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Abstract001

Retrieval-augmented generation (RAG) is in-002
creasingly recognized as an effective approach003
to mitigating the hallucination of large lan-004
guage models (LLMs) through the integration005
of external knowledge. While numerous efforts,006
most studies focus on a single type of external007
knowledge source. In contrast, most real-world008
applications involve diverse knowledge from009
various sources, a scenario that has been rela-010
tively underexplored. The main dilemma is the011
lack of a suitable dataset incorporating multiple012
knowledge sources and pre-exploration of the013
associated issues. To address these challenges,014
we standardize a benchmark dataset that com-015
bines structured and unstructured knowledge016
across diverse and complementary domains.017
Building upon the dataset, we identify the limi-018
tations of existing methods under such condi-019
tions. Therefore, we develop PruningRAG, a020
plug-and-play RAG framework that uses multi-021
granularity pruning strategies to more effec-022
tively incorporate relevant context and mitigate023
the negative impact of misleading information.024
Extensive experimental results demonstrate su-025
perior performance of PruningRAG and our in-026
sightful findings are also reported. Our dataset027
and code are publicly available1.028

1 Introduction029

In recent years, the excellent performance of large030

language models (LLMs) (Brown, 2020; Jiang031

et al., 2023; Luo et al., 2023) in various tasks has032

attracted widespread attention from researchers.033

Nevertheless, since LLMs rely solely on internal034

knowledge acquired during training, they are of-035

ten susceptible to hallucination (Zhou et al., 2020;036

Ji et al., 2023a,b; Mallen et al., 2022). To ad-037

dress this dilemma, retrieval-augmented genera-038

tion (RAG) (Lewis et al., 2020; Guu et al., 2020;039

Cheng et al., 2024) integrates external knowledge,040

1https://anonymous.4open.science/r/PruningRAG-BBAC
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Figure 1: Comparison of standard RAG and Prun-
ingRAG. Standard RAG typically focuses on utilizing
a single knowledge source, whereas PruningRAG opti-
mizes the use of multiple external knowledge sources
through multi-granularity pruning.

to bridge the gap between static, often limited in- 041

ternal knowledge of LLMs and vast real-world in- 042

formation, thereby reducing hallucinations. 043

Numerous studies on RAG have been proposed 044

to effectively integrate external knowledge source 045

with the internal knowledge of LLMs (Gao et al., 046

2022; Chan et al., 2024; Su et al., 2024). Through 047

a review of current research on RAG, we found 048

that most studies primarily focus on the utilization 049

of a single knowledge source. However, practi- 050

cal applications often require access to multiple 051

knowledge sources, which can vary significantly in 052

format, timeliness, and domain. Despite this need, 053

research on RAG with multiple external knowledge 054

sources remains limited, primarily due to the lack 055

of suitable benchmark datasets and insufficient pre- 056

liminary exploration of the current field. 057

Fortunately, we found that the KDD Cup 2024 058

CRAG competition dataset (Yang et al., 2024) com- 059

prises two distinct types of external knowledge 060

sources: unstructured web pages of variable qual- 061

ity with limited timeliness but broad coverage, and 062

APIs, which offer structured accurate information 063

with strong real-time performance. However, the 064

dataset still encounters some challenges in its suit- 065

ability for broad research applications. For in- 066
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stance, the HTML-formatted web page data it con-067

