
Invariant Learning with Annotation-free
Environments

Phuong Quynh Le1 Christin Seifert1 Jörg Schlötterer1,2

1University of Marburg, 2University of Mannheim
{phuong.le,christin.seifert,joerg.schloetterer}@uni-marburg.de

Abstract

Invariant learning is a promising approach to improve domain generalization com-
pared to Empirical Risk Minimization (ERM). However, most invariant learning
methods rely on the assumption that training examples are pre-partitioned into
different known environments. We instead infer environments without the need
for additional annotations, motivated by observations of the properties within the
representation space of a trained ERM model. We show the preliminary effective-
ness of our approach on the ColoredMNIST benchmark, achieving performance
comparable to methods requiring explicit environment labels and on par with an
annotation-free method that poses strong restrictions on the ERM reference model.

1 Introduction

Empirical Risk Minimization (ERM) is known to generalize poorly when the test data has a different
distribution than the training data. When features have a statistical but not a causal relationship with
class labels, we call this a spurious correlation and the corresponding features spurious features. For
example, the Waterbirds dataset [Sagawa et al., 2020] has background as a spurious feature. During
training, 95% of waterbirds have water background and 95% of landbirds have land background,
whereas land and water background are equally distributed in the test set, causing a distribution shift.
This shift results in poor predictive accuracy of ERM models, particularly driven by the inferior
performance of groups that lack the spurious correlation (e.g., waterbirds on land). Focusing on
individual groups (formed by combinations of class labels and spurious features), Sagawa et al.
[2020] and Srivastava et al. [2020] proposed distributionally robust optimization methods to improve
the worst group accuracy. Generalizing the setting, methods aim to learn invariant features across
different so-called environments. These environments are partitionings of the data into subsets with
varying presence of the spurious correlation (e.g., only 80% of waterbirds with water background
in one environment), simulating data collection under varying circumstances. Approaches that
focus on finding invariant representations of data across different training environments encompass
optimization by a gradient penalty on classifier weights [Arjovsky et al., 2019] or by min-max
frameworks [Krueger et al., 2021]. DecAug [Bai et al., 2021] learns disentangled features that
separately capture category and context information and enhances generalization through a data
augmentation method.

However, these approaches have limitations in realistic scenarios. Consider for example the prediction
of skin cancer (benign vs. malignant lesions) in the ISIC dataset [Codella et al., 2019]. In this dataset,
almost half of the benign cases contain a colored patch that had been applied to the patient’s skin
in the hospital. None of the malignant cases contain a patch. Thus, half of the benign cases can
be easily identified by the colored patch alone [Nauta et al., 2021]. In general, clinical markers,
such as ruler measurements, surgical marks, or other artifacts, tend to become spurious features
and reduce the generalization ability of ERM models [Mishra and Celebi, 2016; Pewton and Yap,
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2022]. To generate training environments for invariant learning methods, it would be necessary to (i)
identify all potential spurious features and (ii) artificially generate samples for the missing groups,
i.e., groups with spurious features and uncorrelated class labels. Since not all artifacts may be known
in advance and human annotation, especially by domain experts, is costly, the requirement to create
suitable environments is unrealistic in such settings. EIIL [Creager et al., 2021] eliminates this
requirement and instead infers appropriate environments from a reference model. Specifically, EIIL
seeks to construct environments with maximal (anti)correlations, i.e., a feature is highly correlated
with one class in one environment and another class in another environment, thereby forcing the
prediction model to rely only on invariant features (causal for the prediction). However, this approach
depends on a reference model that relies heavily on spurious correlations and requires estimating the
distribution of assignments of instances to environments.

Inspired by the observation by Le et al. [2024] that ERM induces clusters of samples with the same
spurious features in the representation space and that these clusters can be exploited to find samples
where the spurious correlation is missing, we adopt their strategy to infer suitable environments
for invariant learning. We show that the adoption succeeds in finding counter-spurious correlation
samples (conflict samples) from which we can construct environments that allow to learn invariant
features. Our approach does not pose any requirements on the reference model and accordingly
leaves the training process untouched. Clustering on the representation space of a trained model
introduces little overhead, which makes our method an efficient approach to infer environments for
invariant learning without the need for annotations.

