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Abstract

A primary criticism towards language models (LMs) is their inscrutability.
This paper presents evidence that, despite their size and complexity, LMs
sometimes exploit a simple computational mechanism to solve one-to-one
relational tasks (e.g., capital_of(Poland)=Warsaw). We investigate a range
of language model sizes (from 124M parameters to 176B parameters) in an in-
context learning setting, and find that for a variety of tasks (involving capital
cities, upper-casing, and past-tensing) a key part of the mechanism reduces to
a simple linear update typically applied by the feedforward (FFN) networks.
These updates also tend to promote the output of the relation in a content-
independent way (e.g., encoding Poland:Warsaw::China:Beijing), revealing a
predictable pattern that these models take in solving these tasks. We further
show that this mechanism is specific to tasks that require retrieval from
pretraining memory, rather than retrieval from local context. Our results
contribute to a growing body of work on the mechanistic interpretability
of LLMs, and offer reason to be optimistic that, despite the massive and
non-linear nature of the models, the strategies they ultimately use to solve
tasks can sometimes reduce to familiar and even intuitive algorithms.

1 Intro

The growing capabilities of large language models (LLMs) have led to an equally growing
interest in understanding how such models work under the hood. Such understanding is
critical for ensuring that LLMs are reliable and trustworthy once deployed. Recent work
(often now referred to as “mechanistic interpretability”) has contributed to this understanding
by reverse-engineering the data structures and algorithms that are implicitly encoded in the
model’s weights, e.g., by identifying detailed circuits (Wang et al., 2022; Elhage et al., 2021;
Olsson et al., 2022) or by identifying mechanisms for factual storage and retrieval which
support intervention and editing (Geva et al., 2021b; Li et al., 2022; Meng et al., 2022a;c;
Dai et al., 2022).
Here, we contribute to this growing body of work by analyzing how LLMs recall information
during in-context learning. Modern LLMs are based on a complex transformer architecture
(Vaswani et al., 2017) which produces contextualized word embeddings (Peters et al., 2018;
Devlin et al., 2019) connected via multiple non-linearities. Despite this, we find that LLMs
implement a basic vector-addition mechanism which plays an important role in a number of
in-context-learning tasks.
We study this phenomenon in three tasks: recalling capital cities, uppercasing tokens, and
past-tensing verbs. Our key findings are:

• We find evidence of a distinct processing signature in the forward pass which
characterizes this mechanism. That is, if models need to perform the get_capital(x)
function, which takes an argument x and yields an answer y, they first surface the
argument x in earlier layers which enables them to apply the function and yield y
as the final output (Figure 2). This signature generalizes across models and tasks,
but appears to become sharper as models increase in size.
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• We take a closer look at GPT2-Medium, and find that the vector arithmetic mecha-
nism is often implemented by mid-to-late layer feedforward networks (FFNs) in a
way that is modular and supports intervention. E.g., an FFN outputs a content-
independent update which produces Warsaw given Poland and can be patched into
an unrelated context to produce Beijing given China.

• We demonstrate that this mechanism is specific to recalling information from pre-
training memory. For settings in which the correct answer can be retrieved from the
prompt, this mechanism does not appear to play any role, and FFNs can be ablated
entirely with relatively minimal performance degradation. Thus, we present new
evidence supporting the claim that FFNs and attention specialize for different roles,
with FFNs supporting factual recall and attention copying and pasting from local
context.

Taken together, our results offer new insights about one component of the complex algorithms
that underlie in-context learning. While the mechanism we present occupies the narrow
range of one-to-one relations, the simplicity of the mechanism raises the possibility that other
apparently complicated behaviors may be supported by a sequence of simple operations
under the hood. Moreover, our results suggest a distinct processing signature and hint at a
method for intervention. These ideas could support future work on detecting and preventing
unwanted behavior by LLMs at runtime.

2 Methods

In decoder-only transformer language models (Vaswani et al., 2017), a sentence is processed
one word at a time, from left to right. In this paper, we focus on the transformations
that the next-token prediction undergoes in order to predict the answer to some task. At
each layer, an attention module and feed-forward network (FFN) module apply subsequent
updates to this representation. Consider the FFN update at layer i, where xi is the
current next-token representation. The update applied by the FFN here is calculated as
FFN(~xi) = ~oi, ~xi+1 = ~xi + ~oi where ~xi+1 is the updated token for the next layer. Due to
the residual connection, the output vector ~oi is added to the input. ~x is updated this way
by the attention and FFNs until the end of the model, where the token is decoded into the
vocab space with the language modeling head E: softmax(E~x). From start to end, x is only
updated by additive updates, forming a residual stream (Elhage et al., 2021). Thus, the
token representation xi represents all of the additions made into the residual stream up to
layer i.
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Figure 1: When decoding the next word, additive updates are made through the residual
connections of each attention/FFN sub-layer. To decode the running prediction at every
layer, the pre-trained language modeling head is applied at various points in each layer as in
Geva et al. (2022a); nostalgebraist (2020). The ~o vector interventions we make (§4.1) are
illustrated by patching one or more FFN outputs with one from another example