tains present significant challenges for LLM pro-068

cessing, with no unified standards currently avail-069

able for cleaning and parsing these data. Further-070

more, how to effectively prune multi-source exter-071

nal knowledge and reduce misleading information072

has been less explored. In this paper, we stan-073

dardize the dataset and establish a new benchmark,074

providing a solid foundation for future research075

in the field. To standardize this dataset, we un-076

dertake significant efforts. For example, we clean077

the web page knowledge by removing excessive078

HTML tags and converting it into an LLM-friendly079

Markdown format, enhancing data quality, ensur-080

ing compatibility with existing RAG frameworks,081

and enabling fair evaluation.082

Building upon this dataset, we introduce Prun-083

ingRAG, a new framework for RAG that performs084

multi-granularity pruning of diverse knowledge085

sources. Coarse-grained pruning effectively re-086

moves misleading information from inappropriate087

sources, thereby mitigating hallucinations. Mean-088

while, adaptive fine-grained pruning further refines089

the knowledge retained from coarse-grained prun-090

ing, ensuring higher relevance while reducing extra-091

neous information and thereby improving overall092

accuracy. After obtaining pruned knowledge, we093

use strategies such as in-context learning (ICL) to094

enhance the performance of reasoning. In addition,095

our framework is plug-and-play, facilitating further096

exploration and application.097

Based on our dataset and framework, we conduct098

extensive experiments and report key insights. For099

coarse-grained pruning, the fine-tuned LLM proves100

adept at dynamically selecting relevant knowledge101

sources, maximizing utility while reducing mis-102

leading context. For fine-grained pruning, tailored103

strategies effectively handle various knowledge for-104

mats, further enhancing reliability. Notably, the105

relevance of the examples provided by in-context106

learning to the query also significantly influences107

the reasoning ability of RAG.108

Main contributions of this paper are as follows:109

(1) We standardize a benchmark dataset that inte-110

grates structured and unstructured external knowl-111

edge across diverse domains. (2) We develop112

PruningRAG, a plug-and-play framework featuring113

multi-granularity pruning to optimize the integra-114

tion of relevant context while mitigating misleading115

information. (3) We conduct extensive experiments116

and report our results and key insights to support117

future research in the RAG community.118

2 Related Work 119

2.1 Retrieval-Augmented Generation 120

RAG (Lewis et al., 2020) has emerged as a strong 121

approach to mitigating hallucinations in LLMs by 122

incorporating external knowledge. Early methods 123

utilized a straightforward “retrieve-then-generate” 124

pipeline, whereas more advanced frameworks now 125

integrate query refinement (Ma et al., 2023; Chan 126

et al., 2024), iterative retrieval (Shao et al., 2023; 127

Press et al., 2022) and modular architectures (Gao 128

et al., 2023). Dynamic retrieval frameworks, such 129

as Self-RAG (Asai et al., 2024) and DRAGIN (Su 130

et al., 2024), progressively refine retrieved informa- 131

tion, while GraphRAG (Edge et al., 2024) leverages 132

graph-based indexes for structured knowledge. 133

However, these advancements generally over- 134

look the complexities of managing multiple, 135

diverse knowledge sources. Although some 136

methods incorporate multiple sources of knowl- 137

edge (Sarmah et al., 2024; Wang et al., 2024; Zhao 138

et al., 2024), they often lack diversity in data for- 139

mats, fields, or timeliness. To bridge this gap, we 140

propose PruningRAG, which uses multi-granularity 141

pruning to reduce misleading information, thereby 142

consolidating multi-source knowledge. 143

2.2 Existing Benchmarks for RAG 144

As RAG frameworks evolve, new benchmarks have 145

emerged to measure and guide their capabilities. 146

For instance, RGB (Chen et al., 2023) evaluates ro- 147

bustness, integration, and counterfactual reasoning; 148

CRUD-RAG (Chen et al., 2023) follows a struc- 149

tured Create-Read-Update-Delete workflow; RAG- 150

Bench (Friel et al., 2024) focuses on explainability 151

with detailed metrics; and RAGEval (Zhu et al., 152

2024) automates dataset generation for rigorous 153

testing. These benchmarks offer a comprehensive 154

framework for assessing RAG performance. 155

However, most existing benchmarks focus on 156

single-source knowledge integration and do not 157

evaluate the utilization of multi-source knowledge. 158

Although the CRAG benchmark (Yang et al., 2024) 159

incorporates both web pages and API sources, 160

its dataset lacks standardized HTML parsing and 161

hinders LLMs from effectively utilizing JSON- 162

formatted API information. To address these lim- 163

itations, we standardize the dataset and introduce 164

a new benchmark to tackle multi-source hetero- 165

geneous knowledge integration, reduce hallucina- 166

tions, and enhance reasoning capabilities. 167
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Figure 2: An illustration of PruningRAG, including multi-source knowledge pruning, knowledge reasoning and
evaluation. Knowledge pruning filter out irrelevant knowledge sources and improve context relevance. The pruned
knowledge is combined with the query to reason and the answer is evaluated based on accuracy and hallucination.

