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Abstract

Retrieval-augmented generation (RAG) is in-
creasingly recognized as an effective approach
to mitigating the hallucination of large lan-
guage models (LLMs) through the integration
of external knowledge. While numerous efforts,
most studies focus on a single type of external
knowledge source. In contrast, most real-world
applications involve diverse knowledge from
various sources, a scenario that has been rela-
tively underexplored. The main dilemma is the
lack of a suitable dataset incorporating multiple
knowledge sources and pre-exploration of the
associated issues. To address these challenges,
we standardize a benchmark dataset that com-
bines structured and unstructured knowledge
across diverse and complementary domains.
Building upon the dataset, we identify the limi-
tations of existing methods under such condi-
tions. Therefore, we develop PruningRAG, a
plug-and-play RAG framework that uses multi-
granularity pruning strategies to more effec-
tively incorporate relevant context and mitigate
the negative impact of misleading information.
Extensive experimental results demonstrate su-
perior performance of PruningRAG and our in-
sightful findings are also reported. Our dataset
and code are publicly available'.

1 Introduction

In recent years, the excellent performance of large
language models (LLMs) (Brown, 2020; Jiang
et al., 2023; Luo et al., 2023) in various tasks has
attracted widespread attention from researchers.
Nevertheless, since LLMs rely solely on internal
knowledge acquired during training, they are of-
ten susceptible to hallucination (Zhou et al., 2020;
Ji et al., 2023a,b; Mallen et al., 2022). To ad-
dress this dilemma, retrieval-augmented genera-
tion (RAG) (Lewis et al., 2020; Guu et al., 2020;
Cheng et al., 2024) integrates external knowledge,
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Figure 1: Comparison of standard RAG and Prun-
ingRAG. Standard RAG typically focuses on utilizing
a single knowledge source, whereas PruningRAG opti-
mizes the use of multiple external knowledge sources
through multi-granularity pruning.

to bridge the gap between static, often limited in-
ternal knowledge of LLMs and vast real-world in-
formation, thereby reducing hallucinations.
Numerous studies on RAG have been proposed
to effectively integrate external knowledge source
with the internal knowledge of LLMs (Gao et al.,
2022; Chan et al., 2024; Su et al., 2024). Through
a review of current research on RAG, we found
that most studies primarily focus on the utilization
of a single knowledge source. However, practi-
cal applications often require access to multiple
knowledge sources, which can vary significantly in
format, timeliness, and domain. Despite this need,
research on RAG with multiple external knowledge
sources remains limited, primarily due to the lack
of suitable benchmark datasets and insufficient pre-
liminary exploration of the current field.
Fortunately, we found that the KDD Cup 2024
CRAG competition dataset (Yang et al., 2024) com-
prises two distinct types of external knowledge
sources: unstructured web pages of variable qual-
ity with limited timeliness but broad coverage, and
APIs, which offer structured accurate information
with strong real-time performance. However, the
dataset still encounters some challenges in its suit-
ability for broad research applications. For in-



stance, the HTML-formatted web page data it con-
tains present significant challenges for LLM pro-
cessing, with no unified standards currently avail-
able for cleaning and parsing these data. Further-
more, how to effectively prune multi-source exter-
nal knowledge and reduce misleading information
has been less explored. In this paper, we stan-
dardize the dataset and establish a new benchmark,
providing a solid foundation for future research
in the field. To standardize this dataset, we un-
dertake significant efforts. For example, we clean
the web page knowledge by removing excessive
HTML tags and converting it into an LLM-friendly
Markdown format, enhancing data quality, ensur-
ing compatibility with existing RAG frameworks,
and enabling fair evaluation.

Building upon this dataset, we introduce Prun-
ingRAG, a new framework for RAG that performs
multi-granularity pruning of diverse knowledge
sources. Coarse-grained pruning effectively re-
moves misleading information from inappropriate
sources, thereby mitigating hallucinations. Mean-
while, adaptive fine-grained pruning further refines
the knowledge retained from coarse-grained prun-
ing, ensuring higher relevance while reducing extra-
neous information and thereby improving overall
accuracy. After obtaining pruned knowledge, we
use strategies such as in-context learning (ICL) to
enhance the performance of reasoning. In addition,
our framework is plug-and-play, facilitating further
exploration and application.

Based on our dataset and framework, we conduct
extensive experiments and report key insights. For
coarse-grained pruning, the fine-tuned LLM proves
adept at dynamically selecting relevant knowledge
sources, maximizing utility while reducing mis-
leading context. For fine-grained pruning, tailored
strategies effectively handle various knowledge for-
mats, further enhancing reliability. Notably, the
relevance of the examples provided by in-context
learning to the query also significantly influences
the reasoning ability of RAG.

