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Abstract

Different gradient-based methods for optimizing overparameterized models can all
achieve zero training error yet converge to distinctly different solutions inducing
different generalization properties. We provide the first complete characterization
of implicit optimization bias for p-norm normalized steepest descent (NSD) and
momentum steepest descent (NMD) algorithms in multi-class linear classification
with cross-entropy loss. Our key theoretical contribution is proving that these algo-
rithms converge to solutions maximizing the margin with respect to the classifier
matrix’s p-norm, with established convergence rates. These results encompass
important special cases including Spectral Descent and Muon, which we show
converge to max-margin solutions with respect to the spectral norm. A key insight
of our contribution is that the analysis of general entry-wise and Schatten p-norms
can be reduced to the analysis of NSD/NMD with max-norm by exploiting a natural
ordering property between all p-norms relative to the max-norm and its dual sum-
norm. For the specific case of descent with respect to the max-norm, we further
extend our analysis to include preconditioning, showing that Adam converges
to the matrix’s max-norm solution. Our results demonstrate that the multi-class
linear setting, which is inherently richer than the binary counterpart, provides
the most transparent framework for studying implicit biases of matrix-parameter
optimization algorithms.

1 Introduction

The ever-increasing training cost of large language models (LLMs) has demanded better optimizer
designs with improved performance and efficiency [11, 1, 23]. The de facto standard optimizers
for deep learning training are Adam and AdamW [33, 39]. However, these algorithms that employ
diagonal preconditioners to independently adjust the learning rate of each coordinate, may fail to
capture their inter-dependencies and fully leverage the geometry of the loss landscape [79]. This
has spurred a series of research efforts on improving Adam or AdamW’s computational efficiency
[20, 24, 51, 80], with LLM-training as the target application domain [31, 67, 46, 37].

A noticeable work by Jordan et al. [31] proposed the Muon optimizer, which was shown to have
remarkable performances on NanoGPT benchmarks. More recently, it has been shown that Muon can
be used for large-scale LLM training with the potential to replace AdamW as the standard choice [37].
The key step in Muon is to orthogonalize the updates via the Newton-Schulz iteration [31, 7]. More
precisely, the update (denoted as ∆) is (approximately) replaced by the product of its singular-vector
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Table 1: Summary of margin convergence rates for NSD and NMD algorithms of different norm
constraints for linear multiclass separable data with the CE loss. The (truncated) SVDs of the gradient
and momentum are denoted as ∇ = UΣV T and M = ŨΣ̃Ṽ T respectively.

Method Norm Constraint Update ∆ Reference Rate 2

NGD Unit ∥·∥2-ball
∇

∥∇∥2
Hazan et al. [25] -

NMD-GD M
∥M∥2

Cutkosky and Mehta [14] -
SignGD Unit ∥·∥max-ball sign(∇) Bernstein et al. [8] -
Signum sign(M) Bernstein et al. [8] -
Spectral-GD Unit |||·|||∞-ball UV T Bernstein and Newhouse [7] O( log t+n

t1/2
)

Muon 1 Ũ Ṽ T Jordan et al. [31] O(d log t+dn
t1/2

)
1 We consider EMA-style momentum of the form (5).
2 NGD and SignGD rates are the same as Spectral-GD; Signum and NMD-GD rates are the same as Muon.

matrices UV T (where the (truncated) singular value decomposition (SVD) of ∆ is ∆ = UΣV T ).
Even though the benefits of orthogonalization are not fully understood, Jordan et al. [31] pointed out
that it could promote updates in directions of small magnitudes given the weight matrices are typically
low-rank. Moreover, if the above SVD approximation is exact and gradient accumulations are turned
off, then Muon becomes spectral descent [13, 7], which is the (normalized) steepest descent w.r.t
the spectral norm [7]. As noted by Bernstein and Newhouse [7], spectral descent is also Shampoo
(which won the AlgoPerf competition [52, 15]) without accumulations in preconditioners. Thus,
Muon can be viewed as (approximate) Shampoo when both optimizers are without accumulations. In
essence, we observe that one important ingredient of Muon and Shampoo (without accumulations) is
the spectral-descent step,

W † = W − ηUV T where ∇L(W ) = UΣV T .

Theoretical investigations of spectral descent or Muon mainly focus on characterizing the convergence
rates of the algorithm (e.g., the rate of decrease of the gradient norm in the non-convex setting
[3, 36, 46]). However, modern machine learning models are overparameterized, leading to multiple
weight configurations that achieve identical training loss but exhibit markedly different generalization
properties [78, 6]. The key insight is that gradient-based methods inherently prefer “simple” solutions
according to optimizer-specific notions of simplicity. Understanding this implicit bias/regularization
requires analyzing not just loss convergence, but the geometric trajectory of parameter updates
throughout training. To this end, our work aims to address the fundamental question:

What is the implicit bias of spectral descent (and its momentum variants) in linear multiclass
classification with separable data and cross-entropy loss?

The multiclass setting where the parameter is a matrix, is a natural place to study the class of spectral-
descent algorithms, and provides an inherently richer setting. Our work captures this richness by
establishing convergence with respect to not only entry-wise matrix norms, but also matrix Schatten
norms. Hence, while the focus is on spectral descent and Muon, the analysis establishes implicit bias
rates for a wide family of algorithms (Table 1), and we state the results in the most general form from
the perspective of steepest descent with (unit) norm-ball constraints. Our contributions are as follows:

1. For multiclass separable data trained with the cross-entropy (CE) loss, we show that the iterates
of normalized steepest descent (NSD) defined with respect to (w.r.t.) any matrix entry-wise or
Schatten norms converge to a solution that maximizes the margin defined w.r.t. the same norm,
with a rate O( 1

t1/2
). This includes sign descent (entry-wise max-norm) [8], normalized gradient

descent (entry-wise 2-norm) [25], and spectral descent (Schatten∞-norm) [7] as special cases.
To achieve this, we introduce a unified analysis framework that relates entry-wise and Schatten
p-norms to the entry-wise max-norm, and construct a proxy function for the loss that closely traces
both its value and gradient. We also show the same machinery applies to other multiclass losses
such as the exponential loss [41] and the PairLogLoss [72].