Our code is available at: https://github.com/aix-group/prusc.

2 Background on Invariant Risk Minimization

Empirical Risk Minimization (ERM) [Vapnik, 1991] minimizes the error across training data, using
all features

min
f :X→Y

1

n

n∑
i=1

L(f(xi), yi), (ERM)

where L is the loss function, f maps from input space X to the output space Y , f(xi) is the predicted
value and yi is the true value.

Invariant Risk Minimization [Arjovsky et al., 2019] aims to extract environment-invariant features
from input data to enable consistent predictions across environments.

min
Φ:X→Ĥ,ω:Ĥ→Y

∑
e∈Etrain

Re(ω ◦ Φ) subject to ω ∈ arg min
ω̃:Ĥ→Ŷ

Re(ω̃ ◦ Φ),∀e ∈ Etrain, (IRM)

Ĥ is the invariant feature space, Y is the output space, Re(Φ) is the risk under a known environment
e ∈ Etrain. IRM learns the function f = ω ◦ Φ where Φ learns the invariant features from multiple
environments. The final prediction is made by ω based on the extracted invariant feature space Ĥ.
For practical reasons, Arjovsky et al. [2019] simplify the dual-objective optimization to

min
Φ:X→Y

∑
e∈Etr

Re(Φ) + λ ·
∥∥∇w

∣∣
w=1.0

Re(w · Φ)
∥∥2 (IRMv1)

3 Dataset

We use ColoredMNIST [Arjovsky et al., 2019], a synthetic dataset constructed from MNIST where
colors are strongly correlated with the class labels. The dataset is constructed as follows:

1. Set label ỹ = 1 for images with digits from 0 to 4, otherwise ỹ = 0.
2. The final label y is defined by randomly flipping 25% of the labels ỹ (noise level ny = 0.25).
3. The color id z is defined by flipping y with probability pe and images are colored red if

z = 0 and green if z = 1 (see Fig. 1a for examples)
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digit: 6 - label: 0

digit: 0 - label: 1

(a) (b) (c)

pe S-purity C-purity

.20 96.25 90.65

.15 99.99 85.13

.10 100.00 87.25

(d) Cluster Purity

Figure 1: (a) Example instances from ColoredMNIST with colors correlated with binary class labels.
t-SNE [Van der Maaten and Hinton, 2008] projected embedding space with colors representing (b)
color annotations and (c) clusters obtained by k-means clustering. (d) Cluster purity w.r.t. spurious
features (S-purity) and classes (C-purity).

For the training set, the noise level ny = 0.25 and the color correlation level is pe = 0.15.1 The
standard test set has the same noise level (ny = 0.25), but an inverse color correlation pe = 0.9. In
Sec. 6 we analyze performance for different color correlation levels, i.e., test sets with varying pe.

4 Method

We first present initial observations on the ERM representation space trained in a spurious setting,
and subsequently derive our annotation-free sampling to construct environments for IRM training. A
key contribution of our method is the identification of conflict samples, i.e., instances with a relation
between spurious attributes and class labels that is opposite to the spurious correlation present in the
training data. Our method does not pose any restrictions on the model or training process, but solely
relies on properties of the learned representation space.

4.1 Initial Observations

We train an ERM model on ColoredMNIST and extract the embedding of the penultimate layer.
We perform k−means clustering2 on the embedding of the training set and obtain the clusters as
visualized in Fig. 1c. Interestingly, the purity of the clusters is higher w.r.t. spurious features than
w.r.t. class labels (99.99 vs. 85.13, cf. Tab. 1d, pe = 0.15). Therefore, we assume that each cluster
defines a spurious feature. Since spurious features have strong correlations with a particular class, a
cluster’s purity is usually high with respect to both, the spurious feature and the class label. For our
binary classification task, we define minority cases as samples from the class with fewer samples
within a cluster. These samples share similar spurious features but have class labels that are not
correlated with these features. In other words, minority cases in a cluster conflict with the spurious
correlations introduced in the training set (in short, conflict samples). We base our environment
construction on this observation.