Main contributions of this paper are as follows:
(1) We standardize a benchmark dataset that inte-
grates structured and unstructured external knowl-
edge across diverse domains. (2) We develop
PruningRAG, a plug-and-play framework featuring
multi-granularity pruning to optimize the integra-
tion of relevant context while mitigating misleading
information. (3) We conduct extensive experiments
and report our results and key insights to support
future research in the RAG community.

2 Related Work

2.1 Retrieval-Augmented Generation

RAG (Lewis et al., 2020) has emerged as a strong
approach to mitigating hallucinations in LLMs by
incorporating external knowledge. Early methods
utilized a straightforward “retrieve-then-generate”
pipeline, whereas more advanced frameworks now
integrate query refinement (Ma et al., 2023; Chan
et al., 2024), iterative retrieval (Shao et al., 2023;
Press et al., 2022) and modular architectures (Gao
et al., 2023). Dynamic retrieval frameworks, such
as Self-RAG (Asai et al., 2024) and DRAGIN (Su
et al., 2024), progressively refine retrieved informa-
tion, while GraphRAG (Edge et al., 2024) leverages
graph-based indexes for structured knowledge.
However, these advancements generally over-
look the complexities of managing multiple,
diverse knowledge sources. Although some
methods incorporate multiple sources of knowl-
edge (Sarmah et al., 2024; Wang et al., 2024; Zhao
et al., 2024), they often lack diversity in data for-
mats, fields, or timeliness. To bridge this gap, we
propose PruningRAG, which uses multi-granularity
pruning to reduce misleading information, thereby
consolidating multi-source knowledge.

2.2 Existing Benchmarks for RAG

As RAG frameworks evolve, new benchmarks have
emerged to measure and guide their capabilities.
For instance, RGB (Chen et al., 2023) evaluates ro-
bustness, integration, and counterfactual reasoning;
CRUD-RAG (Chen et al., 2023) follows a struc-
tured Create-Read-Update-Delete workflow; RAG-
Bench (Friel et al., 2024) focuses on explainability
with detailed metrics; and RAGEval (Zhu et al.,
2024) automates dataset generation for rigorous
testing. These benchmarks offer a comprehensive
framework for assessing RAG performance.

However, most existing benchmarks focus on
single-source knowledge integration and do not
evaluate the utilization of multi-source knowledge.
Although the CRAG benchmark (Yang et al., 2024)
incorporates both web pages and API sources,
its dataset lacks standardized HTML parsing and
hinders LLMs from effectively utilizing JSON-
formatted API information. To address these lim-
itations, we standardize the dataset and introduce
a new benchmark to tackle multi-source hetero-
geneous knowledge integration, reduce hallucina-
tions, and enhance reasoning capabilities.
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Figure 2: An illustration of PruningRAG, including multi-source knowledge pruning, knowledge reasoning and
evaluation. Knowledge pruning filter out irrelevant knowledge sources and improve context relevance. The pruned
knowledge is combined with the query to reason and the answer is evaluated based on accuracy and hallucination.

3 Preliminaries

In this section, we formally define the retrieval-
augmented generation (RAG) involving multi-
sources external knowledge and introduce how we
propose a standardized dataset.

3.1 Problem Formulation

We consider a query ¢ and a collection of knowl-
edge sources K = {K1, K»,...,Kp} with corre-
sponding set of document D = (J?_; Dg,. Each
K; is the i-th knowledge source, and Dk, C K;.
The goal is to generate an answer A by selecting
and merging documents most relevant to ¢ and then
using LLM to produce the final response. Formally,
let D, be the subset of D retrieved for g. The final
answer is given by:

Answer = LLM (Dq &) q), (1)

where @ indicates the concatenation of D, and q.

3.2 A Multi-Source Knowledge RAG Dataset

In recent years, numerous datasets have been in-
troduced, each presenting its own challenges for
RAG and contributing to its ongoing develop-
ment (Kwiatkowski et al., 2019; Yang et al., 2018;
Joshi et al., 2017; Stelmakh et al., 2022; Tang and
Yang, 2024). However, most of these datasets rely
on only a single external knowledge source, despite
the fact that real-world applications often involve
multiple sources. To address this gap, we leverage
the dataset from the KDD Cup 2024 CRAG compe-
tition, which uniquely provides both unstructured

web content (in HTML) and structured API data.

