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ABSTRACT

Federated Learning (FL) enables privacy-preserving, decentralized model training
but faces significant challenges in balancing global generalization and local person-
alization due to non-identical data distributions across clients. While Personalized
Fine-Tuning (PFT) adapts models to local data, excessive personalization often
degrades global performance. In this work, we present a comprehensive empiri-
cal study encompassing seven diverse datasets, multiple model architectures, and
various fine-tuning methods under both covariate and concept shift scenarios. Our
extensive evaluation reveals critical limitations in existing PFT methods, which
struggle with overfitting and exhibit inconsistent performance across distribution
shifts, even with careful hyperparameter tuning and regularization. To address
these issues, we identify LP-FT, a simple yet effective strategy that combines
Linear Probing with full Fine-Tuning, adapted to the FL setting. LP-FT consis-
tently outperforms existing methods, achieving an optimal balance between local
personalization and global generalization across all tested scenarios. By investi-
gating the feature change after PFT, we hypothesize the a phenomena dubbed as
federated feature distortion is linked to the global generalization. Motivated by the
observation, we provide a theoretical analysis of two-layer linear networks, offering
novel insights into the conditions under which LP-FT excels, thereby enhancing
our understanding of personalization dynamics in FL. This work contributes in
three key areas: (1) a rigorous and comprehensive evaluation of PFT methods
under diverse distribution shifts, (2) the introduction of LP-FT as a robust and
versatile solution to FL personalization challenges, and (3) theoretical foundations
that explain LP-FT’s superior effectiveness. Our findings set a new venue for PFT
research and provide valuable insights to the broader FL community.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) has emerged as a promising paradigm for collab-
orative learning from decentralized data, enabling multiple clients to train a shared global model,
known as General FL (GFL), without compromising data privacy. A significant challenge in FL is
the differing data distributions among clients, which undermines the effectiveness of conventional FL
methods on individual clients.

In contrast to GFL, Personalized FL (PFL) (Kairouz et al., 2021) emerges as an approach to address
this issue by customizing global models for each client. Clients can enhance the global model
by applying local updates using their own datasets, a process known as Personalized Fine-Tuning
(PFT) (Wu et al., 2022), as shown in Fig. 1 (a). However, this approach often causes models to overfit
on local data, thereby compromising the benefits of FL and the generalization performance of the
resulting FL models. This is particularly concerning in critical real-world applications, such as FL
across multiple hospitals for disease diagnosis, where a local model must not only perform well
on hospital patient data, but also generalize effectively to diverse patient populations that may be
encountered on-site in the future (Xu et al., 2021). Therefore, balancing the optimization of individual
client performance (personalization) with strong global performance (generalization across all or
unseen clients) is crucial (Wu et al., 2022; Huang et al., 2024).

To address the personalization and generalization trade-off in PFT, a simple and commonly used
strategy is personalized regularized fine-tuning, where each client fine-tunes a global model using
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Figure 1: Overview of the problem setting and FL strategies investigated in this paper. (a) PFT
framework, where each client fine-tunes a global model previously trained via GFL. (b) Three
different PFT models: the global FL model, the full FT model, and the LP-FT model; their parameter
updating patterns and local/global performance (perf.) under data heterogeneity; The fire icon
indicates the actively tuned parameter, the frozen icon represents the fixed weight, and the mixed
fire-frozen icon denotes the weight that is not actively tuned.). (c) Visualization of feature distortion
under PFL and its possible link to global generalization.

their local data, with no further communication with the server. This method is appealing for its
simplicity and broad applicability across datasets (Kumar et al., 2022), eliminating the need for
complex model modifications or extensive data preprocessing. The final local fine-tuning phase
plays a crucial role, as it influences both the model’s adaptability to individual client data and its
overall generalizability. Effective PFT can improve local performance without compromising global
performance, whereas poorly executed PFT can result in severe overfitting (Wu et al., 2022).

In this work, we conduct comprehensive evaluation of various regularization-based PFT methods in
heterogeneous FL environments under different distribution shift scenarios, categorized as covariate
shift (Peng et al., 2019a; Hendrycks & Dietterich, 2019) and concept shift (Izmailov et al., 2022).
Covariate and concept shifts are more prevalent in real-world scenarios where client data often varies
in feature distributions or task definitions (Hendrycks & Dietterich, 2019). Despite meticulously
tuning the hyper-parameters in conventional regularized fine-tuning methods, we observe persistent
issues of local overfitting, wherein localized performance gains are achieved at the significant cost of
compromised global generalization.

By observing this, we identify a straightforward alternative strategy—combining linear probing
(LP) followed by full fine-tuning (FT), referred to as LP-FT (Kumar et al., 2022)—that consistently
balances personalization and generalization across diverse distribution shifts, as shown in Fig. 1 (b).
We hypothesize that LP-FT achieves this by preserving the representations learned in the last layer
of the neural network (before the linear head) during local adaptation, thereby reducing the risk of
federated feature distortion, as shown in Fig 1 (c). This phenomenon occurs when local fine-tuning
disrupts these last-layer representations (features), which are critical for global performance, leading
to performance degradation across the global client set. Although feature distortion was introduced
in standard LP-FT approaches within the centralized domain (Kumar et al., 2022), the setting differs
significantly from the one considered here.

To further support our findings on the superior performance of LP-FT, we conduct theoretical analysis
by decompling feature extractor and linear head in neural networks. We examine how LP-FT adapts
to client-specific local data and its resulting impact on generalization performance. The developped
theoretical frameworksheds light on the conditions when LP-FT outperforms full FT-based PFT 1,
offering new insights into its efficacy within FL.

In summary, our analysis justifies the superiority of LP-FT over standard fine-tuning methods
under different distribution shift scenarios. In this paper, we make the following key contributions:
Evaluation: We present comprehensive empirical evaluations, spanning seven diverse datasets,
various models, and different fine-tuning methods within the PFL framework on various distribution
shift settings. Our evaluation exposes key limitations in existing PFT methods, highlighting their
tendency to overfit and exhibit inconsistent performance across distribution shifts, despite careful
hyperparameter tuning and regularization. Insight: We introduce LP-FT, a simple yet effective
PFT strategy that enhances both local and global performance. We reveal, for the first time, that
preserving pre-trained global features is linked to improved global performance in PFT settings,
and we attribute FT’s degraded performance to catastrophic feature distortion. Theory: We
offer a rigorous theoretical analysis of LP-FT using two-layer linear networks, demonstrating its

1In the following content, we use LP-FT and FT in reference to PFT with LP-FT and full FT, respectively.
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superior ability to preserve global performance compared to FT in both concept shift and combined
concept-covariate shift scenarios.

2 RELATED WORK

Heterogeneous FL. Heterogeneous FL refers to a decentralized training paradigm that accommodates
diverse and disparate data sources or devices participating in a collaborative model-building process.
Examples include FedAvg (McMahan et al., 2017) and various improvements in terms of aggregation
optimization and local optimization. It is shown to experience challenges in heterogeneous scenarios.
Thus, various literature proposes alternative strategies. Here, we summarize these strategies into
aggregation optimization and local optimization. FedNova (Wang et al., 2020) belongs to the
category of Aggregation optimization, which normalizes and scales the local updates. Examples
of local optimization include FedProx (Li et al., 2020a) and Scaffold (Karimireddy et al., 2020),
where FedProx adds a L2 regularization for each client and Scaffold adds a variance reduction term.
However, these methods often exhibit limited personalization capabilities and may not adequately
meet the performance requirements of different clients. Consequently, various personalized FL
approaches have been proposed, with a primary emphasis on enhancing local client performance to
the greatest extent possible. We can group these personalized FL strategies into clustering-based
methods (Ghosh et al., 2020), transfer learning (Yu et al., 2020), and interpolating the local and
global models (Mansour et al., 2020; Deng et al., 2021). Some FL methods (Guo et al., 2024; Son
et al., 2024) highlight that existing federated learning methods often fail under feature shift despite
addressing label shift, proposing clustering and regularization strategies respectively to tackle diverse
distribution shifts in non-IID data settings.

Regularized Fine-Tuning Fine-tuning pre-trained models has become increasingly popular with the
rise of foundation models (Bommasani et al., 2021). However, fine-tuning with limited data often
lead to overfitting. Several strategies can mitigate this issue, such as using optimizers that promote a
flatter loss landscape (Li et al., 2018; Kaddour et al., 2022). Notably, Sharpness-Aware Minimization
(SAM) (Foret et al., 2021) and Stochastic Weight Averaging (SWA) (Izmailov et al., 2018) are two
popular methods that help achieve this. Additionally, a recent technique called model soups (Wortsman
et al., 2022b), uses a simple greedy weight averaging approach similar to SWA, shown significant
improvements in fine-tuning. An interesting perspective focuses on minimizing the linear mode
connectivity barrier between the pre-trained and fine-tuned models, helping maintain consistency in
decision-making mechanisms from a loss landscape perspective (Vlaar & Frankle, 2022). Partial
fine-tuning is another common method to prevent overfitting, which involves selectively fine-tuning
specific layers of the model to better adapt to variations in data distribution (Lee et al., 2023). Recent
studies have introduced the concept of LP-FT (Kumar et al., 2022), highlighting potential distortions
in pre-trained features and their underperformance in scenarios involving previously unseen data.
Further research on LP-FT provides a deeper analysis of model adaptation (Trivedi et al., 2023),
focusing on feature distortion and simplicity bias, thereby enhancing our understanding of fine-tuning
mechanisms and safe model adaptation. A detailed literature review is introduced in App. B.

3 OBSERVATION: OVERFITTING IN PERSONALIZED FINE-TUNING

In this section, we describe our experimental settings and evaluation methods to analyze personalized
overfitting and the effects of LP-FT. This section is organized as follows: (1) defining the problem
overview and the distribution shifts considered within a data heterogeneity context, (2) introducing
the experimental setups, including the datasets and PFT strategies under investigation, (3) demon-
strating the tendency of personalized overfitting with full FT, even with careful regularization, across
distribution shifts, (4) proposing LP-FT and evaluating its performance against state-of-the-art full
FT strategies in FL, and (5) examining federated feature distortion.

3.1 OVERVIEW AND DEFINITIONS

Problem Setting. In a FL setting, each client i ∈ [C] has a local dataset (Xi,Yi) generated from
a potentially distinct distribution, which may differ across clients due to distribution shifts. The
goal is to perform personalized fine-tuning for each client by optimizing local model parameters θL,
initialized from a well-trained global model θG. The objective is to minimize the local loss LL(θL)
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for improved local performance while ensuring that the global loss LG(θL) remains close to that of a
pre-trained global model. This creates a trade-off between personalization (minimizing local loss)
and maintaining generalization (minimizing global loss) across clients. The global data distribution
DG is defined as a mixture of the local distributions Di, given by DG = 1

C

∑
i∈[C] Di.