2. Under the same setting, we utilize the same framework and proxy function to show that a O( 1
t1/2

)
margin convergence rate also holds for normalized momentum steepest descent (NMD). This
includes the following algorithms in analogy to the ones above: sign momentum descent [8],
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normalized momentum gradient descent [14], and Muon [31]. The key step of the analysis is to
use the proxy function to bound the sum-norm difference between the gradient and the momentum
(i.e., the exponential moving averages (EMA) of the gradient), which translates to a bound on the
dual norm through the fundamental norm-relationships used in the study of NSD. The margin
convergence rates of various algorithms are summarized in Table 1. Furthermore, we extend the
analysis to Adam (without the stability constant) and show its iterates maximize the margin w.r.t.
the matrix max-norm (proof details and numerical validations in App. G).

3. We experimentally verify our theoretical predictions across all considered algorithms. First, for
sign descent (SignGD) and Signum, we demonstrate that solutions favor the max-norm margin
over the 2-norm margin—the opposite behavior to normalized gradient descent (NGD) and
normalized momentum gradient descent (NMD-GD). Moreover, we show that both spectral
descent (Spectral-GD) and Muon favor the spectral-norm margin over the other norms. We further
extend the experiments to the non-linear setting with a two-layer neural network. We observe the
(unnormalized) spectral-norm margin of Spectral-GD and Muon grow faster than other algorithms.
Hence, the norm-preference trend in the linear setting can also exhibit in the non-linear setting.

2 Preliminaries

Notations Matrices, vectors, and scalars are denoted by A, a, and a respectively. For matrix A, we
denote its (i, j)-th entry as A[i, j], and for vector a, its i-th entry as a[i] or ai. We consider entry-wise
matrix p-norms defined as ∥A∥p = (

∑
i,j |A[i, j]|p)1/p. Central to our results are: the infinity norm,

denoted as ∥A∥max := ∥A∥∞ = maxi,j |A[i, j]| and called the max-norm, and the entry-wise
1-norm, denoted as ∥A∥sum := ∥A∥1 =

∑
i,j |A[i, j]|. The entry-wise 1-norm is dual to the max-

norm. For vectors, the max-norm is equivalent to the infinity norm, denoted as ∥a∥∞, while we denote
the ℓ1 norm as ∥a∥1. We further denote the Schatten p-norm of A as |||A|||p := (

∑r
i=1 σ

p
i )

1/p,
where σ1, σ2, . . . , σr are the non-zero singular values of A. Let r = rank(A), then special cases of
Schatten p-norm include: nuclear norm |||A|||1 =

∑r
i=1 σi, Frobenius norm |||A|||2 =

√∑r
i=1 σ

2
i ,

and spectral norm |||A|||∞ = σ1. To simplify the discussions, we sometimes write ∥A∥ (dropping
subscripts) to refer to any entry-wise or Schatten p-norm with p ≥ 1. We denote by ∥A∥∗ the
dual-norm with respect to the standard matrix inner product ⟨A,B⟩ = tr(A⊤B). We denote the
gradient and its value at iteration t as ∇ := ∇L(W ) and ∇t := ∇L(Wt) respectively.

Let S : Rk → △k−1 the softmax map of k-dimensional vectors to the probability simplex △k−1

such that for any a ∈ Rk, it holds that S(a) =
[ exp(a[c])∑

c∈[k] exp(a[c])

]k
c=1
∈ △k−1. Let Sc(v) denote the

c-th entry of S(v). Let S′(a) = diag(S(a))− S(a)S(a)⊤ denote the softmax gradient, with diag(·)
a diagonal matrix. Finally, let {ec}kc=1 be the standard basis vectors of Rk, and indicator δij be such
that δij = 1 if and only if i = j. For any integer k, [k] denotes {1, . . . , k}.

Setup Consider a multiclass classification problem with training data h1, . . . ,hn and labels
y1, . . . , yn. Each datapoint hi ∈ Rd is a vector in a d-dimensional embedding space (denote
data matrix H = [h1, . . . ,hn]

⊤ ∈ Rn×d), and each label yi ∈ [k] represents one of k classes. We
assume each class contains at least one datapoint. The classifier fW : Rd → R is a linear model with
weight matrix W ∈ Rk×d. The model outputs logits ℓi = fW (hi) = Whi for i ∈ [n], which are
passed through the softmax map to produce class probabilities p̂(c|hi) = Sc(ℓi).
We train using empirical risk minimization (ERM): LERM(W ) := − 1

n

∑
i∈[n] ℓ (Whi; yi) , where

the loss function ℓ takes as input the logits of a datapoint and its label. The predominant choice in
classification is the CE loss

L(W ) : = − 1

n

∑
i∈[n]

log
(
Syi(Whi)

)
. (1)

We focus our discussions on the CE loss due to its ubiquity in practice. However, our results hold for
other multiclass losses such as the exponential [41] and the PairLogLoss [72] (see App. F). Define
the maximum margin of the dataset w.r.t. any entry-wise or Schatten p-norm ∥ · ∥ as

γ := max∥W ∥≤1 mini∈[n], c̸=yi (eyi − ec)
⊤
Whi . (2)
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Optimization Methods We study iterative algorithms that update the weight matrix by
Wt+1 = Wt − ηt∆t.