Although the original CRAG dataset offers di-
verse knowledge types, it also presents several prac-
tical hurdles—such as noisy HTML tags that com-
plicate knowledgek extraction, the absence of a uni-
form parsing standard, and JSON-formatted API re-
sults that are not directly conducive to LLM-based
reasoning. To overcome these limitations, we sys-
tematically refined and standardized the dataset.
First, we clean the HTML knowledge and convert
it into a Markdown format, eliminating extrane-
ous tags and ensuring consistency. Second, we
employed rule-based processing to simplify API
access by aligning entities with query terms and
transforming JSON outputs into natural language.
These enhancements remove the initial shortcom-
ings of the CRAG dataset, thereby creating a robust
multi-source benchmark that more accurately sup-
ports RAG research and development.

4 Methodology

In this section, we first present an overview of the
entire framework, followed by the details of each
component. The illustration of the PruningRAG
framework is shown in Figure 2.

4.1 Overview of the PruningRAG Framework

PruningRAG consists of three components: multi-
source knowledge pruning, knowledge reasoning
and performance evaluation. First, coarse-grained
pruning screen out irrelevant or low-quality knowl-
edge sources, thus narrowing the overall search
space. Subsequently, fine-grained pruning refines



the remaining sources. This two-tier pruning en-
sures that only relevant context remains.

Once pruned, the selected contexts are com-
bined with the user query in a knowledge-enhanced
prompt. This prompt leverages Chain-of-Thought
(CoT) reasoning and In-Context Learning (ICL) to
guide the LLM toward producing fact-based and
minimally hallucinatory outputs. Finally, the frame-
work employs a rigorous evaluation process, includ-
ing metrics for accuracy, hallucination rate, miss-
ing rate, and an overall score. These metrics use
both string-matching and GPT-based assessments
to gauge how well the system retrieves essential
information and avoids misleading content, ulti-
mately ensuring that PruningRAG delivers reliable
and contextually precise responses.

4.2 Multi-Source Knowledge Pruning

In this section, we explain the specific strategies for
pruning multi-source knowledge, including coarse-
grained pruning to filter knowledge sources and
fine-grained pruning to obtain key context.

4.2.1 Coarse-Grained Knowledge Pruning

In scenarios involving multiple sources of exter-
nal knowledge, relevant information may reside
in € = {K1, K», ..., K,}, within internal knowl-
edge of LLM K, or be completely unavailable.
This makes pruning of irrelevant sources essential
to prevent conflicts and hallucinations. We define a
subset-selection function:

Kqe=0{K} 4. q), 2)

where O identifies the knowledge sources most
appropriate for query g. An LLM is used to deter-
mine Ky. However, initial experiments® showed
that prompting the LLM with only g was insuffi-
cient for accurate source selection.

To address this, we built a specialized dataset
from the training set, labeling each query with the
subset of sources that provided correct answers
in practice. For queries that none of the avail-
able sources could answer accurately, we included
sources exhibiting the highest overall accuracy on
similar queries. We then fine-tuned the LLM on
these (query, source-subset) pairs to discard low-
relevance sources while retaining those critical for
generating a correct answer.

The experimental results are detailed in Appendix E.

LLMs Input

Task Description: You are given a Question, References.
Please think step by step, then provide the final answer.
Please follow these guidelines when formulating your answer:

: The user's question may contain factual
errors, in which case reply “invalid question” . If you don't know the
answer, respond with "I don't know". Your final answer should be
concise, using as few words as possible.

CoT & ICL: First, start with Thought and then output the thought.

Then, you MUST reply with the final answer on the last line.

Here are some examples of invalid questions:
{invalid_questions_examples}

References & Query

Figure 3: Prompt design template incorporating CoT
and ICL for enhanced reasoning.

4.2.2 Fine-Grained Knowledge Pruning

When integrating diverse external knowledge
sources, fine-grained pruning is crucial to extract
relevant information. Given a corpus D comprising
multiple documents (e.g., fifty web pages), we first
perform a sparse retrieval step using BM25 (Cheng
et al., 2021), formally defined as:

D™ = BM25(D, q), 3)
where DP*™¢ C D denotes the subset of docu-
ments identified as relevant to the query g by BM25.
Subsequently, we refine the context through dense
passage retrieval (DPR) (Karpukhin et al., 2020),
which selects text chunks with high relevance to q:

D;lense _ DPR(D(s]parse7 Q), (4)

where Df}ense is the final context from web pages.
In scenarios where only a limited number of doc-
uments (e.g., five web pages) are available, we
bypass the sparse retrieval step and directly apply
dense retrieval for more precise chunk selection.

For knowledge from APIs, fine-grained prun-
ing enhances context quality by filtering redundant
APIs and irrelevant parts of the retrieved informa-
tion. To achieve this, named entity recognition
(NER) is employed to extract key entities from the
query, guiding the API to focus its responses on key
information. Furthermore, queries are directed to
specific APIs based on their characteristics, allow-
ing for the exclusion of irrelevant APIs and reduc-
ing unnecessary data retrieval. The structured API
output is then transformed into natural language
using rule-based post-processing, ensuring that the
refined information is seamlessly integrated into
LLM’s response generation.