We formally define distributions of interests, concept shift and covariate shift in heterogeneous FL
context, following Li et al. (2021b).

Covariate Shift. Covariate shift refers to variations in the input feature distribution across clients
while keeping the conditional distribution of the output given the input consistent. Formally, for any
pair of clients i and j with i ̸= j, the data-generating process is characterized by:

Pi(x) ̸= Pj(x), but Pi(y | x) = Pj(y | x) for all i ̸= j.

This means that while clients i and j may have different input distributions Pi(x) and Pj(x), the
conditional distribution P (y | x) remains consistent across all clients.

Concept Shift. Concept shift, in contrast, occurs when the conditional relationship between input
features and outputs varies across clients, while the input feature distribution remains unchanged.
The data-generating process for any pair of clients i and j with i ̸= j is given by:

Pi(y | x) ̸= Pj(y | x), but Pi(x) = Pj(x) for all i ̸= j.

In this scenario, all clients share the same input distribution P (x), but the conditional distribution
Pi(y | x) varies, indicating different relationships between features and labels across clients.

3.2 EMPIRICAL ANALYSIS SETTING

Datasets with Cvariate Shift. We include Digit5, DomainNet, CIFAR10-C, and
CIFAR100-C. Digit5 and DomainNet belong to the feature-shift subgroup, where the data
features represent different subpopulations within the same classes. For example, Digit5 contains
10-digit images collected from various sources with different backgrounds, such as black-and-white
for MNIST and colorful digits for synthetic datasets. CIFAR10-C and CIFAR100-C belong to the
input-level shift subgroup, where noise or distortion is introduced in the input data, such as blurred
images or sensor errors, degrading input quality. A detailed explanation of the data splitting and its
introduction is provided in Table 3 in the Appendix. Visualization is provided in Fig. 5.

Datasets with Concept Shift. We include CheXpert, and CelebA. CheXpert and CelebA
belong to the spurious correlation-based shift subgroup, which involves misleading relationships
in the training data that models may exploit (also known as spurious correlations), despite being
unrelated to the actual target. This reliance can lead to poor performance when such correlations are
absent in new data, classifying it as a form of concept shift (Izmailov et al., 2022). Similarly, the
detailed information is provided in Table 3 in the Appendix. Visualization is provided in Fig. 5.

Fine-tuning Strategies. In this study, we explore several common fine-tuning strategies in PFL: Full-
parameter FT , a naive FT strategy that adjusts all model parameters. Proximal FT (Li et al., 2020b)
aims to preserve the pre-trained model’s original knowledge by applying proximal regularization,
which penalizes large deviations from the initial model parameters to maintain generalization. Soup
FT (Wortsman et al., 2022a) improves robustness by averaging the weights of multiple fine-tuned
model instances, each trained with different initializations, creating a “model soup” that integrates
their strengths. Lastly, Sparse FT (Lee et al., 2018) promotes sparsity in parameter updates, adjusting
only the most relevant weights to enhance efficiency and interpretability, particularly for deployment
in resource-constrained environments. Each strategy is designed to balance model performance with
different priorities, such as preserving knowledge, enhancing robustness, or improving efficiency. A
more detailed experiment setting is presented in App. C.

3.3 GLOBAL AND LOCAL PERFORMANCE TRENDS IN COMMON PFT METHODS

In practice, PFT is susceptible to overfitting to local data, due to the relatively small amount of
data available at local clients. Unlike conventional overfitting, the overfitting referred to in the FL
context is characterized by a consistent improvement in local performance while global performance
noticeably deteriorates (Wu et al., 2022; Chen et al., 2023) – the average gain in local performance
can be smaller than the loss in global performance. To measure the model’s overall local and global
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(a) Full FT (b) Sparse FT (c) Prox FT

Figure 2: Visualization of the prevalence of personalization overfitting across different distribution
shift scenarios, where (a) shows the global and local accuracy under different learning rates for
full-parameter fine-tune; (b) shows the different sparsity rate for sparse fine-tune; (c) shows the
different regularization strength under the proximal fine-tune. In all subfigures, the global accuracy is
shown as the solid line, and the local accuracy is shown as the dashed line. As shown, the global
accuracy is kept constant while the local accuracy drops in all hyper-parameter settings. This indicates
that the PFT model overgeneralizes due to feature distortion.

performance, we used the averaged client-wise local and global accuracy. The metric’s decreasing
trend with increasing local training epochs indicates personalized overfitting. Notably, this trend
persists even when considering only global performance metrics, as local performance tends to show
increases in PFT under overfitting conditions.

In all subplots of Fig. 2, we observe the tendency of common PFT strategies in FL to overfit
under various distribution shift conditions, including input-level shifts (CIFAR100-C), feature-level
shifts (Digit5), and spurious correlation-based distribution shifts (CheXpert). We systematically
adjusted hyperparameters to evaluate their impact on performance. Notably, we tuned the parameters
to avoid a significant increase in local performance, ensuring that any decline in the y-axis primarily
reflects a drop in global performance. Fig. 2a illustrates that overfitting persists even when fine-tuning
methods use SGD optimizers and reduced learning rates. Fig. 2b shows that, in scenarios where the
sparsity rate is adjusted (with sparsity involving masking operations on parameter gradients, meaning
that higher sparsity rates result in fewer parameters being updated), overfitting still occurs as the
number of training epochs increases in sparsity fine-tuning methods. Fig. 2c depicts the average local
and global performance of fine-tuning methods using proximal regularization terms. Similarly, even
after adjusting the regularization terms to bias updates towards the initial global model, overfitting
remains evident. More empirical studies can be found in App. D.

3.4 LP-FT: PERFORMANCE COMPARISON ACROSS FINE-TUNING STRATEGIES

LP-FT. Observing the challenges of personalized overfitting in common regularized fine-tuning
methods in PFT, we propose a straightforward approach called Linear Probing and Subsequent
Fine-tuning (LP-FT), which demonstrates strong personalization and generalizability across diverse
datasets. In practice, clients utilize LP-FT by performing linear probing on the global model’s linear
layers with local data, followed by fine-tuning the full model. Although the concept of LP-FT was
first proposed in centralized setting (Kumar et al., 2022), describing the fine-tuning of a pre-trained
model from data in domain A to downstream data in domain B, leading to performance degradation
on out-of-distribution testing due to domain misalignment, we refer LP-FT differently in PFT.
Specifically, the initial pre-trained model is trained on the combined data from all clients (global
distribution) and each client has a distinct ground-truth function. This is in contrast to the setting in
the ground-truth function, which is the same for all the data points in Kumar et al. (2022). Therefore,
it is novel to explore the efficacy of LP-FT in the PFT setting.

Experimental Settings. To demonstrate the effectiveness of LP-FT in PFT, we focus on comparing
different FT methods at the local PFT stage (see Fig. 1 (a)). We use the FedAvg algorithm to train
this shared global model in a GFL manner. After the GFL stage, all the clients further fine-tune
the obtained global model using local data for 15 epochs for personalization. The final models are

1The worst group accuracy on CIFAR10 is not noted as all baseline FT results are very close to each other,
where comparing STD, in this case, is less meaningful.
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Table 1: Performance of various PFT strategies. Red represents the input shift subgroup; green from
the feature-shift subgroup; blue the spurious correlation-based shift subgroup. Each experiment is
performed three times independently with different random seeds, and the standard deviation of the
results is presented in parentheses. ↑ indicates that higher values are better, while ↓ indicates that
lower values are better.

Dataset Method Local ↑ Global ↑ C-Std. ↓ Worst ↑ Average ↑

CIFAR10-C

FT 54.50 (0.64) 44.16 (0.13) 10.04 (0.06) 19.83 (0.18) 39.50 (0.33)
Proximal FT 61.76 (0.13) 53.58 (0.14) 11.61 (0.08) 25.82 (0.12) 47.05 (0.07)
Soup FT 56.36 (0.23) 44.94 (0.06) 10.22 (0.06) 20.47 (0.35) 40.59 (0.09)
Sparse FT 61.31 (0.01) 50.21 (0.17) 11.10 (0.11) 24.56 (0.09) 45.36 (0.04)
LP-FT 63.55 (0.04) 55.35 (0.01) 12.45 (0.01) 26.33 (0.06) 48.41 (0.03)

CIFAR100-C

FT 20.05 (0.05) 14.45 (0.04) 5.37 (0.02) 3.37 (0.06) 12.62 (0.03)
Proximal FT 27.38 (0.15) 19.96 (0.11) 6.90 (0.04) 4.84 (0.04) 17.41 (0.05)
Soup FT 20.99 (0.24) 14.81 (0.04) 5.48 (0.03) 3.56 (0.01) 13.12 (0.06)
Sparse FT 28.93 (0.04) 20.66 (0.02) 7.75 (0.02) 5.05 (0.09) 18.15 (0.10)
LP-FT 32.60 (0.14) 25.44 (0.10) 9.66 (0.04) 5.92 (0.06) 21.32 (0.04)

Digit5

FT 91.17 (0.90) 67.87 (0.74) 22.93 (0.28) 42.03 (0.48) 67.02 (0.70)
Proximal FT 92.09 (0.18) 81.40 (0.03) 15.04 (0.15) 61.71 (0.16) 78.40 (0.09)
Soup FT 91.82 (0.34) 70.82 (0.43) 21.99 (0.67) 45.10 (1.27) 69.02 (0.65)
Sparse FT 91.43 (0.31) 76.89 (0.72) 17.90 (0.38) 54.21 (0.56) 74.21 (0.35)
LP-FT 91.20 (0.04) 82.78 (0.05) 13.75 (0.02) 65.80 (0.02) 79.92 (0.02)

DomainNet

FT 64.90 (1.18) 42.48 (0.58) 17.49 (0.75) 22.31 (0.93) 43.23 (0.52)
Proximal FT 67.20 (1.39) 56.05 (0.27) 16.68 (0.36) 33.20 (1.79) 52.60 (0.35)
Soup FT 67.48 (0.61) 44.27 (0.46) 18.44 (0.42) 23.73 (1.24) 44.49 (0.54)
Sparse FT 69.62 (0.53) 50.24 (0.44) 18.14 (0.17) 27.89 (0.15) 49.14 (0.45)
LP-FT 68.50 (0.19) 57.52 (0.20) 17.36 (0.21) 34.53 (0.44) 53.52 (0.19)

CheXpert

FT 76.18 (0.41) 76.25 (0.56) 0.35 (0.13) 76.31 (0.76) 76.25 (0.44)
Proximal FT 76.44 (0.07) 76.63 (0.09) 0.71 (0.09) 76.81 (0.07) 76.63 (0.07)
Soup FT 77.51 (0.15) 77.49 (0.31) 0.48 (0.07) 77.46 (0.43) 77.49 (0.26)
Sparse FT 77.29 (0.13) 77.20 (0.14) 0.31 (0.11) 77.11 (0.25) 77.20 (0.14)
LP-FT 77.64 (0.37) 77.54 (0.37) 0.53 (0.41) 77.43 (0.71) 77.54 (0.37)

CelebA

FT 90.55 (1.20) 73.76 (2.15) 18.79 (3.64) 53.52 (5.51) 72.39 (2.84)
Proximal FT 93.74 (0.59) 81.11 (0.82) 13.39 (1.14) 67.50 (2.10) 80.78 (0.90)
Soup FT 89.42 (2.16) 75.28 (1.11) 16.29 (1.19) 57.79 (2.90) 74.17 (1.50)
Sparse FT 91.43 (0.48) 77.32 (1.46) 14.16 (2.57) 62.94 (4.34) 77.65 (1.65)
LP-FT 93.24 (0.17) 83.32 (0.31) 11.18 (0.14) 71.89 (0.75) 82.82 (0.64)

evaluated using the metrics described below. Detailed descriptions of the datasets, preprocessing
steps, data splitting, and models used are provided in Appendix C.3, Tab. 3.

