the learning rate by tracking
the alignment between consecutive gradients and using a local curvature estimate.
Guided by the convergence analysis, we formulate the problem of selecting the
learning rate as a one-dimensional online learning problem. When paired with
an online learning algorithm such as Follow-the-Regularized-Leader, our method
produces a flexible, adaptive learning rate schedule that tends to increase when
consecutive gradients are aligned and decrease otherwise. We establish a data-
adaptive convergence rate for normalized SGD equipped with GALA in the smooth,
nonconvex setting. Empirically, common optimizers such as SGD and Adam,
when augmented with GALA, demonstrate robust performance across a wide range
of initial learning rates and perform competitively without the need for tuning.

1 INTRODUCTION

Stochastic first-order (SFO) methods such as SGD (Robbins & Monrol (1951), AdaGrad (McMahan
& Streeter}, | 2010; |[Duchi et al., 2011}, and Adam (Kingma & Bal[2015) have been the workhorse for
training large-scale models due to their low computational overhead and strong empirical performance.
Essentially, the practical performance of SFO methods relies on two components: the choice of
base learning rate and how the learning rate evolves during training. The initial selection process is
typically done by running a grid search over a range of values, which is referred to as tuning. On
top of that, the evolution of the learning rate throughout the execution is most commonly done by
scaling it externally via a scheduler. Depending on the characteristics of the optimizer, the learning
rate could also be dynamically updated by some internal mechanism during training.

For instance, SGD is often run with a constant learning rate and coupled with a scheduler such as
cosine annealing (Loshchilov & Hutter|2017), linear decay (Defazio et al.| 2023)) or step decay (Ge
et al.} [2019) that guides the learning rate following a predetermined rule. Similarly, the adaptive
methods update the learning rate internally by accumulating the observed gradients based on a
prescribed rule that usually tends the learning rate below its initial value. Although optimizers have
other parameters such as momentum and weight decay, they are often fixed at the beginning, whereas
the learning rate evolves throughout and thus has a larger impact on the final performance.

However, it is unclear how to choose an “empirically viable” combination of base learning rate,
optimizer, and scheduler, a priori, without tuning over a manually chosen set of parameters. In
practice, this issue is compounded by the fact that hyperparameters are often tuned for only a few
epochs or on a smaller-scale model, and then directly transferred to large-scale experiments. Yet,
it has been documented that early training behaviors can be misleading (Wen et al.,|2025) as such
configurations will be far from ideal at the true scale. Therefore, this challenge highlights the need
for a theoretically principled approach to learning rate adaptation that is robust, flexible, and provable.
To put things in perspective, we highlight three key drawbacks of common approaches in this domain.

Robustness: Many optimizers, such as SGD and AdaGrad, are highly sensitive to the initial learning
rate: an excessively large value can lead to divergence, while a very small one results in stagnation.

Under review as a conference paper at ICLR 2026

30 Training Loss vs. Epochs 30 Training Loss vs. Epochs
' SGD —e— Adam
—— GALA-SGD —— GALA-Adam
25 25
» 2.0 % 20
1723 17
o (=}
- -
215 215
c f=4
g £ ——
T 10 P10 e —
—
05 \ 05 e T
T oA
%@M e da L

=3
o
o
o

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Epoch Epoch
(a) SGD versus SGD-GALA (b) Adam versus ADAM-GALA

Figure 1: Training loss comparison for standalone SGD and Adam versus GALA applied on their
learning rates (SGD-GALA and ADAM-GALA, respectively). The curves are obtained by running
the algorithms with initial learning rates [1,10~%,1072,1073,10%,1075].

Ideally, we seek stable performance across a wide range of initial learning rates, allowing for robust
training even with suboptimal initializations.

Adaptivity: In most cases, the value of the learning rate, either through internal dynamics or an
external scheduler, tends to decay over time, limiting flexibility. For instance, the standard AdaGrad
algorithm (McMahan & Streeter}, 2010; |Duchi et al.,|2011) reduces the learning rate below its initial
value, and most commonly used schedulers induce decaying behavior on top of the learning rate. A
more desirable alternative would be a principled and adaptive scheduling mechanism capable of both
increasing and decreasing the learning rate as needed.

Principled: Most theoretical frameworks in this area are grounded in convex optimization. For
instance, AdaGrad and its variants are supported by data-dependent regret bounds derived from
online convex optimization. However, the decaying nature of their learning rate is not necessarily
empirically optimal for non-convex landscapes. Developing a theoretically grounded approach
tailored to non-convex problems is crucial for establishing provable performance guarantees.

While several existing works partially address these three limitations, none meet all the desired
criteria simultaneously, as discussed in detail in Section[I.1]

Our contributions: Our goal is to unify all three ingredients in a single principled framework.
To this end, we propose Gradient Alignment-based Learning rate Adaptation (GALA), an online-
learning guided framework for adjusting the learning rate on-the-fly by carefully monitoring the
evolution of the optimization path. Our main goal with designing this framework is to make algo-
rithms robust to parameter-tuning while maintaining competitive performance. In particular:

1. Motivated by the convergence analysis, we construct a one-dimensional online loss function for
selecting the learning rate, using the alignment between consecutive stochastic gradients and a
local estimate of the gradient Lipschitz constant. The learning rate is then updated by performing
a step for the one-dimensional online problem via any suitable algorithm.

2. Our approach enables dynamic learning rate adaptation: it tends to increase when the gradients
are aligned and decrease when misalignment is detected. We carefully moderate the alignment
signal using a regularization term based on the local Lipschitz estimate, promoting stability.

3. Theoretically, we provide a regret-based analysis and establish convergence guarantees for a
variant of our algorithm for nonconvex objective functions with stochastic gradients.

4. Empirically, our method demonstrates strong, stable performance across a wide range of hyperpa-
rameter settings. We propose a heuristic implementation for other SFO methods.

In fact, Figure[T] provides a glimpse at the performance of our framework when applied to the learning
rates of SGD and Adam. We show that GALA helps mitigate sensitivity to the initialization of the
learning rate while maintaining a competitive performance with respect to the best-performing runs
of the standalone SGD and Adam.

Under review as a conference paper at ICLR 2026

1.1 RELATED WORK

In this section, we have a concise literature review, full version of which can be found in Section

Classical stochastic first-order methods. Dating back to the seminal work Robbins & Monro
(1951)), SGD and its many variants have been extensively studied. For general smooth functions, the
learning rate must decrease at a rate of 7; = O(1/+/t) where t is the iteration counter and also satisfy
n: < O(1/L) to guarantee convergence. Ghadimi & Lan|(2013) established that SGD achieves a
complexity of O(e~2 +02e~*), interpolating between deterministic and stochastic rates and matching
the lower bounds (Arjevani et al., [2023). However, the choice of the learning rate depends on the
problem parameters, i.e., L, o, which are typically unknown and difficult to estimate in practice.

Adaptive and parameter-free optimization methods. AdaGrad was introduced in concurrent
works McMahan & Streeter| (2010); Duchi et al.|(2011)) for minimizing a sequence of online convex
losses. The main idea is to compute a time-varying learning rate by accumulating squared norms
of gradients. This idea paved the way for many algorithms such as Adam (Kingma & Bal [2015)),
RMSProp (Tieleman & Hintonl 2012), Adadelta (Zeiler, 2012), which demonstrate strong empirical
performance. Adaptive methods and their variants have been studied extensively for the convex (Levy,
2017;|Levy et al.l 2018} |[Kavis et al.l |2019; Joulani et al., 2020; /Antonakopoulos et al.l 2022} [Liu
et al.l [2023a; [Rodomanov et al., 2024)) and non-convex setting (Li & Orabonal [2019; Ward et al.,
2020; L1 & Orabonal, [2020; [Kavis et al.| 2022} |Gadat & Gavral, 2022; [Faw et al.,[2022; |Attia & Koren),
2023; |Liu et al., [2023b). A downside of these first-generation methods is the sensitivity to initial
learning rate due to the need to know an estimate to the initial distance, ||xo — x*||. To remedy
this, parameter-free optimization (Carmon & Hinder, [2022; Ivgi et al.| 2023} |Khaled et al., 2023}
Kreisler et al.,[2024; |Attia & Koren| 2024) combines AdaGrad-type learning rate with a certificate that
estimates initial distance to solution. Although this helps increase from the initial value, the scaling
factor is practically bounded, restricting flexibility. A related line of work Malitsky & Mishchenko
(20205 2024); Li & Lan|(2024) studied parameter-free methods with local curvature estimation for
convex, deterministic problems. They are equipped with non-monotone learning rates that estimate
the time evolution of local smoothness. However, if the increasing behavior is not tamed properly,
optimization performance could be unstable.

Online learning-guided methods. Orabona & Tommasi| (2017} reformulated SGD as a coin-betting
game and applied a betting algorithm to eliminate the need for a manually tuned learning rate for
convex functions. |Cutkosky et al.| (2023a) proposed a technique for adaptively scaling any base
algorithm and learning rate schedule, which is grounded in a black-box reduction framework in
online learning (Cutkosky & Orabona, 2018)). More relevant to ours, |Zhuang et al.|(2019) considered
non-convex stochastic optimization and introduced a surrogate loss technique for selecting the
learning rate. However, their method requires knowledge of problem-dependent parameters (e.g., the
gradient’s Lipschitz constant), which limits its flexibility.

2 PRELIMINARIES

We consider the stochastic optimization problem
min F(x) = Eewp[f(x:€)),
x€ER4

where f(+;€) is a random function indexed by a random variable £ drawn from distribution D. The
objective function F' : R¢ — R is assumed to be differentiable, possibly nonconvex and bounded
from below, i.e., F/(x) > —oo. Moreover, we make the following standard assumptions:
Assumption 1. The gradient of F is L-Lipschitz continuous, i.e., |VF(x) — VFE(y)|| < L||x — y||
forany x andy.