Naive RAG HyDE Iter-RETGEN RRR Self-Ask Self-RAG
Knowledge Source  Acc. Hall. Acc. Hall Acc. Hall. Acc. Hall. Acc. Hall. Acc. Hall
5 Web Pages 2480 2269 24.65 18.24 2859 1845 15.61 12.77 2446 2998 1429 8.97
50 Web Pages 32.82  29.54 3048 17.06 31.50 25.16 19.76 1531 30.78 2626 1451 8.75
API 3238 11.67 3275 1146 3238 11.67 31.66 1248 2523 1780 1436 8.82
5 Web Pages + AP 39.97 2232 4041 2123 4369 1852 3508 1532 29.83 3289 14.00 9.19
+ Pruning 44.56 21.23 43.03 1831 4383 17.21 36.03 1342 32.68 28.37 14.44 8.5
1 Gain 11.48% 4.88% 6.48% 13.75% 0.32% 7.71% 2.71% 14.16% 9.55% 13.74% 3.14% 4.79%
50 Web Pages + AP 39.53 2276 40.40 2122 43.69 1853 34.64 1575 33.62 3530 1254 10.72
+ Pruning 43.15 18.01 41.76 1597 4146 15.89 3577 14.58 33.84 3245 13.03 9.34
1 Gain 9.16% 20.87% 3.37% 24.74% -5.10% 14.24% 2.26% 7.43% 0.65% 8.07% 391% 12.87%

Table 1: Performance of RAG frameworks with and without PruningRAG on different knowledge sources.

4.3 Knowledge-Enhanced Reasoning

As shown in Figure 3, we design a prompt that inte-
grates CoT and ICL to optimize the use of pruned
knowledge for reasoning. The prompt begins by
clearly stating the task and instructing the model
to answer based on the context. If uncertain, the
model is directed to output "I don’t know" to pre-
vent hallucinations. To enhance reasoning capa-
bilities, we include a few-shot example section,
where examples are chosen from domains different
from domain of the query to reduce overfitting to
domain-specific patterns. The pruned knowledge
and the query are then presented with a CoT in-
struction, prompting the model to reason step by
step. Finally, the prompt asks the model to out-
put both its reasoning and a final, well-considered
answer, ensuring clarity and accuracy.

4.4 Performance Evaluation

We use four key metrics to evaluate the perfor-
mance of the RAG framework: accuracy (Acc.),
hallucination (Hall.), missing (Miss.), and an over-
all score, which is defined as the difference between
accuracy and hallucination. This score reflects the
framework’s ability to extract key knowledge while
avoiding misleading information. The evaluation
process combines string matching and GPT-based
assessments. First, if the predicted answer exactly
matches the ground truth, it is recorded as accurate;
if the response is "I don’t know," it is categorized as
missing information. For non-exact matches, GPT-
3.5 Turbo (Ouyang et al., 2022) semantically com-
pares the prediction with the ground truth, marking
it as accurate if aligned or as hallucination if not.

5 Benchmark Evaluation of RAG

In this section, we introduce the evaluation of Prun-
ingRAG and various baselines in different knowl-

edge sources using the standardized dataset, includ-
ing experimental setup and analysis of the results.

5.1 Experimental Setup

Implementation. In our experiments, for coarse-
grained pruning, we use a fine-tuned Llama-3.1-
8B-Instruct (Dubey et al., 2024) to filter out inap-
propriate knowledge sources. For the fine-grained
stage, we deploy the BGE-M3 (Chen et al., 2024).
If not specified otherwise, we use Llama-3.1-8B-
Instruct as the generator. Detailed hyperparameter
configurations are provided in Appendix A.2.

Baselines. We apply PruningRAG to the fol-
lowing RAG frameworks: naive RAG, and five
state-of-the-art train-free frameworks, including
HyDE (Gao et al., 2022), Iter-RETGEN (Shao
et al., 2023), RRR (Ma et al., 2023), and Self-
Ask (Press et al., 2022), as well as Self-RAG (Asai
et al., 2024), which requires fine-tuning. All meth-
ods share the same dataset post-processing and
evaluation protocols to ensure the robustness of
the pruning strategy’s performance gains across
different approaches.