Metrics. We report five metrics in this part of the experiment: (1) Local Accuracy (Local) measures
the performance of the PFT model on the client’s local test set. Higher Local Acc indicates better
personalization. (2) Global Accuracy (Global) measures the PFT model’s average test accuracy over
all other clients’ test sets. Higher Global Acc indicates better generalization. (3) Client-wise Standard
Deviation (C-Std.) calculates the standard deviation of local test accuracies across all clients. Lower
C-Std. indicates less variance in performance among clients. (4) Worst Accuracy (Worst) reports the
lowest test accuracy among all clients. The closer this value is to Local Acc, the better the worst-case
generalization. (5) Average reports the average of both Local Acc and Global Acc, providing a better
understanding of the tradeoff between personalization (local performance) and generalization (global
performance). All metrics, except C-Std., are averaged over the number of clients, and higher values
are preferable. For the C-Std. metric, lower values are better.

Results. Our results are presented in Tab. 1, where the best method is highlighted in bold. Datasets
with the same distribution shift pattern are grouped into the same colors as detailed in the caption.
Tab. 1 shows that LP-FT consistently achieves the highest global and average accuracy across
most datasets, demonstrating strong generalization and personalization performances, particularly
in challenging conditions like CIFAR100-C and CIFAR10-C. Sparse FT also performs well,
especially in Digits5 and DomainNet, but generally lags behind LP-FT. Soup FT and Proximal
FT show mixed results, with stronger performance in specific datasets such as CheXpert but
weaker overall compared to LP-FT. Standard fine-tuning consistently underperforms, highlighting
the limitations of basic fine-tuning methods in heterogeneous data scenarios.
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Figure 3: Illustration of federated feature distortion (FD) and decision boundaries.

3.5 INSIGHT AND EXPLANATION ON THE OBSERVATIONS

Federated Feature Distortion. We hypothesize that personalized overfitting in PFT and the associ-
ated performance degradation are linked to federated feature distortion, which refers to the alteration
of intermediate data representations from the global model (i.e., network features before the linear
head) during the final local training phase in PFL, as illustrated in Fig. 1. This distortion, driven by
data heterogeneity across clients, occurs when local models overfit to client-specific distributions.
To illustrate how feature distortion affects performance, we present Fig. 3, showcasing model deci-
sion boundaries and features. Specifically, after GFL, the global server model is well-trained with
well-separated decision boundaries for global features. However, it may misclassify some local data
points. While fine-tuning local clients with full FT can improve local performance, it severely distorts
their feature representations compared to those from global model, potentially resulting in shifted
decision boundaries that harm global performance. In contrast, LP-FT uses linear probing first, where
only the linear head is tuned, preserving the pre-trained feature representations. The subsequent
fine-tuning after linear probing causes only minor adjustments to full-model parameters and features,
as the model is already close to optimal for the local data. This process can result in moderate feature
distortion, simultaneously fitting the model to local data while maintaining global performance.

Experimental Validation on the Relationship Between Feature Distortion and Performance. In
this part, we utilize multiple datasets (i.e., DomainNet and Digit5) to investigate the relationship
between global performance and feature distortion. We measure the similarity of representations in
the feature extraction layer (i.e., the input to the classification head) in the following way. Consider a
feature extraction function f : X → Rk, which maps inputs from the input space X to a representation
space Rk. Let θG denote the global pre-trained model and θi the fine-tuned model after local fine-
tuning for client i. Assume there are C clients in total, each with n samples. Let xc,j represent the j-th
data point of the c-th client. The federated feature distortion ∆c(f) quantifies the change in features
after fine-tuning for the c-th client, defined as the average ℓ2 distance between the representations
produced by the global model and the locally fine-tuned model over all data points across all clients.
Formally, it is expressed as: ∆c(f) = 1

n

∑n
j=1 ∥f(θG;xc,j)− f(θc;xc,j)∥2 , where ∥ · ∥2 is the

ℓ2 distance in the representation space Rk. We compute the average of ∆c(f) across all clients to
represent the feature distortion in the PFT setting, as shown in Fig. 4.

Observation 1. Our findings reveal that feature distortion is correlated with a drop in global perfor-
mance. Specifically, in Fig. 4(a), common FT methods cause significant feature distortion, leading

Figure 4: Observations of the feature distortion in our PFT setting, where (a) presents the positive
correlation between global performance drops and feature distortion intensity on DomainNet and
(b) presents the ablation study on preserving federated features with controlled local train loss on
Digit5. We set local loss thresholds (0.1, 0.5, and 1.0) and used gradient ascent when the loss fell
below, ensuring training loss fluctuated around these points.
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to a substantial decline in global performance. In contrast, LP-FT maintains a high level of global
performance. This stability can be attributed to the initial phase of LP-FT (the first 5 epochs), during
which only the classifier is fine-tuned while the parameters of the feature extraction layer remain
fixed. Compared with FT, LP-FT suffers from significantly moderate feature distortion.

Observation 2. In Fig. 4(b), we further analyze the relationship between global performance and
feature distortion by eliminating the influence of local loss magnitude. We achieve this by controlling
the level of local training loss using the loss flooding technique (Ishida et al., 2020). Specifically,
we set thresholds for local loss (i.e., 0.1, 0.5, and 1.0) and apply gradient ascent when the loss drops
below these thresholds, ensuring that the training loss fluctuates around the set points. Examining a
single FT strategy (i.e., either FT or LP-FT), we observe that global accuracy remains stable despite
variations in local training loss magnitudes. At fixed local training loss levels, we compare the effects
of LP-FT (moderate feature distortion) and FT (severe feature distortion) on global performance.
LP-FT consistently delivers better global performance than FT across different loss levels. These
comparisons enable us to dismiss the alternative explanation that FT leads to higher global loss simply
due to achieving lower local loss, while LP-FT exhibits the opposite pattern.

4 THEORETICAL ANALYSIS OF THE LP-FT METHOD

In Sec. 3, we presented a series of experiments demonstrating the effectiveness of LP-FT compared
to common FT strategies in PFL. Our results indicate that FT performs poorly relative to LP-FT,
and we hypothesize that this suboptimal global performance arises from federated feature distortion.
To further understand how feature learning impacts generalization error in PFT, we decompose
the data-generating function and the model into two components: a feature extractor and a linear
head. This decomposition allows us to distinguish between the learned features and their influence
on performance. To further explain the empirical observations in Sec. 3, we provide a theoretical
analysis of LP-FT’s global performance under various distribution shift scenarios. Specifically, in
Sec. 4.1 and Sec. 4.2, we formalize concept and covariate shifts within a two-layer linear network
and examine how LP-FT effectively adapts to these shifts, outperforming FT in the PFL setting.

Overview of Theoretical Analysis: To compare the performance of LP-FT and FT, we make
assumptions about the data-generating function for clients (Assumption 4.1) and a specific model
structure (Assumption 4.2). Based on these assumptions, we analyze the global performance of LP-FT
and FT under concept shift (Theorem 4.4) and combined concept-covariate shift (Theorem 4.5).

4.1 LP-FT’S GLOBAL PERFORMANCE UNDER CONCEPT SHIFT

In this section, we analyze LP-FT’s performance compared to FT under concept shift. To facilitate a
rigorous theoretical study, we define the data-generating process and model structure across clients,
assuming both are represented by two-layer linear networks, as in (Kumar et al., 2022).

Assumption 4.1 (Data-Generating Process). The data-generating function for client i is given by
yi = V ∗

i
TB∗xi for all i ∈ [C], where yi ∈ R, C is the number of clients, xi ∈ Rd, B∗ ∈ Rk×d, and

V ∗
i ∈ Rk. All clients share a common feature extractor B∗, assumed to have orthonormal rows, while

their linear heads V ∗
i differ. Each V ∗

i decomposes as V ∗
i =

[
V ∗
com

T λeTi
]T

, where V ∗
com ∈ Rm is

shared across clients, ei ∈ RC is a unit vector, and λ controls heterogeneity. Here, m+ C = k.

This assumption distinguishes between a shared and client-specific component in the data-generating
functions, allowing analysis of both global and local performance of PFT methods after fine-tuning.

Assumption 4.2 (Model Structure). The training model is a two-layer linear network defined as
y = V TBx, where V ∈ Rk is the linear head and B ∈ Rk×d is the feature extractor. The dimensions
of V and B match Assumption 4.1, allowing the model to learn both shared and client-specific data
components.

In PFT settings, our objective is to evaluate the performance of a model on both global and local data.
By local data, we refer to the data of a specific client undergoing fine-tuning (e.g., client i). The local
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and global losses are defined using the Mean Squared Error (MSE) as follows:

LL(V,B) = E(x,y)∼Di

[1
2
(V TBx− y)2

]
= Ex∼Di

[1
2
(V TBx− V ∗

i
TB∗x)

2
]
,

LG(V,B) = E(x,y)∼DG

[1
2
(V TBx− y)2

]
=

1

C

∑
i∈[C]

Ex∼Di

[1
2
(V TBx− V ∗

i
TB∗x)

2
]
.

