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Abstract

Neural network training requires a lot of resources, and there are situations where
training time and memory usage are limited. It makes specialized algorithms for
training neural networks within the constraints of resource limitations an important
and significant challenge. Data Reduction with Losses is a novel training data
reduction method that operates with training samples based on losses obtained
from a currently trained model or a pre-trained one. The proposed method can
be used to train Deep Neural Networks for both Computer Vision and Natural
Language Processing tasks in real and hypercomplex domains. When this method
is applied to Large Language Models fine-tuning, Data Reduction with Losses
is recommended to be combined with existing methods for Parameter-Efficient
fine-tuning, such as LoRA. The training acceleration for ResNet18 is 2.03x, for
Hypercomplex ResNet18 is 2.09x, GPT-2 Medium fine-tuning with DAREL on
top of LoRA allows to achieve 1.43x acceleration with corresponding increase of
BLEU score by 1.81 p.p. compared to baseline fine-tuning with LoRA method.

1 Introduction

Deep Learning (DL) has recently become the primary choice for numerous application domains, such
as: computer vision [Shen et al., 2017], signal processing [Tuncer et al., 2020], natural language
processing [Vaswani et al., 2017], robotics [Andrychowicz et al., 2020], autonomous driving [Janai
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et al., 2020] and reinforcement learning [Silver et al., 2018]. One of the clear reasons for DL to
become so widespread among industrial applications is the constant growth of the computational
capacity of new hardware and the enormous increase of data for analysis. It is believed that by 2025,
the amount will be increased to 175 zettabytes [Rydning et al., 2018]. Moreover, modern datasets
for training deep neural networks (DNN) also grow from 14.2M images in the ImageNet challenge
in 2015 [Russakovsky et al., 2015] to 3B images in JFT-3B in 2022 [Zhai et al., 2022] increases
the time required to train DNN. Futhermore, every hour that the GPU operates incurs a substantial
cost to the environment due to its required power production, which leads to an increase in carbon
dioxide emissions into the atmosphere [Strubell et al., 2019]. To investigate modern methods of DNN
computing, recent studies have shown that hypercomplex neural networks outperform real-valued
ones in terms of accuracy results [Pavlov et al., 2023], however, they underperform in training time.
Hence, creating a cost-effective learning technology is the key challenge to solving the problem of a
sharp increase in training time and computational resource consumption [Mirzasoleiman et al., 2020].

This paper makes the following primary contributions:

1. A novel two-stage method is designed to accelerate the pre-training of CNN and fine-tuning
of LLM by implementing the importance sampling method based on losses information.
According to our research, previous attempts were limited to applying importance sampling
strategies to CNN models training only. We demonstrate acceleration of ResNet18 pre-
training to 2.03x, Hypercomplex ResNet18 (ResNet18-HC) pre-training to 2.09x and GPT-2
Medium fine-tuning to 1.43x.

2. The concept of training budget for Computer Vision (CV) pre-training is introduced as a
function of maximum GPU memory utilization and maximum training time. When pre-
trained on ResNet18 a 1.26x acceleration is achieved with a time limitation by 80% and
memory limitation by 70%.

3. Improvements to the state-of-the-art method for LLM fine-tuning [Hu et al., 2021] (LoRA)
is delivered. Reported results include increase of BLEU score for GPT-2 Medium by 1.81
p.p. with 1.25x acceleration for E2E-NLG dataset.

The structure of the paper is as follows: Section 2 introduces a thorough overview of existing training
acceleration methods. Section 3 proposes a new method of cost-efficient training. Section 4 contains
a detailed evaluation of the proposed method. Section 5 draws the conclusion and highlights key
directions for further research.

2 Background of study: overview

2.1 Problem definition

To discuss various approaches to CNN training acceleration, we need to first introduce certain terms
that will be used throughout the paper. Let w ∈ Rm represent parameters of a model that we denote as
fw. Those weights are optimized to fit fw on a dataset D = {(xi, yi), i = 1, ..., N}, where xi ∈ Rd

is a data sample and yi is a ground truth label. Model prediction is denoted as fw(xi) and means the
output of a model on a given data sample xi. The objective of a DNN is to minimize the loss between
predictions given by a model and ground truth values in a whole training dataset. The loss is denoted
as l(fw(xi), yi).

From a practical perspective, the training pipeline is usually organized in E epochs, which are defined
by the author of the training pipeline, usually based on their empirical experience. At each epoch,
data from dataset D is usually split into mini-batches, each containing b samples. Then, at each
epoch, model parameters are updated Nb =

⌈
|D|
b

⌉
times. To sum up, most of the ideas behind

training acceleration involve reducing of total training time T required to achieve model convergence
or complete a given number of epochs.