Discussion. While our initial analysis in this paper focuses on the ColoredMNIST dataset, which
is simple and has strong spurious correlations (with a spurious ratio of 0.9 in the training data),
related studies have shown that spurious features are typically learned early in training or are easier
for models to learn, leading models to rely on these features [Shah et al., 2020]. Therefore, we
hypothesize that the observation that representations cluster stronger w.r.t. to spurious features than
w.r.t. class labels also holds in scenarios with more realistic or complex spurious correlations (e.g.,
multiple spurious correlations as in the CelebA dataset [Liu et al., 2015]).

4.2 Annotation-free Environment Construction

We use the observation that spurious correlations introduce clusters to relax the requirements of
hand-crafted environments for IRM. We define the minority set Dm as the union of all minority cases
over all clusters. Thus, the minority set contains all conflict samples, so Dm is expected to have an

1Arjovsky et al. [2019] use two environments with an equal amount of instances in each. pe = 0.1 in one
and pe = 0.2 in the other, resulting in an overall pe = 0.15 for ERM training.

2We choose k = 8 for all experiments in this paper.
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Method Annot. Test Acc.

ERM (baseline) ✗ 16.9 ± 0.5
Oracle (upper bound) ✗ ✗ 72.7 ± 0.3
ERM (Dbalance) ✗ 65.7 ± 0.7

IRM* ✓ 66.9 ± 2.5
DecAug* ✓ 69.6 ± 2.0
EIIL* ✗ 68.4 ± 2.7
IRM (Dm, Dbalance) ✗ 68.0 ± 1.1

(a) Standard test environment pe = 0.9
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(b) Varying pe in test environments

Figure 2: Predictive performance (average over 10 runs) on (a) the standard test set. ✓ indicates that
the method requires annotations of the environments, whereas ✗ does not; ✗ ✗ for the Oracle means
the method is trained and evaluated on gray images with ny = 0.25. We highlight models using our
sampling approach. * indicates values from the original paper. (b) varying test environments.

inverse correlation between colors and labels compared to the training set. This also means that Dm

contains a spurious correlation that is opposite to the one in the original training set. To obtain a
more balanced sample, we additionally sample dominant cases, i.e., cases that belong to the majority
class in this cluster. Overall, we sample as many dominant cases as minority cases. Our balanced set
Dbalance is the union of minority and dominant cases, and is designed to be likely class-balanced and
balanced between conflict and non-conflict samples. To account for IRM’s multiple environments,
we train IRM with Dm and Dbalance.

5 Predictive Performance

We follow the training architecture and data partitioning of previous work [Arjovsky et al., 2019],
using a simple CNN and the official test set with color correlation pe = 0.9. First, we train the
baseline ERM model on the training set with pe = 0.15. We compare our approach to IRM [Arjovsky
et al., 2019] and DecAug [Bai et al., 2021], both of which require annotations, and to EIIL [Creager
et al., 2021], which infers suitable environments without annotations.

The results in Tab. 2a show that IRM training with our sampling approach Dm and Dbalance is
competitive to methods that require annotations (slightly better than standard IRM and slightly worse
than DecAug) and on par with the annotation-free method EIIL. In contrast to EIIL, our approach
neither poses restrictions on the reference model, nor does it require to train additional parameters.

We analyze the effectiveness of our sampling approach on two models: ERM trained with Dbalance
and IRM trained with the two environments Dm and Dbalance. The results are shown in Tab. 2a
(highlighted rows). Our sampling of an approximately balanced set Dbalance improves the accuracy of
the ERM model from 17% to 65%. This result is even close to that of invariant learning methods such
as IRM. The performance is also comparable to the performance of ERM trained with a hand-crafted
balanced set ERMspurious-free as shown in Fig. 2b, indicating that our sampling approach is capable of
constructing a truly balanced set.