Since this section focuses on concept shift, we assume all clients’ data is drawn from similar distribu-
tions. Accordingly, we assume for every client i ∈ [C], the input features satisfy Ex∼Di

[xxT ] = Id.

With the theoretical framework established by Assumptions 4.1 and 4.2, we compare the global
performance of LP-FT and FT, highlighting cases where LP-FT outperforms FT. In a PFL setting, the
initial model is trained on data from all clients to capture their shared components. Thus, we initialize
the model parameters as B0 = B∗ and V0 =

[
V ∗
com

T 0
]T

. In LP-FT, a step of linear probing
first updates V0 using local data while keeping B0 fixed, followed by full fine-tuning to update both
V and B. In contrast, FT performs only the second step. The following lemma characterizes B after
one gradient descent step in FT, forming the basis for our comparison.
Lemma 4.3. Under Assumptions 4.1 and 4.2, and assuming that Ex∼Di [xx

T ] = Id for all clients
i ∈ [C], let the initial parameters before starting FT be B0 = B∗ and V0 =

[
V ∗
com

T 0
]T

. Assume
fine-tuning is performed locally on the data of the i-th client. Let BFT denote the feature extractor
matrix after a single gradient descent step (processing the entire dataset once) with learning rate η.
If (bFT

j )T is the j-th row of BFT , then:

E
[
(bFT

j )T
]
= (b∗j )

T + ηλ(V0)j(b
∗
m+i)

T ,

where (b∗j )
T is the j-th row of B∗ , and (V0)j is the j-th element of V0 for j ∈ [k].

This lemma examines the impact of FT on the feature extractor BFT , highlighting the deviations
from the pre-trained matrix B0 = B∗. Given that all clients share the same B∗ in their labeling
functions, substantial changes to the feature extractor can lead to a decline in global performance.
Since the matrix B functions as the feature extractor in our framework, significant feature distortion
occurs when BFT deviates considerably from B∗. Building on Lemma 4.3, Theorem 4.4 offers a
comparative analysis of the global performance of LP-FT versus FT in the context of concept shift.
Theorem 4.4. Under Assumptions 4.1 and 4.2, and assuming Ex∼Di

[xxT ] = Id for all clients
i ∈ [C], let the initial model parameters be B0 = B∗ and V0 =

[
V ∗
com

T 0
]T

. Let BFT and VFT

denote the parameters of the FT method after one gradient descent step (processing the entire dataset
once). For LP-FT, let BLPFT and VLPFT denote the parameters after (i) linear probing, which
optimizes V with B fixed at B∗, and (ii) one gradient descent step with learning rate η. Then:

LG(VLPFT , BLPFT ) ≤ LG(VFT , BFT ).

This theorem characterizes the global performance of LP-FT, suggesting that under concept shift,
LP-FT achieves better performance on global data than FT. When starting from a model initialized
to capture the shared feature extractor and linear head among clients, LP-FT is more effective in
minimizing global loss, aligning with common FL scenarios where the initial model leverages shared
client structure.

4.2 LP-FT’S GLOBAL PERFORMANCE UNDER COMBINED CONCEPT AND COVARIATE SHIFTS

In the previous section, we assumed all clients’ data came from the same distribution with
Ex∼Di

[xxT ] = Id. However, this may not hold in many practical scenarios. To address this,
we introduce covariate shift, where each client’s data is generated as xi = ei + ϵn, with n ∼ N (0, I),
ei as a client-specific shift, and ϵ controlling the noise level. The model structure and data-generating
assumptions remain consistent with Sec. 4.1. This section thus considers both concept and covariate
shifts. Theorem 4.5 analyzes the impact of heterogeneity on the global performance of LP-FT and FT.
Theorem 4.5. Under Assumptions 4.1 and 4.2, let each client’s data be xi = ei + ϵn, where
n ∼ N (0, I) and ei is a client-specific shift. Assume the initial parameters are B0 = B∗ and
V0 =

[
V ∗
com

T 0
]T

. Let BFT , VFT be the FT parameters after one gradient descent step, and

9
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BLPFT , VLPFT be the LP-FT parameters after linear probing and one gradient descent step (with
learning rate η). Then, there exists a threshold λ∗ such that for all λ ≤ λ∗:

LG(VLPFT , BLPFT ) ≤ LG(VFT , BFT ).

Remark 4.6. In Theorem 4.5, the parameter λ characterizes the level of heterogeneity among clients.
The theorem shows that under both covariate and concept shifts, LP-FT outperforms FT in low
heterogeneity settings (λ ≤ λ∗), highlighting its advantage in maintaining generalization. To
further reinforce the theoretical insights and cover more extensive settings, Sec. 5 provides empirical
validation of our findings, confirming the global superiority of LP-FT over FT. While our theoretical
analysis of Theorem 4.5 focuses on the low heterogeneity regime, the experiments in Sec. 5 explore
a broader range, simulating both high and low heterogeneity levels. These results validate and
extend our theoretical insights, demonstrating that LP-FT consistently outperforms FT across all
heterogeneity levels (see also Sec. G in the appendix).

5 EXPERIMENT: FURTHER VALIDATIONS FOR THEORETICAL FINDINGS

Table 2: Performance under Label-
Flipping for FT and LPFT, with LF.R.
as the label-flipping ratio.

LF.R. (%) Metric FT LPFT

20
Avg. ↑ 67.73 79.83

Global ↑ 68.76 83.08
Local ↑ 91.32 91.23

30
Avg. ↑ 60.04 72.95

Global ↑ 55.18 72.75
Local ↑ 91.12 89.20

40
Avg. ↑ 58.27 71.55

Global ↑ 53.70 69.89
Local ↑ 90.84 90.02

50
Avg. ↑ 60.06 73.26

Global ↑ 56.17 72.32
Local ↑ 91.88 90.87

Despite being based on simplified data and model assump-
tions, our theoretical results demonstrate significant prac-
tical relevance. In this section, we empirically validate the
contributions in Sec. 4, exploring the performance impli-
cations of controllable heterogeneities in neural networks
and datasets.

Experimental Settings. To validate the impact of λ in
Theorem 4.5, we simulate a controllable concept shift
setting on the Digit5 dataset with label-flipping under
PFT for both FT and LP-FT. For each client, a proportion
of labels is randomly flipped, referred to as the flipping
ratio. For example, class one is flipped with class two
for the first client, and class two with class three for the
second, using a randomized mechanism. A higher flipping
ratio indicates greater heterogeneity λ. The settings align
with prior studies: the model is pre-trained within the FL
framework and used to initialize both FT and LP-FT. This
simulates the combined concept-covariate shift discussed
in Sec. 4.2. Flipping labels reflects different labeling functions, where higher flipping rates indicate
stronger concept shifts. The Digit5 dataset also introduces covariate shift, as outlined in Sec. 3.2.

Results. As shown in Tab. 2, LP-FT consistently outperforms FT in global performance across
various flipping ratios. This aligns with our theoretical results in Sec. 4.2, especially for deep neural
networks under realistic PFT settings. The flipping rate controls concept shift heterogeneity, with
higher rates indicating greater heterogeneity, while varying data distributions introduce covariate shift.
These experiments simulate the combined concept-covariate shift, as analyzed in our framework.
Notably, LP-FT outperforms FT in all heterogeneity levels, validating its advantage in both low and
high heterogeneity regimes (larger flipping ratios).

6 CONCLUSION

In this work, we tackled the key challenge of balancing local personalization and global generalization
in PFL. Through an extensive empirical evaluation across seven datasets, multiple model architectures,
and various distribution shifts, we revealed critical limitations in existing PFT methods, which often
suffer from overfitting and inconsistent performance across scenarios. To address these issues, we
introduced a simple yet effective strategy combining Linear Probing with full Fine-Tuning (LP-FT),
which consistently outperforms other methods by preserving pre-trained global features and mitigating
the adverse effects of excessive personalization. Through in-depth analysis, we attribute LP-FT’s
strong performance to its ability to prevent feature distortion, which we linked to the degradation of
global performance. Furthermore, we provided a theoretical analysis using two-layer linear networks,
explaining LP-FT’s superior performance, particularly under concept and covariate shift conditions.
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A NAVIGATING THE TRADE-OFF BETWEEN LOCAL AND GLOBAL
PERFORMANCE IN FL

The Challenge of improving both local and global performance. In FL, a primary challenge in
enhancing both local and global performance arises from data heterogeneity. The disparities in data
distribution among individual clients result in divergent risk functions for each client, consequently
leading to disparate optimal solutions. Additionally, in the context of federated learning, each client’s
local training process is oblivious to the data of other clients, rendering models prone to overfitting to
local data distribution after personalized fine-tuning. This personalization overfitting phenomenon
detrimentally impacts global performance.

Previous approaches to personalized federated learning, primarily based on local training, can be
broadly categorized into two main types: Partial fine-tuning (which fine-tunes only specific layers of
the global model on local data to retain globally learned features) (Collins et al., 2021; Arivazhagan
et al., 2019), and regularization guided by the global model to constrain local updates (Li et al.,
2021a; Deng et al., 2020). However, while mitigating overfitting to some extent during local training,
these methods often face challenges in significantly improving both local and global performance,
especially in scenarios with small local training datasets and increased data heterogeneity, as observed
in (Wu et al., 2022).

Potential of improving the trade-off of local and global performance from the perspective of
loss landscape. In order to better understand the dilemma of simultaneously improving local and
global performance, we provide a novel perspective based on the analysis of personalized overfitting
using loss landscape. We believe that the fundamental reason for overfitting in previous PFL methods
is the inability to find a wide low-loss basin influenced by both local and global losses. Previous GFL
methods focus solely on finding the optimal solution in the global loss landscape, while PFL methods
only focus on the optimal solution in the local loss landscape, neglecting the structural information
of the combined loss landscape composed of the two losses. Due to lacking consideration of the
offset between the global and local loss landscapes caused by data heterogeneity, even if previous
PFL methods can find a wide low-loss basin in the local loss landscape, they still cannot guarantee
generalization to other clients. That is also the reason why personalization overfitting emerges.

B FINE-TUNE DETAILS

This section provides an overview of the baseline techniques utilized in our study. We describe the
characteristics and implementation specifics of three main fine-tuning methods: Proximal FT, Soup
FT, and Sparse FT.

B.1 PROXIMAL FT

Proximal Fine-Tuning (Proximal FT) (Li et al., 2020b) is a method that emphasizes preserving the
original knowledge of the pre-trained model while adapting it to new tasks. This technique employs
proximal regularization, which penalizes large deviations from the initial model parameters during the
fine-tuning process. The primary advantage of Proximal FT is its ability to maintain the generalization
capabilities of the pre-trained model, thus reducing the risk of overfitting to the new task’s data. In
our experiments, we used an L2 regularization term to enforce proximity between the pre-trained and
fine-tuned weights, with a regularization coefficient of 0.01.