3 Preliminaries168

In this section, we formally define the retrieval-169

augmented generation (RAG) involving multi-170

sources external knowledge and introduce how we171

propose a standardized dataset.172

3.1 Problem Formulation173

We consider a query q and a collection of knowl-174

edge sources K = {K1,K2, . . . ,Kp} with corre-175

sponding set of document D =
⋃p

i=1DKi . Each176

Ki is the i-th knowledge source, and DKi ⊆ Ki.177

The goal is to generate an answer A by selecting178

and merging documents most relevant to q and then179

using LLM to produce the final response. Formally,180

let Dq be the subset of D retrieved for q. The final181

answer is given by:182

Answer = LLM
(
Dq ⊕ q

)
, (1)183

where ⊕ indicates the concatenation of Dq and q.184

3.2 A Multi-Source Knowledge RAG Dataset185

In recent years, numerous datasets have been in-186

troduced, each presenting its own challenges for187

RAG and contributing to its ongoing develop-188

ment (Kwiatkowski et al., 2019; Yang et al., 2018;189

Joshi et al., 2017; Stelmakh et al., 2022; Tang and190

Yang, 2024). However, most of these datasets rely191

on only a single external knowledge source, despite192

the fact that real-world applications often involve193

multiple sources. To address this gap, we leverage194

the dataset from the KDD Cup 2024 CRAG compe-195

tition, which uniquely provides both unstructured196

web content (in HTML) and structured API data. 197

Although the original CRAG dataset offers di- 198

verse knowledge types, it also presents several prac- 199

tical hurdles—such as noisy HTML tags that com- 200

plicate knowledgek extraction, the absence of a uni- 201

form parsing standard, and JSON-formatted API re- 202

sults that are not directly conducive to LLM-based 203

reasoning. To overcome these limitations, we sys- 204

tematically refined and standardized the dataset. 205

First, we clean the HTML knowledge and convert 206

it into a Markdown format, eliminating extrane- 207

ous tags and ensuring consistency. Second, we 208

employed rule-based processing to simplify API 209

access by aligning entities with query terms and 210

transforming JSON outputs into natural language. 211

These enhancements remove the initial shortcom- 212

ings of the CRAG dataset, thereby creating a robust 213

multi-source benchmark that more accurately sup- 214

ports RAG research and development. 215

4 Methodology 216

In this section, we first present an overview of the 217

entire framework, followed by the details of each 218

component. The illustration of the PruningRAG 219

framework is shown in Figure 2. 220

4.1 Overview of the PruningRAG Framework 221

PruningRAG consists of three components: multi- 222

source knowledge pruning, knowledge reasoning 223

and performance evaluation. First, coarse-grained 224

pruning screen out irrelevant or low-quality knowl- 225

edge sources, thus narrowing the overall search 226

space. Subsequently, fine-grained pruning refines 227
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the remaining sources. This two-tier pruning en-228

sures that only relevant context remains.229

Once pruned, the selected contexts are com-230

bined with the user query in a knowledge-enhanced231

prompt. This prompt leverages Chain-of-Thought232

(CoT) reasoning and In-Context Learning (ICL) to233

guide the LLM toward producing fact-based and234

minimally hallucinatory outputs. Finally, the frame-235

work employs a rigorous evaluation process, includ-236

ing metrics for accuracy, hallucination rate, miss-237

ing rate, and an overall score. These metrics use238

both string-matching and GPT-based assessments239

to gauge how well the system retrieves essential240

information and avoids misleading content, ulti-241

mately ensuring that PruningRAG delivers reliable242

and contextually precise responses.243

4.2 Multi-Source Knowledge Pruning244

In this section, we explain the specific strategies for245

pruning multi-source knowledge, including coarse-246

grained pruning to filter knowledge sources and247

fine-grained pruning to obtain key context.248

4.2.1 Coarse-Grained Knowledge Pruning249

In scenarios involving multiple sources of exter-250

nal knowledge, relevant information may reside251

in K = {K1,K2, . . . ,Kp}, within internal knowl-252

edge of LLM K0, or be completely unavailable.253

This makes pruning of irrelevant sources essential254

to prevent conflicts and hallucinations. We define a255

subset-selection function:256

Kq = Θ
(
{Ki}pi=0, q

)
, (2)257

where Θ identifies the knowledge sources most258

appropriate for query q. An LLM is used to deter-259

mine Kq. However, initial experiments2 showed260

that prompting the LLM with only q was insuffi-261

cient for accurate source selection.262

To address this, we built a specialized dataset263

from the training set, labeling each query with the264

subset of sources that provided correct answers265

in practice. For queries that none of the avail-266

able sources could answer accurately, we included267

sources exhibiting the highest overall accuracy on268

similar queries. We then fine-tuned the LLM on269

these (query, source-subset) pairs to discard low-270

relevance sources while retaining those critical for271

generating a correct answer.272

2The experimental results are detailed in Appendix E.

Task Description: You are given a Question, References. 
Please think step by step, then provide the final answer.
Please follow these guidelines when formulating your answer:
 

LLMs Input

Format Requirements: The user's question may contain factual 
errors, in which case reply “invalid question” . If you don't know the 
answer, respond with "I don't know". Your final answer should be 
concise, using as few words as possible.

CoT & ICL: First, start with Thought and then output the thought. 
Then, you MUST reply with the final answer on the last line.
Here are some examples of invalid questions:
  {invalid_questions_examples}

References & Query

Figure 3: Prompt design template incorporating CoT
and ICL for enhanced reasoning.

4.2.2 Fine-Grained Knowledge Pruning 273

When integrating diverse external knowledge 274

sources, fine-grained pruning is crucial to extract 275

relevant information. Given a corpus D comprising 276

multiple documents (e.g., fifty web pages), we first 277

perform a sparse retrieval step using BM25 (Cheng 278

et al., 2021), formally defined as: 279

Dsparse
q = BM25(D, q), (3) 280

where Dsparse
q ⊆ D denotes the subset of docu- 281

ments identified as relevant to the query q by BM25. 282

Subsequently, we refine the context through dense 283

passage retrieval (DPR) (Karpukhin et al., 2020), 284

which selects text chunks with high relevance to q: 285

Ddense
q = DPR

(
Dsparse

q , q
)
, (4) 286

where Ddense
q is the final context from web pages. 287

In scenarios where only a limited number of doc- 288

uments (e.g., five web pages) are available, we 289

bypass the sparse retrieval step and directly apply 290

dense retrieval for more precise chunk selection. 291

For knowledge from APIs, fine-grained prun- 292

ing enhances context quality by filtering redundant 293

APIs and irrelevant parts of the retrieved informa- 294

tion. To achieve this, named entity recognition 295

(NER) is employed to extract key entities from the 296

query, guiding the API to focus its responses on key 297

information. Furthermore, queries are directed to 298

specific APIs based on their characteristics, allow- 299

ing for the exclusion of irrelevant APIs and reduc- 300

ing unnecessary data retrieval. The structured API 301

output is then transformed into natural language 302

using rule-based post-processing, ensuring that the 303

refined information is seamlessly integrated into 304

LLM’s response generation. 305
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Naive RAG HyDE Iter-RETGEN RRR Self-Ask Self-RAG