2.2 Key research directions in the field

There are numerous methods that aim at reducing training time and increasing model convergence
speed. To begin with, quantization is considered as a prominent direction for accelerating both
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training and inference of CNN and LLM. Quantization might be applied to the whole model by
reducing the precision of parameters [Zhou et al., 2016] or gradients needed for parameter updates
[Wen et al., 2017]. For the LLM field, most recent results include but are not limited to: PEQA [Kim
et al., 2023], Alphatuning [Kwon et al., 2022], QLoRA [Dettmers et al., 2023].

The second direction of training acceleration research is reduction of trainable parameters of a model.
For CNN, the well known approach is pruning, which is the removal of model weights depending on
their influence on the resulting model accuracy [Liang et al., 2021]. For LLM, Parameter-Efficient
Fine-Tuning is an emerging field that considers different ideas of making trainable fractions of
original model weights. For example, by re-parametrizing some of them as suggested in LoRA [Hu
et al., 2021] and its modifications [Zhang et al., 2023], [Zi et al., 2023].

The third direction is applying ideas of distributed computing to DNN training, which can be pipeline-
parallel, model-parallel, or data-parallel [Wang et al., 2021]. With regard to LLM training, distributed
training is almost a must with additional parallelization strategies such as sequence parallelism [Li
et al., 2021].

The fourth direction is training data reduction. This is possible because of the assumption that not all
samples from a dataset are equally important; some of them can be excluded from training without
any visible impact on accuracy, and others require multiple iterations to get properly recognized by a
DNN [Birodkar et al., 2019]. Within the domain of CNN training, there are three main approaches:
dataset condensation or distillation [Cazenavette et al., 2022], core-set selection [Shim et al., 2021]
and importance sampling [Jiang et al., 2019]. The main difference is what constitutes a reduced
version of the training dataset. Data distillation methods suggest generating samples as entities
synthesized according to some statistics learned from the original dataset. Core-set selection methods
allow automatic selection of a subset from the original dataset, so that the resulting trained model
achieves the same accuracy as that of the baseline within a given threshold, for example, 5%. The
third approach within the data selection direction is importance sampling. This is performed by
frequently selecting only those samples that would bring larger updates to weights during training,
hereby becoming more informative from the standpoint of CNN training and LLM fine-tuning.
However, these methods cause an additional overhead to the training process by either requiring a full
forward pass for all samples in a dataset [Johnson and Guestrin, 2018] or training a separate network
in parallel [Katharopoulos and Fleuret, 2017].

The state-of-the-art in this field is achieved with Intellectual Data Selection (IDS) and Adaptive
Online Importance Sampling (ADONIS) methods [Demidovskij et al., 2023]. The IDS methodology
proposes a way of filtering the training datasets by selecting diverse samples from each class in a
labeled dataset. In order to evaluate diversity between samples, the pre-trained feature extractor
ResNet18 is employed, and the similarity of samples is measured as the Euclidean distance between
points in latent space with class prototype. The most common sample of a class is measured via
K-Means clustering as a universal unsupervised approach for the evaluation of data patterns and
similarities. Due to the pre-trained feature extraction, this approach is used as a preprocessing stage
before training. ADONIS is aimed to reduce the number of backward passes by choosing samples
from the available training data and constructing new training batches containing only the chosen
elements. Samples for backpropagation passes are selected in a probabilistic manner. Each sample
has a corresponding loss value, and based on that, its selection probability is obtained and followed
by the final selection. Regarding LLM fine-tuning, an additional family of methods emerge, such as
deduplication of samples in a dataset [Lee et al., 2021], [Tirumala et al., 2023].

The fifth direction is to accelerate pre-training and fine-tuning using new strategies [Zhang et al., 2016],
[Dogra and Redman, 2020]. For example, applying the Hebbian learning rule and its modifications
to the task of CNN pre-training [Lagani et al., 2021]: introducing mixed strategies (SGD+Hebbian
learning) with reported training speedup up to 1.5x [Krithivasan et al., 2022], and implementation
optimizations [Talloen et al., 2021]. As for innovative strategies for LLM fine-tuning, there is a vast
scope for research and many attempts are made in terms of quicker convergence via new optimizers,
such as LION [Chen et al., 2023] or Sophia [Liu et al., 2023].

3



3 Proposed method: Data Reduction with Losses

3.1 Budget-aware training algorithm

As mentioned above, in order to address the problem of training CNN and fine-tuning LLM in
environments with limited resources, Data Reduction with Losses (DAREL) method is proposed.
This method has a built-in support of the training budget B which has two key characteristics: total
training time tmax and maximum available memory mmax. Moreover, without any limitations, the
budget is defined with respect to the full CNN pre-training of and LLM fine-tuning. Additionally, the
training budget is also defined in a relative manner with t as a ratio of full training time T , so that
tmax = t · T , and also m as a ratio of memory required for full training M , so that mmax = m ·M .