B.2 SOUP FT

Soup Fine-Tuning (Soup FT) (Wortsman et al., 2022a) is an innovative approach that leverages the
concept of ”model soups,” where multiple fine-tuned models are combined to create a more robust
final model. The key idea is to fine-tune several instances of the pre-trained model on the target
task with different random initializations or data shuffling, and then average the resulting weights to
form a ”soup.” This method aims to enhance model robustness and performance by integrating the
strengths of various fine-tuning instances. For our implementation, we fine-tuned five versions of the
pre-trained model and averaged their parameters to create the final Soup FT model.
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B.3 SPARSE FT

Sparse Fine-Tuning (Sparse FT) (Lee et al., 2018) introduces sparsity constraints into the fine-tuning
process, encouraging the model to update only a subset of its parameters. This approach aims to
improve model efficiency and interpretability by ensuring that only the most relevant weights are
adjusted during training. Sparse FT can be particularly beneficial for deploying models in resource-
constrained environments where computational efficiency is paramount. In our experiments, we
applied L1 regularization to enforce sparsity, setting the regularization coefficient to 0.001 to achieve
a balance between performance and sparsity.

B.4 LP-FT

Linear Probing and then Fine-Tuning (LP-FT) (Kumar et al., 2022) is a two-step transfer learning
approach designed to balance in-distribution (ID) and out-of-distribution (OOD) performance. In
the first step, linear probing trains only the final layer (head) while freezing the pretrained feature
extractor to ensure OOD robustness. The second step fine-tunes all model parameters to improve ID
accuracy while retaining the benefits of linear probing for OOD generalization. LP-FT addresses the
trade-offs inherent in full fine-tuning by initializing with a well-aligned linear head, reducing feature
distortion during optimization. Empirically, LP-FT demonstrates superior ID and OOD accuracy
across diverse datasets.

C EXPERIMENTAL DETAILS

C.1 COMPUTING ENVIRONMENT AND HYPER-PARAMETERS

All experiments in this paper are conducted on NVIDIA A40 Graphics cards using PyTorch. The
Adam optimizer is employed with a learning rate of 1× 10−3. In FL for all datasets, the standard
local model update epochs are set to 1. The communication round is set to be 100 epochs, where
we validated the model results from FL converged. Unless specified otherwise, the batch size for all
benchmarks is standardized at 128. To ensure a fair comparison with various baselines, all methods
initiate the FL personalized fine-tuning with models derived from the best-performing global model
in terms of overall effectiveness.

C.2 VISUALIZATION OF THE ORIGINAL IMAGES

Fig. 5 illustrates a visual representation of the various datasets used in this study, categorized by their
levels of transformation or domain. The figure is divided into three main sections:

(a) Feature-Level Shift (Digit5 and DomainNet): The left panel displays examples from the Digit5
dataset, showcasing digit images in diverse styles and appearances. These include handwritten digits,
digits rendered in varying fonts, and those with unique textures. The right panel features images from
the DomainNet dataset, which includes objects and scenes represented in various artistic styles such
as clip art, sketches, and realistic photographs. Examples include a strawberry, a zebra, and a cat.

(b) Input-Level Shift (CIFAR10-C and CIFAR100-C): This section highlights images from CIFAR10-
C and CIFAR100-C, which apply corruptions to standard CIFAR datasets to evaluate robustness.
Corruptions include noise, blurring, and distortions that affect the clarity and quality of the images.
Example categories feature animals, vehicles, and natural scenes under different types of degradation.

(c) Output-Level Shift (CheXpert and CelebA): The left panel presents grayscale X-ray images from
the CheXpert dataset, widely used in medical imaging tasks. The right panel showcases color images
of celebrity faces from the CelebA dataset, commonly used for facial recognition and attribute
prediction.
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(a) Feature-level Shift (Digit5and DomainNet)

(b) Input-level Shift (CIFAR10-C and CIFAR100-C)

(c) Output-level Shift (ChexPert and CelebA)

Figure 5: Visualization of the original datasets used in the paper.

C.3 DETAILED DATASET AND MODEL INFORMATION

Tab. 3 provides a visual overview of the datasets used in this study, categorized by their levels of
transformation and data heterogeneity. The table is divided into four sections, corresponding to
feature-level, input-level, output-level, and label shift settings:

Feature-Level Shift (Digit5 and DomainNet): The Digit5 dataset, which consists of digit images
collected from five distinct domains, including MNIST, SVHN, USPS, SynthDigits, and MNIST-M.
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These images exhibit a variety of styles, such as handwritten digits, digits rendered in different fonts,
and textured representations, demonstrating substantial visual heterogeneity. The DomainNet dataset,
a large-scale collection featuring objects and scenes from six domains, including styles like clip art,
sketches, and realistic photographs.

Input-Level Shift (CIFAR10-C and CIFAR100-C): This type of distribution shift includes corrupted
versions of CIFAR-10 and CIFAR-100 datasets. The CIFAR10-C dataset applies 50 types of corrup-
tions, such as noise, blur, and distortions, to evaluate model robustness under various degradation
conditions. Similarly, CIFAR100-C extends the CIFAR-100 dataset by introducing the same set of
corruptions, enabling robustness evaluation on a larger and more diverse set of categories.

Data Heterogeneity
Type

Dataset Model Description Clients Classes

Feature-Level Shift

Digit5 ResNet18 A collection of digit images from five domains, used for
domain adaptation and digit recognition tasks (Huang
et al., 2023). Datasets include MNIST, SVHN, USPS,
SynthDigits, and MNIST-M.

5 10

DomainNet ResNet50 A large-scale dataset of images from six distinct domains
for multi-source domain adaptation (Peng et al., 2019b).
Preprocessing follows the strategy in FedBN (Li et al.,
2021c).

6 10

Input-Level Shift

CIFAR10-C ResNet18 A corruption benchmark dataset for
CIFAR-10 (Hendrycks & Dietterich, 2019), augmented
with 30 additional corruption types (Mintun et al., 2021)
and one extra type (Chen et al., 2021), totaling 50
corruption types (including the original 19 types of
corruption from CIFAR-10-C, plus 30 additional
corruption types and one extra type, resulting in a total of
50 distinct corruption types).

50 10

CIFAR100-C ResNet18 An extension of CIFAR-100 with common corruptions,
following the same strategy as CIFAR-10-C.

50 100

Output-Level Shift

CheXpert ResNet50 A chest radiograph dataset labeled for 14 common chest
conditions (Irvin et al., 2019). Edema and No Finding
labels are grouped as described in (Jin et al., 2024).
Clients are spuriously correlated with the attribute gender
(e.g., 90% of label 1 examples in a client are male).

2 2

CelebA ResNet50 Over 200,000 celebrity images with 40 attributes (Liu
et al., 2015). Client splitting follows the same strategy as
CheXpert, with attributes: male, female, blonde hair, and
non-blonde hair.

4 2

Label Shift
CIFAR10 ResNet18 A benchmark dataset with label shift induced via

Dirichlet distribution (α = 0.1), distributed across 20
clients (Krizhevsky et al., 2009).

20 10

Table 3: Detailed information about the datasets and their splitting strategies used in the study. For all
the settings above, each client has an individual data distribution, ensuring the non-IID nature required
for heterogeneous federated learning. Feature-level shift, also referred to as subgroup shift, and
input-level shift, corresponding to image corruption, are categorized as covariate shift. Output-level
shift, representing spurious correlations in our setting, is categorized as concept shift.

Output-Level Shift (CheXpert and CelebA): The CheXpert dataset, a widely used medical imaging
dataset labeled for 14 common chest conditions. In this study, the Edema and No Finding labels are
grouped, and spurious correlations are introduced at the client level, where attributes (i.e. gender in
our client splitting) are disproportionately represented (i.e., 90% of label 1 examples in a client are a
certain attribute). The CelebA dataset, which includes over 200,000 celebrity faces annotated with
40 attributes. Client splitting follows the same strategy as CheXpert, with attributes such as male,
female, blonde hair, and non-blonde hair used to create spurious correlations across clients.

Label Shift (CIFAR10): The final one focuses on label shift in the CIFAR10 dataset. This setting
simulates non-IID conditions by inducing label distributions across clients using a Dirichlet distri-
bution with α = 0.1. This creates significant variations in class distributions among the 20 clients,
mimicking real-world federated learning scenarios where data availability across clients is inherently
imbalanced.
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D FURTHER EMPIRICAL RESULTS

D.1 OTHER PEFT METHODS DISTORT FEDERATED FEATURE

PEFT Method Local Global Avg.

LoRA (lr=1e-3) 41.54 26.75 26.87
LoRA (lr=1e-4) 42.01 26.41 27.18
Adapter (lr=1e-3) 48.35 39.28 38.08
Adapter (lr=1e-4) 49.07 39.83 38.36
LP-FT 68.50 57.52 53.52

Table 4: Different PEFT compared on DomainNet with ViT.

Setup. In this study, we adapted two widely recognized parameter-efficient fine-tuning (PEFT)
methods: LoRA (Hu et al., 2022) and Adapter (Houlsby et al., 2019). Both methods were fine-
tuned with meticulous adjustments to their learning rates on the ViT, as detailed in Tab. 4. These
configurations allowed us to assess the impact of different fine-tuning strategies on federated features.
The performance of each method was measured in terms of local, global, and average accuracy.

Result. The effectiveness of bias tuning in personalized fine-tuning naturally raises the question
of whether other PEFT methods, commonly used for fine-tuning large models, exhibit similar
effectiveness in our setting. In this study, we compare the local and global performance of other
popular PEFT methods. Our findings reveal that while these methods can achieve high levels of
local performance, their global performance still drops significantly, indicating that they distort the
federated features to a certain extent. These PEFT methods’ local and global performance still fall
short compared to LP-FT, indicating that they distort the federated features to a certain extent.

The comparison of PEFT methods in the context of personalized fine-tuning sheds light on the unique
challenges and requirements of this setting. Despite the success of PEFT techniques in fine-tuning
large models for various tasks, our results suggest that their direct application to personalized FL
may not yield optimal results in terms of preserving the global knowledge captured by the federated
features.