2.1 Early Decoding

A key insight from the residual stream perspective is that we can decode the next token
prediction with the LM head before it reaches the final layer. This effectively allows for
“print statements” throughout the model’s processing. The intuition behind this technique is
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that LMs incrementally update the token representation ~x to build and refine an encoding
of the vocabulary distribution. This technique was initially introduced in nostalgebraist
(2020) as the logit lens, and Geva et al. (2022b) show that LMs do in fact refine the output
distribution over the course of the model. Figure 1 illustrates the process we use to decode
hidden states into the vocabulary space using the pre-trained language modeling head E.
After decoding, we apply a softmax to get a probability distribution over all tokens. When
we decode at some layer, we say that the most likely token in the resulting vocab distribution
is currently being represented in the residual stream. We examine the evolution of these
predictions over the course of the forward pass for several tasks.

2.2 Tasks

We apply early decoding to suite of in-context learning tasks to explore the transformations
the next token prediction undergoes in order to predict the answer.
World Capitals The World Capitals task requires the model to retrieve the capital city for
various states and countries in a few-shot setting. The dataset we use contains 248 countries
and territories. A one-shot example is shown below:
“Q: What is the capital of France? A: Paris Q: What is the capital of Poland? A:___”
Expected Answer: “ Warsaw”

Reasoning about Colored Objects We focus on a subset of 200 of the reasoning about
colored objects dataset prompts (i.e., the colored objects dataset) from BIG-Bench
(Srivastava et al., 2022). A list of colored common objects is given to the model before
being asked about one object’s color. For the purposes of this paper, we focus only
on one aspect of this task–the model’s ability to output the final answer in the correct format.1

“Q: On the floor, I see a silver keychain, a red pair of sunglasses, a gold sheet of paper, a
black dog leash, and a blue cat toy. What color is the keychain?
A: Silver
Q: On the table, you see a brown sheet of paper, a red fidget spinner, a blue pair of sunglasses,
a teal dog leash, and a gold cup. What color is the sheet of paper?
A:___” Expected answer: “ Brown”

The above tasks could all be described as one-to-one (e.g., each country has one capital,
each word only has one uppercase form). In Appendix F we explore six additional tasks,
three of which are either many-to-many or many-to-one. We find that the observed
mechanism only applies to one-to-one relations, indicating that the model learns some
sensitivity to this type of relation in order for it to represent the structure required
for the mechanism described here. Past Tense Verb Mapping Lastly, we examine
whether an LM can accurately predict the past tense form of a verb given a pattern
of its present tense. The dataset used is the combination of the regular and irregular
partitions of the past tense linguistic mapping task in BIG-Bench (Srivastava et al.,
2022). After filtering verbs in which the present and past tense forms start with the
same token, we have a total of 1,567 verbs. An example one-shot example is given below:
“Today I abandon. Yesterday I abandoned. Today I abolish. Yesterday I___” Expected
answer: “ abolished”

2.3 Models

We experiment exclusively on decoder-only transformer LMs across various sizes and pre-
training corpora. When not specified, results in figures are from GPT2-medium. We also
include results portraying the stages of processing signatures in the residual streams of the
small, large, and extra large variants (Radford et al.), the 6B parameter GPT-J model (Wang
& Komatsuzaki, 2021), and the 176B BLOOM model (Scao et al., 2022), either in the main
paper or in the Appendix.

1The reason for this is that most of the results in this paper were originally observed as incidental
findings while studying the Reasoning about Colored Objects task more generally. We thus zoom in
on this one component for the purposes of the mechanism studied here, acknowledging that the full
task involves many other steps that will no doubt involve other types of mechanisms.
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3 Stages of Processing in Predicting the Next Token

Layer Top Token
0 (
1 A
2 A
3 A
4 A
5 A
6 No
7 C
8 A
9 A
10 A
11 A
12 Unknown
13 C
14 St
15 Poland
16 Poland
17 Poland
18 Poland
19 Warsaw
20 Warsaw
21 Warsaw
22 Warsaw
23 Warsaw

Layer Top Token
0 The
1 The
2 The
3 [
4 [
5 M
6 M
7 No
8 The
9 No
10 No
11 None
12 None
13 None
14 None
15 None
16 None
17 white
18 white
19 Brown
20 Brown
21 Brown
22 Brown
23 Brown

Layer Top Token
0 (
1 A
2 A
3 A
4 A
5 A
6 A
7 A
8 A
9 The
10 The
11 The
12 The
13 The
14 The
15 The
16 The
17 The
18 Poland
19 Poland
20 Poland
21 Poland
22 Poland
23 The

Table 1: These are the top tokens per layer in GPT2-
Medium on the example zero-shot Poland example

10

A

B

C

Figure 2: Decoding the next token prediction at
each layer reveals distinct stages of processing. The
blue box (A) shows where the model prepares an
argument for transformation, the red box (B) shows
the function application phase during which the
argument is transformed (here with the capital_of
function, and the yellow box (C) shows a saturation
event, in which the model has found the answer,
and stops updating the top prediction. The dashed
line shows the logit difference between argument
and answer at each layer.