For the NSD family [10], the update direction1 w.r.t. the norm ∥·∥ is
∆t := argmax∥∆∥≤1⟨∇t,∆⟩ . (3)

Note that this reduces to SignGD, Coordinate Descent (e.g., Nutini et al. [44]), or NGD when the
max-norm (i.e. ∥·∥∞), the entry-wise 1-norm (i.e. ∥·∥sum), or the Frobenius Euclidean-norm (i.e.
∥·∥2) is used, respectively. Concretely, the update directions for SignGD and NGD are:

SignGD: ∆t = sign(∇t), and NGD: ∆t = ∇t/∥∇t∥2,
where the sign(·) and division ·

· operations are applied entry-wise. In the special case of spectral
norm (i.e. |||·|||∞), this becomes the Spectral-GD, for which ∆t = UtV

T
t , where Ut and Vt are the

left/right singular matrices of ∇t respectively (i.e., ∇t = UtΣtV
T
t with singular values in Σt > 0

arranged in non-increasing order). Finally, note that the Schatten 2-norm case reduces to NGD (as
|||·|||2 = ∥·∥2).

We also consider the NMD family with the following update direction w.r.t. the norm ∥·∥
∆t := argmax∥∆∥≤1⟨Mt,∆⟩ , (4)

where the momentum Mt is computed as the EMA of the gradient given by
Mt = β1Mt−1 + (1− β1)∇t. (5)

This form of momentum is also known as the heavy-ball or the SGDM-style momentum [47, 19, 38].
Thus, an NMD algorithm chooses the update direction (among all feasible directions in the unit
∥·∥-ball) that best aligns with the momentum instead of the gradient direction (as chosen by an NSD
algorithm). Similar to above, when the max-norm and the Frobenius-norm are used, the resulting
Signum and NMD-GD update directions are:

Signum: ∆t = sign(Mt), and NMD-MD: ∆t = Mt

/
∥Mt∥2.

When spectral norm is used in (4), this becomes Muon2 for which the SVD is on Mt (i.e. Mt =
ŨtΣ̃tṼ

T
t ) and the update direction is ∆t = ŨtṼ

T
t . Note that Muon reduces to Spectral-GD when

the momentum parameter β1 is set to 0. Similar reductions also hold for Signum (to SignGD) and
NMD-GD (to NGD) as well.

Assumptions Establishing the implicit bias of the above mentioned gradient-based optimization
algorithms requires the following assumptions. First, we assume data are linearly separable, ensuring
the margin γ is strictly positive, an assumption routinely used in previous works [53, 48, 22, 43, 75].
Assumption 1. There exists W ∈ Rk×d such that minc̸=yi(eyi − ec)

TWhi > 0 for all i ∈ [n].

In this work, we consider learning rate schedule ηt = Θ( 1
ta ), where a ∈ (0, 1]. Such schedules have

been studied in the convergence and implicit bias of various optimization algorithms (e.g., Bottou
et al. [9], Nacson et al. [43], and Sun et al. [55]) including Adam [77].
Assumption 2. The learning rate schedule {ηt} is decreasing with respect to t and satisfies the
following conditions: limt→∞ ηt = 0 and

∑∞
t=0 ηt =∞.

Assumption 3 can be satisfied by the above learning rate for a sufficiently large t as shown in Zhang
et al. [77, Lemma C.1]. It is used in our analysis of NMD and Adam.
Assumption 3. The learning rate schedule satisfies the following: let β ∈ (0, 1) and c1 > 0
be two constants, there exist time t0 ∈ N+ and constant c2 = c2(c1, β) > 0 such that∑t
s=0 β

s(ec1
∑s

τ=1 ηs−τ − 1) ≤ c2ηt for all t ≥ t0.

Finally, we assume that the 1-norm of the data is bounded. Similar assumptions were used in Ji and
Telgarsky [26], Nacson et al. [43], Wu et al. [75], and Zhang et al. [77].
Assumption 4. There exists constant B > 0 such that ∥hi∥1 ≤ B for all i ∈ [n].
1For p ∈ (1,∞), the norms ∥ · ∥p and |||·|||p are strictly convex, thus there is a unique maximizer defining the
update in Eqn. (3). For p = 1,∞ the maximizer is not necessarily unique and our results hold for any choice
of ∆t in the set of maximizers; see e.g. Ziętak [81].

2The implementation in Jordan et al. [31] uses Nesterov-type momentum: Newton-Schulz iteration applied to
β1Mt +∇t instead of β1Mt−1 +∇t [37].
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3 A Unified Framework with a Proxy Function

Analyzing margin convergence begins with studying loss convergence through second-order Taylor
expansion of the CE loss (recall that S′(v) = diag(v)− vv⊤):

L(W +∆) = L(W ) + ⟨∇L(W ),∆⟩+ 1

2n

∑
i∈[n]

h⊤
i ∆

⊤S′(Whi)∆hi + o(∥∆∥3F ), (6)

To bound the loss at Wt+1 = Wt − ηt∆t, we must bound both the first-order and second-order
terms in (6). For NSD updates in Eq. (3), the first term evaluates to −ηt∥∇L(W )∥∗ (recall that
∥ · ∥∗ is the dual norm). This leads to two key tasks: (1) Lower-bounding the dual gradient norm; (2)
Upper-bounding the second-order term.

For the proof to proceed, these bounds should satisfy two desiderata: (1) They are expressible as the
same function of W , call it G(W ), up to constants. (2) The function G(W ) is a good proxy for the
loss for small values of the latter. The former helps with combining the terms, while the latter helps
with demonstrating descent. Next, we obtain these key bounds for the CE loss by determining the
appropriate proxy G(W ).

Besides the need for a proxy G(W ), we use the following facts about the sum-norm dominating any
entry-wise/Schatten p-norm. Concretely, for any matrix A and any p ≥ 1:

∥A∥max ≤ |||A|||p ≤ ∥A∥sum, and ∥A∥max ≤ ∥A∥p ≤ ∥A∥sum. (7)

These relationships (proved in Lemma 11 in App. C) are crucial for unifying the analysis of NSD
and NMD algorithms w.r.t. either the entry-wise or the Schatten norms (details below).