Assumption 2. The stochastic gradient has bounded variance of 02, i.e., E[||VF(x) =V f(x; €)[?] <
o2 for any x € R%

2.1 BACKGROUND: ONLINE LEARNING

Let us briefly introduce the online learning framework and establish the groundwork necessary within
the context of our approach. In the online learning framework, a learner makes decisions iteratively
over rounds. Ateachround ¢t =1,--- | T"

Under review as a conference paper at ICLR 2026

1. The learner makes a decision x; € X from a bounded set of actions;
2. The environment/adversary reveals the loss function ¢,(+);

3. The learner suffers the loss ¢;(x;).

The learner chooses its action x; in round ¢ prior to observing the loss ¢;(-). The performance of the
learner is measured by regret, which is defined as the difference between the cumulative loss of the
learner compared against a fixed action x:

Regr(x) = Zthl(ét(xt) — 4(x)). (1)

The goal is to achieve sublinear regret, i.e., Regp(x) = o(T'), such that the time average of regret
goes to zero as T' — oo, meaning the learner performs as well as the fixed strategy in the limit.

3 ONLINE LEARNING RATE SELECTION

We begin by introducing a simplified template that outlines our design. Our primary goal is to provide
insight into the idea of gradient alignment, explain our adaptive strategy, and establish the foundation
for the online learning formulation of the learning rate. Consider the SGD update rule

Xep1 = X¢ — N8e(xe), &e(xe) = Vf(x4:6), (2)

where &; ~ D is a random sample drawn from the distribution D at iteration ¢. Our goal is to choose
a sequence of learning rates guided by the progress of the algorithm, as measured by the function
value difference F'(x:41) — F'(x¢). At this point, we deviate from the classical analysis; inspired
by |Cutkosky et al.|(2023b)), we apply the fundamental theorem of calculus to get

F(xt11) = F(x¢) = Vi, %01 — X¢) = —1:{ Ve, 8(X¢)), 3)

where V; = fol VF(x: + A(x¢41 — X¢)) dX denotes the average gradient along the line segment
between x; and x;;;. Note that the right-hand side of (3) concerns the alignment between the
gradients V; and g;(x;) and serves as a useful signal for adjusting the learning rate. When the
alignment term is positive, it indicates that the gradients point in similar directions and increasing
the learning rate may lead to greater progress. Conversely, a negative alignment implies opposing
directions, in which case a smaller learning rate may be more appropriate.

However, computing V. is generally intractable, as it involves the true gradient and an integral. A
key observation in|Zhang et al.[(2020); |Cutkosky et al.[|(2023b)) is that an unbiased estimate of V
can be constructed by evaluating the gradient at a random point along the line segment. Specifically,
let A+ be a random variable uniformly distributed over [0, 1], and let &; be an independent sample
from the distribution D. Then for w; = x; + A¢(x¢+1 — x¢) and g} (w;) = V f(wy; &}), we have
Vi =E\[VF(w;)] = Ej, ¢ [gi(w;)], which implies

F(x¢41) — F(x¢) = —n Ex ¢ (gt (W), gt(xt))]-)

To maximize the decrease in the function value, Eq. (4) suggests that a natural objective is to minimize
—n¢ Ex, ¢ [(81 (W), 8¢(x¢))]. However, this approach comes with two issues. Let us begin with the
first point, which is related to the convergence metric. This approach only leads to an upper bound on
T Z:ol E[{(g}(w¢), gt (x¢))], which does not directly provide a meaningful bound on gradient norm
of F', which is the standard metric we would like to obtain. Our idea is to decompose the inner product
as (g4 (W), gt (xt)) = (81(xt), 8 (xt)) + (84 (Wr) — gy (x¢), gt (x¢)), where gj(x¢) = V f(x¢;).
Note that the first term leads to E[(g}(x;), g:(x:))] = E[||VF(x;)||?] and the second term can be
controlled using the Lipschitz constant of the gradient.

The second issue is that the minimization of the right-hand side of Eq. () with respect to the learning
rate 1), is an implicit problem. The objective depends on the interpolated point w;, which could be
determined only after the learning rate 7; is chosen. The solution is to cast the learning rate selection
as an online learning problem, and derive a sequence of online loss functions that will govern the
selection process. We combine and formalize both ideas in the following lemma.

_ llgi(we)—gi o)l

Lemma 1. Define the local Lipschitz estimate L, = T and the surrogate loss function

L(n) & —nigh(we), g (xt)) + 0.5L¢| g (%) |*n*. 5)

R W N =

Under review as a conference paper at ICLR 2026

Algorithm 1: SGD-GALA

Input: Initial point xg, initial learning rate 779, maximum learning rate n™**, § > 0
fort =0to T do

Sample & ~ D and compute g;(x:) = V f(x¢; &)
Xp41 = X¢ — 08 (Xe)
Sample &, ~ D and compute g;(x;) = V f(x¢;€;)
Sample s; ~ Uniform[0, 1], compute w; = X; + S¢(X¢4+1 — X¢) and g} (wy) = V f(wy; &)
Compute L; = e)= W&}Z:iihx”“
— AT ERCACHE-NCN)
Ne+1 = Chp[o)nmax] (5+ZOZ:0 L.lg- (XS)H2)
end

Suppose that Assumption 2| holds and L, < L™* for any t > 0 with probability one. Then we have

T-1 T-1
E[(n—n*L™)|VF(x,)|*] < E[F(x0) — F(xr) + L™ Tn’0” + > (L(n:) — £:(n))]. (6)
t=0 t=0

As shown in (3)), our surrogate loss function ¢;(1) consists of two terms. The first term measures the
alignment between two consecutive (stochastic) gradients g} (w;) and g;(x;), and the second term is
a quadratic regularization term that depends on our local estimate of the Lipschitz constant L;. The
online nature of the problem is due to the fact that both g’(w) and L; can only be computed after the
learning rate 7; is chosen. Moreover, 7 in (6) is the comparator of our online learning problem and it
can be chosen arbitrarily in our analysis. If we achieve a low regret for the online learning problem
(as we show in Section, then a proper choice of 7 will lead to a complexity of O(e~2 + a2e~%).
Remark 1. Our approach is inspired by both |Cutkosky et al.| (2023b) and [Zhuang et al.| (2019).
Compared to |Cutkosky et al.|(2023b), the key difference is that their method uses online learning to
guide the choice of the update direction, whereas we focus on selecting the learning rate. In contrast
toZhuang et al.|(2019)), our method differs in two major ways: (i) we estimate the local Lipschitz
constant on the fly, instead of relying on a global Lipschitz estimate; and (ii) for the first term, we
use the alignment between two stochastic gradients evaluated at different points w; and x;, while
Zhuang et al.|(2019) use gradients at the same point.

The next step is using an online learning algorithm that will operate on the loss sequence ¢; to update
our learning rate 7,. Since the loss functions are quadratic in their input, we have several options to
choose from. As an example, the Follow-the-Regularized-Leader (FTRL) algorithm is given by

¢
. 0
Ne41 = argmin {Zﬁs(n) + 2772} ,

nel0,nmax] | so

where n™®* is the maximal learning rate and § > 0 is a user-defined constant to ensure stability.
Using the loss in (3)) and the FTRL update, we obtain a closed-form expression for 7. 1:

S (gl (W), 8 (%)) >
6+ZZ:0LS”gs(Xs)H2 7

where clipjy ,max|(+) denotes the operation that clips a real-valued input to the interval [0, n™ax].
Remark 2. The learning rate incorporates directional information along the optimization path through
the alignment term: when the gradients are aligned, the learning rate is encouraged to increase;
when they are misaligned, it decreases. Additionally, the quadratic regularization term moderates the
learning rate update based on the magnitude of observed gradients. Note that this adaptive behavior
is an inherent feature of our online learning-guided learning rate and holds by default for various
choices of online learners, such as OGD (Zinkevich, [2003; |Orabonal, [2019).

Remark 3. For numerical stability, we pick FTRL as our choice of online learner to update the
learning rate of the algorithm but FTL is also applicable since the surrogate losses are quadratic. In
either case, the resulting update for the learning rate is independent of the initialization; only the very
first step is taken using the base learning rate.

N1 = Clippg ymax) (@)

Under review as a conference paper at ICLR 2026

4 CONVERGENCE ANALYSIS

In this section, we analyze a variant of our proposed method in Algorithm [I] and establish its
convergence rate for stochastic nonconvex optimization. Instead of using the standard SGD update
rule in (IZ]) we adopt the normalized SGD with momentum (Cutkosky & Mehtal 2020). As we will
show, the main theoretical advantage of using a normalized update is that it simplifies the surrogate
loss function, making the regret bound easier to establish. Specifically, we consider the update rule

X1 = X — nemy /[[my |, m; = (1 —a)m;_1 +aV f(x4; &), ®)
where a € (0, 1] is the momentum parameter. The normalization step ensures that the learning rate 7,
directly controls the distance between x;1 and x;, thus promoting stability. However, normalization
can also amplify the noise in the stochastic gradient. To mitigate this, we apply an exponential moving
average in (8), which reduces variance and is governed by the momentum parameter c. Due to the

different update rule in (8)), the surrogate loss function must be modified accordingly. Specifically,
we define a new surrogate loss function as

£ = —n{gh(wo),) + (% +4(1gao‘)it)n2, ©)

_ gt (xetn)—gi(xo)ll
[I%¢41—x¢||

compared with (3)). First, the linear term in (@) measures the alignment between the gradient gj (w)

and the normalized update direction H ” , rather than with the stochastic gradient g;(x;). In

where L; = is a second local Lipschitz estimate. There are three main differences

addition, the quadratic term is independent of the norm of the stochastic gradient ||g;(x;)|| due
to the normalization step. Moreover, it includes an additional regularization term that depends on
the momentum parameter « and the local Lipschitz estimate L;, which arises from the analysis of
momentum. In the following theorem, we establish the convergence rate of the update rule in (§)
in terms of the regret with respect to the new surrogate loss in (). The proof can be found in

Appendix [C]
Theorem 1. Let {x;}/_' be generated by the update rule in) and n; < 7™ for all t. Recall that
L, = lswo—eialll 7o llgitoin)—gi ()l gt(lxt)”, and the surrogate loss (¥ (n) defined in (). Moreover,