5.2 [Experimental Results

Table 1 compares six RAG frameworks across three
knowledge sources: 5 web pages, 50 web pages (50
web pages contain 5 web pages) and API and ex-
amines the impact of applying our PruningRAG on
performance, measured in terms of accuracy (Acc.)
and hallucination rate (Hall.). From the results we
have the following findings: First, for the multi-
knowledge source scenario, PruningRAG improves
the performance of almost all RAG frameworks,
improving accuracy and reducing hallucinations.
Second, compared with improving accuracy, the
PruningRAG framework has a more obvious effect
on reducing hallucinations, which indicates that in



Naive RAG Llama-3.1-70B-Inst. ~ Llama-3.1-8B-Inst. ~ Llama-3.2-3B-Inst. Llama-3.2-1B-Inst.
Knowledge Source Acc. Hall. Acc. Hall. Acc. Hall. Acc. Hall.
5 Web Pages 30.49 15.31 24.80 22.69 29.68 23.63 12.83 16.33
50 Web Pages 33.99 21.01 32.82 29.54 31.50 25.74 13.05 16.11
API 34.28 5.83 32.38 11.67 28.74 11.23 423 3.79
5 Web Pages + API 47.84 18.16 39.97 22.32 36.90 25.02 16.19 16.92
+ Pruning 48.14 16.49 44.56 21.23 37.41 20.49 14.29 15.17

1 Gain 6.27% 9.20% 11.48% 4.88% 1.38% 18.11% -11.73% 10.34%
50 Web Pages + API ~ 47.99 19.54 39.53 22.76 38.41 24.00 15.17 19.62
+ Pruning 52.58 17.87 43.15 18.01 38.88 21.73 14.08 15.10

1 Gain 9.56% 8.55% 9.16% 20.87% 1.22% 9.46% -7.18% 20.01%

Table 2: Performance comparison of LLMs with varying parameter scales with and without PruningRAG.

the case of insufficient knowledge, the pruned in-
formation induces LLM to make incorrect answers.
We observe that PruningRAG slightly reduces accu-
racy in Iter-RETGEN, likely due to the removal of
some effective information after multiple retrieval
rounds. However, it still reduces hallucinations.
Table 2 presents a comparison of the perfor-
mance of LLMs with varying parameter scales,
evaluated within the naive RAG framework. It also
discusses the performance enhancements achieved
through PruningRAG. The experimental results
demonstrate a general trend wherein model per-
formance improves progressively with increasing
model size, highlighting the ability of larger mod-
els to better leverage external knowledge sources
due to their enhanced expressive power. LLMs
of varying sizes show improved accuracy and re-
duced hallucinations with PruningRAG, with the
only exception being an accuracy drop in Llama-
3.2-1B-Instruct, highlighting the robustness and ef-
fectiveness of our method. PruningRAG may have
removed knowledge that, though redundant for
larger models, remained essential for the smaller
1B model. However, due to PruningRAG’s effec-
tive removal of detrimental information, the 1B
model can also significantly reduce hallucinations.

6 Extensive Empirical Studies

In this section, we leverage PruningRAG to
conduct further experimental exploration on our
dataset and present key insights from three perspec-
tives: coarse-grained pruning, fine-grained pruning,
and knowledge-enhanced reasoning.

6.1 Impact of Coarse-Grained Pruning

Table 3 presents an evaluation of four knowledge
utilization strategies. One approach relies exclu-
sively on either the LLM’s internal knowledge

Experiment Setting Acc.  Score
LLM 17.94  -0.36
Web Pages 2480 2.11

API 32.38 20.71
Web Pages+API 39.97 17.65
LLM+Web Pages 1794 7.80

LLM+API 40.55 22.25
LLM+Web Pages+API 45.73 14.37
LLM— Web Pages 2530 -5.84
LLM— API 35.01 11.31
LLM— Web Pages+API 3822  6.64

Knowledge Source Pruning 44.56 23.33

Table 3: Comparison of performance of different strate-
gies for leveraging knowledge sources.

Setting Acc. Hall. Latency(s)
w/o Sparse Retrieval 32.93 30.18 3.29
w. Sparse Retrieval  32.82 29.54 33.54

Table 4: Comparison of effectiveness and efficiency
with and without broad retrieval.

or external knowledge. Another combines the
LLM’s internal knowledge with one or more exter-
nal sources to generate responses collaboratively.
A further strategy prioritizes internal knowledge,
consulting external sources only when the inter-
nal context is insufficient to produce an answer.
Finally, our proposed method incorporates a knowl-
edge source pruning mechanism to optimize the
selection and integration of relevant knowledge.

The experimental results indicate that directly
relying on multiple knowledge sources simultane-
ously often introduces conflicting information, re-
sulting in performance degradation compared to
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using a single source. Additionally, prioritizing the
internal knowledge of LLM before retrieval tends
to generate hallucinations due to the inherent in-
accuracies in the model’s internal knowledge. In
contrast, our knowledge source pruning strategy dy-
namically prunes knowledge sources based on the
characteristics of each query, enabling the effective
utilization of each knowledge source.