Construction of G(W ) Before showing our construction for the CE loss, it is insightful to discuss
how previous works do this in the binary case with labels yb,i ∈ {±1}, classifier vector w ∈ Rd
and binary margin γb := max∥w∥≤1 mini∈[n] yb,iw

⊤hi. For exponential loss, Gunasekar et al.
[22] showed that ∥∇L(w)∥ ≥ γbL(w). For logistic loss ℓ(t) = log(1 + exp(−t)), Zhang et al.
[77] proved ∥∇L(w)∥1 ≥ γbG(w), where G(w) = 1

n

∑n
i=1 |ℓ′(yb,iw⊤hi)| and ℓ′ is the first-order

derivative. In both cases, one can take the common form Gb(w) = 1
n

∑n
i=1 |ℓ′(yb,iw⊤hi)|. The

proof relies on showing γ ≤ minr∈△n−1∥HTr∥ via Fenchel Duality [59, 22] and appropriately
choosing r.

In the multiclass setting, where the loss function is vector-valued, it is unclear how to extend the binary
proof or definition of G(W ). To this end, we realize that the key is in the proper manipulation of the
gradient inner product ⟨A,−∇L(W )⟩ (for arbitrary matrix A ∈ Rk×d). The CE gradient evaluates to
∇L(W ) = 1

n

∑n
i=1(eyi−S(Whi))h

⊤
i and using the fact that S(Whi) ∈ △k−1, it turns out that we

can express (details in Lemma 9): ⟨A,−∇L(W )⟩ = 1
n

∑
i∈[n]

∑
c̸=yi Sc(Whi)(eyi − ec)

⊤Ahi .

This motivates defining G(W ) as:

G(W ) :=
1

n

∑
i∈[n]

(1− Syi(Whi)) . (8)

The lemma below, following from the inner-product calculation above and our definition of G(W ),
confirms this is the right choice. For convenience, denote sic := Sc(Whi), for i ∈ [n], c ∈ [k].

Lemma 1 (Lower bounding the gradient dual-norm). For any W ∈ Rk×d and any entry-wise or
Schatten p-norm ∥·∥ with p ≥ 1, it holds that ∥∇L(W )∥∗ ≥ γ · G(W ), where ∥·∥∗ is the dual-norm.

The lemma completes the first task: lower bounding the gradient’s dual norm. Importantly, the factor
in front of G(W ) is the margin γ w.r.t. the norm ∥·∥, which is crucial in the forthcoming analysis.

G(W ) and second-order term We now show how to bound the second-order term in (6). For this,
we establish the following essential lemma whose proof relies on the relationships in (7).

Lemma 2. For any entry-wise or Schatten p-norm ∥·∥with p ≥ 1, any s ∈ ∆k−1 in the k-dimensional
simplex, any index c ∈ [k], and v ∈ Rk, it holds that

v⊤ (diag(s)− ss⊤
)
v ≤ 4(1− sc)∥vvT ∥.
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Proof. Let S := diag(s)− ss⊤ and q ≥ 1 such that 1/p+ 1/q = 1. By norm duality, it holds that

v⊤Sv = tr
(
Svv⊤) ≤ ∥S∥q∥vv⊤∥ ≤ ∥S∥sum∥vv

⊤∥,

where ∥·∥q is the dual of ∥·∥ and the second inequality is by (7). Direct calculation yields ∥S∥sum =
2
∑
c∈[k] sc(1− sc). The advertised bound then follows by noting the following

∑
c∈[k] sc(1− sc) ≤

2(1− sc′) for any c′ ∈ [k] (verified in Lemma 13 in App. C).

Next, we apply the above lemma with v ← ∆hi and c ← yi, and further use the inequalities:
∥vvT ∥p = ∥v∥2p ≤ ∥∆∥2p∥h∥2q for entry-wise norms and

∣∣∣∣∣∣vv⊤
∣∣∣∣∣∣
p
= ∥v∥22 ≤ |||∆|||

2
∞ ∥h∥22 ≤

|||∆|||2p ∥h∥22 for Schatten norms. Together with Ass. 4, this upper bounds the second-order term in
the CE loss expansion in terms of the proxy function:

2B2∥∆∥2 · 1
n

∑
i∈[n]

(1− Syi(Whi)) .

Properties of G(W ) We now show that G(W ) meets the second desiderata: being a good proxy
for the loss L(W ). This is rooted in the elementary relationships between G(W ) and L(W ), which
are used in the various parts of the proof. Below, we summarize these key relationships.

Lemma 3 (Properties of G(W ) and L(W )). Let W ∈ Rk×d. The followings hold: (i) Under Ass.
4, 2B · G(W ) ≥ ∥∇L(W )∥∗; (ii) 1 ≥ G(W )

L(W ) ≥ 1− nL(W )
2 ; (iii) If W satisfies L(W ) ≤ log 2

n or
G(W ) ≤ 1

2n , then L(W ) ≤ 2G(W ).

Lemma 3 (i) extends Lemma 1 by establishing a sandwich relationship between G(W ) and the
gradient’s dual norm. The lemma’s statements (ii) and (iii) show that G(W ) can substitute for the loss
- it lower bounds L(W ) and serves as an upper bound when either L(W ) or G(W ) is sufficiently
small. Specifically, the ratio G(W )

/
L(W ) converges to 1 as the loss decreases, with the convergence

rate depending on the rate of loss decrease. The key property (ii) may seem algebraically complex,
but it turns out (details in Lemma 18 in App. C) that both sides of the sandwich relationship follow
from the elementary fact that ∀x > 0 : 1− x ≤ e−x ≤ 1− x+ x2/2.