[lwe—x| Ittt —x¢]
define the regret Regy £ max; ¢ (o, ymax] Zt;()l (CX(ne) =X (n)), the im'tial function value gap Ap 2
F(x¢) — F(x*), the average Lipschitz estimate L® = max{E[}F 0 Lt} IE{ t 0 Lt}}
Then for o = min{ﬁ, 1}, it holds that

TZ E[IVF(x)I] = 0% o 2(LT(Ar + E[Regy)'? | 0® VIR (Ar + E[Reg))
1 N o
T — t T1/4 JT NG
+AFL7[R%¥])
TImaxT °

The rate in Theorem [I] depends on the regret of the associated online learning problem. Hence,
we propose to use an online algorithm to adaptively update the learning rate 7, in (). Note that if
the local Lipschitz estimates L; and L; have uniform lower bounds, then the loss function in (@) is

strongly convex and thus a logarithmic regret is possible. For best theoretical guarantees, we use
optimistic FTRL (Rakhlin & Sridharan| 2013} |Steinhardt & Liang}, 2014} [Mohri & Yang,, 2016):

n€(0,nex]

t
. 6
M1 = argmin {th(m + 50 + ht+1(77)} , (10)

where h;41(+) is a hint function that aims to approximate the next loss function ¢;41. Specifically,
note that my, is already known at the time when we select 7,,1. Hence, we set hy11(n) =
—n{gt+1(Xe41), H“ﬂ::ﬁ) which yields the following closed-form update rule:

i:o<g;(ws) my/[|my||) + (g1 (Xi41), mt—i—l/Hmt-&-lH))

0+ Sio(Ls + 252 L)
We bound the regret of the above update rule in the following lemma (see Appendix D] for the proof).

T]t+1 = Clip[oynmax] (Z

Under review as a conference paper at ICLR 2026

Lemma 2. Let n™®* = \/afj for some given 7. Suppose that H% St _oLs > M™¢ and
max{ Ly, L;} < L™ hold for any t with probability one. Then we have

max 2

E[Regh] = (9(7‘72Lmax log(l + La5 T) +]\;avg log T).

Remark 4. (Dependence on ng). Note that the convergence rate in Theorem [I|and the regret bound
in Lemma[2]do not explicitly depend on the initial learning rate 7o; instead, 7o influences the bound
indirectly via the initial Lipschitz estimates Ly, Lg. As a result, our method is robust to a wide range
of initializations, as demonstrated in the experiments in Section[5] In contrast, the convergence rate

of SGD has the form A;Jri\%i”z, so when 7 is too small/large multiplicatively slows down the rate.
0

Combining Theorem [I]and Lemma[2] up to logarithmic factors, we have established that our method
achieves a convergence rate of (’)(;i—ﬁ + ﬁ), which matches the rate in |Cutkosky & Mehta (2020)
with a constant learning rate. Moreover, the convergence rate in Theorem I[is in terms of the average
and maximum Lipschitz estimates, which can be much smaller than the global constant L in|Cutkosky
& Mehtal (2020). Notably, we achieve this by adaptively selecting the learning rate instead of using a
predefined constant. Finally, we remark that our convergence results are comparable to those obtained
for AdaGrad (Faw et al.| | 2022; |Attia & Koren, |2023};|Liu et al., |2023b)), with the key distinction that
our learning rate can both increase and decrease, while the AdaGrad rate is monotonically decreasing.
Remark 5. (Role of Nyay). The parameter nyax is introduced primarily for theoretical purposes,
allowing us to apply FTRL and its standard regret guarantee. In practice, we remove the clipping step
in Eq. (7)), and hence 1y, is not required as a hyperparameter in our experiments.

5 NUMERICAL EXPERIMENTS

We present our results of applying GALA on training a residual network (He et al., |2016) on the
CIFAR-10, CIFAR-100 (Krizhevskyl 2009) and Flower102 (Nilsback & Zisserman, [2008)) as well as
a Vision Transformer (Dosovitskiy et al., [2021)) on Tiny-ImageNet (Stanford CS231n, [2015). We
begin with the practical considerations we adopted for efficiency and performance of the algorithms.

5.1 IMPLEMENTATION DETAILS

SGD with GALA. When applying GALA to augment the standard SGD update rule, we introduce
the following three key modifications to Algorithm [T}

1. Instead of sampling a random point w; from the segment (cf. Line3)), we set w; = X4 1.

2. To evaluate the alignment at time ¢, we compute both gradients with the same mini-batch &4 1;
ie., weuse (V f(x¢r1;&41), V. (xe5E41)) as the first term of the surrogate loss in (3)).

3. We omit the clipping step in the learning rate update (7)), thus eliminating the hyperparameter 7.

Among these modifications, the first and third are mainly for simplicity. In contrast, the second plays a
crucial role in the empirical performance of our method, as discussed in the Appendix. Incorporating
these changes, the learning rate update rule using FTRL becomes:

_ IV 15 641) = Vi (%4564 = S oV (Xs415Es41), VF (Xs3 Est1))
lxer1 — x| ’ St o Lsllgs(x)]12

Adam with GALA. In addition to SGD, we also adapt our GALA to Adam optimizer (Kingma &
Bal 2015). Specifically, the standard Adam update rule is given by

my = fimy_1 + (1 = B1)Vf(x4:&), ve=Pavior + (1 — ﬂQ)Vf(Xt;ft)Qa
m;
dt =

\/5+Vt’

where all operations are element-wise, and we omit bias correction terms for simplicity. To select the
learning rate 7; for Adam, we modify the surrogate loss function in (3)) as follows: (i) we replace

Ly eEY)

Xi+1 = X — ntdt»

Under review as a conference paper at ICLR 2026

—@- GALA-SGD GALA-Adam -ill- SGD Prodigy Mechanic ~=>= D-AdaptAdam Adam AdGD

Final Test Accuracy vs. Initialization Final Test Accuracy vs. Initialization Final Test Accuracy vs. Initialization

60 60

e A __—u

\
\
Y
\
0" 10°

o
3

3
N
]

3
©
3

Final Test Accuracy
© s oo o
8

Final Test Accuracy

n
S

Final Test Accuracy
w
3

= 0N
s 3 8

L

10° 107 10° 10° 10 10° 107 10" 10° 10° 107 10° 10° 10" 10° 10”107 10 10° 107 10" 107 10 10° 10°
Initial Learning Rate Initial Learning Rate Initial Learning Rate

)
o
o

(a) CIFAR-10 (b) CIFAR-100 (c) Flower102

Figure 2: Performance of optimizers in terms of final test accuracy for training ResNet-18 on
CIFAR-10, CIFAR-100 and Flower102 from different initial learning rates.

the SGD direction V f(xy; &) with the Adam update direction d; (i) we substitute V f (wy; &) with
V f(x¢; &), so that the gradient alignment term involves the inner product of stochastic gradients
computed on the same mini-batch &;; (iii) we estimate L; using the same heuristic as in (TT). These
modifications lead to the following learning rate update rule:

oy = Lazolde VI(xi60))
oo Lslldsl?

Remark 6. GALA uses one sample per iteration, same as SGD, Adam, and other optimizers. On the
other hand, it makes one more gradient call to compute the Lipschitz estimate, similar to AdGD.

5.2 RESULTS ON RESNET-18 AND VIT-TINY

Model and dataset. We use the torchvision implementation of the ResNet-18 model and
train it on CIFAR-10, CIFAR-100 and Flower102. We apply random cropping and horizontal
flipping as data augmentations during training. For ViT-Tiny, we use the t imm implementation
with pretrained weights and finetune it on Tiny-ImageNet-200. The training uses a richer set of
augmentations, including random cropping, horizontal flipping, color jitter, random erasing, and the
auto augmentation for ImageNet from torchvision.

Optimizers. We apply GALA on SGD and Adam, denoted as SGD-GALA and ADAM-GALA,
respectively. For ResNet-18 experiments, we compare them against SGD, Adam, as well as parameter-
free algorithms such as Mechanic (Cutkosky et al.||2023a)), AdGD (Malitsky & Mishchenko, [2020),
Prodigy (Mishchenko & Defazio, 2024)) and D-Adaptation (Defazio & Mishchenkol 2023) on Adam.
For ViT-Tiny, we compared our GALA variants against SGD, AdamW, and Prodigy.

Setup. Starting from the same initial model parameters, we run each method with initial learning
rates from [10~8, 1] and fix all other parameters at default values, which we report in Appendix
For ResNet-18, we run all algorithms for 200 epochs with a training batch size of 128, a constant
learning rate schedule and zero weight decay. For ViT-Tiny, we train for 100 epochs but increase the
batch size to 1024 to maximize GPU capabilities. We use a cosine schedule with weight decay of
0.05 for AdamW, SGD and Prodigy, while SGD-GALA and ADAM-GALA are run with a constant
schedule and zero weight decay.

Due to space limitations, we present a representative subset of our experiments. We provide an
extensive empirical study in Section [E with more convergence plots and learning rate analysis.

Results for ResNet-18. In Figure [2] we show the final test accuracy with respect to initial learning
rates when training ResNet-18. SGD-GALA and ADAM-GALA perform consistently across a
range of initial learning rates and are competitive with the best-performing method. We validate that
GALA enables its base optimizer to achieve competitive performance for a wider range of initial
values, improving stability for very large/small initializations.