First, we use the early decoding method
in order to investigate how the process-
ing proceeds over the course of a for-
ward pass to the model. Each task
requires the model to infer some rela-
tion to recall some fact, e.g., retrieving
the capital of Poland. In these experi-
ments, we see several discrete stages of
processing that the next token under-
goes before reaching the final answer.
These states together provide evidence
that the models ”apply” the relevant
functions (e.g., get_capital) abruptly
at some mid-late layer to retrieve the
answer. Moreover, in these cases, the
model prepares the argument to this
function in the layers prior to that in
which the function is applied.
In Figure 2 we illustrate an example
of the stages we observe across mod-
els. For the first several layers, we see
no movement on the words of inter-
est. Then, during Argument Formation,
the model first represents the argument
to the desired relation in the residual
stream. This means that the top token
in the vocabulary distribution at some

intermediate layer(s) is the subject the question inquires about (e.g., the x, in get_capital(x)).
During Function Application we find that the model abruptly switches from the argument to
the output of the function (the y, in get_capital(x) = y). We find that function application
is typically applied by the FFN update at that layer to the residual stream. This is done
by adding the output vector ~o of the FFN to the residual stream representation, thus
transforming it with an additive update. We study these ~o vectors in detail in Section 4.
Finally, the model enters Saturation2, where the model recognizes it has solved the next
token, and ceases updating the token representation for the remaining layers.
The trend can be characterized by an X-shaped pattern of the argument and final output
tokens when plotting the ranks of the argument(x) and output (y) tokens. We refer to
this behavior as argument-function processing. Figure 3 shows that this same processing
signature can be observed consistently across tasks and models. Moreover, it appears to
become more prominent as the models increase in size. Interestingly, despite large differences
in number of layers and overall size, models tend to undergo this process at similar points
proportionally in the model.

4 Implementation of Context-Independent Functions in FFN Updates

The above results on processing signature suggest that the models “apply” a function about
2/3rds of the way through the network with the addition of an FFN update. Here, we
investigate the mechanism via which that function is applied more closely. Specifically,
focusing on GPT2-Medium3, we show that we can force the encoded function to be applied
to new arguments in new contexts by isolating the responsible FFN output vector and then
dropping into a forward pass on a new input.

2Saturation events are described in Geva et al. (2022a) where detection of such events is used to
“early-exit” out of the forward pass

3We focus on one model because manual analysis was required in order to determine how to
perform the intervention. See Appendix for results on GPT-J and Section 7 for discussion.
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Figure 3: Argument formation and function application is characterized by a promotion
of the argument (red) followed by it being replaced with the answer token (blue), forming
an X when plotting reciprocal ranks. Across the three tasks we evaluate, we see that most
of the models exhibit these traces, and despite the major differences in model depths, the
stages occur at similar points in the models. Data shown is filtered by examples in which
the models got the correct answer.

4.1 ~o Vector Interventions

Figure 4: The gray area indicates layers
with the FFN intervention. Even if the
input context is nonsense (repeating pat-
tern), when “China” is represented in the
residual stream, the ~ocity vector promotes
the correct capital city.

Consider the example in Figure 2. At layer 18,
the residual stream ( ~x18) is in argument forma-
tion, and represents the “ Poland” token. At the
end of layer 19, a function is applied, transform-
ing ~x19 into the answer token “ Warsaw.
As discussed in the previous section, we can iso-
late the function application in this case to FFN
19; let x̃19 represent the residual stream after the
attention update, but before the FFN update
at layer 19 (which still represents Poland). Re-
call that the update made by FFN 19 is written
FFN19(x̃19) = ~o19 and ~x19 = x̃19 + ~o19. We find
that ~o19 will apply the get_capital function re-
gardless of the content of x̃19. For example, if we
add ~o19 to some x̃ which represents the “ China”
token, it will transform into “ Beijing”. Thus we
refer to ~o19 as ~ocity since it retrieves the capital
cities of locations stored in the residual stream.
We locate such ~o vectors in the uppercasing and
past tense mapping tasks in the examples given
in Section 2.2, which we refer to as ~oupper and
~opast, respectively.4

We test whether these updates have the same effect, and thus implement the same function,
as they do in the original contexts from which they were extracted. To do so, we replace
entire FFN layers with these vectors and run new inputs through the intervened model.5

4In Appendix A, we extend these results to GPT-J, for which the same procedure leads to strong
effects on uppercasing, but smaller overall positive effects on capital cities and past tensing (see
Section 7).