4 Implicit Bias of Normalized Steepest Descent

We now leverage our construction of G(W ) to show that the margin of NSD’s iterates converges
to the data margin defined w.r.t. the same entry-wise or Schatten p-norm that is used to define the
algorithm (refer to eqns. (2) and (3) for the definitions of margin and NSD). We only highlight the
key steps in the proof and defer details to App. D.

NSD Descent We start by showing a descent property. By applying Lemmas 1 and 2 to lower and
upper bound the first and second order terms in Eq. (6) yields

L(Wt+1) ≤ L(Wt)− γηtG(Wt) + 2η2tB
2G(Wt) sup

ζ∈[0,1]

G(Wt − ζηt∆t)

G(Wt)
.

Algebraic manipulations of the definition of G(W ) and the relationships in (7) allow us to bound the
ratio in the right hand side.

Lemma 4 (Ratio of G(W )). For any ψ ∈ [0, 1], we have the following: G(W−ψη∆)
G(W ) ≤

e2Bηψ∥∆∥max ≤ e2Bηψ∥∆∥ (note that the second inequality is by (7)).

From this and ∥∆t∥ ≤ 1 for NSD, we obtain

L(Wt+1) ≤ L(Wt)− γηt(1− αs1ηt)G(Wt), (9)

where αs1 = 2B2e2Bη0/γ. Given a decay learning rate of the form ηt = Θ( 1
ta ), we can conclude

that the loss starts to monotonically decrease after some time.

6



NSD Unnormalized Margin We now use the descent property in (9) to lower bound the un-
normalized margin. An intermediate result towards this is recognizing that sufficiently small loss
L(W ) ≤ log 2

n guarantees W separates the data (Lemma 19 in App. C). The descent property ensures
that NSD iterates will eventually achieve this loss threshold, thereby guaranteeing separability. The
main result of this section, shows that eventually the iterates achieve separability with a substantial
(unnormalized) margin.

Lemma 5 (NSD Unnormalized Margin). Assume there exists t̃ such that L(Wt) ≤ log 2
n , ∀t > t̃.

Then, it holds that for all t ≥ t̃ (αs2 = 2B2e2Bη0 )

min
i∈[n],c̸=yi

(eyi − ec)
TWthi ≥ γ

t−1∑
s=t̃

ηs
G(Ws)

L(Ws)
− αs2

t−1∑
s=t̃

η2s . (10)

NSD Margin Convergence Proceeding from Eq. (10) requires showing the convergence of the
ratio G(W )

L(W ) . The two key ingredients are given in Lemma 3 (ii) and (iii). Lemma 3 (ii) suggests that
it is sufficient to study the convergence of L(W ), which is captured in (9). However, to obtain an
explicit rate via (9), we need to rewrite G(Wt) in terms of L(Wt). This is where Lemma 3 (iii) helps.
Putting them together, we arrive at the following theorem (see Thm. 3 and Cor. 1 for details).
Theorem 1. Suppose that Ass. 1, 2, and 4 hold. Set learning rate ηt = Θ( 1

t1/2
). The following holds

for the margin gap of NSD’s iterates

γ −
mini∈[n],c̸=yi(eyi − ec)

TWthi

∥Wt∥
≤ O( log t+ n

t1/2
).

Remark 1. For margin convergence rates of NSD, Nacson et al. [43] showed a rate of O( log t
t1/2

)
in the binary setting, limited to the entry-wise p-norms and the exponential loss. Compared to
this, our results hold for the more practical setting of multiclass data and CE loss. To the best of
our knowledge, this is the first non-asymptotic result on the implicit bias of spectral-GD for linear
multiclass separable data, and it holds for other p-norms as well. Upon completion of this work, we
became aware of an update on the arXiv version of Tsilivis et al. [63], which includes an extension
of their previous results to steepest descent w.r.t. the spectral norm. In comparison to ours, their
gradient-flow analysis applies to homogeneous neural networks with the restriction of infinitesimal
step-sizes. Moreover, it does not include normalization nor momentum (like Muon, which we analyze),
and the convergence is (asymptotic) to a KKT point of a spectral-norm margin maximization problem.

5 Implicit Bias of Normalized Momentum Steepest Descent

In this section, we study the implicit bias of NMD algorithms (proof details in App E). Similar to Sec.
, its updates are defined w.r.t. either the entry-wise or the Schatten norm ∥·∥. The analysis relies on
the relationships in (7) and we show the same proxy function G(W ) naturally appears. Given that
the NMD updates satisfy ∥∆∥ ≤ 1, the second-order term in (6) is bounded in the same way as NSD.
The main difference is in bounding the first-order term as shown by the following lemma.

Lemma 6. Let Ωt := Mt −∇t. It holds for all t ≥ 0 that

⟨∇t,Wt+1 −Wt⟩ ≤ 2η∥Ωt∥∗ − ηγG(Wt) .

Given the relationships in (7) hold for any p ≥ 1, we can bound the dual norm of ∥Ωt∥∗ via its
sum norm (i.e. ∥Ωt∥∗ ≤ ∥Ω∥sum). Given the goal is to bound all the terms in the Taylor expansion
(6) via the proxy function G(Wt), an natural next step is to bound ∥Ωt∥sum using the same proxy
function. To do this, we decompose the proxy function per-class-wise, and apply the per-class
proxy functions to bound the entries of Ωt associated with their corresponding classes. Concretely,
we write the function G(W ) in two equivalent ways: G(W ) =

∑
c∈[k]

1
n

∑
i∈[n],yi=c

(1− siyi) =∑
c∈[k]

1
n

∑
i∈[n],yi ̸=c sic, which motivate the following definitions of the per-class proxy functions:

Gc(W ) := 1/n
∑

i∈[n],yi=c
(1− siyi), and Qc(W ) := 1/n

∑
i∈[n],yi ̸=c

sic.
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Next, we bound the entries in each row of Ωt (thus belonging to the same class) via the corresponding
proxy functions Gc(Wt) and Qc(Wt) to arrive at the following lemma. Its proof utilizes the nice
properties of softmax map given in Lemma 15 in App. B.
Lemma 7. Suppose that Ass. 1, 2, 3, and 4 hold. Let c ∈ [k] and j ∈ [d]. There exists time t0 such
that for all t ≥ t0 and for αM := B(1− β1)c2:

|Mt[c, j]− (1− βt+1
1 )∇L(Wt)[c, j]| ≤ αMηt

(
Gc(Wt) +Qc(Wt)

)
.