Knowledge Source Acc. Hall. Acc. Hall. Acc. Hall. Acc. Hall. Acc. Hall. Acc. Hall.

5 Web Pages 24.80 22.69 24.65 18.24 28.59 18.45 15.61 12.77 24.46 29.98 14.29 8.97
50 Web Pages 32.82 29.54 30.48 17.06 31.50 25.16 19.76 15.31 30.78 26.26 14.51 8.75

API 32.38 11.67 32.75 11.46 32.38 11.67 31.66 12.48 25.23 17.80 14.36 8.82

5 Web Pages + API 39.97 22.32 40.41 21.23 43.69 18.52 35.08 15.32 29.83 32.89 14.00 9.19
+ Pruning 44.56 21.23 43.03 18.31 43.83 17.21 36.03 13.42 32.68 28.37 14.44 8.75
↑ Gain 11.48% 4.88% 6.48% 13.75% 0.32% 7.71% 2.71% 14.16% 9.55% 13.74% 3.14% 4.79%

50 Web Pages + API 39.53 22.76 40.40 21.22 43.69 18.53 34.64 15.75 33.62 35.30 12.54 10.72
+ Pruning 43.15 18.01 41.76 15.97 41.46 15.89 35.77 14.58 33.84 32.45 13.03 9.34
↑ Gain 9.16% 20.87% 3.37% 24.74% -5.10% 14.24% 2.26% 7.43% 0.65% 8.07% 3.91% 12.87%

Table 1: Performance of RAG frameworks with and without PruningRAG on different knowledge sources.