5Which FFNs to replace is a hyperparameter; we find that replacing layers 18-23 in GPT2-Medium
leads to good results. It also appears necessary to replace multiple FFNs at a time. See additional
experiments in Appendix D. In summary, it is likely that the ~o vectors are added over the course
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Figure 5: We intervene on GPT2-Medium’s forward pass while it is predicting the completion
of a pattern. The control indicates normal model execution, while the gray boxes indicate
which FFNs are replaced with our selected ~o vectors. We can see a significant increase in the
reciprocal rank of the output of the function implemented by the ~o vector used even though
the context is completely absent of any indication of the original task.

Data: We are interested in whether the captured o vectors can be applied in a novel context,
in particular, to a context that is otherwise devoid of cues as to the function of interest.
Thus, we synthesize a new dataset where each entry is a string of three random tokens (with
leading spaces) followed by a token x which represents a potential argument to the function
of interest. For example, in experiments involving ocity, we might include a sequence such as
table mug free China table mug free China table mug free. This input primes the model to
produce “China” at the top of the residual stream, but provides no cues that the capital
city is relevant, and thus allows us to isolate the effect of ocity in promoting “Beijing” in the
residual stream. In addition to the original categories, we also include an “out-of-domain”
dataset for each task: US states and capitals, 100 non-color words, and 128 irregular verbs.
These additional data test the sensitivity of the ~o vectors to different types of arguments.
Results: Figure 4 shows results for a single example. Here, we see that “Beijing” is promoted
all the way to the top of the distribution solely due to the injection of ~ocity into the forward
pass. Figure 5 shows that this pattern holds in aggregate. In all settings, we see that the
outputs of the intended functions are strongly promoted by adding the corresponding ~o
vectors. By the last layer, for world and state capitals, the mean reciprocal rank of the target
city name across all examples improves from roughly the 10th to the 3rd-highest ranked word
and 17th and 4th-ranked words respectively. The target output token becomes the top token
in 21.3%, 53.5%, and 7.8% of the time in the last layer in the world capitals, uppercasing,
and past tensing tasks, respectively.
We also see the promotion of the proper past tense verbs by ~opast. The reciprocal ranks
improve similarly for both regular (approx. 7th to 3rd rank) and irregular verbs (approx. 6th
to 3rd), indicating that the relationship between tenses is encoded similarly by the model for
these two types. ~oupper promotes the capitalized version of the test token almost every time,
although the target word starts at a higher rank (on average, rank 5). These results together
show that regardless of the surrounding context, and regardless of the argument to which it is
applied, ~o vectors consistently apply the expected functions. Since each vector was originally
extracted from the model’s processing of a single naturalistic input, this generalizability
suggests cross-context abstraction within the learned embedding space.
Common Errors: While the above trend clearly holds on the aggregate, the intervention is
not perfect for individual cases. The most common error is that the intervention has no real
effect. In the in-domain (out-domain) settings, this occurred in about 37% (20%) of capital
cities, 4% (5%) on uppercasing, and 19% (22%) for past tensing. We believe the rate is so
much higher for world capitals because the model did not have a strong association between
certain country-capital pairs from pretraining, e.g, for less frequently mentioned countries.

of several layers, consistent with the idea that residual connections encourage each layer to move
gradually towards a point of lower loss (Jastrzebski et al., 2017).
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Figure 6: Removing FFNs negatively affects performance when the task is abstractive: the
in-context label is an out-of-context transformation of the in-context prompt (e.g., “ silver”
in context, answer given as “ Silver”). In comparison, on the extractive dataset, performance
is robust to a large proportion of FFNs being removed. Other models tested are shown in
Appendix B

Typically, in these cases, the top token remains the argument, but sometimes becomes some
random other city, for example, predicting the capital of Armenia is Vienna. We also find
that the way tokenization splits the argument and target words affects the ability of the ~o
vector to work and is another source of errors. This is discussed further in Appendix E.

5 The Role of FFNs in Out-of-Context Retrieval

So far, we have shown that FFN output vectors can encode functions that transfer across
contexts. Here, we investigate the role of this mechanism when we control whether the
amswer occurs in context. The tasks we study previously require recalling a token that does
not appear in the given context (abstractive tasks). In this section we show that mid-higher
layer FFNs are crucial for this process. When the answer to the question does appear in
context (extractive tasks), we find that ablating a subset of FFNs has a comparatively minor
effect on performance, indicating that they are relatively modular and there is a learned
division of labor within the model. This observation holds across the decoder-only LMs
tested in this paper. This breakdown is consistent with previous work finding that FFNs
store facts learned from pre-training (Geva et al., 2021a; Meng et al., 2022b;c) and attention
heads copy from the previous context (Wang et al.; Olsson et al., 2022).