In comparison, AAGD also demonstrates stable performance both for testing (and training). While
GALA variants tend to have consistent performance, AAGD has a slight advantage with the test
accuracy for CIFAR-10 and Flower102. Note that official AAGD implementation requires an ad-

Under review as a conference paper at ICLR 2026

~@- GALA-SGD GALA-Adam -~ SGD Prodigy —=@— AdamW

Final Training Loss vs. Initialization Final Train Accuracy vs. Initialization Final Test Accuracy vs. Initialization

=, N e
N/ e /Aﬂ\\

10° 107 10° 10° 10" 107 107 10" 10° 10° 107 10° 10° 10 10° 107 10" 10 10° 107 10° 10° 10" 10° 107 107" 10°
Initial Learning Rate Initial Learning Rate Initial Learning Rate

-
s & 3

Final Training Loss

Final Train Accuracy

Final Test Accuracy
©w 5 oo o
8 8

Figure 3: Training loss, training and test accuracy for training ViT-Tiny on Tiny-ImageNet.

ditional mechanism to limit the growth of the learning rate, introducing an extra hyperparameter.
We observe that AAGD performs poorly for the CIFAR-100 dataset due to unstable learning rate
evolution (see Figure[9c]in Section[E). Mechanic shows better performance for large initial values,
which deteriorates noticeably as the learning rate gets smaller. Both Prodigy and D-Adaptation show
one of the best performances when the initial step size is small; however, the performance drops
sharply when the initialization is larger than 1073,

Results for ViT-Tiny. The robustness of GALA is better displayed with the ViT experiments;
SGD-GALA improves the performance of SGD from all initializations and shows almost the same
performance for all values. ADAM-GALA shows a similar performance improvement particularly
for the initialization regimes where AdamW performs poorly, while the best-performing AdamW is
better than that of ADAM-GALA. One configuration of AdamW has (one of) the best performance,
while this is achieved for a very narrow range of learning rates (from 10~* to 10~2). Prodigy has
strong performance for small initializations but the same degradation happens for learning rates larger
than 10~3. Note that for ViT setup, SGD-GALA has the best test accuracy from any initialization.

Evolution of the learning rate. In Figure[d we show
how the learning rate evolves for ADAM-GALA. When
initialized with a large learning rate, GALA tends to re- 10"
duce it; this might be followed by an increasing regime 10
or a sustained decrease depending on the base value.
Conversely, it increases the learning rate when initial-
ized with a small value, which is the ultimate mechanism

GALA-Adam Learning Rate vs. Iterations

10~ — 1e-08
1e-05

Learning Rate (n¢)
S

that enables it to recover from very small initializations. 10° Yol
This adaptive behavior arises from the use of an online 10° -
learning algorithm to select the learning rate, allowing 107 10

it to adjust dynamically rather than follow a fixed sched- 0 20000 40000~ 60000 80000

ule. An interesting observation is that the learning rate]

for ADAM-GALA, in the majority of cases, initially Figure 4 ADAM-GALA’s learning rate evo-
approaches a value between 10~3 and 10~4, which, ac- lution for training ResNet-18 on CIFAR-100.
cording to Figure |2} corresponds to the best fixed step

size choices when running Adam. As a result of this learning rate adaptation, we observe more
consistent convergence paths for methods coupled with GALA.

6 CONCLUSION

In this paper, we propose a principled framework, GALA, that dynamically adjusts the learning rate
based on gradient alignment and a local curvature estimate. Motivated by convergence analysis, we
formulate learning rate selection as a one-dimensional online learning problem and solve it using
an online learning algorithm. We establish convergence guarantees for normalized SGD equipped
with GALA and conduct preliminary experiments demonstrating that, when combined with SGD or
Adam, our method yields robust performance across a wide range of initial learning rates.

One potential limitation of our work is that the convergence analysis is established for one instantiation
of GALA and our experiments focus on its integration with SGD and Adam. An interesting future
venue is to extend our framework to a broader class of optimizers.

Under review as a conference paper at ICLR 2026

REFERENCES

Luis B Almeida, Thibault Langlois, José D Amaral, and Alexander Plakhov. Parameter adaptation
in stochastic optimization. In On-line learning in neural networks, pp. 111-134. Cambridge
University Press, 1999.

Kimon Antonakopoulos, Dong Quan Vu, Volkan Cevher, Kfir Yehuda Levy, and Panayotis Mer-
tikopoulos. UnderGrad: A universal black-box optimization method with almost dimension-free
convergence rate guarantees. In ICML '22: Proceedings of the 39th International Conference on
Machine Learning, 2022.

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake E. Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1):165—
214, 2023. doi: 10.1007/s10107-022-01822-7.

Amit Attia and Tomer Koren. SGD with AdaGrad stepsizes: Full adaptivity with high probability to
unknown parameters, unbounded gradients and affine variance. In International Conference on
Machine Learning, pp. 1147-1171. PMLR, 2023.

Amit Attia and Tomer Koren. How free is parameter-free stochastic optimization? In Proceedings of
the 41st International Conference on Machine Learning, ICML’24. IMLR.org, 2024.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. In International Conference on
Learning Representations, 2018.

Yair Carmon and Oliver Hinder. Making SGD parameter-free. In Po-Ling Loh and Maxim Raginsky
(eds.), Proceedings of Thirty Fifth Conference on Learning Theory, volume 178 of Proceedings of
Machine Learning Research, pp. 2360-2389. PMLR, 02-05 Jul 2022.

Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and Erik Meijer. Gradient descent: The ultimate
optimizer. Advances in Neural Information Processing Systems, 35:8214-8225, 2022.

Ya-Chi Chu, Wenzhi Gao, Yinyu Ye, and Madeleine Udell. Provable and practical online learning
rate adaptation with hypergradient descent. arXiv preprint arXiv:2502.11229, 2025.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International conference
on machine learning, pp. 2260-2268. PMLR, 2020.

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning in
banach spaces. In Conference On Learning Theory, pp. 1493-1529. PMLR, 2018.

Ashok Cutkosky, Aaron Defazio, and Harsh Mehta. Mechanic: A learning rate tuner. Advances in
neural information processing systems, 36:47828-47848, 2023a.

Ashok Cutkosky, Harsh Mehta, and Francesco Orabona. Optimal, stochastic, non-smooth, non-convex
optimization through online-to-non-convex conversion. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023b.

Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D. Lee. Stochastic subgradient
method converges on tame functions. Found. Comput. Math., 20(1):119-154, February 2020.
ISSN 1615-3375. doi: 10.1007/s10208-018-09409-5.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by D-adaptation. In Interna-
tional Conference on Machine Learning, pp. 7449-7479. PMLR, 2023.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. Optimal linear decay
learning rate schedules and further refinements. arXiv preprint arXiv:2310.07831, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

10

Under review as a conference paper at ICLR 2026

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai, and
Rachel Ward. The power of adaptivity in SGD: Self-tuning step sizes with unbounded gradients
and affine variance. In Conference on Learning Theory, pp. 313-355. PMLR, 2022.

Sébastien Gadat and Ioana Gavra. Asymptotic study of stochastic adaptive algorithms in non-convex
landscape. Journal of Machine Learning Research, 23(228):1-54, 2022.

Wenzhi Gao, Ya-Chi Chu, Yinyu Ye, and Madeleine Udell. Gradient methods with online scaling,
2024.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule: A
near optimal, geometrically decaying learning rate procedure for least squares. Advances in neural
information processing systems, 32, 2019.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM journal on optimization, 23(4):2341-2368, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning, pp. 14465-14499. PMLR,
2023.

Pooria Joulani, Anant Raj, Andras Gyorgy, and Csaba Szepesvari. A simpler approach to accelerated
optimization: iterative averaging meets optimism. In Hal Daumé III and Aarti Singh (eds.), Pro-
ceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 4984—4993. PMLR, 13-18 Jul 2020.

Ali Kavis, Kfir Y. Levy, Francis Bach, and Volkan Cevher. Unixgrad: A universal, adaptive algorithm
with optimal guarantees for constrained optimization. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems
32, pp. 6260-6269. Curran Associates, Inc., 2019.

Ali Kavis, Kfir Yehuda Levy, and Volkan Cevher. High probability bounds for a class of nonconvex
algorithms with AdaGrad stepsize. In International Conference on Learning Representations,
2022.

Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. DoWG unleashed: An efficient universal
parameter-free gradient descent method. Advances in Neural Information Processing Systems, 36:
6748-6769, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference for Learning Representations (ICLR), 2015.

Itai Kreisler, Maor Ivgi, Oliver Hinder, and Yair Carmon. Accelerated parameter-free stochastic
optimization. In Shipra Agrawal and Aaron Roth (eds.), Proceedings of Thirty Seventh Conference
on Learning Theory, volume 247 of Proceedings of Machine Learning Research, pp. 3257-3324.
PMLR, 30 Jun-03 Jul 2024.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Kfir Y. Levy. Online to offline conversions, universality and adaptive minibatch sizes. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pp. 1613-1622, 2017.

11

Under review as a conference paper at ICLR 2026

Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and accelera-
tion. In Neural and Information Processing Systems (NeurIPS), December 2018.

Tianjiao Li and Guanghui Lan. A simple uniformly optimal method without line search for convex
optimization, 2024.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In The 22nd international conference on artificial intelligence and statistics, pp. 983-992.
PMLR, 2019.

Xiaoyu Li and Francesco Orabona. A high probability analysis of adaptive SGD with momentum. In
Workshop on Beyond First Order Methods in ML Systems at ICML’20, 2020.

Zijian Liu, Ta Duy Nguyen, Alina Ene, and Huy Nguyen. On the convergence of adagrad(norm)
on $\mathbb{R }*d$: Beyond convexity, non-asymptotic rate and acceleration. In The Eleventh
International Conference on Learning Representations, 2023a.

Zijian Liu, Ta Duy Nguyen, Thien Hang Nguyen, Alina Ene, and Huy Nguyen. High probability
convergence of stochastic gradient methods. In International Conference on Machine Learning,
pp. 21884-21914. PMLR, 2023b.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. In Proceed-
ings of the 37th International Conference on Machine Learning, ICML’20. JMLR .org, 2020.

Yura Malitsky and Konstantin Mishchenko. Adaptive proximal gradient method for convex opti-
mization. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. COLT 2010, pp. 244, 2010.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. In International Conference on Machine Learning, pp. 35779-35804. PMLR, 2024.