4.3 Knowledge-Enhanced Reasoning306

As shown in Figure 3, we design a prompt that inte-307

grates CoT and ICL to optimize the use of pruned308

knowledge for reasoning. The prompt begins by309

clearly stating the task and instructing the model310

to answer based on the context. If uncertain, the311

model is directed to output "I don’t know" to pre-312

vent hallucinations. To enhance reasoning capa-313

bilities, we include a few-shot example section,314

where examples are chosen from domains different315

from domain of the query to reduce overfitting to316

domain-specific patterns. The pruned knowledge317

and the query are then presented with a CoT in-318

struction, prompting the model to reason step by319

step. Finally, the prompt asks the model to out-320

put both its reasoning and a final, well-considered321

answer, ensuring clarity and accuracy.322

4.4 Performance Evaluation323

We use four key metrics to evaluate the perfor-324

mance of the RAG framework: accuracy (Acc.),325

hallucination (Hall.), missing (Miss.), and an over-326

all score, which is defined as the difference between327

accuracy and hallucination. This score reflects the328

framework’s ability to extract key knowledge while329

avoiding misleading information. The evaluation330

process combines string matching and GPT-based331

assessments. First, if the predicted answer exactly332

matches the ground truth, it is recorded as accurate;333

if the response is "I don’t know," it is categorized as334

missing information. For non-exact matches, GPT-335

3.5 Turbo (Ouyang et al., 2022) semantically com-336

pares the prediction with the ground truth, marking337

it as accurate if aligned or as hallucination if not.338

5 Benchmark Evaluation of RAG339

In this section, we introduce the evaluation of Prun-340

ingRAG and various baselines in different knowl-341

edge sources using the standardized dataset, includ- 342

ing experimental setup and analysis of the results. 343

5.1 Experimental Setup 344

Implementation. In our experiments, for coarse- 345

grained pruning, we use a fine-tuned Llama-3.1- 346

8B-Instruct (Dubey et al., 2024) to filter out inap- 347

propriate knowledge sources. For the fine-grained 348

stage, we deploy the BGE-M3 (Chen et al., 2024). 349

If not specified otherwise, we use Llama-3.1-8B- 350

Instruct as the generator. Detailed hyperparameter 351

configurations are provided in Appendix A.2. 352

Baselines. We apply PruningRAG to the fol- 353

lowing RAG frameworks: naive RAG, and five 354

state-of-the-art train-free frameworks, including 355

HyDE (Gao et al., 2022), Iter-RETGEN (Shao 356

et al., 2023), RRR (Ma et al., 2023), and Self- 357

Ask (Press et al., 2022), as well as Self-RAG (Asai 358

et al., 2024), which requires fine-tuning. All meth- 359

ods share the same dataset post-processing and 360

evaluation protocols to ensure the robustness of 361

the pruning strategy’s performance gains across 362

different approaches. 363

5.2 Experimental Results 364

Table 1 compares six RAG frameworks across three 365

knowledge sources: 5 web pages, 50 web pages (50 366

web pages contain 5 web pages) and API and ex- 367

amines the impact of applying our PruningRAG on 368

performance, measured in terms of accuracy (Acc.) 369

and hallucination rate (Hall.). From the results we 370

have the following findings: First, for the multi- 371

knowledge source scenario, PruningRAG improves 372

the performance of almost all RAG frameworks, 373

improving accuracy and reducing hallucinations. 374

Second, compared with improving accuracy, the 375

PruningRAG framework has a more obvious effect 376

on reducing hallucinations, which indicates that in 377
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Naive RAG Llama-3.1-70B-Inst. Llama-3.1-8B-Inst. Llama-3.2-3B-Inst. Llama-3.2-1B-Inst.

Knowledge Source Acc. Hall. Acc. Hall. Acc. Hall. Acc. Hall.

5 Web Pages 30.49 15.31 24.80 22.69 29.68 23.63 12.83 16.33
50 Web Pages 33.99 21.01 32.82 29.54 31.50 25.74 13.05 16.11

API 34.28 5.83 32.38 11.67 28.74 11.23 4.23 3.79

5 Web Pages + API 47.84 18.16 39.97 22.32 36.90 25.02 16.19 16.92
+ Pruning 48.14 16.49 44.56 21.23 37.41 20.49 14.29 15.17
↑ Gain 6.27% 9.20% 11.48% 4.88% 1.38% 18.11% -11.73% 10.34%

50 Web Pages + API 47.99 19.54 39.53 22.76 38.41 24.00 15.17 19.62
+ Pruning 52.58 17.87 43.15 18.01 38.88 21.73 14.08 15.10
↑ Gain 9.56% 8.55% 9.16% 20.87% 1.22% 9.46% -7.18% 20.01%

Table 2: Performance comparison of LLMs with varying parameter scales with and without PruningRAG.

the case of insufficient knowledge, the pruned in-378

formation induces LLM to make incorrect answers.379

We observe that PruningRAG slightly reduces accu-380

racy in Iter-RETGEN, likely due to the removal of381

some effective information after multiple retrieval382

rounds. However, it still reduces hallucinations.383

Table 2 presents a comparison of the perfor-384

mance of LLMs with varying parameter scales,385

evaluated within the naive RAG framework. It also386

discusses the performance enhancements achieved387

through PruningRAG. The experimental results388

demonstrate a general trend wherein model per-389

formance improves progressively with increasing390

model size, highlighting the ability of larger mod-391

els to better leverage external knowledge sources392

due to their enhanced expressive power. LLMs393

of varying sizes show improved accuracy and re-394

duced hallucinations with PruningRAG, with the395

only exception being an accuracy drop in Llama-396

3.2-1B-Instruct, highlighting the robustness and ef-397

fectiveness of our method. PruningRAG may have398

removed knowledge that, though redundant for399

larger models, remained essential for the smaller400

1B model. However, due to PruningRAG’s effec-401

tive removal of detrimental information, the 1B402

model can also significantly reduce hallucinations.403

6 Extensive Empirical Studies404

In this section, we leverage PruningRAG to405

conduct further experimental exploration on our406

dataset and present key insights from three perspec-407

tives: coarse-grained pruning, fine-grained pruning,408

and knowledge-enhanced reasoning.409

6.1 Impact of Coarse-Grained Pruning410

Table 3 presents an evaluation of four knowledge411

utilization strategies. One approach relies exclu-412

sively on either the LLM’s internal knowledge413

Experiment Setting Acc. Score

LLM 17.94 -0.36
Web Pages 24.80 2.11
API 32.38 20.71
Web Pages+API 39.97 17.65

LLM+Web Pages 17.94 7.80
LLM+API 40.55 22.25
LLM+Web Pages+API 45.73 14.37

LLM→ Web Pages 25.30 -5.84
LLM→ API 35.01 11.31
LLM→ Web Pages+API 38.22 6.64

Knowledge Source Pruning 44.56 23.33

Table 3: Comparison of performance of different strate-
gies for leveraging knowledge sources.

Setting Acc. Hall. Latency(s)

w/o Sparse Retrieval 32.93 30.18 3.29
w. Sparse Retrieval 32.82 29.54 33.54

Table 4: Comparison of effectiveness and efficiency
with and without broad retrieval.

or external knowledge. Another combines the 414

LLM’s internal knowledge with one or more exter- 415

nal sources to generate responses collaboratively. 416

A further strategy prioritizes internal knowledge, 417

consulting external sources only when the inter- 418

nal context is insufficient to produce an answer. 419

Finally, our proposed method incorporates a knowl- 420

edge source pruning mechanism to optimize the 421

selection and integration of relevant knowledge. 422

The experimental results indicate that directly 423

relying on multiple knowledge sources simultane- 424

ously often introduces conflicting information, re- 425

sulting in performance degradation compared to 426
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Figure 4: Performance comparison of sparse, dense and
hybrid retrieval.
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Figure 5: Impact of CoT across knowledge sources.