D.2 PFL RESULTS

Setup. To further demonstrate the importance of preserving federated features, we compare LP-FT
with other popular personalized FL methods. Our primary focus in this paper is on the training during
the FT phase. Unless otherwise specified, we consistently use models trained with FedAvg for FL.
Unlike other personalized FL methods, which often involve additional operations during the FL phase
(such as local training or model aggregation), our LP-FT method relies solely on vanilla FedAvg.

Results. From the table, it is evident that even without additional operations, LP-FT, which focuses
on preserving federated features, remains highly competitive compared to other personalized FL
methods. This observation underscores the significance of retaining the global features learned during
the FL process. By directly comparing LP-FT with methods that employ extra techniques during
the federated training phase, we demonstrate that the simple yet effective approach of preserving
federated features can yield competitive results. This finding suggests that the key to achieving strong
personalization lies in maintaining the knowledge acquired through collaboration across multiple
clients, rather than relying on complex modifications to the FL algorithm.
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PFL Method Local Acc. (↑) Global Acc. (↑) Avg. Acc.

FedBN (Li et al., 2021b) 88.68 61.35 61.00
PerAvg (Fallah et al., 2020) 87.06 67.26 66.66
FedNova (Wang et al., 2020) 88.68 54.26 53.41
FedRep (Collins et al., 2021) 86.94 52.99 52.57
FedSoup (Chen et al., 2023) 90.30 75.62 75.21
LP-FT 93.03 82.46 82.17

Table 5: Different PFL Methods on CelebA.

D.3 LABEL SHIFT

We simulated label shift using a Dirichlet distribution with an alpha parameter set to 0.1. The dataset
was distributed across 20 clients, and we trained a ResNet18 model for classification. Results is
shown in Tab. 6.

CIFAR10

Baseline Local Global C-Std. Worst Avg
FT 87.20 (0.24) 16.67 (0.14) 26.81 (1.47) 0.01 (0.00) 34.62 (0.09)

Proximal FT 89.80 (1.21) 17.42 (1.46) 27.31 (0.08) 0.01 (0.00) 35.75 (0.09)
Soup FT 88.16 (0.15) 16.94 (0.05) 27.07 (0.11) 0.01 (0.00) 35.04 (0.04)

Sparse FT 89.16 (0.00) 17.54 (0.14) 27.27 (0.02) 0.01 (0.00) 35.57 (0.04)
LP-FT 90.15 (0.43) 17.73 (0.16) 27.37 (0.09) 0.01 (0.00) 35.96 (0.10)

Table 6: Comparison of PFT methods on CIFAR10 label shift setting.

Tab. 6 compares different fine-tuning methods on CIFAR10 across multiple evaluation metrics,
including local performance, global performance, robustness to corruption (C-Std.), worst-case
performance, and average performance. Among the methods, LP-FT achieves the best results,
excelling in local performance (90.15), global evaluation (17.73), and average performance (35.96).
Proximal FT and Sparse FT also perform competitively, with improvements over standard fine-tuning
(FT) and Soup FT in most metrics. All methods show near-identical performance in the worst-case
scenario (0.01), indicating a shared limitation in extreme cases. Overall, LP-FT demonstrates the
most robust and effective fine-tuning approach on CIFAR10.

E LIMITATIONS AND BROADER IMPACT.

In our paper, we focused exclusively on vision-related tasks. Extending our empirical findings to
language tasks or multimodal scenarios would be a promising direction for future research. Our FL
study primarily addresses simulated cross-silo FL settings. Validating our conclusions in real-world
FL deployments would also be a worthwhile direction for future exploration. Deploying FL that
balances personalization and generalization capabilities in healthcare scenarios holds great promise.
However, excessive personalization could lead to issues with the fairness of algorithmic decisions.

F PROOFS

Proof of Lemma 4.3. We want to analyze the Fine-Tuning (FT) method, focusing on the effect of
initial parameters. We perform one pass through the entire dataset to simulate the complete fine-tuning
process. Consider the Mean Squared Error (MSE) loss function with parameters V and B, where B
is represented as follows:
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B =



bT1
...
bTm

bTm+1
...

bTm+C


,

where bTi ∈ R1×d denotes the i-th row of matrix B, and m+ C = k.

To apply one step of gradient descent, we need to compute the gradient of the loss function with
respect to V , b1, b2, . . . , bm+C , and then perform one update step.

W.L.O.G. we assume the local client is client 1. We define the local loss function as follows:

LL(V,B) = Ex∼D1

[
1

2
(V TBx− V ∗

1
TB∗x)

2

]
,

where D1 is the data distribution for client 1.

Now, let (X1,Y1) represent the local dataset of client 1, consisting of n1 data points {(x1j , y1j)}n1
j=1.

We aim to calculate the gradient of the empirical loss function with respect to the parameters. The
empirical loss function is given by:

L̂L(V,B) =
1

n1

n1∑
j=1

[
1

2
(V TBx1j − V ∗

1
TB∗x1j)

2

]
.

In practice, we take the gradient of this empirical loss function with respect to the parameters V , b1,
b2, . . . , bm+C . However, since we are particularly interested in computing the expectation E[bFT

j ],
we evaluate the expected value of the gradients using one pass through the whole dataset as follows:

E

 ∂L̂L

∂V

∣∣∣∣∣V=V0
B=B∗

 = E

 ∂

∂V

 1

n1

n1∑
j=1

1

2

(
V TBx1j − V ∗

1
TB∗x1j

)2∣∣∣∣∣∣V=V0
B=B∗


=

1

n1

n1∑
j=1

E
[
(V T

0 B∗x1j − V ∗
1
TB∗x1j)x

T
1jB

T
∗

]
= Ex∼D1

[
(V T

0 B∗x− V ∗
1
TB∗x)x

TBT
∗

]
.

Therefore, let V0 =
[
V ∗
com

T 0T
]T

. It follows that:

E

[
∂L

∂V

∣∣∣∣V=V0
B=B∗

]
= Ex∼D1

[
(V T

0 B∗x− V ∗
1
TB∗x)x

TBT
∗

]
= Ex∼D1

[(
(V0 − V ∗

1 )
TB∗x

)
xTBT

∗

]
= (V0 − V ∗

1 )
TB∗

(
Ex∼D1

[
xxT

])
BT

∗

= (V0 − V ∗
1 )

TB∗B
T
∗ (second moment is identity)

= (V0 − V ∗
1 )

T . (B∗ has orthonormal rows)

Let B∗ =



b∗1
T

...
b∗m

T

b∗m+1
T

...
b∗m+C

T


. Then, similarly, it can be shown that:
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E

[
∂L

∂bj

∣∣∣∣V=V0
B=B∗

]
= Ex∼D1

[
(V T

0 B∗x− V ∗
1
TB∗x)(V0)jx

T
]

= Ex∼D1

[
(V0)j

(
(V0 − V ∗

1 )
TB∗x

)
xT
]

= (V0)j(V0 − V ∗
1 )

TB∗

(
Ex∼D1

[
xxT

])
= (V0)j(V0 − V ∗

1 )
TB∗. (second moment is identity)

Here, (V0)j is the j-th element of the vector V0. For learning rate η, one step of gradient descent is:

VFT = V0 − η

(
∂L

∂V

∣∣∣∣V=V0
B=B∗

)T

bFT
j = b∗j − η

(
∂L

∂bj

∣∣∣∣ V=V0
B0=B∗

)T

.

These two equations can be further refined as:

E
[
VFT

]
=
[
V ∗
com

T 0T
]T − η(V0 − V ∗

1 ) =
[
V ∗
com

T ηλeT1
]T

E
[
bFT
j

]
= b∗j − η

(
∂L

∂bj

∣∣∣∣ V=V0
B0=B∗

)T

= b∗j − η

(
(V0)j(V0 − V ∗

1 )
TB∗

)T

= b∗j − ηλ

(
(V0)j

[
0T −eT1

]
B∗

)T

= b∗j + ηλ(V0)jb
∗
m+1.

Therefore, we have:

E
[
BFT

]
=



b∗1
T + ηλ(V0)1b

∗
m+1

T

...
b∗m

T + ηλ(V0)mb∗m+1
T

b∗m+1
T + ηλ(V0)m+1b

∗
m+1

T

...
b∗m+C

T + ηλ(V0)m+Cb
∗
m+1

T


=



b∗1
T + ηλ(V0)1b

∗
m+1

T

...
b∗m

T + ηλ(V0)mb∗m+1
T

b∗m+1
T

...
b∗m+C

T



=



b∗1
T + ηλ(V ∗

com)1b
∗
m+1

T

...
b∗m

T + ηλ(V ∗
com)mb∗m+1

T

b∗m+1
T

...
b∗m+C

T


.

Similarly, if the fine-tuning is done over the data of client i, we would have:

E
[
bFT
j

]
= b∗j + ηλ(V0)jb

∗
m+i,

which concludes the proof.

Proof of Theorem 4.4. We assume that the pre-trained model perfectly captures the feature extractor
matrix B∗, and its linear head represents the common part shared across all clients, excluding any
client-specific components of the ground-truth function. Thus, B0 = B∗ and V0 =

[
V ∗
com

T 0
]T

.
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In this setting, we analyze the effects of LP-FT and FT on the model parameters. For both LP-FT and
FT, we determine the parameters after fine-tuning, compute the global loss, and then compare these
global losses.

W.L.O.G. we assume that we are doing the fine-tuning over the local data of client 1. First, we study
LP-FT. Initially, one step of linear probing is conducted with the fixed feature extractor B∗. After
this step, the linear head VLP will converge to V ∗

1 . This is because we know that:

argmin
v

∥∥XB⊤
0 v −XB⊤

∗ v∗
∥∥2
2
=
(
B0X

⊤XB⊤
0

)−1
B0X

⊤XB⊤
∗ v∗,

where X is the n× d matrix including data of n individuals. Since the fine-tuning is on the data of
the client 1 (local data), we have:

VLP =
(
B0X1

⊤X1B
⊤
0

)−1

B0X1
⊤X1B

⊤
∗ V ∗

1 .

Therefore, we have:

VLP =
(
B0X1

⊤X1B
⊤
0

)−1

B0X1
⊤X1B

⊤
∗ V ∗

1

=
(
B∗X1

⊤X1B
⊤
∗

)−1

B∗X1
⊤X1B

⊤
∗ V ∗

1

= V ∗
1 .

Since at the beginning of the fine-tuning (FT) step, we have the perfect B∗ and V ∗
1 for the local client 1,

and FT is performed on the data of the same client, we can conclude that after one step of FT following
LP, the parameters will remain unchanged. Specifically, we have VLPFT = V ∗

1 =
[
V ∗
com

T eT1
]T

and BLPFT = B∗.