Given the result in Lemma 7, we can show that |Ωt[c, j]| ≤ βt+1
1 |∇L(Wt)[c, j]| + αMηtTc(Wt),

where Tc(Wt) is defined to be Tc(Wt) := G(Wt) +Q(Wt). Then, we sum over indices c ∈ [k] and
j ∈ [d] and apply ∥∇∥sum ≤ 2B · G(W ) (from Lemma 3 (i)) to obtain:

Lemma 8. It holds for all t ≥ 0 that ∥Ωt∥sum ≤ 2Bβ
t/2
1 G(Wt) + 2αMdηtG(Wt).

This completes the bound on the first-order term for NMD algorithms via the proxy G(W ). The rest
proof follows similar steps as NSD. We note that without the above per-class decomposition, an extra
k-factor would appear in the second term of the bound on ∥Ωt∥sum (and thus also show up in the
final rate). We state the main theorem for NMD algorithms.

Theorem 2. Under the setting of Lem. 7, the margin gap of NMD with ηt = Θ( 1
t1/2

) is O(d log t+dn
t1/2

).
Remark 2. Wang et al. [69] studied implicit bias of un-normalized GD with momentum, and showed
its iterates converge asymptotically to the max 2-norm margin solution. In contrast, our rates are
non-asymptotic and cover a much wider family of algorithms converging to non-Euclidean geometric
margins (w.r.t. entry-wise/Schatten norms). Note the convergence rate of NMD matches that of NSD
(Thm. 1) up to a factor of d. It could be interesting to remove this dependence in a future work.

Implicit Bias of Adam Finally, observing that Adam [33] (without the stability constant, i.e., eqns
(33a), (33b), and (33c) in App. G) shares the same form of momentum as NMD and the (entry-wise)
updates are bounded by some constant as shown in Zhang et al. [80] and Xie and Li [76]. Thus, our
analysis extends to Adam. Concretely, a similar proof strategy can be adapted once a bound on the
second gradient moment via the proxy function is established (Lemma 35). In App. G, we prove a
O(d log(t)+nd

t1/3
) max-norm margin convergence rate for Adam (details in Thm. 5 and Cor. 2).

6 Experiments

Synthetic Experiments We generate snythetic multiclass separable data as follows: k = 10 class
centers are sampled from a standard normal distribution; within each class, data is sampled from
normal distribution N (0, σ2I), σ = 0.1. We set d = 25, sample 50 data points for each class, and
ensure that margin is positive (thus data is separable). We run different algorithms to minimize CE
loss using ηt = η0

ta (η0 = 0.1 for SignGD and NGD; η0 = 0.05 for Spectral-GD and Muon), where
(based on our theorems) a is set to 1/2. We apply truncated SVD on the gradient and momentum for
Spectral-GD and Muon respectively. Data margins w.r.t. different norms are found via CVXPY [17].
We denote max-margin classifiers defined w.r.t. the 2-norm, the max-norm, and the spectral-norm
as V2, V∞, and Vspec, respectively. Based on the margin-gap results in Figure 1, we observe that
SignGD, NGD, and Spectral-GD favor max-norm, 2-norm, and spectral-norm margin respectively.
Besides this, the behavior of Muon is very similar to that of Spectral-GD (in agreement with our
theories). Figure 2 further confirms that the iterates of these algorithms correlate well with the
corresponding max margin separators. Experiments on Signum, NMD-GD, and Adam are provided
in App. A and App. G.

Two-layer Neural Network We extend the experiments to the non-linear classification setting
using the cross-entropy loss. We sample 100 data points from each of the 10 classes of the MNIST
dataset [35]. The model is a two-layer neural network with the hidden dimension being 100 (the first
and second layer weights are denoted as V and W respectively). The training is done in two ways:
(a) Train the first-layer weight with the second-layer weight fixed and (b) Train both the first and
second-layer weights. For options (a) and (b), the respective spectral-norm margins of the overall
network are defined as

(a) γVa := min
i∈[n],c̸=yi

(eyi − ec)
TWσ(V hi)

|||V |||∞
, (b) γV ,Wb := min

i∈[n],c̸=yi

(eyi − ec)
TWσ(V hi)

max{|||V |||∞, |||W |||∞}
,
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Figure 1: (a) We normalize the iterates of SignGD w.r.t. the max-norm (denoted as W̄t), compute the
margin (denoted as γW̄t

), then plot its difference to data margins γ∥·∥∞ , γ∥·∥2
, and γ|||·|||∞ (note that

the margin difference is further divided by the corresponding data margin for comparisons). SignGD
favors the margin defined w.r.t. the max-norm. (b, c, and d) Same as (a) with SignGD (max-norm)
replaced by NGD (2-norm), Spectral-GD (spectral-norm), and Muon (spectral-norm), respectively.
NGD favors the 2-norm margin, while Spectral-GD and Muon favor the spectral-norm margin.
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Figure 2: (a) Correlations between the iterates of SignGD (Wt) and max margin separators V∞,
V2, and Vspec against iterations (correlation defined as ⟨W ,V ⟩