using a single source. Additionally, prioritizing the427

internal knowledge of LLM before retrieval tends428

to generate hallucinations due to the inherent in-429

accuracies in the model’s internal knowledge. In430

contrast, our knowledge source pruning strategy dy-431

namically prunes knowledge sources based on the432

characteristics of each query, enabling the effective433

utilization of each knowledge source.434

6.2 Impact of Fine-Grained Pruning435

Table 4 compares the performance of the Prun-436

ingRAG with and without the initial broad retrieval437

step in the fine-grained pruning process. The re-438

sults highlight that incorporating the sparse re-439

trieval stage significantly improves system effi-440

ciency by reducing latency, particularly in cases441

involving large volumes of external knowledge.442

Serving as an initial filter, sparse retrieval narrows443

the search scope, allowing the subsequent dense444

retrieval to operate with higher precision and speed.445

This multi-stage fine-grained pruning approach re-446

duces latency while ensuring context relevance.447

Figure 4 demonstrates that dense retrieval outper-448

forms sparse retrieval. Specifically, dense retrieval449

is more effective at capturing semantic relation-450

ships compared to sparse retrieval. When dense451

and sparse retrieval methods are combined, the ac-452

Category N Acc. Hall. Miss. Score

Overall

0 13.20 10.50 76.29 2.70
1 16.05 12.62 71.33 3.43
2 16.12 12.98 70.90 3.14
3 15.17 12.69 72.14 2.48
1∗ 16.12 11.89 71.99 4.23
2∗ 18.02 11.23 70.75 6.78
3∗ 16.41 11.60 72.00 4.81

0 25.00 5.77 69.23 19.23
1 16.03 14.10 69.87 1.93
2 16.57 13.46 69.87 3.11

False 3 17.31 12.82 69.87 4.49
Premise 1∗ 20.51 12.18 67.31 8.33

2∗ 19.87 11.54 68.59 6.33
3∗ 23.08 9.62 67.30 13.46

Table 5: Impact of few-shot learning on LLM reason-
ing. N∗ indicates that the N examples provided for
in-context learning are cross-domain examples.

curacy improves relative to sparse retrieval alone. 453

However, this hybrid approach also leads to an in- 454

crease in hallucinations. This suggests that while 455

the hybrid retrieval retains important information, 456

it struggles to effectively prune misleading con- 457

text (Cheng et al., 2022; Gu et al., 2018). 458

6.3 Analysis of Knowledge Reasoning 459

In this section, we analyze the impact of our strate- 460

gies for enhancing LLM reasoning over pruned 461

knowledge, including CoT reasoning and ICL. 462

Role of CoT reasoning. Figure 5 illustrates the 463

varying impact of incorporating chain-of-thought 464

(CoT) reasoning (Wei et al., 2022; Trivedi et al., 465

2022) on performance, depending on the type of 466

external knowledge sources. When internal LLM 467

knowledge is combined with unstructured network 468

data, which is often noisy and sparsely populated 469

with relevant information, CoT’s step-by-step rea- 470

soning helps filter out irrelevant details and reduce 471

hallucinations, thereby improving response accu- 472

racy. In contrast, when an API is used as an ex- 473

ternal knowledge source, CoT’s multi-step process 474

can lead to overly cautious responses. While this 475

cautious approach reduces hallucinations, it may 476

significantly compromise accuracy, even when the 477

API provides reliable information. 478

Impact of ICL with cross-domain examples. 479

Table 5 illustrates the impact of incorporating false 480

premise examples on performance of PruningRAG. 481

False premise questions, which include intentional 482

7



0%

10%

20%

30%

40%

50%

60%

70%

50 100 200 500 1000

Chunk Size

accuracy

hallucination

missing

score

Figure 6: Performance of PruningRAG under different
values of chunk size.
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Figure 7: Impact of chunk size and chunk overlap on
PruningRAG performance.

inaccuracies requiring LLM to respond with “in-483

valid question,” were used to assess the ability to484

identify flawed queries. To aid in this, the model485

was provided with sample invalid questions and486

explanations, in two conditions: one with domain-487

aligned examples and another with cross-domain488

examples. Our findings reveal that few-shot exam-489

ples enhance the general performance of the RAG490

by improving task comprehension and reasoning491

capabilities (Dong et al., 2022). However, accuracy492

on false premise questions declines compared to493

the zero-shot setting, with domain-specific exam-494

ples performing worse than cross-domain exam-495

ples. This discrepancy may stem from overfitting496

to domain-specific patterns, while cross-domain497

examples introduce greater variability, mitigating498

overfitting and enhancing reasoning ability.499

6.4 Hyperparameter Sensitivity Analysis500

In this section, we analyze the impact of hyper-501

parameters such as chunk size, overlap, and the502

number of retrieved chunks on RAG performance.503

Chunk Size. Figure 6 illustrates how chunk size504

affects PruningRAG. Increasing chunk size from505

50 to 500 enhances accuracy by providing richer506

context, but slightly raises hallucination rates as507
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accuracy
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missing

score

Figure 8: Impact of the number of retrieved chunks on
PruningRAG performance.