6 Analysis and Discussion

ERM and IRM. By construction, the training and test distributions of ColoredMNIST have an
inverse distribution of colors and labels. The environments constructed by our method may have an
advantage, because we choose counter-spurious samples, thereby implicitly forming an inverse distri-
bution. Therefore, we verify the ability to learn invariant features by varying the amount of spurious
correlations in the test set. The ultimate goal of invariant learning is to have consistent performance
across different environments. Fig. 2b shows the accuracy over test sets with different spurious ratios
pe from 0.1 to 0.9 (official test set). ERMDm,Dbalance and IRMDm,Dbalance are trained with the sampled
environments defined in Sec. 4. IRM requires (at least) two different environments for invariant learn-
ing (Dm, Dbalance) and ERM is trained with the concatenation of Dm and Dbalance. ERMspurious-free
is trained with a hand-crafted balanced subset, which does not contain spurious correlations. With
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the concatenation of Dm and Dbalance, the spurious correlation learned by ERMDm,Dbalance is opposite
to the correlation in the training set, but aligns with the correlation in the test set (not as strong as
in Dm alone though). Accordingly, ERMDm,Dbalance shows a clear trend following the increase of
the spurious ratio, while ERMspurious-free and IRMDm,Dbalance are largely consistent over different test
environments and IRM always out-performs ERMspurious-free. This implies that ERM is sensitive to
the spurious correlation (ratio) in the training and test set while IRM with multiple environments is
robust against particular correlation ratios in individual environments and generally less dependent
on spurious features.

Environments Optimization. As Arjovsky et al. [2019] discuss, IRM cannot prevent models from
learning spurious correlations, even when trained with hand-crafted environments. This is also
evidenced by a performance gap between IRM and the Oracle model (cf. Tab. 2a). In Fig. 2b
we evaluate another choice of hand-crafted environments, IRMpe=0.9,pe=0.1, with a training set
comprised of two environments with pe = 0.9 and pe = 0.1 respectively. We observe an increase in
performance (Fig. 2b, red graph) with this choice of environments, being even on par with the Oracle
(73%). This observation highlights the importance of defining a good combination of environments
for invariant learning in general. It sets an interesting future research direction to investigate the
explicit condition for environment construction in invariant learning, and more importantly, how to
obtain the most beneficial environments without additional annotation requirements.

Environment Inference without Annotations. EIIL infers suitable environments by a learnable
probability distribution over the assignments of instances to environments qi(e

′) := q(e′|xi, yi),
indicating the probability that the i-th sample belongs to environment e′. EIIL estimates q by
maximizing the regularization term in IRMv1 w.r.t a reference model Φ̃. The goal of this maximization
is to infer environments that are governed by (supposedly spurious) features that maximally violate
the invariant principle. That is, a (supposedly spurious) feature should be correlated with a particular
class in one environment and with a different class in the other. Subsequent IRM training on these
environments then allows to extract invariant features. For this process to be effective, the reference
model Φ̃ is required to heavily rely on spurious correlations. In practice, an ERM model in an early
training stage (early stopped) is chosen for Φ̃. However, the availability of such a model strongly
depends on the dataset and careful tuning of early-stopped criteria. The reason is that the ERM
model initially focuses on spurious features during early training, resulting in significant performance
disparities across subgroups, which provides a signal for EIIL to infer effective environments.
However, this learning signal weakens when using a well-trained model [Creager et al., 2021].

In contrast, our approach infers environments from representation clustering (cf. Sec.4.1), without
posing restrictions on the reference model, and the clustering overhead is small compared to the
estimation of q.

7 Conclusion

In this paper, we introduced a novel strategy to identify conflict samples in the training dataset in
the presence of spurious correlations, based on the observation that instances tend to cluster more
strongly w.r.t. spurious features than w.r.t. class labels in the learned representation space. Our
approach allows for the easy construction of sub-datasets with varying spurious correlation ratios
without explicit annotations, forming multiple environments suitable for invariant risk minimization.
In future work, we plan to validate whether the method successfully extends to more general and
complex scenarios, e.g., multi-class classification tasks, varying strength of spurious correlations,
and in the presence of multiple spurious correlations. We further aim to identify the limits of our
approach, i.e., boundary cases where the method fails.
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