6.2 Impact of Fine-Grained Pruning

Table 4 compares the performance of the Prun-
ingRAG with and without the initial broad retrieval
step in the fine-grained pruning process. The re-
sults highlight that incorporating the sparse re-
trieval stage significantly improves system effi-
ciency by reducing latency, particularly in cases
involving large volumes of external knowledge.
Serving as an initial filter, sparse retrieval narrows
the search scope, allowing the subsequent dense
retrieval to operate with higher precision and speed.
This multi-stage fine-grained pruning approach re-
duces latency while ensuring context relevance.
Figure 4 demonstrates that dense retrieval outper-
forms sparse retrieval. Specifically, dense retrieval
is more effective at capturing semantic relation-
ships compared to sparse retrieval. When dense
and sparse retrieval methods are combined, the ac-

Category N Acc. Hall. Miss. Score
0 1320 1050 76.29 2.70

1 1605 12.62 7133 343

2 1612 1298 7090 3.14

Overall 3 15.17 12.69 72.14 248
1" 1612 11.89 71.99 423

2* 18.02 1123 70.75 6.78

3* 1641 11.60 72.00 4.81

0 25.00 5.77 6923 19.23

1 16.03 1410 69.87 193

2 1657 1346 69.87 3.11

False 3 1731 12.82 69.87 4.49
Premise 1% 20.51 12.18 67.31 8.33
2* 19.87 11.54 68.59 6.33

3* 23.08 9.62 6730 13.46

Table 5: Impact of few-shot learning on LLM reason-
ing. N* indicates that the N examples provided for
in-context learning are cross-domain examples.

curacy improves relative to sparse retrieval alone.
However, this hybrid approach also leads to an in-
crease in hallucinations. This suggests that while
the hybrid retrieval retains important information,
it struggles to effectively prune misleading con-
text (Cheng et al., 2022; Gu et al., 2018).

6.3 Analysis of Knowledge Reasoning

In this section, we analyze the impact of our strate-
gies for enhancing LLLM reasoning over pruned
knowledge, including CoT reasoning and ICL.

Role of CoT reasoning. Figure 5 illustrates the
varying impact of incorporating chain-of-thought
(CoT) reasoning (Wei et al., 2022; Trivedi et al.,
2022) on performance, depending on the type of
external knowledge sources. When internal LLM
knowledge is combined with unstructured network
data, which is often noisy and sparsely populated
with relevant information, CoT’s step-by-step rea-
soning helps filter out irrelevant details and reduce
hallucinations, thereby improving response accu-
racy. In contrast, when an API is used as an ex-
ternal knowledge source, CoT’s multi-step process
can lead to overly cautious responses. While this
cautious approach reduces hallucinations, it may
significantly compromise accuracy, even when the
API provides reliable information.

Impact of ICL with cross-domain examples.
Table 5 illustrates the impact of incorporating false
premise examples on performance of PruningRAG.
False premise questions, which include intentional
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inaccuracies requiring LLM to respond with “in-
valid question,” were used to assess the ability to
identify flawed queries. To aid in this, the model
was provided with sample invalid questions and
explanations, in two conditions: one with domain-
aligned examples and another with cross-domain
examples. Our findings reveal that few-shot exam-
ples enhance the general performance of the RAG
by improving task comprehension and reasoning
capabilities (Dong et al., 2022). However, accuracy
on false premise questions declines compared to
the zero-shot setting, with domain-specific exam-
ples performing worse than cross-domain exam-
ples. This discrepancy may stem from overfitting
to domain-specific patterns, while cross-domain
examples introduce greater variability, mitigating
overfitting and enhancing reasoning ability.

6.4 Hyperparameter Sensitivity Analysis

In this section, we analyze the impact of hyper-
parameters such as chunk size, overlap, and the
number of retrieved chunks on RAG performance.

Chunk Size. Figure 6 illustrates how chunk size
affects PruningRAG. Increasing chunk size from
50 to 500 enhances accuracy by providing richer
context, but slightly raises hallucination rates as
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Figure 8: Impact of the number of retrieved chunks on
PruningRAG performance.

LLM must filter knowledge from more noise. Once
chunk size reaches 1000, accuracy drops because
excessive content dilutes relevance and hinders
the identification of key details. Thus, a moder-
ate chunk size achieves the best balance between
context richness and focus.

Chunk Overlap. As shown in Figure 7, over-
lap notably affects performance, particularly with
larger chunk sizes. For small chunks (e.g., size 50),
overlap offers minimal gains given limited context.
Conversely, for larger chunks (e.g., size 200), over-
lap enhances continuity and accuracy but slightly
raises hallucination due to redundancy.