Mehryar Mohri and Scott Yang. Accelerating online convex optimization via adaptive prediction. In
Artificial Intelligence and Statistics, pp. 848—856. PMLR, 2016.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722-729. IEEE, 2008.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Francesco Orabona and Ddvid P4l. Coin betting and parameter-free online learning. Advances in
Neural Information Processing Systems, 29, 2016.

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
coin betting. Advances in neural information processing systems, 30, 2017.

Kaan Ozkara, Can Karakus, Parameswaran Raman, Mingyi Hong, Shoham Sabach, Branislav Kveton,
and Volkan Cevher. Mada: Meta-adaptive optimizers through hyper-gradient descent. In Forty-first
International Conference on Machine Learning, 2024.

Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In Conference
on Learning Theory, pp. 993-1019. PMLR, 2013.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400-407, 1951. doi: 10.1214/aoms/1177729586.

12

Under review as a conference paper at ICLR 2026

Anton Rodomanov, Ali Kavis, Yongtao Wu, Kimon Antonakopoulos, and Volkan Cevher. Universal
gradient methods for stochastic convex optimization. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024.

David Martinez Rubio. Convergence analysis of an adaptive method of gradient descent. University
of Oxford, Oxford, M. Sc. thesis, 2017.

Stanford CS231n. Tiny imagenet visual recognition challenge. https://tiny-imagenet.
herokuapp.com/, 2015. Stanford CS231n Course Project.

Jacob Steinhardt and Percy Liang. Adaptivity and optimism: An improved exponentiated gradient
algorithm. In International conference on machine learning, pp. 1593-1601. PMLR, 2014.

Tijmen Tieleman and G Hinton. Divide the gradient by a running average of its recent magnitude.
coursera: Neural networks for machine learning. Technical Report, 2012.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. Journal of Machine Learning Research, 21(219):1-30, 2020.

Kaiyue Wen, David Hall, Tengyu Ma, and Percy Liang. Fantastic pretraining optimizers and where
to find them. arXiv preprint arXiv:2509.02046, 2025.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Suvrit Sra, and Ali Jadbabaie. Complexity of
finding stationary points of nonconvex nonsmooth functions. In International Conference on
Machine Learning, pp. 11173-11182. PMLR, 2020.

Zhenxun Zhuang, Ashok Cutkosky, and Francesco Orabona. Surrogate losses for online learning of
stepsizes in stochastic non-convex optimization. In International Conference on Machine Learning,
pp. 7664-7672. PMLR, 2019.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the Twentieth International Conference on International Conference on Machine
Learning, ICML’03, pp. 928-935. AAAI Press, 2003. ISBN 1577351894.

13

https://tiny-imagenet.herokuapp.com/
https://tiny-imagenet.herokuapp.com/

Under review as a conference paper at ICLR 2026

APPENDIX

A EXTENDED RELATED WORK

Classical stochastic first-order methods. Dating back to the seminal work Robbins & Monro|(1951)),
the theoretical behavior of SGD and its many variants have been extensively studied. Considering
general smooth functions, it is well-known that the learning rate must decrease at a rate of 7, =
O(1/+/t) where t is the iteration counter and also satisfy 7; < O(1/L). Ghadimi & Lan|(2013)
established that SGD with a properly chosen learning rate achieves a complexity of O(e™* + e~ ?),
interpolating between deterministic and stochastic rates and matching the lower bounds (Arjevani
et al.| 2023). However, the choice of the learning rate depends on the problem parameters, i.e., L, o,
which are typically unknown and prohibitively difficult to estimate in practice. Similar requirements
are in place for the learning rate when the objective function is p-weakly convex (Davis et al., [2020).

Adaptive and parameter-free optimization methods. AdaGrad was introduced in two concur-
rent works McMahan & Streeter] (2010); [Duchi et al.| (2011) for minimizing a sequence of online
convex losses. The main idea is to compute a time-varying learning rate by accumulating squared
norms of stochastic gradients. This fundamental idea paved the way for many algorithms such as
Adam (Kingma & Ba,[2015), RMSProp [Tieleman & Hinton| (2012), Adadelta Zeiler| (2012), and their
variants, which demonstrate strong empirical performance. Beyond the online optimization setup,
they have been shown to automatically adapt to problem-dependent parameters such as smoothness,
noise variance, and bounds on gradients. Their convergence properties have been well-studied for the
convex setting (Levyl[2017; Levy et al.l 2018} |[Kavis et al.; 2019; Joulani et al., 2020; |Antonakopoulos
et al.,[2022} [Liu et al.,2023a; Rodomanov et al.|[2024) and non-convex setting (L1 & Orabona, [2019;
Ward et al.,[2020; L1 & Orabonal [2020; |Kavis et al., 2022; [Gadat & Gavra, 2022; Faw et al., 2022;
Attia & Koren, [2023;; Liu et al.,|2023b)). A downside of the first-generation adaptive methods is the
sensitivity to initial learning rate, dampening the practical benefits of their data-adaptive design.

To remedy this, parameter-free optimization (Carmon & Hinder, [2022} [Ivgi et al., 2023 [Khaled
et al., 2023} |Kreisler et al., [2024; |Attia & Koren| |2024) has gained popularity with a focus on
augmenting robustness. Essentially, they multiply AdaGrad-type learning rate with a scaling factor
that iteratively improves the initial learning rate estimate. Although this helps increase from the initial
value, the scaling factor is practically bounded, restricting flexibility. On a related front, a different
line of work Malitsky & Mishchenko| (2020; [2024); ILi & Lan|(2024)) study parameter-free gradient
methods with local curvature estimation for convex, deterministic problems. They are separated
from AdaGrad-type methods with non-monotone learning rate that estimates time evolution of local
smoothness. A downside to these methods is empirical stability; when the increasing behavior is
not tamed properly, optimization performance might be unstable especially for nonconvex problems.
Therefore, it is of utmost importance to strike the right balance between flexibility and stability.

Hypergradient descent. Originally proposed as a heuristic for stochastic optimization in|/Almeida
et al.|(1999), hypergradient descent updates the learning rate by computing the gradient with respect
to the learning rate. It was later rediscovered and adapted to modern deep learning Rubio| (2017);
Baydin et al.| (2018]), with several subsequent works refining this approach |Chandra et al.| (2022);
Ozkara et al.| (2024). Recently, |Gao et al.|(2024); |(Chu et al.| (2025) provided convergence guarantees
from an online learning perspective, though their analysis is limited to deterministic convex settings.

Online learning-guided methods. Drawing insights from parameter-free online learning|Orabona &
Pal| (2016)), |(Orabona & Tommasi|(2017)) reformulate SGD as a coin-betting game and apply a betting
algorithm to eliminate the need for a manually tuned learning rate. They also provide convergence
guarantees for convex and quasi-convex objectives. |Cutkosky et al.| (2023a) proposed a general
technique for adaptively scaling any base optimization algorithm and learning rate schedule, which
is grounded in a black-box reduction framework from parameter-free online learning |(Cutkosky &
Orabona (2018). The work most relevant to ours is that of Zhuang et al.| (2019), who consider
non-convex stochastic optimization and introduce a surrogate loss technique for selecting the learning
rate. However, their method requires knowledge of problem-dependent parameters (e.g., gradient’s
Lipschitz constant), which limits its flexibility.

14

Under review as a conference paper at ICLR 2026

B PROOF OF LEMMAI

Recall from (@) that F'(x;41) — F/(x¢) = —n: By, ¢/ [(8: (W), 8¢(x¢))]. We now decompose the
right-hand side as (g; (W), g (1)) = (&1 (%), g:(x¢))+ (g1 (We) — g (xt), (1)), where g} (x;) =
V f(x¢;&:). For the first term, since & and &’ are independent samples from the distribution D, it
holds that E[(g}(x;), g:(x¢))] = E[||VF(x;)||?]. Moreover, for the second term, it follows from
Cauchy-Schwarz inequality and the definition of L, that

(gi(we) — gi(xt), 8e(xt)) = —llgi(we) — gi(xe)[[llge(xe) || = —Lel[we — x|l ge (x4

Since Wy = X¢ +)\t(xt+1 — Xt) and)\t S [0,].], we further have HWt — Xt” =)\tHXt+1 — Xt” <

%141 — x¢ll = nell@e(x4)]l, which leads to (g;(w:) — gi(x:), 8(x¢)) > —Lenlgi(x4)]I*. By
combining both results, we obtain that

E[(g;(we), g(x0))] = E[IVF(x,)[|*] — E[Lenelge (x0)]1%]-

Hence, taking expectations on both sides of (@), we can write

E[F(x¢11) — F(x¢)] = —E[ne(g;(we), 8:(xt))]
—E[(n: — n)(gt(We), 8 (x:))] =1 E[(g} (W), 81 (x¢))]

< —E[(ne — n){gt(we), 8 (xe))] =0 B[V F(x0)[I°]+0 E[Lenelge (xt) H(Qiz)

2
Moreover, from Young’s inequality nn; < g + &, the last term in (I2) can be bounded by
2.2
meHgt(Xt)Ilg < Ltl\gt(;{t)l\znz + Lt”gt(;‘t)ﬂ yn

E[F(x141) — F(x)] < —nE[|[VF(x¢)[*] — E[(n: — n)(gi(we), 8¢(x0))] + E[Le]Ige (x:) [*n]

Lillge(xo)|Pn7 Lillge(x) >0
2 2

= —nE[[VF(xo)|”] + 0 E[Lillge (x0)I|°] + E[l(ne) — £e(n)], (13)

where in the last equality we used the definition of the surrogate loss function in (3). Moreover, Since
L; < L™ for any ¢ > 0 with probability one, we have E[L;||g:(x;)||?] < L™ E[||g:(x:)[]?] <
La(E[||VF(x;)||?] + o2). Plugging this bound in (I3) and rearranging, we obtain

E[(n —n” L") VF(xt)|I°] < E[F(x¢) = F(xe11)] + L"070® + E[le(ne) — £e(n)].
Summing the above inequality from ¢ = 0 to ¢t = T' — 1 yields (). This completes the proof.