DAREL is a two-stage training acceleration method that is designed to be budget-aware. The two
stages of DAREL are called offline and online. The hyperparameters of both stages are automatically
adapted for the given budget. The proposed method is based on the idea that reducing the number of
samples due to a certain rule decreases the number of training steps, thus reducing the overall training
time for a CNN and fine-tuning time for LLM.

3.2 Mathematical model

Initially, the memory requirements (m) amd time requirements (t) of a given budget are considered
by the proposed method. The memory required to train a model is spent on loading and initializing
the model itself with the training optimizer, criterion, loading and preprocessing training samples, etc.
If the budget assumes that mmax is smaller than the model itself, then training this model within this
budget is not feasible. Therefore, the budget is considered realistic and assumes that model can be
loaded to device. One of way to fit into training budget is reduce compute precision, for example
from full precision do half precision. However, the precision is highly dependent on the selected
training accelerator. As DAREL is designed to be agnostic to the training hardware, the only thing
that remains is to reduce the training batch to a maximum memory that is required for training a
model, as a peak memory is achieved while processing forward and backward operations on each
batch.

To obtain a batch size b that satisfies a given training budget B the following heuristic (Algorithm
1) is proposed. Let Υ denote the collection of time parameters and Ψ memory parameters. While
the memory usage for training a specific batch fits into the memory budget, the time tb and memory
mb required for training batch of size b is determined and collected. After obtaining batch training
statistics, the batch size is heuristically evaluated with the linearregression model by applying it
to a specific memory budget mmax and then rounding it down to a power of 2. The batch training
time tb is then obtained as a time to train the batch with size b. The total training time Tnew could be
approximated by (1), where Nb is the number of batches and E is the number of training epochs, tb
is a time required for training batch with size b.

Tnew = tb ·Nb · E. (1)

While it is evident that reducing the batch size aids in controlling the required memory, it is also
clear that Tnew ≥ T , because the approximate time for processing a single batch increases. In
order to reduce this increased training time to match the time budget t, the following approach is
elaborated. DAREL suggests total training time reduction via training data reduction during both
offline (Algorithm 2) and online (Algorithm 3) stages. The DAREL (Offline) is based on the idea of
accelerating training time by reducing the number of samples that a model needs to go through during
the training process. Offline data reduction starts before training and online happens just-in-time of
the training process.

DAREL (Offline) happens only once before the actual DNN training of fine-tuning. By reducing the
number of samples in the training dataset, the overall epoch time (and not the step time) is decreased.
We propose a selection of important samples from each class in a labeled dataset for filtering the
training datasets. The Mode of selection of these diverse samples is either selected as EASY or
HARD for and selection ratio α is also determined. DAREL (Offline) leverages a pre-trained model
(µ) and builds a sorted list of samples based on loss information that is provided by that model in
ascending order if Mode is EASY, descending otherwise. Then, 1− α of samples with the smallest
losses are removed from the training dataset. The selected samples are then added to the final dataset
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Algorithm 1 Automatic batch size detection for DAREL

1: B(t,m): given training budget
2: Γ← {}: collection of processed batches
3: Υ← {}: collected time for processing batches of different sizes
4: Ψ← {}: collected memory for processing batches of different sizes
5: b← 1: initial batch size
6: while True do
7: tb,mb = trainBatch(b): collect time and memory required to train on a single batch of a

given size
8: Γ← Γ ∪ b: add new batch size
9: Ψ← Ψ ∪mb: add memory required for processing current batch size

10: Υ← Υ ∪ tb: add time required for processing current batch size
11: if mb ≈ mmax then
12: break
13: end if

b← b · 2
14: end while
15: h(x)← LinearRegression(X = Ψ, y = Γ): build batch size approximating model based on

memory available
16: b← ⌈h(mmax)⌉: obtain approximated batch size within given training budget B
17: tb ← Υlog2 b: obtain approximated time for processing a single batch of size b

as demonstrated in Algorithm 2. Number of samples in each class from the dataset D is reduced by
its losses, keeping only α samples for training. In addition, changing the training dataset using the
parameter Mode is permitted.