Chunk Quantities. As shown in Figure 8, in-
creasing the number of retrieved chunks initially
boosts accuracy but eventually plateaus and then
declines, while hallucination rates gradually rise.
In contrast to too large chunks, which dilute focus
and reduce accuracy, providing too many retrieved
chunks primarily increases hallucination by intro-
ducing excessive context.

7 Conclusion

This paper presents a standardized multi-source
knowledge dataset and introduces the PruningRAG
framework, which leverages multi-granular prun-
ing to optimize the utilization of diverse knowledge
sources. Through our framework, we uncover valu-
able insights, including the impact of knowledge
source pruning and the effectiveness of adaptive
fine-grained pruning. Furthermore, we have made
our dataset, the PruningRAG framework, code, and
experimental results publicly available. We hope
that our work will inspire further research into ad-
vanced knowledge pruning to better tackle the com-
plexities of multi-source knowledge, contributing
to the progress of the RAG community.



Limitations

In this work, we standardized a benchmark dataset
containing multiple knowledge sources and pro-
posed a novel plug-and-play framework to improve
the current RAG approach. However, because the
external knowledge in our dataset is not annotated,
we were unable to evaluate retrieval quality directly
and instead focused on end-to-end performance.
In addition, due to limited computing resources,
we did not train the 70B model to test the perfor-
mance of Self-RAG. As part of future work, we
hope to perform more detailed annotation work on
the dataset to conduct a more comprehensive eval-
uation, and also try to explore the performance of
PruningRAG with more knowledge sources.
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A Reproducibility

A.1 Dataset Processing

In our experiments, we used the official training
set provided by the KDD Cup 2024 CRAG com-
petition dataset to construct fine-tuning data for
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coarse-grained pruning, and used the validation
set to obtain our experimental results. To enhance
the usability of the web-based knowledge within
the dataset, we converted HTML-formatted web
pages into markdown format using the Jina frame-
work. This conversion was essential to improve
the compatibility of the data with Large Language
Models (LLMs), enabling more effective inference
and retrieval of relevant information.

This processing step was crucial for ensuring
that the external knowledge sources were optimally
formatted for existing retrieval-augmented gener-
ation (RAG) framework. The parsed markdown
dataset, which is publicly available, supports fur-
ther research and underscores the practical improve-
ments brought by our approach in handling com-
plex question-answer (QA) scenarios.

A.2 Experimental Setup

To ensure the reproducibility and consistency of
our experiments, we establish a base configuration
for our PruningRAG, detailed in Table 6. For the
coarse-grained pruning, we use a fine-tuned Llama
3.1 8B to filter out inappropriate knowledge sources
. For the fine-grained stage we deployed the BGE
M3 embedding model. The chunk size for retrieval
is set to 200 tokens with no overlap, and the TopK
retrieved chunks per query is set to 3. For reason-
ing, we use Llama 3.1 8B as the backbone model.
The generation parameters include a maximum of
500 new tokens per output. We set the temperature
to 0, ensuring deterministic outputs, and use a TopP
value of 1.0.

Hyperparameter Value

Chunk Size 200 tokens

Chunk Overlap 0 (no overlap)

Embedding Model BGE-M3

Temperature 0 (deterministic)

TopP 1.0 (all tokens considered)
LLM Backbone Llama-3.1-8B-Instruct

Table 6: Base hyperparameter configuration.

A.3 Configuration details for RAG methods

In this section, we provide the detailed configu-
ration of the baseline RAG methods used in our
experiments. All algorithm parameters are set to
the optimal values reported in their respective orig-
inal papers to ensure a fair comparison and optimal
performance.

Method Parameter Value
beam_width 2
max_depth 7

Self-RAG w_rel 1.0
w_sup 1.0
W_use 0.5
threshold 0.2

Iter-RETGEN max_iteration 3

Self Ask max_iteration 5

Table 7: Configuration details for RAG methods.
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Figure 9: Case Study of PruningRAG.

B Computing Infrastructure

All the experiments are conducted on 2 x Nvidia
GeForce RTX 4090 GPUs (24GB memory each).
Other configuration includes 2 x Intel Xeon Gold
6426Y CPUs, 503GB DDR4 RAM, and 1 x
893.8GB SATA SSD, which is sufficient for all
the baselines. However, due to the limited com-
putational resources, we are unable to locally de-
ploy Llama-3.1-70B-Instruct. Therefore, for exper-
iments involving this model, we utilize an API for
execution. On average, each inference task takes
approximately one hour to complete. Additionally,
training the Llama-3.1-8B-Instruct model on the
Self-RAG dataset requires around 50 hours.