. Thus, we obtain

+E

C PROOF OF THEOREMII

We divide the proof of Theorem [I]into the following three steps.

Step 1: Following similar arguments as in the proof of Lemmal[I] we first bound the function value
decrease after one iteration. Its proof can be found in Section [C.1}

Lemma 3. Forany n > 0, we have E[F(x:41) — F(x¢)] < E[—%HVF(Xt)H + Lin? + %”Hmt -
VE)|] + B[~ = n) (g (wo), g2y) + S = n?)].

In the above bound, the first bracketed term shows up in the analysis of normalized SGD with
momentum in |Cutkosky & Mehta) (2020); it is the upper bound we get when choosing 7, = 7.
Moreover, the second term in the bracket captures the difference between the actual learning rate 7
and the comparator 7. It will be incorporated into the surrogate loss function and be bounded by the
regret.

Step 2: Next, we controls the approximation error E[|m, — VF'(x,)||] incurred by exponential
moving averaging.

Lemma 4. Define L, = W, Then we have ZtT:_Ol Efm; — VF(x)||] < £ +
oy/al + = ST 2 E[Ln,).

15

Under review as a conference paper at ICLR 2026

Lemma] upper bounds the approximation error in terms of the learning rate ;. As we shall see in
the next step, this term will also be incorporated into our surrogate loss and be bounded by the regret.

Step 3: By summing the inequality in Lemma[3|from ¢ = O to t = 7' — 1 and applying Lemmaf4] we
obtain

E[F(x7) — F(x0)]

< g EZ:”VF xt)||]+EE§_:OlL} 2+8;7E[j§_j:||mt—w<xt>||}
+§?}%—MMMM$Q+§M—ﬂ]

<- QE[TZS I F)] +E[101Lt} % +ovar) + [; Linn)
+T4E[(mnK§@w%ﬁ:J>+gWﬁn%]

-
Il
=)

Moreover, by Young’s inequality, we have Ztnm < L2f N2 + L2f n? = LmQ + (5 nZ — Lt n?). Using
Ar = F(xq) — F(x*) > F(xg) — F(x7) and recalling the definition of /¥ in (), we obtaln

(1-a) Z?iqz
3 n
(0]

og—gi E[|VF(x:)|] + (+ov/aT) +E[2Lt+
t=0

FES () — €5))] + ElAF]
t=0

Now for any 7 € [0, ™**], we can upper bound Zf;ol (ON(n;) — £X(n)) < Regy by definition, and

hence we can choose the value of 7 freely from the interval [0, ™*¥] in the above bound. We now
consider the following cases:

(i) Casel:wehave 3, ' E[|[VF(x,)|] < 16(2 + oy/aT);
(ii) Case II: we have EtT:*O E[|VF(x¢)|]] > 16(% + o+/aT). This further implies that

ke — 81—a) T Ly, N
0< 62 E[|VF(x)][] +E[§ Ly + e]n + E[Regh + Ar]. (14)
t=0 t=0

Moreover, we set the value of 7 as

T—1

. E[|[VF(x)] max

n:mln{ [122 L n 32(1 o) \T-1 F)1 . (15)
t=0 t=0 t}

This again leads to two subcases depending on the value of 7:
* If i) takes the first value in (I3), we obtain from (T4) that

1 (O, ElVE(x)])? N
— — < E[Regp + AFp].
12127 Lt+ $200) ST] [Rogr + Ar]

To simplify the notation, let M = Ap + Reg?. With some algebraic manipulation and
using the fact that v/a + b < v/a + v/b, we obtain

T-1 T—1
E[|VF(x,)|] < 12,|]E{ZLJH@ w E[M]E[Zit].

t=0 t=0 t=0

T-1

16

Under review as a conference paper at ICLR 2026

S B[VF (x0)]l]

In
= E[12 Z;[‘ 01L Jr52(1 @) ZT lLt]

* If 7 takes the second value in (I3), then n = p™** <
this case, we obtain from (T4) that

T-1 T—1
E[[VF(x)l <EM] = Y E[IVF(x)] <
t=0

max

12
t=0

Ui

12 E[M]

max

avg

Combining the upper bounds in all cases and using the definition of L. °, we can deduce that

[6(12E[M
ZE [VE(x,)|] < 16(+oaT)+124/E[M]LYET+8 ,/ |LeT 4 =2 e

(16)
Finally, we can choose the parameter « to optimize the above upper bound. Specifically, we let

o= min{

1

.

oVT

If 1= < 1 then we have 17 < 160°VT, 160/aT < 160'/°T%*, and
,/6(1) /EIMILY®T < 860/2(LAY8 E[M])}/2T3/4, Otherwise, if L= > Lithena =1
and we have 137 = 160 < 7%, 160\/aT < 160T < 16VT, and 8/ 20—\ EIM]LT®T = 0.

Hence, comblmng both cases, we conclude that

6(1 —)
16(g +o/al) + 8/ M,/E[M]L;Vg:r
<16(0? 4+ 2)VT + (16 4 8V6(LEE E[M])'/2)o'/2T3/4,
By using the above bound and dividing both sides by T in (I6), we arrive at

—~ 16 + 8V6(LYE E[M])Y/2)o' /2 16(0? + 2 LY®E[M
iz HVF Xy H (+ \/>(T []))U + 6(0 +)+12 T []
T T/ VT VT

12E[M)]
nmaxT :

This completes the proof of Theorem

C.1 PROOF OF LEMMA[3]

Similar to the arguments in Section [3] we first apply the fundamental theorem of calculus to

get F(Xt+1) — F(Xt) = <Vt,Xt+1 — Xt> = —nt<Vt,ﬁ>. Since Vt = Ekt [VF(Wt)] =
Ey, ¢ [gt(w;)], we further have
_ - ' e
Flxa) = Fox) = =i B [(gh(wo), 7)) a7

Next, we decompose the right-hand side of (7)) as
’ my / my ’ / my
g (),) = (k) o) + (i) — ghx) o)
< ' [y | S g ' S

my

Z<glx/a7>_ glw/_glx ’

t(f) Hmt” H t(f) t(t)H

where we used Cauchy-Schwarz inequality in the last step. Using the definition of L;, we have

lgr(wi) — gi(xo)|l < Lellwy — x| = Lidel|xi 11 — x| < Lym. (13)

Moreover, since gj(x;) and mt are independent conditioned on x;, we further have
]E[(gg(xt),‘l‘;—;“ﬂ E(VF(x), Tm- H>] which is further lower bounded in the following lemma.

Lemma 5. We have (VF(x;),) > H|[VF(xy)|| — §[lmy — VF(x)]|.

Hmt\l

17

Under review as a conference paper at ICLR 2026

Proof. Our proof is inspired by (Cutkosky & Mehta, [2020, Lemma 2). We consider two cases:

(@) If |my — VF(x;)|| < 3||VF(x;)]|, then by the triangle inequality, we have |m,|| <
3||VF(x;)||. Therefore, we have

= m ”(HVF(Xt)H2 (VE(x¢),m; — VF(x)))

1 1 1
> F 2 1 P 2y 1 P
> Hmt”(Hv (x)|l 2HV (x¢)%) > 3||V (x)]],

where we used |m; — VF(x;)| < %||[VF(x;)| in the first inequality and [[m,| <
3|IVF(x;)| in the second one. Since §|lm; — VF(x;)|| > 0, the result in Lemma [3]
holds under this case.
(ii) Otherwise, if [|m; — VF(x;)| > 3|VF(x)].
equality to bound
1
[l |

(VF(x) me) > —|VF ()| = 5 IV~ 5 IVEG)]

1 8
> LIVE G~ Slme — VPG|
where we used |[m; — VF(x,)|| > 1||VF(x;)| in the last inequality.

This completes the proof. O

Combining and Lemma 5] we obtain that
/ —_ - —
E|(gi(w))] 2 E[SIVFG)] 3l — VG|~ Lon -
Hence, it further follows from (T7) that
m
BLF (xet1) = FOxo)] = ~ B[(n = m)(giwa), ot)] = nE [(gi(wo), ot)]

my > [VE ()|l n 8n|lm; — VF(x¢)||
(| | 3 3

2
By using Young’s inequality 71 < %’ + ’72—2 and rearranging, we obtain the inequality in Lemrna

< - E[(m - n)<g£(Wt), + Lmt"} '

C.2 PROOF OF LEMMA[]

From the update rule in , we can write
—VF(x¢) =1 —a)(mi_1 — VF(x¢—1)) + a(Vf(x;&) — VF(xt))
+ (1 —a)(VF(x¢—1) — VF(xy)).