5.1 Abstractive vs. Extractive Tasks

Extractive Tasks: Extractive tasks are those in which the exact tokens required to answer a
prompt can be found in the input context. These tasks can thus be solved by parsing the
local context alone, and thus do not necessarily require the model to apply a function of the
type we have focused on in this paper (e.g., a function like get_capital).
Abstractive Tasks: Are those in which the answer to a prompt is not given in the input
context and must be retrieved from pretraining memory. Our results suggest this is done
primarily through argument-function processing, requiring function application through
(typically) FFN updates as described in Section 3.
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We provide examples with their associated GPT2-Medium layerwise decodings in Figure
7. We expect that the argument formation and function application stages of processing
occur primarily in abstractive tasks. Indeed, in Appendix A, we show that the characteristic
argument-answer X pattern disappears on extractive inputs. We hypothesize that applying
out-of-context transformations to the predicted token representation is one of the primary
functions of FFNs in the mid-to-late layers, and that removing them should only have a
major effect on tasks that require out-of-context retrieval.

5.2 Effect of Ablating FFNs

Data: Consider the example shown in Section 2.2 demonstrating the ~oupper function. By
providing the answer to the in-context example as “ Silver”, the task is abstractive by
requiring the in-context token “ brown” to be transformed to “ Brown” in the test example.
However, if we provide the in-context label as “ silver”, the task becomes extractive, as
the expected answer becomes “ brown”. We create an extractive version of this dataset by
lowercasing the example answer. All data is presented to the model with a single example
(one-shot). The abstractive and extractive examples differ by only this single character.

Top Tokens per Layer
Abstractive Task Extractive Task

Layer

Q: What is the capital
of Somalia?
A: Mogadishu
Q: What is the capital
of Poland?
A:

The capital of
Somalia is Mogadishu.
The capital of Poland
is Warsaw.
Q: What is the capital
of Somalia?
A: Mogadishu
Q: What is the capital
of Poland?
A:

... ... ...
14 St St
15 Poland St
16 Poland Warsaw
17 Poland Warsaw
18 Poland Warsaw
19 Warsaw Warsaw
20 Warsaw Warsaw
21 Warsaw Warsaw
22 Warsaw Warsaw
23 Warsaw Warsaw

28

V2 switch colors

Figure 7: The abstractive task under-
goes argument formation and function
application, while the extractive task im-
mediately saturates (yellow).

We repeat this experiment on the world capitals
(see Figure 7). Notice, however, that since the
answer is provided explicitly, the task is much
easier for the models in the extractive case.
Results: We run the one-shot extractive and ab-
stractive datasets on the full models, and then
repeatedly remove an additional 1/6th of all
FFNs from the top down (e.g., in 24 layer GPT2-
Medium: removing the 20-24th FFNs, then the
15-24th, etc.). Our results are shown in Figure 6.
Despite the fact that the inputs in the abstractive
and extractive datasets only slightly differ (by a
single character in the colored objects case) we
find that performance plummets on the abstrac-
tive task as FFNs are ablated, while accuracy on
the extractive task drops much more slowly. For
example, even after 24 FFN sublayers are removed
from Bloom (totaling 39B parameters) extrac-
tive task accuracy for the colored objects dataset
drops 17% from the full model’s performance,
while abstractive accuracy drops 73% (down to
1% accuracy). The case is similar across model
sizes and pretraining corpora; we include results

on additional models in Appendix B. This indicates that we can isolate the effect of locating
and retrieving out of context tokens in this setting to the FFNs. Additionally, because the
model retains reasonably strong performance compared to using the full model, we do not
find convincing evidence that the later layer FFNs are contributing to the extractive task
performance, supporting the idea of modularity within the network.

6 Related Work

Attributing roles to components in pretrained LMs is a widely studied topic. In particular,
the attention layers (Olsson et al., 2022; Kobayashi et al., 2020; Wang et al.) and most
relevant to this work, the FFN modules, which are frequently associated with factual recall
and knowledge storage (Geva et al., 2021a; Meng et al., 2022a;c). How language models
store and use knowledge has been studied more generally as well (Petroni et al., 2019; Cao
et al., 2021; Dai et al., 2022; Bouraoui et al., 2019; Burns et al., 2022; Dalvi et al., 2022; Da
et al., 2021) as well as in static embeddings (Dufter et al., 2021). Recent work in mechanistic
interpretability aims to fully reverse engineer how LMs perform some behaviors (Elhage et al.,
2021). Our work builds on the finding that FFN layers promote concepts in the vocabulary
space (Geva et al., 2022a) by breaking down the process the model uses to do this in context;
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Bansal et al. (2022) perform ablation studies to test the importance of attention and FFN
layers on in-context learning tasks. Other work analyze information flow within an LM to
study how representations are built through the layers, finding discrete processing stages
(Voita et al., 2019; Tenney et al., 2019). We also follow this approach, but our analysis
focuses on interpreting how models use individual updates within the forward pass, rather
than probing for information encoded within some representation. Ilharco et al. (2023) show
that vector arithmetic can be performed with the weights of finetuned models to compose
tasks, similar to how ~o vectors can induce functions in the activation space of the model.