For the performance on the global data, we have:

LG(VLPFT , BLPFT ) =
1

C

∑
i∈[C]

Ex∼Di

[
1

2
(V T

LPFTBLPFTx− V ∗
i
TB∗x)

2

]

=
1

C

∑
i∈[C]

Ex∼Di

[
1

2
(V ∗

1
TB∗x− V ∗

i
TB∗x)

2

]

=
1

2C

∑
i∈[C]

Ex∼Di

[
(BT

∗ V
∗
1 −BT

∗ V
∗
i )

TxxT (BT
∗ V

∗
1 −BT

∗ V
∗
i )

]

=
1

2C

∑
i∈[C]

[
(BT

∗ V
∗
1 −BT

∗ V
∗
i )

TEx∼Di

[
xxT

]
(BT

∗ V
∗
1 −BT

∗ V
∗
i )

]

=
1

2C

∑
i∈[C]

[
(BT

∗ V
∗
1 −BT

∗ V
∗
i )

T (BT
∗ V

∗
1 −BT

∗ V
∗
i )

]
(second moment Id)

=
1

2C

∑
i∈[C]

[
(V ∗

1 − V ∗
i )

TB∗B
T
∗ (V

∗
1 − V ∗

i )

]

=
1

2C

∑
i∈[C]

[
(V ∗

1 − V ∗
i )

T Ik(V
∗
1 − V ∗

i )

]
(B∗ has orthonormal rows)

=
1

2C

∑
i∈[C]
i ̸=1

[
(V ∗

1 − V ∗
i )

T (V ∗
1 − V ∗

i )

]

=
1

2C

∑
i∈[C]
i ̸=1

[∥∥(V ∗
1 − V ∗

i )
∥∥2
2

]
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=
1

2C

∑
i∈[C]
i ̸=1

[∥∥∥∥([V ∗
com

T λeT1
]T −

[
V ∗
com

T λeTi
]T

)

∥∥∥∥2
2

]

= (
1

2C
)2(C − 1) = λ2C − 1

C
. (1)

It can be shown that:

LG(VFT , BFT ) =
1

C

∑
i∈[C]

Ex∼Di

[
1

2
(V T

FTBFTx− V ∗
i
TB∗x)

2

]

=
1

2C

∑
i∈[C]

Ex∼Di

[
(BT

FTVFT −BT
∗ V

∗
i )

TxxT (BT
FTVFT −BT

∗ V
∗
i )

]

=
1

2C

∑
i∈[C]

(BT
FTVFT −BT

∗ V
∗
i )

T

[
Ex∼Dixx

T

]
(BT

FTVFT −BT
∗ V

∗
i )

=
1

2C

∑
i∈[C]

(BT
FTVFT −BT

∗ V
∗
i )

T (BT
FTVFT −BT

∗ V
∗
i ) (second moment is Id)

=
1

2C

∑
i∈[C]

∥∥(BT
FTVFT −BT

∗ V
∗
i )
∥∥2
2
. (2)

We have:

BT
∗ V

∗
i =

m∑
j=1

(V ∗
com)jb

∗
j + λb∗m+i

BT
FTVFT =

m∑
j=1

(V ∗
com)jb

∗
j +

m∑
j=1

ηλ(V ∗
com)j

2
b∗m+1 + ηλb∗m+1.

Therefore, we can obtain:

(BT
FTVFT −BT

∗ V
∗
i ) = λ

( m∑
j=1

η(V ∗
com)j

2
b∗m+1 + ηb∗m+1 − b∗m+i

)
.

For i ̸= 1, we have:

(BT
FTVFT −BT

∗ V
∗
i )

T (BT
FTVFT −BT

∗ V
∗
i )

= λ2
( m∑
j=1

η(V ∗
com)j

2
b∗m+1 + ηb∗m+1 − b∗m+i

)T ( m∑
j=1

η(V ∗
com)j

2
b∗m+1 + ηb∗m+1 − b∗m+i

)
= λ2

((
η + η

m∑
j=1

(V ∗
com)j

2

)2

+ 1

)
. (rows of B∗ are orthonormal)

For i = 1, we have:

(BT
FTVFT −BT

∗ V
∗
i )

T (BT
FTVFT −BT

∗ V
∗
i )

= λ2
( m∑
j=1

η(V ∗
com)j

2
b∗m+1 + ηb∗m+1 − b∗m+i

)T ( m∑
j=1

η(V ∗
com)j

2
b∗m+1 + ηb∗m+1 − b∗m+i

)
= λ2

(
η + η

m∑
j=1

(V ∗
com)j

2 − 1

)2

. (rows of B∗ are orthonormal)
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Combining these with (2), we can conclude:

LG(VFT , BFT ) =
1

2C

∑
i∈[C]

∥∥(BT
FTVFT −BT

∗ V
∗
i )
∥∥2
2

=
λ2

2C

((
η + η

m∑
j=1

(V ∗
com)j

2 − 1

)2

+ (C − 1)

((
η + η

m∑
j=1

(V ∗
com)j

2
)2

+ 1

))
.

(3)

Combining (1) and (3), we have:

LG(VLPFT , BLPFT ) ≤ LG(VFT , BFT ).

Proof of Theorem 4.5. W.L.O.G. we assume that the local fine-tuning is performed on the data of the
first client. Initially, one step of linear probing is conducted with the fixed feature extractor B∗. After
this step, the linear head VLP will converge to V ∗

1 . This is because we know that:

argmin
v

∥∥X1B
⊤
0 v −X1B

⊤
∗ v∗

∥∥2
2
=
(
B0X1

⊤X1B
⊤
0

)−1

B0X1
⊤X1B

⊤
∗ v∗,

where X1 is the n× d matrix including data of n individuals. Since the fine-tuning is on the data of
the client 1 (local data), we have:

VLP =
(
B0X1

⊤X1B
⊤
0

)−1

B0X1
⊤X1B

⊤
∗ V ∗

1 .

Therefore, we have:

VLP =
(
B0X1

⊤X1B
⊤
0

)−1

B0X1
⊤X1B

⊤
∗ V ∗

1

=
(
B∗X1

⊤X1B
⊤
∗

)−1

B∗X1
⊤X1B

⊤
∗ V ∗

1

= V ∗
1 .

This part is identical to the initial part of the proof of Theorem 4.4. Since at the beginning of the
fine-tuning (FT) step, we have the perfect B∗ and V ∗

1 for the local client 1, and FT is performed on
the data of the same client, we can conclude that after one step of FT following LP, the parameters
will remain unchanged. Specifically, we have VLPFT = V ∗

1 =
[
V ∗
com

T λeT1
]T

and BLPFT = B∗.

For the performance on the global data, we have:

LG(VLPFT , BLPFT ) =
1

C

∑
i∈[C]

Ex∼Di

[
1

2
(V T

LPFTBLPFTx− V ∗
i
TB∗x)

2

]

=
1

C

∑
i∈[C]

Ex∼Di

[
1

2
(V ∗

1
TB∗x− V ∗

i
TB∗x)

2

]

=
1

2C

∑
i∈[C]

Ex∼Di

[
(BT

∗ V
∗
1 −BT

∗ V
∗
i )

TxxT (BT
∗ V

∗
1 −BT

∗ V
∗
i )

]

=
1

2C

∑
i∈[C]

[
(BT

∗ V
∗
1 −BT

∗ V
∗
i )

TEx∼Di

[
xxT

]
(BT

∗ V
∗
1 −BT

∗ V
∗
i )

]

=
1

2C

∑
i∈[C]

[
(V ∗

1 − V ∗
i )

TB∗

(
Ex∼Di

[
xxT

])
BT

∗ (V
∗
1 − V ∗

i )

]

=
1

2C

∑
i∈[C]

[
(V ∗

1 − V ∗
i )

TB∗

(
En∼N (0,Id)

[
(ei + ϵn)(ei + ϵn)T

])
BT

∗ (V
∗
1 − V ∗

i )

]
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=
1

2C

∑
i∈[C]

[
(V ∗

1 − V ∗
i )

TB∗

(
eie

T
i + ϵ2En∼N (0,Id)

[
nnT

])
BT

∗ (V
∗
1 − V ∗

i )

]

=
1

2C

∑
i∈[C]

[
(V ∗

1 − V ∗
i )

TB∗

(
eie

T
i + ϵ2Id

)
BT

∗ (V
∗
1 − V ∗

i )

]

=
1

2C

∑
i∈[C]

[
(V ∗

1 − V ∗
i )

TB∗

(
eie

T
i

)
BT

∗ (V
∗
1 − V ∗

i )

]

+
1

2C

∑
i∈[C]

[
(V ∗

1 − V ∗
i )

TB∗

(
ϵ2Id

)
BT

∗ (V
∗
1 − V ∗

i )

]

=
1

2C

∑
i∈[C]

[
(V ∗

1 − V ∗
i )

T (B∗):,i(B∗):,i
T
(V ∗

1 − V ∗
i )

]
((B∗):,i i-th column of B∗)

+
1

2C

∑
i∈[C]

[
ϵ2(V ∗

1 − V ∗
i )

T (V ∗
1 − V ∗

i )

]
(B∗ has orthonormal rows)

=
λ2

2C

∑
i∈[C]

[(
(B∗)m+1,i − (B∗)m+i,i

)2]
+

1

2C
ϵ2
∑
i∈[C]

[∥∥(V ∗
1 − V ∗

i )
∥∥2
2

]

=
λ2

2C

∑
i∈[C]

[(
(B∗)m+1,i − (B∗)m+i,i

)2]
+

λ2
(
C − 1

)
C

ϵ2. (4)

We want to analyze the fine tuning (FT) method, focusing on the effect of initial parameters. We
perform one pass through the entire dataset to simulate the complete fine-tuning process. Consider
the Mean Squared Error (MSE) loss function with parameters V and B, where B is represented as
follows:

B =



bT1
...
bTm

bTm+1
...

bTm+C


,

where bTi ∈ R1×d denotes the i-th row of matrix B, and m+ C = k.

To apply one step of gradient descent, we need to compute the gradient of the loss function with
respect to V , b1, b2, . . . , bm+C , and then perform one update step.