Algorithm 2 DAREL (Offline)

1: Mode: mode of selection {EASY, HARD}
2: α: selection ratio
3: µ: pre-trained model for a classification task, for example ResNet18
4: Q = {}: final dataset
5: for each class Di in D do
6: Θi = {inf}: losses for each sample in class Di

7: for each sample j in Di do
8: θij ← µ(j): calculate loss for each sample
9: end for

10: Oi ← sort(Θ,Mode): sort samples w.r.t by loss values in ascending order if mode is EASY,
descending otherwise

11: Q← Q ∪ {Oi
j : j = 1, 2, . . . , ⌈α|Di|⌉}: add selected samples to final dataset

12: end for

The DAREL (Online) follows [Demidovskij et al., 2023]. Key hyperparameters of the DAREL (Online)
are: selection ratio A which defines how many samples from each batch are selected for backward,
and loss update schedule η which defines how regular loss information is updated for each sample.
DAREL assumes automatic detection of these parameters values within the given training budget B.
During the online stage, history of losses H is collected as double-ended queue of size γ as described
in (Algorithm 3). The number of warmup epochs is denoted as ω. A histogram Φ is built to represent
the losses.
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Algorithm 3 DAREL (Online)

1: H ← deque(γ): history of losses as double-ended queue of size γ
2: batchtrain ← {}: batch for training
3: η, η ∈ N, η ≥ 1: number of epochs when loss information is considered actual
4: losses← {}: loss history
5: E: number of epochs to train
6: ω: number of epoch to start DAREL (Online)
7: last_update← 0: number of last epoch when loss history was updated
8: k ← 1: training step
9: while epoch i < E do

10: for batch batchtrain from D do
11: if i ≤ ω then
12: fw(k) ← trainBatch(btrain, fw(k−1))
13: k ← k + 1
14: batchtrain ← {}
15: continue
16: end if
17: if i− last_update < η then
18: losses← fw(k)(j)
19: end if
20: for example e from batchtrain, loss l from losses do
21: H ← H ∪ l
22: Φ← buildHistogram(H): losses histogram representing losses
23: p← PMF (Φ, l): give preference to the most frequent losses
24: is_chosen← choose(p)
25: if is_chosen = 1 then
26: batchtrain ← batchtrain ∪ e
27: end if
28: if |batchtrain| = b then
29: fw(k) ← trainBatch(btrain, fw(k−1))
30: batchtrain ← {}
31: end if
32: end for
33: end for
34: end while

To limit total training time, DAREL provides a rule for defining the selection ratios of its stages: α
and A for offline and online stages, respectively. Note that the requested training budget and full
training time are connected with the following way:

T · t ≥ Tnew · α ·A (2)
The default selection parameters of DAREL are as follows: α is equal to 0.8 and A is equal to 0.1, as
these values are seen to provide notable acceleration and superior accuracy results. By using default
α value, the value of A as a parameter of a DAREL (Online) method is recalculated:

A =

{
T ·t

Tnew·α , if T · t ≥ Tnew · α · 0.1
0.1, otherwise

(3)

However, even the smallest possible value of A cannot be enough to deliver the requested training
budget. Therefore, tuning α parameter automatically is suggested in this case:

α =

{
0.8, by default
T ·t

Tnew·A , if T · t < Tnew · 0.8 ·A
(4)

Finally, to promote training acceleration by making loss history updates less regular, it is suggested
to select the parameter η depending on parameter A. Although the accuracy of checking the final
model may be reduced, it provides an advantage in the learning speed. This η is obtained with:

η =

1, by default
2, if 0.5 < A < 0.8
3, if A ≤ 0.5

(5)
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After setting η, the value of A is clipped from 0.1 to 0.8. By comparing this method with the
state-of-the-art IDS and ADONIS algorithms, DAREL provides the following differences. Initially,
the idea of performing training dataset reduction during the DAREL (Offline) is proposed based on
loss information for each sample. Focusing on the execution of this method in IDS, it is noticed that
self-supervised clustering is employed to identify class prototypes. The samples are then filtered based
on either cosine or Euclidean distance between their latent representation and the latent representation
of the cluster centroid. Samples obtained as a result are not selected from the center group in this
method. Instead, DAREL (Offline) selection is performed in a more uniform manner, which results
in smaller accuracy drops as described in Section 4. Secondly, DAREL is the only algorithm over
selected alternatives that considers the training budget based on its perspective from time and memory
consumption. Other methods, such as IDS, ADONIS are designed to occupy all resources allocated
for the training process. Thirdly, although the DAREL (Online) employs the importance sampling
strategy from ADONIS method, DAREL introduces automatic detection of optimal configurations for
selection ratios that allow training performance to be more predictable.

4 Evaluation

Training data For experimental evaluation the following publicly available datasets are used.
CIFAR-100 dataset [Krizhevsky et al.] contains 60000 32x32 color examples for 100 classes, it is
split into 50000 images for training and 10000 for testing. The E2E-NLG dataset [Dušek et al., 2020]
contains 42000 training, 4600 validation text samples. The WebNLG dataset [Shimorina and Gardent,
2018] contains 69400 training and 872 validation text samples.