7 Discussion

In this work, we describe a mechanism that appears to help LMs recall relational information
by transforming the next-token prediction through several discrete stages of processing.
A core challenge in interpreting neural networks is determining whether the information
attributed to certain model components is actually used for that purpose during inference
(Hase & Bansal, 2022; Leavitt & Morcos, 2020). While previous work has implicated FFNs
in recalling factual associations (Geva et al., 2022a; Meng et al., 2022a), we show through
intervention experiments that we can manipulate the information flowing through the model
according to these stages. This process provides a simple explanation for the internal
subprocesses used by LMs on one type of problem. Our findings invite future work aimed at
understanding why, and under what conditions, LMs learn to use this mechanism when they
are capable of solving such tasks using, e.g., adhoc memorization.
A limitation that we observe is that the process for carrying out the ~o intervention depends
on hyperparameters which are often model-specific (i.e., the exact stimuli used to extract
the intervention, and the layer(s) at which to perform the intervention). We provide our
most detailed investigation on GPT2-Medium, which clearly illustrates the phenomenon.
Our experiments on stages of processing with GPT-J suggest that the same phenomena
is in play, although (as discussed in Section 4 and Appendix A), the procedures we derive
for interventions on GPT2-Medium do not transfer perfectly. Specifically, we can strongly
reproduce the intervention results on uppercasing for GPT-J; results on the other two tasks
are positive but with overall weaker effects. This requirement of model-specific customization
is common in similar mechanistic interpretability work, e.g., (Wang et al., 2022; Geva et al.,
2022b), and a priority in future work must be to generalize specific findings to model-agnostic
phenomena. That said, in this work and other similar efforts, a single positive example as
a proof of concept is often sufficient to advance understanding and spur future work that
improves robustness across models.
In the long term, if we can understand how models break down complex problems into simple
and predictable subprocesses, we can help more readily audit their behavior. Interpreting
the processing signatures of model behaviors might offer an avenue via which to audit and
intervene at runtime in order to prevent unwanted behavior. Moreover, understanding which
relations FFNs encode could aid work in fact location and editing. Contemporaneous work
(Geva et al., 2023) has studied a different mechanism for factual recall in LMs, but it is
unclear how and when these mechanisms interact.

8 Conclusion

We contribute to a growing body of work on interpreting how the internal processes of
language models (LMs) produce some behavior. On three in-context learning tasks, we
observe that the next-token prediction appears to undergo several stages of processing in
which LMs represent arguments to functions in their residual streams. This process occurs
in models ranging in size from 124M to 176B parameters. On GPT2, We study instances
where the additive update is made by the output vectors (~o vectors) of feed-forward networks
(FFNs). We show that for all tasks we test, ~o vectors calculated by the model in the process
of solving some task can be extracted and replace the FFN updates of the model to solve
novel instances of that task, providing evidence that LMs can learn self-contained and
context-independent functions from pretraining.
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A Argument-Function Processing in Other Models

In Section 3 we show that GPT2-Medium and Bloom promote the in-context ‘argument’
token to some function before promoting the answer to that function. In figure 8we show
that this effect is present across other models as well in the three tasks we test. Qualitatively,
we find that the pattern is more prominent in models that have more layers, likely because
we are able to get more measurements after the FFN updates, so it is less likely that entire
argument formation stage happens within a single layer (i.e., after the attention module
update – we only take measurements after the FFN update for simplicity). In the extractive
task setting, we would not expect the model to go through argument-function processing in
order to reach the prediction, since it already appears in context (although this does not
preclude it from doing so – it is still a valid way to retrieve the required information). We
see that this X shaped pattern disappears when we plot the argument-answer curves for the
extractive world capitals data, as shown next to the abstractive setting in Figure 9.
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World Capitals Task Mapping to Uppercase Mapping Verbs to Past 
Tense

Figure 8: Across several model architectures and tasks, we find evidence that on average, the
argument (which appears in context) rises to the top of the vocab distribution before crossing
with the answer to the task. We describe this as argument-function processing where the
argument to some function is represented in the residual stream before some update from
the model is added to it to produce the output of that function. Qualitatively, we observe
that models with more layers display this pattern more prominently.
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Figure 9: The ‘X’ pattern of argument and answer tokens crossing in the course of the
forward pass is the characteristic pattern in argument-function processing. In the main text,
we show how the models we test use this type of processing to recall the capital cities of
locations. When we make the task extractive (by including the correct capital in the given
context), the model does not have to setup an argument and function in order to get the
answer, and the pattern disappears. This highlights the differences we describe in processing
extractive and abstractive tasks. Both datasets are filtered for examples where the models
were correct.
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Figure 10: We use the same stimuli to extract ~o vectors on GPT-J. Results are similar for
the uppercasing function, but only very weakly positive on the world capitals task.