Let V0 =
[
V ∗
com

T 0T
]T

. It follows that:

E

[
∂L

∂V

∣∣∣∣V=V0
B=B∗

]
= Ex∼D1

[
(V T

0 B∗x− V ∗
1
TB∗x)x

TBT
∗

]
= Ex∼D1

[(
(V0 − V ∗

1 )
TB∗x

)
xTBT

∗

]
= (V0 − V ∗

1 )
TB∗

(
Ex∼D1

[
xxT

])
BT

∗

= (V0 − V ∗
1 )

TB∗

(
En∼N (0,Id)

[
(e1 + ϵn)(e1 + ϵn)T

])
BT

∗

= (V0 − V ∗
1 )

TB∗

(
e1e

T
1 + ϵ2Id

)
BT

∗

= (V0 − V ∗
1 )

TB∗

(
e1e

T
1

)
BT

∗ + (V0 − V ∗
1 )

TB∗

(
ϵ2Id

)
BT

∗

= (V0 − V ∗
1 )

TB∗

(
e1e

T
1

)
BT

∗ + ϵ2(V0 − V ∗
1 )

T (B∗ has orthonormal rows)
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= (V0 − V ∗
1 )

T
(
(B∗):,1(B∗):,1

T
)
+ ϵ2(V0 − V ∗

1 )
T ((B∗):,1 is first column of B∗)

=
(
−λ(B∗)m+1,1

)
(B∗)

T
:,1 + ϵ2(V0 − V ∗

1 )
T .

Let B∗ =



b∗1
T

...
b∗m

T

b∗m+1
T

...
b∗m+C

T


. Then, it can be shown that:

E

[
∂L

∂bj

∣∣∣∣V=V0
B=B∗

]
= Ex∼D1

[
(V T

0 B∗x− V ∗
1
TB∗x)(V0)jx

T
]

= Ex∼D1

[
(V0)j

(
(V0 − V ∗

1 )
TB∗x

)
xT
]

= (V0)j(V0 − V ∗
1 )

TB∗

(
Ex∼D1

[
xxT

])
= (V0)j(V0 − V ∗

1 )
TB∗

(
En∼N (0,Id)

[
(e1 + ϵn)(e1 + ϵn)T

])
= (V0)j(V0 − V ∗

1 )
TB∗

(
e1e

T
1 + ϵ2Id

)
= (V0)j(V0 − V ∗

1 )
TB∗

(
e1e

T
1

)
+ (V0)j(V0 − V ∗

1 )
TB∗

(
ϵ2Id

)
= (V0)j(V0 − V ∗

1 )
TB∗

(
e1e

T
1

)
+ ϵ2(V0)j(V0 − V ∗

1 )
TB∗.

Here, (V0)j is the j-th element of the vector V0. For learning rate η, one step of gradient descent can
be:

VFT = V0 − η

(
∂L

∂V

∣∣∣∣V=V0
B=B∗

)T

bFT
j = b∗j − η

(
∂L

∂bj

∣∣∣∣ V=V0
B0=B∗

)T

.

These two equations can be further refined as:

E
[
VFT

]
=
[
V ∗
com

T 0T
]T − η

(
−λ(B∗)m+1,1(B∗):,1 + ϵ2(V0 − V ∗

1 )

)

=


V ∗
com
0
0
...
0

+


0

ηλϵ2

0
...
0

+ ηλ(B∗)m+1,1(B∗):,1

E
[
bFT
j

]
= b∗j − η

(
(V0)j(V0 − V ∗

1 )
TB∗

(
e1e

T
1

)
+ ϵ2(V0)j(V0 − V ∗

1 )
TB∗

)T

= b∗j +


ηλ(V0)j(B∗)m+1,1

0
...
0

+ ηλ(V0)jϵ
2b∗m+1.
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Therefore, we have:

E
[
BFT

]
=



b∗1
T + ηλ(V0)1ϵ

2b∗m+1
T + ηλ(V0)1(B∗)m+1,1e

T
1

...
b∗m

T + ηλ(V0)mϵ2b∗m+1
T + ηλ(V0)m(B∗)m+1,1e

T
1

b∗m+1
T + ηλ(V0)m+1ϵ

2b∗m+1
T + ηλ(V0)m+1(B∗)m+1,1e

T
1

...
b∗m+C

T + ηλ(V0)m+Cϵ
2b∗m+1

T + ηλ(V0)m+C(B∗)m+1,1e
T
1



=



b∗1
T + ηλ(V0)1ϵ

2b∗m+1
T + ηλ(V0)1(B∗)m+1,1e

T
1

...
b∗m

T + ηλ(V0)mϵ2b∗m+1
T + ηλ(V0)m(B∗)m+1,1e

T
1

b∗m+1
T

...
b∗m+C

T


.

It can be shown that:

LG(VFT , BFT ) =
1

C

∑
i∈[C]

Ex∼Di

[
1

2
(V T

FTBFTx− V ∗
i
TB∗x)

2

]
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FTVFT −BT
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∗
i )

TxxT (BT
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∗
i )

]
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2C
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(BT
FTVFT −BT
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∗
i )

T

[
Ex∼Di

xxT

]
(BT

FTVFT −BT
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∗
i )
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2C
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(BT
FTVFT −BT

∗ V
∗
i )

T
(
eie

T
i + ϵ2Id

)
(BT

FTVFT −BT
∗ V

∗
i )

=
1

2C

∑
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(BT
FTVFT −BT

∗ V
∗
i )

T
(
eie

T
i

)
(BT

FTVFT −BT
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∗
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+
1

2C

∑
i∈[C]

(BT
FTVFT −BT

∗ V
∗
i )

T
(
ϵ2Id

)
(BT

FTVFT −BT
∗ V

∗
i )

=
1

2C

∑
i∈[C]

(BT
FTVFT −BT
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∗
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T
(
eie
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∗
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+ ϵ2
1

2C

∑
i∈[C]

∥∥(BT
FTVFT −BT

∗ V
∗
i )
∥∥2
2
. (5)

We have:

BT
∗ V

∗
i =

m∑
j=1

(V ∗
com)jb

∗
j + λb∗m+i

BT
FTVFT = ηλϵ2σ2b∗m+1 +

m+C∑
j=m+1

(
ηλ(B∗)m+1,1(B∗)j,1

)
b∗j

+

m∑
j=1

(
(V ∗

com)j + ηλ(B∗)m+1,1(B∗)j,1
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b∗j + ηλ(V ∗

com)jϵ
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)
.
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Therefore, we can obtain:

BT
FTVFT −BT

∗ V
∗
i =

m∑
j=1

(V ∗
com)j

(
b∗j + ηλ(V ∗

com)jϵ
2σ2b∗m+1 + ηλ(V ∗

com)j(B∗)m+1,1e1

)

+ ηλϵ2σ2b∗m+1 − λb∗m+i +

m+C∑
j=m+1

(
ηλ(B∗)m+1,1(B∗)j,1

)
b∗j (6)

+

m∑
j=1

(
ηλ(B∗)m+1,1(B∗)j,1

)(
b∗j + ηλ(V ∗

com)jϵ
2σ2b∗m+1 + ηλ(V ∗

com)j(B∗)m+1,1e1

)
.

(7)

From equation (4), we observe that LG(VLPFT , BLPFT ) is a monotonically decreasing function of
λ and as λ approaches zero, LG(VLPFT , BLPFT ) also converges to zero. In contrast, combining
equations (5) and (6), we find that LG(VFT , BFT ) does not converge to zero as λ approaches zero
due to the presence of constant terms independent of λ. Therefore, it follows that there always exists
a threshold λ∗ such that for all λ ≤ λ∗:

LG(VLPFT , BLPFT ) ≤ LG(VFT , BFT ).

G EMPIRICAL PERFORMANCE OF LP-FT AND FT UNDER THEOREM 4.5
CONDITIONS

To give a better understanding of Theorem 4.5, we give a simple visualization of two randomly
generated data-generating functions for different clients and compute the global loss of LP-FT and
FT based on equations (4) and (5).

Figure 6: (a) Global loss of LP-FT and FT as a function of the heterogeneity parameter λ, with
η = 0.1, ϵ = 0.1, matrix B∗ as a 10× 20 random matrix, and number of clients C = 5. (b) Global
loss of LP-FT and FT as a function of the heterogeneity parameter λ, with η = 0.1, ϵ = 1, matrix B∗
as a 10× 20 random matrix, and number of clients C = 5.

These examples illustrate, within the theoretical setting of Sec. 4.2, the behavior of the loss functions
for LP-FT and FT with a randomly generated labeling function y = V ∗

i
TB∗x, a fixed learning rate

η, noise parameter ϵ, and a fixed number of clients C. To compute this, we generated 1000 random
matrices B∗ and 1000 randomly chosen linear heads V ∗

i as ground-truth labeling functions, ensuring
they adhere to the theoretical assumptions. Using equations (4) and (5), we calculated the average
loss of LP-FT and FT across these random trials.

As shown in Fig. 6, there exists a threshold λ∗ such that when λ ≤ λ∗, LP-FT consistently outperforms
FT. While this is a simplified example with a fixed number of clients, learning rate, noise parameter,
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and dimensionality of the ground-truth parameters B∗ and V ∗
i , the observed trend remains similar

across different parameter settings. The purpose of this figure is to provide an intuitive understanding
of Theorem 4.5 in a controlled, simplified context. More comprehensive experiments in Sec. 5
demonstrate that LP-FT globally outperforms FT across a broader range of heterogeneity levels in
real-world settings.

H COMPUTATIONAL COST OF LP-FT COMPARED TO FT

In this section, we want to study the computation cost of adding one step of linear probing (LP) to
the full-fine tuning (FT) to see how this additional LP step affects computational cost. Suppose the
dimension of the output of the feature extractor layer (input of the linear head) is d and the dimension
of the output of the linear head is m. In fact, the linear head will be a d×m linear layer. We assume
having n samples. We want to see what is the computational cost of fine-tuning this linear head.

To estimate the computational cost of training a linear neural network layer with d inputs, m outputs,
and n samples, we analyze the steps involved:

1. Forward Pass: A linear neural network computes outputs as:

Y = XW,

where:
• X ∈ Rn×d is the input matrix (with n samples, each of dimension d),
• W ∈ Rd×m is the weight matrix,
• Y ∈ Rn×m is the output matrix.

The cost of this matrix multiplication is O(ndm).
2. Backward Pass (Gradient Computation): To update W , the gradient of the loss L with

respect to W is computed. We know that:

∇WL = XT
(
∇Y L

)
Therefore, computing

(
∇WL

)
involves:

• Computing the gradient of the loss with respect to the outputs Y , which has a cost of
O(nk),

• matrix multiplication ∇WL = XT
(
∇Y L

)
which involves a matrix multiplication with

a cost of O(ndm).
3. Weight Update: If using gradient descent, the cost of updating the weights is O(dm).

Total Computational Cost: The total cost for one forward and backward pass through the data is
dominated by O(ndm), which accounts for both forward propagation and gradient computation. If
the training involves multiple epochs, the total cost scales as:

O(e · ndm),

where e is the number of epochs.
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