Training protocol ResNet18 definition is taken from torchvision v0.15.2.GPT-2 Small, GPT-2
Medium and GPT-2 Large models and aforementioned datasets are taken from transformers v4.33.2.
For the LLM fine-tuning with DAREL (Offline), pre-trained GPT-2 Medium is used. For the CV train-
ing with DAREL (Offline), ResNet18 pre-trained on CIFAR-100 dataset is used. The training protocol
for ResNet18 on CIFAR-100 is as follows: the selected loss function is Cross Entropy, the optimizer
is Stochastic Gradient Descent with a learning rate equal to 0.1, momentum is 0.9, and weight decay
is 5e-4. The learning rate is dynamically reduced by a γlr equal to 0.2 during training at specified
milestones: 60th, 120th, and 160th epochs. The learning rate schedule is stepLR with a step of 30. The
data is loaded with 32 workers, with batch size equal to 128, randomly shuffled at each epoch. Each
sample is processed with the following pipeline: random crop to size equal to 32 with padding equal
to 4, then random horizontal flip, random rotation by angle, and sample normalization. The training
protocol for Hypercomplex ResNet18 on CIFAR-100 is as follows: the selected loss function is Cross
Entropy, the optimizer is Stochastic Gradient Descent with a learning rate equal to 0.1, momentum
is 0.9, and weight decay is 5e-4. The cosine annealing is used as the learning rate scheduler. The
learning rate is dynamically reduced by a γlr equal to 0.1 during training at specified milestones: 60th,
120th, and 160th epochs. The data is loaded with 32 workers baseline epoch of 200 with batch sizes
equal to 128, which is randomly shuffled at each epoch and each sample is processed with random
crop to size equal to 224. The following preprocessing parameters: mean=[0.5070751592371323,
0.48654887331495095, 0.4409178433670343], std=[0.2673342858792401, 0.2564384629170883,
0.27615047132568404] were used for sample normalization. The number of baseline training epochs
on CIFAR-100 is 200. Finally, certain hardware optimizations are enabled: pinning memory for data
loaders (pin_memory=True), benchmarking mode (cudnn.benchmark=True) and mixed-precision
(full and half-precision floating point format).

The training protocol for GPT-2 Small, GPT-2 Medium, GPT-2 Large on E2E-NLG and WebNLG
is as follows: the selected loss function is Cross Entropy, the optimizer is AdamW with a learning
rate equal to 2e-4, Adam β1 is 0.9, Adam β2 is 0.999, and weight decay is 0.01, warmup steps is
500, label smoothing is 0.1. The number of baseline training epochs is 5, length penalty is 0.9, num
beams is 10. Half-precision floating point format with Apex O2 optimization is enabled. The LoRA
parameters are the following: rank r equals to 4, LoRA α is 32, dropout is 0.1.

For training evaluation experiments, we are using the following hardware: CPU has 3.00GHz with 32
cores (frequency not fixed), OS: Ubuntu 20.04 LTS, kernel version: 5.4.0-136-generic; 1 GPU with
16GB memory card is used for the CV training and 2 GPU with 16GB memory cards for the LLM
fine-tuning; training framework: PyTorch 1.13.0, programming language: Python 3.9. The memory
consumption for each epoch is measured on each batch via pynvml v11.5.0. The energy consumption
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Table 1: Budget-aware ResNet18 and Hypercomplex ResNet18 training on CIFAR-100 with DAREL.

Model Method Batch α A η Epoch Boost,
x

Acc.
drop,
p.p.

Mem.
cut, x

CO2e
cut, x

ResNet18 B(t = 1,m = 1) 128 0.8 0.28 3 200 1.46 3.01 1.66 3.12

B(t = 0.80,m = 0.80) 64 0.8 0.43 3 121 1.25 4.57 1.93 2.05

B(t = 0.80,m = 0.70) 64 0.8 0.5 2 121 1.26 4.97 1.93 1.46

B(t = 0.80,m = 0.55) 32 0.8 0.29 3 88 1.25 15.04 2.03 2.71

B(t = 0.70,m = 0.80) 64 0.8 0.43 3 109 1.43 10.58 1.93 2.3

B(t = 0.70,m = 0.70) 64 0.8 0.5 3 81 1.43 11.3 1.93 1.37

B(t = 0.70,m = 0.55) 32 0.8 0.1 3 61 1.44 21.53 2.03 5.46

B(t = 0.50,m = 0.80) 64 0.8 0.11 3 78 1.99 11.43 1.93 3.0

B(t = 0.50,m = 0.70) 64 0.8 0.11 3 75 2.0 11.4 1.95 3.2

B(t = 0.50,m = 0.55) 32 0.6 0.1 3 49 2.03 32.18 2.03 7.83

ResNet18-HC B(t = 1,m = 1) 128 0.8 0.5 1 200 2.09 3.03 1.00 1.99

B(t = 0.80,m = 0.80) 64 0.8 0.5 1 200 1.67 2.91 1.48 1.73

B(t = 0.70,m = 0.80) 64 0.8 0.5 2 195 1.60 2.65 1.54 1.72

Table 2: Fine-tuning experiments of GPT-2 Small, GPT-2 Medium, GPT-2 Large on E2E-NLG with
DAREL.