We repeat the random tokens task on GPT-J using the same stimuli as in the main paper to
select ~o vectors. We find that we can locate ~o vectors occurring in other models, however the
success rate varies for the tasks that we evaluate in this work. Results are shown in Figure
10. Although the uppercasing function works very well, we get weaker responses for the past
tense and world capitals mappings. One explanation could be that these tasks are not solved
with an as-general solution as in GPT2, but the process for carrying out this intervention
depends on hyperparameters which are often model-specific (i.e., the exact layer at which to
perform the intervention), so future work is needed to understand where differences between
these models lie.

B Additional Results on Ablating FFNs

We include the results for all six models we test for the FFN ablation study for both the
colored objects task (Figure 11) and the world capitals task (Figure 12). We find that the
trend of abstractive performance dropping off far before extractive performance is reflected
across all models.
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Figure 13: Replacing FFN updates with +ocase helps recover accuracy in abstractive tasks
where the answer is expected to be uppercase compared to subtracting it or ablating the
FFNs. In extractive tasks, the task is primarily solved by attention modules and adding or
subtracting ocase only hurts performance.

B.1 +/-ocase Intervention on Colors

As illustrated in the example in Figure ??, adding ocase to the residual stream (x19 + ocase)
has the effect of capitalizing the first letter in the word ‘brown’. Similar to the results
in Sections 2.2 and 2.2, we find that adding ocase to the residual stream has the effect of
uppercasing the token prediction on arbitrary contextualized representations in the mid
layers of GPT2-Medium. However, we also find that lowercasing the first letter can be
accomplished by subtracting it. Qualitatively, this works much the same way as adding the
~o vectors previously discussed. We show this effect empirically, by showing the difference
between replacing the FFN updates in GPT2-Medium with either positive or negative ocase
(having the effect of adding or subtracting from the residual stream).
We progressively remove FFNs from the top of the model, and show the effect of adding
or subtracting ocase in Figure 13. In the abstractive case, we find that accuracy is greatly
boosted when adding ocase which we identify as implementing an uppercasing function, and
reflects the results in Sections 2.2 and 2.2. We find that we can replace the top third of
GPT2-Medium FFN layers (FFNs in layers 16-24, around 20% of all parameters) with +ocase
to gain 25% in total accuracy (from 4.5% to 29.5%) and recovering to 72% of the performance
of the un-ablated model (41%). Conversely, if we subtract ocase in the abstractive setting to
encourage lowercasing (i.e., encouraging the model to output a lowercased answer when the
answer it should have a capital first letter), the model immediately hits 0% performance.
We see the opposite effect in the extractive setting, where adding ocase hurts performance
to a greater degree than subtracting it. According to our results presented so far, we would
expect FFNs to be unnecessary for solving the extractive dataset examples, which is possibly
why performance is degraded in both cases we intervene, but we don’t test this idea in this
work.

C Effect on Zero-shot Performance

We find that intervening on the model with ~o vectors has applications in controllable
generation, that is, guiding the generation process towards some relevant text. We showed
this was the case in Section 4, but we can also apply this idea to the context of zero-shot
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Figure 14: By replacing FFN networks with the corresponding ~o vectors, we show that
we can improve zero-shot performance by taking advantage of the model going through
argument formation in the zero-shot setting.

learning. When we provide in-context examples, we are also providing the output format of
the prompt. Consider the example “Q: What is the capital of Poland? A:”. unlike the one shot
example given in Figure 2, there is no indication that the next word should be “ Warsaw” over
continuing the generation as a complete sentence “The capital of Poland is Warsaw”, which is
what GPT2-Medium actually generates. If we decode at every layer, as is shown in Table C
we can see that the model still goes through argument formation despite preferring to generate
the full sentence. We can take advantage of this behavior by replacing the FFN layers in the
later layers with ~ocity in order to guide the generation to the expected response of immediately
generating the capital. We can perform this experiment on the past tensing task as well.

Layer Top Token
0 (
1 A
2 A
3 A
4 A
5 A
6 A
7 A
8 A
9 The
10 The
11 The
12 The
13 The
14 The
15 The
16 The
17 The
18 Poland
19 Poland
20 Poland
21 Poland
22 Poland
23 The

Table 1: These are the top
tokens per layer in GPT2-
Medium on the example
zero-shot Poland example

Results on the zero-shot tasks are shown in Figure 14. We
find that on the world capitals task, we can greatly improve
the propensity of the model to output the expected answer
by performing an ~o vector intervention, improving zero-shot
performance from 5.6% to 33.0%. On the past tense mapping
task, where perhaps the output format is more obvious from
the prompt, the zero and one shot performances are about
equal, but we still see a modest improvement over the one shot
results of about 4.2%. Although the tasks are very simple, we
achieve this by effectively ablating FFN layers (layers 19-23)
and precomputing their activations, suggesting it might be
possible to edit models extensively to limit their expressiveness
to one type of output while also making them more efficient.
We are optimistic about future work in this area.