Define the stochastic gradient error e; = V f (x; &) — VF(x;). By Assumption|2] we have E[e;] = 0
and E[||e;||?] < 0. Moreover, by multiplying both sides of (T9) with (1 —)%, we have

(m; — VE(x))(1—a) ' = (my_y — VF(x;-1))(1 —a) " +aei(1 —a)™!
+ (VF(x4_1) — VF(x,))(1 — a) 7t
Note that we set my = V f(xg; &). Thus, by summing the above inequality, we obtain
t

(my — VF(x))(1 —)~ —eo—i—Zes 1—)™+ (VF(x,21) — VF(x,))(1 —)t

s=1

19)

Therefore, it follows from the trlangle 1nequahty that

Zeal—at s

s=1

[m =V F ()| < [leoll(1—a)’ +Z IVF (x5-1) = VF (%) || (1=a) =,

s=1

(20)

18

Under review as a conference paper at ICLR 2026

By Jensen’s inequality and the fact that {£}!_; are i.i.d. sampled from D, we have E[||eq||] <
E[|leo||?] = o and

2

t
a(l —a)'™ < Za2a2(1 — a)2(t=s),
s=1

<]EHi e;a(l —a)t~

Moreover, it also follows from Jensen’s inequality that E[||VF(x,-1) — VF(x,)|] <

E|Vf(xs;€) — VF(%e-1;€)|] = Lo_1]lxs — Xs_1]| = Le_17s_1. Hence, by taking the ex-
pectation on both sides of (20), we further have

t t
El|m; — VF(x)|]] < o(1 —) + oo Z (1= a)2t=9) + > E[Ly_qme](1 —)t *F!

s=1 s=1
1
1-(1—-a)?

t—1

o(l—a) +ova+ Y E[La(1—a) "
s=0

t—1

+ ZE[ZSTIQ](l — a)t*s

s=0

o(l—a) +oa

By summing the above inequality from ¢ = 0 to ¢ = 1" — 1, we obtain that

T—1 T—11t-1
Z]E[Hmt*VF(Xt)H]S (1*04) +oyaT+ Y > ElL)(1— o)
=0 t=0 s=0
Since EtT_ol(a)t §~ é and Z:tT:O1 Zt %)E[LSUS](l - 04) 5= Z t s+1 E[i’SUS](l -
a)t=s < L=a SN2 REIT g, we obtain Lemma

D PROOF OF LEMMA

As discussed in Section [] our update for 7 can be viewed as an instance of the optimistic FTRL

algorithm. Therefore, we can inovke the convergence bound in (Orabonal 2019, Theorem 7.39),

where 1 = -+ = ¥ = In? and fi41(n) = —1{(@t+1(Xt41), m-r7)- Moreover, note that

S 4 L N () s (6 + Lo (Ls + B2 L)) -strongly convex, and (4N (n:) — £(n)| =

| — (gh(we) — gi(xe), pep) + Lame + = _C“)Lmtl < llgt(we) — g (xe)l| + Leme + 552 Loy
Hence, we have

T-1 (o) 7 2
§ (Lime + Lime + llgr(wi) — ge(x)])
E (Le(ne) — Le(n) < -0 + E .
— 2 25+22€ o(Ls _,_M)

Moreover, by the triangle mequahty and the definition of L;, we have ||g;(w:) — g¢(x¢)||

IVF(wi&) — VIGca&)l < [VIwsg) - Vit &)l + V(i) — V&l <
Lone + ||V f(x4:€)) — V f(x4:&)]]. So we can further bound the summand in 1) by

(2L + S5 Lo + |V £ (x5 6) — V(13 6)|)?
25+2Z$ o(Ls + S0zalle)

o L PR L) 4 [V (i) = VI &I
5+zs o(Ls + *05)

In the following, we will upper bound the two sums

T— o -
Z:l nZ2 (2L + 8(13a)Lt)2~ nd Z [V f(x¢;€1) — V f (x5 &) |2
0 04+ (L + B0k =0 0+ (Ls +M)

19

Under review as a conference paper at ICLR 2026

separately.

By our assumption, max{L;,]3,5} < L™ with probability one and 7, < n™?*. Thus, we can derive

S ELAMESLE gl LM
g R A N = LR ARy

Now we can apply the following lemma.

Lemma 6. For any nonnegative sequence {at}tT;Ol and 6 > 0, it holds that ZtT;()l pa ait:o - <

log (1 + ‘Z%)lit’).

a 1 6+Xizias +>0 _oa
TS ga T Srgas = log(6+zi;§ a
factthat 1 —x < log(%) for any « > 0. Hence, by summing the inequality from¢ =0tot =7 — 1

T—1 T—1
we obtain ZtT;Ol ﬁ < 10g(L5:oat) = log(1 + #) O

Proof. For any t > 0, we have), where we used the

Hence, by applying Lemmal6]to (22)), we get

Til 77t2<2Lt + 8(13;04) Zt)Z _ 28(nmax)2Lmax log(l N Z;*Ol (Lt + 8(152)14))
=0 0+ Yool + 252t sa ’
28(nmax>2Lmax 11 max
< o1 7).
- 3a os\t+ 3aé
By our choice of 7™ = /a1, it becomes O (n2L™**log (1 + L£-=T)). For the second term,
by our assumption, we have H% i:o Ly > M?®® with probability one. Furthermore, using
Assumption[2] we have
T-1 T—1
E[Z IV f(xe; &) — Vf(xt;§t~)||2} < E[|Vf(xe:€) — VF(xi:0))°]
=0 0+ ZZ:O(LS + %) t=0 Meve(t+1)
T-1
202 20?2
2 Apwar 1) = agee (8T

Lemma 2] now follows from combining the above two bounds.

E ADDITIONAL EXPERIMENTS AND DETAILS

In this section, we discuss additional implementation details, present the seeded runs for the experi-
ments in the main text, and include additional results on two other datasets from torchvision.

E.1 IMPLEMENTATION DETAILS

Hardware Our experiments were conducted on a cluster with NVIDIA A100 GPUs (96GB mem-
ory) and 120GB system RAM. The CIFAR-10 experiments with multiple random seeds required
approximately 96 GPU hours, and both the CIFAR-100 and the Flower102 experiments required
approximately 192 GPU hours.

Additional hyperparameters Since our main focus is on adaptive learning rate selection, we set
all other hyperparameters to their standard default values. Specifically, for ADAM-GALA, we fix
B1 = 0.9, By = 0.999, and § = 1078, consistent with the settings used for Adam and AdamW. For
SGD with momentum, we set the momentum parameter to 0.9. While training ViT-Tiny, we set the
weight decay for AdamW and SGD to be 0.05, and we kept it O for SGD-GALA and ADAM-GALA.

Resnet-18 experiments use a constant learning rate schedule for all algorithms. We observe that a
popular schedule, such as cosine, does not change the relative behavior and hence we report the

20

Under review as a conference paper at ICLR 2026

results for a constant learning rate schedule. For the ViT-Tiny experiment, we follow the standard in
the literature and run AdamW and SGD with cosine schedules, while we used a constant schedule for
our GALA variants to demonstrate the learning rate adaptation without external intervention.

Mechanic The Mechanic algorithm, proposed in |Cutkosky et al.| (2023a)), provides a general
framework for adaptively selecting the learning rate of any base optimizer. At each iteration, it
proceeds as follows:

* Sample &; ~ D and compute the stochastic gradient g; = V f(x¢; &);

» Use g; to compute the update direction u; via the base optimizer and update the cumulative
direction A1 = Ay + uy;

* An internal online learner selects a learning rate s;1;

» Update the iterate: x; 11 = X1 + S¢r1A¢41-

For example, if the base optimizer is SGD, then u; = —ng;. In our experiments, we apply Mechanic
to both SGD and its momentum variant and vary the initial learning rate 7, using the official im-
plementation available at https://github.com/optimizedlearning/mechanicl Since
the performance of standard and momentum versions were comparable, we only include the Mechanic
on SGD without moment in order to preserve readability of the plots.

AdGD The update rule of AAGD in Malitsky & Mishchenko| (2020) for the stochastic setting is

given by
7; = min { 1+ ant*lnt,l e = x| }
V N2 P2V f(xe36) = Vi (xe—13 &)1)7 (23)

Xe1 = X¢ — eV (xe:6e),

where o = 1 in the original algorithm, which is analyzed under deterministic gradients. In practice,
the authors recommend using smaller values of « to improve stability and avoid spikes in the loss
curve. For example, they report that for ResNet-18 on CIFAR-10, setting o = 0.02 yields the best
performance. Following their recommendation, we use this value in all of our experiments.

D-Adaptation and Prodigy Among the class of parameter-free methods, D-Adaptation (Defazio &
Mishchenkol [2023)) and Prodigy (Mishchenko & Defazio, [2024) are considered to be state-of-the-art
with 3 million downloads each on GitHub. The goal of parameter-free optimization is to eliminate the
dependence on the initial learning rate by approximating the initial distance to the solution. Essentially,
the step size is based on the AdaGrad step size with a certificate for initial distance, i.e., ||zo—x*||, that
iteratively improves every step. Note that the algorithm still requires an initial value for the certificate,
dy, which is equivalent to the initial learning rate. We keep all the other parameters of both algorithms
the same as in the GitHub implementation and the paper. We downloaded and installed the official
algorithm packages from https://github.com/facebookresearch/dadaptation|for
D-Adaptation and https://github.com/konstmish/prodigyfor Prodigy.

E.2 EXPERIMENTS

E.2.1 RESNET-18

Alongside CIFAR-10, we ran experiments with two more datasets, CIFAR-100 |[Krizhevsky|(2009)
and Oxford 102 Flower dataset (Flower102) [Nilsback & Zisserman| (2008), on ResNet-18. In order
to quantify the error due to randomness, we ran the experiments with three different random seeds,
which we report as error bars. Figure[5] Figure[6] and Figure[7]report the final training loss, training
accuracy, and testing accuracy with respect to different learning rates, respectively.

Across the three different datasets, we observe that our method, SGD-GALA and ADAM-GALA,
remains robust with respect to the initial learning rates and has negligible variance due to random
seeds. SGD and Adam are sensitive to the choice of the initial learning rate; small learning rate
prevents progress while relatively large values yields unpredictable behavior with abrupt changes in
performance.

21

https://github.com/optimizedlearning/mechanic
https://github.com/facebookresearch/dadaptation
https://github.com/konstmish/prodigy

Under review as a conference paper at ICLR 2026

~@®- GALA-SGD GALA-Adam -~ SGD Prodigy Mechanic ~ =>¢= D-AdaptAdam Adam AdGD

Final Training Loss vs. Initialization Final Training Loss vs. Initialization Final Training Loss vs. Initialization

10° . \\\\ 4
SN\

10° 107 10° 10° 10" 10° 107 10 ? o107 10 -

Final Training Loss

Final Training Loss

Final Training Loss

0

10° 107 10° 107 10" 107 10 10° 107 10° 10° 10 10° 107 107" 10
Initial Learning Rate Initial Learning Rate Initial Learning Rate

(a) CIFAR-10 (b) CIFAR-100 (c) Flowers102

Figure 5: Final training loss obtained from different initial learning rates for CIFAR-10, CIFAR-100,
and Flower102. We compare the performance of SGD-GALA, ADAM-GALA against SGD, Adam,
AdGD, Mechanic, D-Adaptation(Adam) and Prodigy. We initialize each algorithm with learning
rates [1,1071,1072,1073,107%,107°,10~®] and execute 3 seeded runs.