Models Method Boost BLEU↑ TER↓ METEOR↑ NIST↑

GPT-2 Small LoRA - 67.3 66.43 75.82 6.39
LoRA + DAREL (α = 0.9) 1.12 68.22 65.59 73.79 6.06
LoRA + DAREL (α = 0.8) 1.26 69.52 64.92 74.79 6.09
LoRA + DAREL (α = 0.7) 1.43 69.53 65.62 73.59 5.93

GPT-2 Medium LoRA - 65.9 69.36 79.48 6.97
LoRA + DAREL (α = 0.9) 1.11 67.65 68.07 79.37 6.96
LoRA + DAREL (α = 0.8) 1.25 67.71 67.54 78.46 6.93
LoRA + DAREL (α = 0.7) 1.44 66.03 68.24 77.91 6.81

GPT-2 Large LoRA - 69.93 67.45 81.73 7.32
LoRA + DAREL (α = 0.9) 1.11 70.02 67.38 81.68 7.33
LoRA + DAREL (α = 0.8) 1.24 68.36 68.02 81.02 7.2
LoRA + DAREL (α = 0.7) 1.43 68.07 68.48 81.01 7.15

is estimated via codecarbon library v2.2.5. Finally, the LLM distributed fine-tuning is evaluated with
DeepSpeed v0.10.3.

Carbon footprint The carbon footprint is calculated according to (6) [Strubell et al., 2019], where
PUE denotes power usage effectiveness coefficient, C∗

e denotes the carbon intensity factor, t denotes
computing time in hours, pc, pd, pg — average power draw from CPU, DRAM, and GPU accordingly.
The g is the number of GPUs used to train.

CO2e = C∗
e ·

PUE · t · (pc + pd + g · pg)
1000

(6)
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Table 3: Fine-tuning experiments of GPT-2 Small, GPT-2 Medium, GPT-2 Large on WebNLG with
DAREL.

Models Method Boost BLEU↑ TER↓ METEOR↑ NIST↑

GPT-2 Small LoRA - 36.05 68.39 54.53 4.4
LoRA + DAREL (α = 0.9) 1.11 33.5 70.59 51.59 3.94
LoRA + DAREL (α = 0.8) 1.25 27.2 75.69 42.3 2.43
LoRA + DAREL (α = 0.7) 1.42 27.11 75.71 38.01 2.09

GPT-2 Medium LoRA - 47.48 65.57 63.71 7.42
LoRA + DAREL (α = 0.9) 1.11 48.07 65.83 63.7 7.51
LoRA + DAREL (α = 0.8) 1.24 46.51 68.56 60.52 7.42
LoRA + DAREL (α = 0.7) 1.42 41.32 71.97 51.73 6.29

GPT-2 Large LoRA - 53.68 60.54 69.35 8.36
LoRA + DAREL (α = 0.9) 1.11 51.66 62.99 64.81 7.94
LoRA + DAREL (α = 0.8) 1.25 48.94 65.04 62.77 7.4
LoRA + DAREL (α = 0.7) 1.42 48.53 68.4 62.9 7.86

Key results A detailed performance analysis of budget-aware pre-training acceleration for ResNet18
and ResNet18-HC is demonstrated in Table 1. Accuracy drop is measured in absolute percentage
points and is calculated for each method relative to the corresponding baseline: ResNet18 training
takes 2458 seconds with 75.86% Top-1 accuracy, ResNet18 training with IDS and ADONIS takes 1650
seconds with 73.06% Top-1 accuracy. Boost is measured as the ratio of time required to train on a
corresponding baseline to the time required to train a model with the use of an acceleration algorithm.
Memory cut is measured as the ratio of maximum memory usage of baseline training to training
with the acceleration algorithm. The CO2e cut corresponds to a ratio of CO2 generated during
baseline training to training with the acceleration algorithm. Columns Batch, α and A represent the
automatically computed DAREL parameters for the budgeting mechanism and acceleration approach.

Hypercomplex ResNet18 budget training was also compared with the baseline: ResNet18-HC
training takes 12682 seconds with 77.47% Top-1 accuracy. Hypercomplex ResNet18 pre-training
was performed with the budget B(t = 0.80,m = 0.80), which reduces memory consumption by
1.48x, experiences a boost of 1.67x. The least accuracy drop was achieved for B(t = 0.70,m = 0.80)
which is noted to be 2.65p.p. We highlight B(t = 0.80,m = 0.80) due to significant boost, memory,
CO2e reduction and least accuracy drop. As a result, the least GPU resource-intensive training
process was performed with the budget parameter m = 0.55, which reduces memory consumption
up to 2.03x for training. A faster training with a boost of 2.03x was performed with the budget
B(t = 0.50,m = 0.55).