∥W ∥2∥V ∥2
). (b, c, and d) Same as (a) with

SignGD replaced by NGD, Spectral-GD, and Muon, respectively. SignGD and NGD correlate well
with V∞ and V2, respectively, while Spectral-GD and Muon correlate well with Vspec.
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Figure 3: (a) Spectral-norm margin γVt
a as a function of t for SignGD, NGD, and Spectral-GD. (b)

Same as (a) with algorithms replaced by Signum, NMD-GD, and Muon, respectively. (c) Spectral-
norm margin γVt,Wt

b as a function of t for SignGD, NGD, and Spectral-GD. (d) Same as (c) with
algorithms replaced by Signum, NMD-GD, and Muon, respectively.

where σ(·) is the sigmoid function. In Figure 3, we track the quantities γVt
a (Figure 3a and 3b)

and γVt,Wt
a (Figure 3c and 3d) as a function of the iteration counter t. For both definitions, we

observe that the spectral-norm margin of the iterates of Spectral-GD and Muon grow faster than other
algorithms. Hence, the observations in the linear settings can also hold in the non-linear settings.

7 Related Works

Starting with GD, the foundational result by Soudry et al. [53] showed that gradient descent op-
timization of logistic loss on linearly separable data converges in direction to the L2 max-margin
classifier at a rate O(1/ log(t)). Contemporaneous work by Ji and Telgarsky [26] generalized this by
relaxing the data separability requirement. Ji et al. [29] later connected these findings to earlier work
on regularization paths of logistic loss minimization [49], which enabled extensions to other loss
functions (e.g., those with polynomial tail decay). More recently, Wu et al. [75] extends these results
to the large step size regime with the same O(1/ log(t)) rate. The relatively slow convergence rate to
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the max-margin classifier motivated investigation into adaptive step-sizes. Nacson et al. [43] showed
that NGD with decaying step-size ηt = 1/

√
t achieves L2-margin convergence at rate O(1/

√
t).

This rate was improved to O(1/t) by Ji and Telgarsky [28] using constant step-sizes, and further to
O(1/t2) through a specific momentum formulation [30]. Besides linear classifications, implicit bias
of GD has been studied for least squares [21, 22, 5], homogeneous [40, 27, 74] and non-homogeneous
neural networks [12], as well as matrix factorization [21]; see Vardi [64] for a survey.

All the above mentioned works focus almost exclusively on binary classification. The noticeable gap
in analysis of multiclass classification in most existing literature is highlighted by Thrampoulidis
et al. [61], and more recently emphasized by Ravi et al. [48], who extended the implicit bias result
of Soudry et al. [53] to multiclass classification for losses with exponential tails, including CE,
multiclass exponential, and PairLogLoss. Their approach leverages a framework of Wang and Scott
[73] that allows multiclass losses and separability conditions to be written in margin-based forms
similar to binary cases. However, these works only focus on GD with the L2-geometry. In this work,
we consider a wide range of algorithms with different geometries for multiclass classification.

Beyond GD, Gunasekar et al. [22] and Nacson et al. [43] showed that steepest descent w.r.t. entry-
wise p-norms yields updates that in the limit maximize the margin w.r.t the same norm. Sun et al.
[54, 55] showed that the iterates of mirror descent with the potential function chosen as the p-th
power of the p-norm converge to the classifier that maximizes the margin w.r.t. the p-norm. In both
cases, the convergence rate is slow at O(1/ log(t)). Wang et al. [70] further improved the rates for
both steepest descent and mirror descent when p ∈ (1, 2]. Note that all these results apply only to
the exponential loss. More recently, Tsilivis et al. [63] showed that the iterates of steepest descent
algorithms converge to a KKT point of a generalized margin maximization problem in homogeneous
neural networks. Moreover, the implicit bias of Adam (with or without the stability constant) has
been studied in both linear and non-linear settings. Wang et al. [68] demonstrated the normalized
iterates of Adam (with non-negligible stability constant) converge to a KKT point of a L2-margin
maximization problem for homogeneous neural networks. Zhang et al. [77] studied the implicit bias
of Adam without the stability constant on (linearly) binary separable data. They showed that unlike
GD, the Adam’s iterates converge to a solution that maximizes the margin w.r.t the L∞-norm. The
study of excluding the stability constant is also the focus of another recent work on the implicit bias
of AdamW [76], where the authors again establish that convergence aligns with the L∞ geometry.

8 Conclusion

We have characterized the margin convergence rates of Spectral-GD and Muon for multiclass linear
separable data. Given they are special cases of NSD and NMD w.r.t the spectral norm, the analysis is
done on a wider scale by studying NSD/NMD w.r.t any entry-wise or Schatten p-norms. Thus, the
rates also hold for optimizers of other geometries, such as the sign-descent (max-norm) or gradient-
descent (2-norm) family. We further extend the analysis to Adam using the same framework. Future
directions include removing the factor-d from the bound of NMD, obtaining a tighter convergence
rate for Adam, and studying other related algorithms such as Shampoo that involves non-diagonal
preconditioners. It is also important to extend our results to (multiclass) non-separable settings [60]
and nonlinear models such as diagonal neural nets [45], self-attention mechanisms [58, 4, 57, 66, 32]
and homogeneous neural nets [40, 63, 12], helping further bridge the gap to deep learning practices.
Finally, from a complementary statistical perspective, future work could seek identifying specific
scenarios where margin maximization with respect to norms other than Frobenius leads to better
generalization (extending a long line of prior works, e.g., [50, 16, 34, 42, 71, 18, 56, 65, 2, 62]).
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A Additional Experiments

We present additional experiments on Signum and NMD-GD in this section. Based on Figure 4, their
margin convergence properties are very similar to those of SignGD and NGD respectively (see Sec.
in the main text for the experimental setup).
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Figure 4: Implicit bias of Signum and NMD-GD on multiclass separable data. (a) Relative margin
gap of Signum’s iterates against iterations. (b) Correlation of Signum’s iterates to V∞, V2, and Vspec

against iterations. See Figure 1 and 2 for the definitions of relative margin and correlation. (c) and (d)
Same as (a) and (b) with Signum replaced by NMD-GD.