D Effect of Layer Choice on Intervention Results

In the main text, we replace FFNs starting at either layer 18
or 19 GPT2-Medium to the end (indexed at 0). We find that
intervening on only one layer promotes the output token, but
not to the top of the distribution. One possibility is that the
model makes gradual updates that are pushing the token rep-
resentation in generally the same direction (Jastrzebski et al.,
2017). In Figure 15, we show that adding any of the ~o vector
interventions at any single layer at 18 or afterwards, there is
a roughly equivalent increase to the average reciprocal rank
of the target word. The logit difference between the argument
and answer token (in the logits of each early-decoded layer)
shows this as well as a gradual increase. This is exemplified
in Figure 2 in the main paper.
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Figure 15: Replacing any individual FFN update is worse than replacing all of them. This
supports the idea that networks made gradual updates to their representations, and that the
~o vectors we extract behave this way as well: multiple similar updates are made k layers in a
row. Interestingly, the average boost to the reciprocal rank is about the same regardless of
which single layer we apply the update at, suggesting that this range of FFNs are operating
in same space.
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Probability and MRR Differences when Uppercasing words which are Broken into One vs Multiple Tokens

Figure 16: When the uppercase version of a word gets broken down into multiple subtokens,
mapping to that token becomes much less probable and is generally harder of an association
for the model to make.

E Effect of Tokenization on the Effectiveness of ~o
Vectors

The tokenizer can split one word into multiple subtokens, such as “Purple” into the tokens
“Pur” and “ple”. This occurs with words that were less frequent in the training data. We
find that this process has a generally negative effect on the performance of the intervention
we perform. Intuitively, if we are trying to use ~oupper to capitalize the “purple” token into
“Purple”, it must map from “purple” (one token) to “Pur”. It seems less obvious, then,
that the embeddings would encode a linear relationship between these two, since “Pur”
is a subtoken in many other words. We explore this specific phenomenon on the random
tokens task from Section 4 with the ~oupper intervention. We take 100 single token words
that capitalize to a single token, and 100 others that capitalize to words that break down
into multiple tokens. Our results can be seen in Figure 16. We find that tokens that get
broken up into multiple tokens are less probable than for tokens that capitalize to single
token forms.

F Additional Tasks: One-to-One, Many-to-One, and Many-to-Many
Relations

In the main paper, we show study three one-to-one relations that exhibit the argument/output
pattern, but it remains unclear how well this generalizes to other relations. Using six
additional tasks, three many-to-X and three new one-to-one, we provide evidence that
suggests that the observed mechanism is specific to one-to-one relations, and does not work
when mulitple inputs map to one output. This suggests that the model is sensitive to this
distinction of relations during pretraining, and the vector arithmetic mechanism structure we
observe only presents for the most explicit relations. In Table G, we give examples of the six
new tasks, following the same prompt format as the one used in the main paper. In Table
G, we break down the relation type of each task and provide the GPT2-Medium accuracy
for each one. Figure 17 shows the early decoding patterns for the argument and answer
tokens. While the three one-to-one tasks exhibit the initial promotion of the argument
token, followed by the answer token on average, the argument token does not become highly
promoted on any of the non one-to-one relations.

G Compute

All models were run on NVidia RTX 3090s; Bloom was run locally on 3090s in float16 with
CPU offloading.
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Task Example
Animal Hypernyms ...Q: The anaconda is a kind of what?\nA: (snake/reptile/boa/...)
Name to Nationality ...Q: What is the nationality of Balzac?\nA: (French)
Country to Language ...Q: What is the official language of Argentina?\nA: (Spanish)

Adj. to un-Adj. ...Q: What is the opposite of able?\nA: (unable)
3rd Person Verbs ...Q: What is the third person singular of become?\nA: (becomes)

Noun Plurals ...Q: What is the plural of album?\nA: albums

Table 2: Examples from three non-injective and one injective relation. A given animal
(anaconda) is a type of snake and reptile, and other snakes/reptiles also exist (many-to-
many). Balzac is only French and other people map to French (many-to-one), etc.

Task Accuracy (%) Task Type
Animal Hypernyms 30.4±1.7 Many-to-Many
Name to Nationality 73.2±2.0 Many-to-One
Country to Language 71.2±2.4 Many-to-Many

Adj. to un-Adj. 12.0±1.1 One-to-One
3rd Person Verbs 22.4±0.7 One-to-One

Noun Plurals 51.6±1.7 One-to-One

Table 3: One-shot accuracies for each task across 5 random seeds for GPT2-Medium.
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Figure 17: Non-injective tasks show no evidence of argument-function processing on average.
In sharp contrast to the past tense, colored objects, capital cities, and un-adj. tasks where
this is observed, here, the argument token experiences virtually no spike in reciprocal rank
in the intermediate layers.
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Figure 18: For the first two tasks, the average argument-answer spike pattern is similar to
the other one-to-one tasks in which the vector arithmetic analogy held. The results for noun
plurals are mostly negative as it appears the model uses argument-function processing only
some of the time. We will expand on this in the camera ready paper.
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