The IDS and ADONIS was evaluated with default parameters γ = 120, αIDS = 0.8, ϕ =
resnet18, AADONIS = 0.3, l = 512, k = square, σ = 1, η = 1, θ = 0.12. The default budget-
ing parameters of DAREL are t = 1,m = 1. DAREL outperforms IDS and ADONIS in terms of 1.01x
acceleration ratio, decrease of 1.69x in memory utilization and decrease of 1.58x in carbon dioxide
emissions in budget B(t = 0.80,m = 0.80). This is possible due to automatically tuned training
parameters of DAREL algorithm.

As for the LLM fine-tuning results obtained are for GPT-2 Small, GPT-2 Medium and GPT-2 Large
on E2E-NLG and WebNLG datasets. These results are demonstrated in Table 2 and Table 3. Baseline
GPT-2 Large fine-tuning on E2E-NLG is performed with a help of LoRA method: it takes 4198
seconds. Tables 2 and 3 show the E2E-NLG and WebNLG fine-tuning evaluation with different
DAREL parameters. As for the E2E-NLG, the best 1.43x acceleration was performed with DAREL
(α = 0.7). The GPT-2 Small achieved 2.23 p.p. higher BLEU and 1.43x acceleration with DAREL
(α = 0.7) it has GPT-2 Medium reached 1.81 p.p. higher BLEU, 1.82 better TER, and 1.25x
acceleration with DAREL (α = 0.8). The GPT-2 Large achieved better BLEU, TER, NIST by 0.09
p.p., 0.07 p.p. and 0.01 p.p. correspondingly with 1.11x acceleration with DAREL α = 0.9. For the
WebNLG fine-tuning, the best 1.42x acceleration was performed with DAREL α = 0.7. The GPT-2
Medium produced 0.59 p.p. better BLEU score and 0.09 better NIST score and 1.11 acceleration
with DAREL α = 0.9.
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5 Conclusion

The industry is predisposed for the growth of neural network parameters and the increase of datasets
size. It necessarily leads to an increase in the required computational resources as well as the
training time. This paper makes the following primary contributions: it proposes a novel two-stage
method that is designed, but not limited to accelerating the training of CNN and fine-tuning of LLM,
introduces a budgeting training for CV pre-training as a combination of maximum GPU memory
utilization and maximum training time, and delivers improvements to state-of-the-art method for
LLM fine-tuning (LoRA). Training acceleration for ResNet18 is up to 2.03x and for Hypercomplex
ResNet18 is up to 2.09x, while for fine-tuning with DAREL and LoRA allows to achieve 1.43x
acceleration for GPT-2 Medium fine-tuning with corresponding increase of BLEU by 1.81 p.p.
compared to LoRA based baseline fine-tuning. Also, the potential reduction of ecological impact is
measured, and DAREL allows reduce carbon dioxide emissions by up to 7.83x for ResNet18 and 1.99x
for Hypercomplex ResNet18. We define the following development horizons from the perspective
of DAREL improvement: evaluation on a larger number of models and datasets, investigation of
applicability to the Natural Language Understanding task and combinations with other fine-tuning
acceleration methods such as (IA)3 [Liu et al., 2022] and Prompt-Tuning [Lester et al., 2021].
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Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. Evaluating the State-of-the-Art of End-to-End Natural
Language Generation: The E2E NLG Challenge. Computer Speech & Language, 59:123–156, January 2020.
doi: 10.1016/j.csl.2019.06.009.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

Joel Janai, Fatma Güney, Aseem Behl, Andreas Geiger, et al. Computer vision for autonomous vehicles:
Problems, datasets and state of the art. Foundations and Trends® in Computer Graphics and Vision, 12(1–3):
1–308, 2020.

10

https://www.mdpi.com/2227-7390/11/14/3120
https://www.mdpi.com/2227-7390/11/14/3120


Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R Ganger, Gauri
Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton, et al. Accelerating deep learning by focusing
on the biggest losers. arXiv preprint arXiv:1910.00762, 2019.

Tyler B Johnson and Carlos Guestrin. Training deep models faster with robust, approximate importance sampling.
Advances in Neural Information Processing Systems, 31, 2018.

Angelos Katharopoulos and François Fleuret. Biased importance sampling for deep neural network training.
arXiv preprint arXiv:1706.00043, 2017.

Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min Yoo, Se Jung Kwon, and Dongsoo
Lee. Memory-efficient fine-tuning of compressed large language models via sub-4-bit integer quantization.
arXiv preprint arXiv:2305.14152, 2023.

Sarada Krithivasan, Sanchari Sen, Swagath Venkataramani, and Anand Raghunathan. Accelerating dnn training
through selective localized learning. Frontiers in Neuroscience, 15:759807, 2022.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced research). URL
http://www.cs.toronto.edu/~kriz/cifar.html.

Se Jung Kwon, Jeonghoon Kim, Jeongin Bae, Kang Min Yoo, Jin-Hwa Kim, Baeseong Park, Byeongwook
Kim, Jung-Woo Ha, Nako Sung, and Dongsoo Lee. Alphatuning: Quantization-aware parameter-efficient
adaptation of large-scale pre-trained language models. arXiv preprint arXiv:2210.03858, 2022.

Gabriele Lagani, Fabrizio Falchi, Claudio Gennaro, and Giuseppe Amato. Hebbian semi-supervised learning in
a sample efficiency setting. Neural Networks, 143:719–731, 2021.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, and
Nicholas Carlini. Deduplicating training data makes language models better. arXiv preprint arXiv:2107.06499,
2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.
arXiv preprint arXiv:2104.08691, 2021.

Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Sequence parallelism: Long
sequence training from system perspective. arXiv preprint arXiv:2105.13120, 2021.

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quantization for deep
neural network acceleration: A survey. Neurocomputing, 461:370–403, 2021.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin A Raffel.
Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. Advances in Neural
Information Processing Systems, 35:1950–1965, 2022.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic second-order
optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of machine learning
models. In International Conference on Machine Learning, pages 6950–6960. PMLR, 2020.

Stanislav Pavlov, Dmitry Kozlov, Mikhail Bakulin, Aleksandr Zuev, Andrey Latyshev, and Alexander Beliaev.
Generalization of neural networks on second-order hypercomplex numbers. Mathematics, 11(18), 2023.
ISSN 2227-7390. doi: 10.3390/math11183973. URL https://www.mdpi.com/2227-7390/11/18/3973.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115(3):211–252, 2015.

David Reinsel-John Gantz-John Rydning, J Reinsel, and J Gantz. The digitization of the world from edge to
core. Framingham: International Data Corporation, 16, 2018.

Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical image analysis. Annual review of
biomedical engineering, 19:221, 2017.

Jae-hun Shim, Kyeongbo Kong, and Suk-Ju Kang. Core-set sampling for efficient neural architecture search.
arXiv preprint arXiv:2107.06869, 2021.

Anastasia Shimorina and Claire Gardent. Handling rare items in data-to-text generation. In Proceedings
of the 11th International Conference on Natural Language Generation, pages 360–370. Association for
Computational Linguistics, 2018. URL http://aclweb.org/anthology/W18-6543.

11

http://www.cs.toronto.edu/~kriz/cifar.html
https://www.mdpi.com/2227-7390/11/18/3973
http://aclweb.org/anthology/W18-6543


David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep learning in
nlp. arXiv preprint arXiv:1906.02243, 2019.

Jules Talloen, Joni Dambre, and Alexander Vandesompele. Pytorch-hebbian: facilitating local learning in a deep
learning framework. arXiv preprint arXiv:2102.00428, 2021.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari S Morcos. D4: Improving llm pretraining via
document de-duplication and diversification. arXiv preprint arXiv:2308.12284, 2023.

Turker Tuncer, Fatih Ertam, Sengul Dogan, Emrah Aydemir, and Paweł Pławiak. Ensemble residual network-
based gender and activity recognition method with signals. The Journal of Supercomputing, 76(3):2119–2138,
2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Haozhao Wang, Zhihao Qu, Qihua Zhou, Haobo Zhang, Boyuan Luo, Wenchao Xu, Song Guo, and Ruixuan Li.
A comprehensive survey on training acceleration for large machine learning models in iot. IEEE Internet of
Things Journal, 9(2):939–963, 2021.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad: Ternary
gradients to reduce communication in distributed deep learning. Advances in neural information processing
systems, 30, 2017.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12104–12113,
2022.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao.
Adaptive budget allocation for parameter-efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

Ziming Zhang, Yuting Chen, and Venkatesh Saligrama. Efficient training of very deep neural networks for
supervised hashing. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1487–1495, 2016.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-lora: Fine-tuning
high-rank parameters with the delta of low-rank matrices. arXiv preprint arXiv:2309.02411, 2023.

12


	Introduction
	Background of study: overview
	Problem definition
	Key research directions in the field

	Proposed method: Data Reduction with Losses
	Budget-aware training algorithm
	Mathematical model

	Evaluation
	Conclusion