C Dataset Details

Our dataset comprises 4,409 QA pairs, with queries
covering a wide range of domains (e.g., finance,
sports) and temporal categories (e.g., real-time,
static), across eight distinct question types (e.g.,
simple, conditional, multi-hop), split into training,
validation, and test sets, with 1,371 QA pairs re-
served for testing and the remainder allocated to
training and validation. This design facilitates a
comprehensive evaluation of RAG systems, setting
it apart from specialized datasets , which predom-
inantly focus on multi-hop questions. Each QA
pair in our dataset is paired with either five or fifty



unstructured web pages, along with a API provid-
ing structured access to knowledge from a knowl-
edge graph containing 2.6 million entities. The
knowledge from web pages is generally static and
broad in scope, making it well-suited for answer-
ing static queries in open domains. In contrast, the
knowledge accessed via the API is more real-time
and domain-specific, which is particularly effec-
tive for addressing time-sensitive queries in areas
like finance. Additionally, some queries may not
align well with either external knowledge source,
in which case the model must rely on its internal
knowledge base. Our dataset incorporates multi-
ple external knowledge sources, a feature that dis-
tinguishes it from many existing datasets, which
typically rely on a single knowledge source, with
answers directly extracted from that source. The
external knowledge in our dataset, does not always
guarantee the presence of relevant information to
answer the queries. A further challenge arises when
inappropriate knowledge sources are selected, as
this can introduce misleading information, exacer-
bating hallucination issues.

D Case Study

Figure 9 illustrates a case study of the PruningRAG
framework applied to answer the query: "How
much did Funko open at today?" The system pro-
cesses two external knowledge sources: a web page
and a API. The web page contains irrelevant con-
text, such as information about trading strategies
and futures contracts, which is pruned during the
knowledge refinement stage. The API provides
structured and accurate information, including the
open price of Funko Inc.’s stock at $7.16 and the lat-
est price at $7.13. After pruning irrelevant knowl-
edge, the refined information is passed to the LLM
reasoning component, which generates the answer.
In this example, the answer "$7.16" matches the
ground truth, demonstrating the effectiveness of
PruningRAG in filtering irrelevant context and fo-
cusing on relevant knowledge to improve response
accuracy.

E More Experimental Results

Effectiveness of knowledge source pruning with
fine-tuned LLM. As shown in Table 8, the over-
all performance of the knowledge source pruning
approach with a fine-tuned large model is evalu-
ated and compared to the performance achieved
without fine-tuning. The results demonstrate that
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Naive RAG HyDE
Acc. Hall. Acc. Hall
5 web pages + APIL
w/o Pruning 39.97 2232 40.41 21.23
Pruning w/o fine-tuning 38.37 23.85 40.04 21.15
Pruning w/ fine-tuning 44.56 21.23 43.03 18.31
5 web pages + APIL
w/o Pruning 39.53 22.76 40.40 21.22
Pruning w/o fine-tuning  39.75 28.08 39.23 23.34
Pruning w/ fine-tuning  43.15 18.01 41.76 15.97

Table 8: Performance of PruningRAG frameworks with
and without fine-tuning.

when pruning is performed using a large model
without fine-tuning, the performance actually wors-
ens, highlighting the importance of fine-tuning in
enhancing the model’s effectiveness. It appears
that the knowledge source pruning process benefits
from the model’s ability to adapt to the specific task
or domain through fine-tuning, as it allows for more
accurate and relevant information retention. In con-
trast, the unrefined model struggles to effectively
discard irrelevant knowledge, leading to a reduction
in accuracy and an increase in hallucinations. Only
when fine-tuned models are used for knowledge
source pruning can we achieve significant improve-
ments in both accuracy and hallucination reduction,
showcasing the value of task-specific adaptation in
our approach.



	Introduction
	Related Work
	Retrieval-Augmented Generation
	Existing Benchmarks for RAG

	Preliminaries
	Problem Formulation
	 A Multi-Source Knowledge RAG Dataset

	Methodology
	Overview of the PruningRAG Framework
	Multi-Source Knowledge Pruning
	 Coarse-Grained Knowledge Pruning
	 Fine-Grained Knowledge Pruning

	Knowledge-Enhanced Reasoning
	 Performance Evaluation

	Benchmark Evaluation of RAG
	Experimental Setup
	Experimental Results

	Extensive Empirical Studies
	Impact of Coarse-Grained Pruning 
	 Impact of Fine-Grained Pruning
	Analysis of Knowledge Reasoning
	Hyperparameter Sensitivity Analysis 

	Conclusion
	 Reproducibility 
	Dataset Processing
	Experimental Setup
	 Configuration details for RAG methods

	Computing Infrastructure
	Dataset Details
	Case Study
	More Experimental Results