LLM must filter knowledge from more noise. Once 508

chunk size reaches 1000, accuracy drops because 509

excessive content dilutes relevance and hinders 510

the identification of key details. Thus, a moder- 511

ate chunk size achieves the best balance between 512

context richness and focus. 513

Chunk Overlap. As shown in Figure 7, over- 514

lap notably affects performance, particularly with 515

larger chunk sizes. For small chunks (e.g., size 50), 516

overlap offers minimal gains given limited context. 517

Conversely, for larger chunks (e.g., size 200), over- 518

lap enhances continuity and accuracy but slightly 519

raises hallucination due to redundancy. 520

Chunk Quantities. As shown in Figure 8, in- 521

creasing the number of retrieved chunks initially 522

boosts accuracy but eventually plateaus and then 523

declines, while hallucination rates gradually rise. 524

In contrast to too large chunks, which dilute focus 525

and reduce accuracy, providing too many retrieved 526

chunks primarily increases hallucination by intro- 527

ducing excessive context. 528

7 Conclusion 529

This paper presents a standardized multi-source 530

knowledge dataset and introduces the PruningRAG 531

framework, which leverages multi-granular prun- 532

ing to optimize the utilization of diverse knowledge 533

sources. Through our framework, we uncover valu- 534

able insights, including the impact of knowledge 535

source pruning and the effectiveness of adaptive 536

fine-grained pruning. Furthermore, we have made 537

our dataset, the PruningRAG framework, code, and 538

experimental results publicly available. We hope 539

that our work will inspire further research into ad- 540

vanced knowledge pruning to better tackle the com- 541

plexities of multi-source knowledge, contributing 542

to the progress of the RAG community. 543
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Limitations544

In this work, we standardized a benchmark dataset545

containing multiple knowledge sources and pro-546

posed a novel plug-and-play framework to improve547

the current RAG approach. However, because the548

external knowledge in our dataset is not annotated,549

we were unable to evaluate retrieval quality directly550

and instead focused on end-to-end performance.551

In addition, due to limited computing resources,552

we did not train the 70B model to test the perfor-553

mance of Self-RAG. As part of future work, we554

hope to perform more detailed annotation work on555

the dataset to conduct a more comprehensive eval-556

uation, and also try to explore the performance of557

PruningRAG with more knowledge sources.558
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coarse-grained pruning, and used the validation760

set to obtain our experimental results. To enhance761

the usability of the web-based knowledge within762

the dataset, we converted HTML-formatted web763

pages into markdown format using the Jina frame-764

work. This conversion was essential to improve765

the compatibility of the data with Large Language766

Models (LLMs), enabling more effective inference767

and retrieval of relevant information.768

This processing step was crucial for ensuring769

that the external knowledge sources were optimally770

formatted for existing retrieval-augmented gener-771

ation (RAG) framework. The parsed markdown772

dataset, which is publicly available, supports fur-773

ther research and underscores the practical improve-774

ments brought by our approach in handling com-775

plex question-answer (QA) scenarios.776

A.2 Experimental Setup777

To ensure the reproducibility and consistency of778

our experiments, we establish a base configuration779

for our PruningRAG, detailed in Table 6. For the780

coarse-grained pruning, we use a fine-tuned Llama781

3.1 8B to filter out inappropriate knowledge sources782

. For the fine-grained stage we deployed the BGE783

M3 embedding model. The chunk size for retrieval784

is set to 200 tokens with no overlap, and the TopK785

retrieved chunks per query is set to 3. For reason-786

ing, we use Llama 3.1 8B as the backbone model.787

The generation parameters include a maximum of788

500 new tokens per output. We set the temperature789

to 0, ensuring deterministic outputs, and use a TopP790

value of 1.0.791

Hyperparameter Value

Chunk Size 200 tokens
Chunk Overlap 0 (no overlap)
Embedding Model BGE-M3
Temperature 0 (deterministic)
TopP 1.0 (all tokens considered)
LLM Backbone Llama-3.1-8B-Instruct

Table 6: Base hyperparameter configuration.

A.3 Configuration details for RAG methods792

In this section, we provide the detailed configu-793

ration of the baseline RAG methods used in our794

experiments. All algorithm parameters are set to795

the optimal values reported in their respective orig-796

inal papers to ensure a fair comparison and optimal797

performance.798

Method Parameter Value

Self-RAG

beam_width 2
max_depth 7
w_rel 1.0
w_sup 1.0
w_use 0.5
threshold 0.2

Iter-RETGEN max_iteration 3
Self Ask max_iteration 5

Table 7: Configuration details for RAG methods.

Web Page

Mock  API

PruningRAG

AnswerQuery LLM

Reasoning
How much did Funko 

open at today?