~@—- GALA-SGD GALA-Adam -l SGD Prodigy Mechanic ~ =>¢= D-AdaptAdam Adam AdGD

Final Train Accuracy vs. Initialization Final Train Accuracy vs. Initialization

100 100
% /

Final Train Accuracy vs. Initialization

= @
3 3

IS
=

Final Train Accuracy
Final Train Accuracy

Final Train Accuracy
IS 2
5 3

10° 107 10° 10° 10" 10° 107 10" 10 10° 107 10° 10° 10" 107 107 10" 10 10° 107 10° 10° 10" 10° 107 10 10
Initial Learning Rate Initial Learning Rate Initial Learning Rate

(a) CIFAR-10 (b) CIFAR-100 (c) Flowers102

Figure 6: Final training accuracy obtained from different initial learning rates for CIFAR-10,
CIFAR-100, and Flower102. We compare the performance of SGD-GALA, ADAM-GALA against
SGD, Adam, AdGD, Mechanic, D-Adaptation(Adam) and Prodigy. We initialize each algorithm with
learning rates [1,1071,1072,1073,107%,107°,10~%] and execute 3 seeded runs.

The results on all three datasets (although more pronounced for CIFAR-10 and CIFAR-100) show
that Mechanic tends to perform better with larger learning rates, but the variance is high with different
random seeds. Interestingly, AAGD fails on CIFAR-100 dataset; as we will discuss later in more
detail over the learning rate evolution of the method, this is likely due to the fact that its learning rate
becomes too large in some scenarios. For other datasets, AdGD shows consistent convergence across
different initialization with great test performance and slightly worse training loss/accuracy. The
behavior of parameter-free methods are quite close to each other for all three datasets. Both Prodigy
and D-Adaptation show one of the best performances for training and testing when the initial step
size is small. however, the performance drops sharply when the initialization is larger than 102,

Compared to Mechanic and AdGD, the variance for different seeds is smaller for SGD-GALA and
ADAM-GALA. Among the GALA-variants, SGD-GALA performs better than ADAM-GALA for
larger learning rates.

E.2.2 VIT oN TINY-IMAGENET-200

The robustness provided by GALA framework is better displayed with the ViT experiments; SGD-
GALA improves the performance of SGD from all initializations and shows almost the same
performance for all initializations. ADAM-GALA shows a similar performance improvement
with respect to AdamW, particularly for the initialization regimes where it performs poorly, which
corresponds to small or large initial values of the learning rate. However, we underline that the
best-performing AdamW is better than that of ADAM-GALA.

During training, the best-performing configuration for AdamW is better than that of any other method
we tested, for which we use prescribed set of parameters and such a behavior is expected. However,

22

Under review as a conference paper at ICLR 2026

~@- GALA-SGD GALA-Adam -~ SGD Prodigy Mechanic ~ =>¢= D-AdaptAdam Adam AdGD
% Final Test Accuracy vs. Initialization 60 Final Test Accuracy vs. Initialization 60 Final Test Accuracy vs. Initialization
80 * =
= = 50 e e 50 x——/’/a\
70 .
> > : >
860 8 40 8 40
3 3 3
850 8 8
b <30 \ <30
geo g \ £
g 30 g 20 \ g 20
ic ic \ ic
20 \
10 \ 10
10 // \
0 0 Ak 0
T o

10° 107 10° 10° 10 107 107 10" 10 10° 107 10° 10° 107 10° 107 10" 10 10 10° 10° 10" 107 107
Initial Learning Rate Initial Learning Rate Initial Learning Rate

(a) CIFAR-10 (b) CIFAR-100 (c) Flowers102

Figure 7: Final test accuracy obtained from different initial learning rates for CIFAR-10, CIFAR-100,
and Flower102. We compare the performance of SGD-GALA, ADAM-GALA against SGD, Adam,
AdGD, Mechanic, D-Adaptation(Adam) and Prodigy. We initialize each algorithm with learning
rates [1,1071,1072,1073,107%,107°,10~®] and execute 3 seeded runs.

SGD-GALA has the best test accuracy, matching and even surpassiong the test perforamnce of
AdamW. An interesting obserbation is that SGD-GALA achieves this performance from any initial
learning rate value, which validates our claims on stability and robustness to initialization.

In all our experiments, GALA provide a trade-off between training performance and robustness to
initialization; for some experiments performance matches the best-performing algorithm while for all
scenarios, GALA variants of standalone method show robustness to variation in initial learning rate.
Prodigy has strong performance from small initializations across the board but a sharp degradation
happens for learning rates larger than 1073,

-@- GALA-SGD GALA-Adam M- SGD Prodigy —@- Adamw
Final Training Loss vs. Initialization 100 Final Train Accuracy vs. Initialization %0 Final Test Accuracy vs. Initialization
— ‘/’\ i]
80 '\. 70
" 3 5
g ge0
o 3 60 3
€10 o _ fo o 2 g0
g :—3 40 E “
2 K 2 30
£ g £
20 20
10” 10
=) & =3 5 = =) & = 0 0= & = -5 = 3 = E) 0 6 -2
10 10
Initial Learning Rate Initial Learning Rate Initial Learning Rate
(a) Final Training Loss (b) Final Training Accuracy (c) Final Test Accuracy

Figure 8: ViT (Tiny variant) on Tiny-ImageNet dataset. We compare SGD-GALA and ADAM-
GALA against SGD, AdamW and Prodigy. Each algorithm is initialized with learning rates
[1,1071,1072,1073,107%,107°,1075,10~8] and other parameters are set to default values. The
runs are averaged over 2 random seeds.

E.2.3 LEARNING RATE EVOLUTION

To better understand the convergence behavior of our method, we visualize the learning rate dynamics
during training. We demonstrate the evolution of learning rates for SGD-GALA and ADAM-GALA
for different models and datasets.

As shown in Figure[Da the learning rate of SGD-GALA evolves similarly and converges to similar
values across a wide range of initialization, excluding extreme cases such as p = 1, 0.1, or 1078,

This convergence likely explains the robustness of SGD-GALA to the choice of initial learning rate.
Also, in Figure@ we observe that, depending on the initial value, the learning rate of ADAM-GALA
adapts over time and can both increase and decrease, consistent with the trend seen in Figure [
on CIFAR-10. In most cases, the learning rate stabilizes between 10~2 and 10~2, which roughly
corresponds to the best fixed learning rate for Adam according to Figure[7b] By contrast, Figure[9
shows that the learning rate chosen by AdGD tends to oscillate and frequently becomes excessively
large, which may contribute to its degraded performance. While AdGD performs competitively on

23

Under review as a conference paper at ICLR 2026

GALA-SGD Learning Rate vs. Iterations GALA-Adam Learning Rate vs. Iterations AdGD Learning Rate vs. Iterations
10° o 70
1
_ L1 L 60
10 10 —,—,— .
2 2 Zsof)
<, S 1 il
T 10 g S 40
=) S o] Ml o
2 — 1e-08 210 — 1e-08 239) “.s”‘, b i 1e-08
€00 Te-05 € 1e-05 € “‘”r L m ' 1e-05
8 — 00001 8 407 — 0.0001 3 ‘ ‘ —— 00001
4 - — 20
0.001 0.001 0.001
4 0.01 -6 0.01 0.01
10 i
— o1 10 — 01 10 i ‘ — o1
1.0 E 10 | 10
* 107 0
0 20000 40000 60000 80000 0 20000 40000 60000 80000 0 10000 20000 30000 40000 50000 60000 70000 80000
Iterations Iterations Iterations
(2) SGD-GALA (b) ADAM-GALA (c) AdGD

Figure 9: Comparison of learning rate evolution for SGD-GALA, ADAM-GALA and AdGD on
the CIFAR-100 dataset, averaged over 3 runs.

CIFAR-10, its behavior on CIFAR-100 suggests that it may be less robust and that the hyperparameter
« in (23)) may require retuning for stable performance on new datasets.

Figure[I0[shows the learning rate evolution for ViT + Tiny-ImageNet for SGD-GALA and ADAM-
GALA. For this setup, the learning rate evolution across different initializations demonstrate a more
consistent behavior. Specifically, SGD-GALA converges to the same narrow value range for the
learning rate from different initializations between 1 and 10~8. While doing so, the learning rate
decreases initially and starts increasing for most of the execution. For ADAM-GALA, the behavior
seems a bit more complex; the learning rate fluctuates for a while until it attains a monotonic,
increasing nature. Note that the learning rate for initializations between [1072, 10~8] converge to
almost the same value with an increasing behavior for the most of the run, while from initial values of
1 and 0.1, the learning rate tends to decrease which hurts the performance as shows in the convergence
plots.

GALA-SGD Learning Rate vs. Iterations o GALA-Adam Learning Rate vs. Iterations

— 1e-08
1e-06
— 1e-05
0.0001

= 2107 0.001
o < — 001
c & 0.1
o 10 o 1.0
=4 [=

€ €

(1] [-3

- o e —————

4

-3 -4 L)
10 0 2000 4000 6000 8000 10000 10 0 2000 4000 6000 8000 10000
Iterations Iterations
(a) SGD-GALA (b) ADAM-GALA

Figure 10: Comparison of learning rate evolution for SGD-GALA and ADAM-GALA for training
ViT-Tiny on Tiny-ImageNet, averaged over 2 runs.

F USE OF LARGE LANGUAGE MODELS

We used large language models in limited capacity to help polish phrasing and check grammatical
correctness of select parts of the paper.

24

	Introduction
	Related work

	Preliminaries
	Background: online learning

	Online learning rate selection
	Convergence analysis
	Numerical experiments
	Implementation details
	Results on ResNet-18 and ViT-Tiny

	Conclusion
	Extended related work
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Lemma 3
	Proof of Lemma 4

	Proof of Lemma 2
	Additional experiments and details
	Implementation details
	Experiments
	Resnet-18
	ViT on Tiny-Imagenet-200
	Learning rate evolution

	Use of Large Language Models