Answer
$7.16
Ground Truth
$7.16

How to Make a Living Day 

Trading. For example, say the June 

ES (E-mini S&P 500) futures 

contract …

Funko Inc. Class A Common Stock

(FNKO)'s Stock Price Today:

•Open Price $7.16

•Latest: $7.13

Irrelevant context

Figure 9: Case Study of PruningRAG.

B Computing Infrastructure 799

All the experiments are conducted on 2 × Nvidia 800

GeForce RTX 4090 GPUs (24GB memory each). 801

Other configuration includes 2 × Intel Xeon Gold 802

6426Y CPUs, 503GB DDR4 RAM, and 1 × 803

893.8GB SATA SSD, which is sufficient for all 804

the baselines. However, due to the limited com- 805

putational resources, we are unable to locally de- 806

ploy Llama-3.1-70B-Instruct. Therefore, for exper- 807

iments involving this model, we utilize an API for 808

execution. On average, each inference task takes 809

approximately one hour to complete. Additionally, 810

training the Llama-3.1-8B-Instruct model on the 811

Self-RAG dataset requires around 50 hours. 812

C Dataset Details 813

Our dataset comprises 4,409 QA pairs, with queries 814

covering a wide range of domains (e.g., finance, 815

sports) and temporal categories (e.g., real-time, 816

static), across eight distinct question types (e.g., 817

simple, conditional, multi-hop), split into training, 818

validation, and test sets, with 1,371 QA pairs re- 819

served for testing and the remainder allocated to 820

training and validation. This design facilitates a 821

comprehensive evaluation of RAG systems, setting 822

it apart from specialized datasets , which predom- 823

inantly focus on multi-hop questions. Each QA 824

pair in our dataset is paired with either five or fifty 825
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unstructured web pages, along with a API provid-826

ing structured access to knowledge from a knowl-827

edge graph containing 2.6 million entities. The828

knowledge from web pages is generally static and829

broad in scope, making it well-suited for answer-830

ing static queries in open domains. In contrast, the831

knowledge accessed via the API is more real-time832

and domain-specific, which is particularly effec-833

tive for addressing time-sensitive queries in areas834

like finance. Additionally, some queries may not835

align well with either external knowledge source,836

in which case the model must rely on its internal837

knowledge base. Our dataset incorporates multi-838

ple external knowledge sources, a feature that dis-839

tinguishes it from many existing datasets, which840

typically rely on a single knowledge source, with841

answers directly extracted from that source. The842

external knowledge in our dataset, does not always843

guarantee the presence of relevant information to844

answer the queries. A further challenge arises when845

inappropriate knowledge sources are selected, as846

this can introduce misleading information, exacer-847

bating hallucination issues.848

D Case Study849

Figure 9 illustrates a case study of the PruningRAG850

framework applied to answer the query: "How851

much did Funko open at today?" The system pro-852

cesses two external knowledge sources: a web page853

and a API. The web page contains irrelevant con-854

text, such as information about trading strategies855

and futures contracts, which is pruned during the856

knowledge refinement stage. The API provides857

structured and accurate information, including the858

open price of Funko Inc.’s stock at $7.16 and the lat-859

est price at $7.13. After pruning irrelevant knowl-860

edge, the refined information is passed to the LLM861

reasoning component, which generates the answer.862

In this example, the answer "$7.16" matches the863

ground truth, demonstrating the effectiveness of864

PruningRAG in filtering irrelevant context and fo-865

cusing on relevant knowledge to improve response866

accuracy.867

E More Experimental Results868

Effectiveness of knowledge source pruning with869

fine-tuned LLM. As shown in Table 8, the over-870

all performance of the knowledge source pruning871

approach with a fine-tuned large model is evalu-872

ated and compared to the performance achieved873

without fine-tuning. The results demonstrate that874

Naive RAG HyDE

Acc. Hall. Acc. Hall.

5 web pages + API

w/o Pruning 39.97 22.32 40.41 21.23
Pruning w/o fine-tuning 38.37 23.85 40.04 21.15
Pruning w/ fine-tuning 44.56 21.23 43.03 18.31

5 web pages + API

w/o Pruning 39.53 22.76 40.40 21.22
Pruning w/o fine-tuning 39.75 28.08 39.23 23.34
Pruning w/ fine-tuning 43.15 18.01 41.76 15.97

Table 8: Performance of PruningRAG frameworks with
and without fine-tuning.

when pruning is performed using a large model 875

without fine-tuning, the performance actually wors- 876

ens, highlighting the importance of fine-tuning in 877

enhancing the model’s effectiveness. It appears 878

that the knowledge source pruning process benefits 879

from the model’s ability to adapt to the specific task 880

or domain through fine-tuning, as it allows for more 881

accurate and relevant information retention. In con- 882

trast, the unrefined model struggles to effectively 883

discard irrelevant knowledge, leading to a reduction 884

in accuracy and an increase in hallucinations. Only 885

when fine-tuned models are used for knowledge 886

source pruning can we achieve significant improve- 887

ments in both accuracy and hallucination reduction, 888

showcasing the value of task-specific adaptation in 889

our approach. 890
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