B Facts about CE loss and Softmax

Lemma 9 is on the gradient of the cross-entropy loss. It will be used for showing the form of G(W )
in (8) lower bounds ∥∇L(W )∥ in Lemma 16.

Lemma 9 (Gradient). Let CE loss

L(W ) := − 1

n

∑
i∈[n]

log
(
Syi(Whi)

)
.

For any W , it holds

• ∇L(W ) = − 1
n

∑
i∈[n] (eyi − si)h

⊤
i = − 1

n (Y − S)H⊤

• 1⊤
k∇L(W ) = 0
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• For any matrix A ∈ Rk×d,

⟨A,−∇L(W )⟩ = 1

n

∑
i

(1− siyi)

(
e⊤yiAhi −

∑
c̸=yi sic e

⊤
c Ahi

(1− siyi)

)

=
1

n

∑
i∈[n]

∑
c̸=yi

sic (eyi − ec)
⊤Ahi (11)

where we simplify S := S(WH) = [s1, . . . , sn] ∈ Rk×n. The last statement yields

⟨A,−∇L(W )⟩ ≥ 1

n

∑
i∈[n]

(1− siyi) · min
c̸=yi

(eyi − ec)
⊤
Ahi. (12)

Proof. First bullet is by direct calculation. Second bullet uses the fact that 1⊤(yi − si) = 1 −
1 = 0 since 1⊤si = 1. The third bullet follows by direct calculation and writing s⊤i Ahi =
(
∑
c sicec)

⊤Ahi =
∑
c sic e

⊤
c Ahi.

Lemma 10 is on the Taylor expansion of the loss. It will be used in showing the descent properties of
NSD and NMD.

Lemma 10 (Hessian). Let perturbation ∆ ∈ Rk×d and denote W ′ = W +∆. Then,

L(W ′) = L(W )− 1

n

∑
i∈[n]

⟨(eyi − S(Whi))h
⊤
i ,∆⟩

+
1

2n

∑
i∈[n]

h⊤
i ∆

⊤ (diag(S(Whi))− S(Whi)S(Whi)
⊤)∆hi + o(∥∆∥3) . (13)

Proof. Define function ℓy : Rk → R parameterized by y ∈ [k] as follows:

ℓy(l) := − log(Sy(l)) .

From Lemma 9,
∇ℓy(l) = −(ey − S(l)) .

Thus,
∇2ℓy(l) = ∇S(l) = diag(S(l))− S(l)S(l)⊤

Combining these the second-order taylor expansion of ℓy writes as follows for any l, δ ∈ Rk:

ℓy(l+ δ) = ℓy(l)− (ey − S(l))⊤δ +
1

2
δ⊤
(
diag(S(l))− S(l)S(l)⊤

)
δ + o(∥δ∥3) .

To evaluate this with respect to a change on the classifier parameters, set l = Wh and δ = ∆h for
∆ ∈ Rk×d. Denoting W ′ = W +∆, we then have

ℓy(W
′) = ℓy(W )− ⟨(ey − S(l))h⊤,∆⟩+ 1

2
h⊤∆⊤ (diag(S(l))− S(l)S(l)⊤

)
∆h+ o(∥∆∥3) .

This shows the desired since nL(W ) :=
∑
i∈[n] ℓyi(Whi) and we can further obtain

ℓy(W
′) = ℓy(W )− ⟨(ey − S(l))h⊤,∆⟩+ 1

2
h⊤∆⊤ (diag(S(l′))− S(l′)S(l′)⊤

)
∆h, (14)

where l′ = l+ ζδ for some ζ ∈ [0, 1].

We prove the relationships in (7), which are useful for unifying the analysis of entry-wise and Schatten
norms.

Lemma 11. For any matrix A ∈ Rm×n and any entry-wise or Schatten p-norm ∥·∥ with p ≥ 1, it
holds that

∥A∥max ≤ ∥A∥ ≤ ∥A∥sum .
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Proof. The entry-wise p-norm case is trivial. Here, we focus the Schatten p-norm case. Note that
|||A|||2 coincides with the entrywise 2-norm ∥A∥2, but in general Schatten norms are different from
entry-wise norms. On the other hand, Schatten norms preserve the ordering of norms. Specifically,
por any p ≥ 1, it holds:

|||A|||∞ = σ1 ≤ |||A|||p =

(
r∑
i=1

σpi

)1/p

≤
r∑
i=1

σi = |||A|||1 . (15)

It is also well-known that
|||A|||∞ = max

∥u∥2=∥v∥2=1
u⊤Av ≥ max

i,j
|A[i, j]| = ∥A∥max (16)

where the inequality follows by selecting u = sign(A[i′, j′]) · ei′ and v = ej′ for (i′, j′) such that
|A[i′, j′]| = ∥A∥max and ei′ , ej′ corresponding basis vectors.

Using this together with duality, it also holds that
|||A|||1 ≤ ∥A∥sum . (17)

This follows from the following sequnece of inequalities
|||A|||1 = max

|||B|||∞≤1
⟨A,B⟩ ≤ ∥A∥sum · max

|||B|||∞≤1
∥B∥max ≤ ∥A∥sum · max

|||B|||∞≤1
|||B|||∞ ≤ ∥A∥sum ,

(18)
where the first inequality follows from generalized Cauchy-Scwhartz and the second inequality by
(16).

Lemma 12 is used in bounding the second order term in the Taylor expansion of L(W ).
Lemma 12. For any entry-wise or Schatten p-norm ∥·∥ with p ≥ 1, any s ∈ ∆k−1 in the k-
dimensional simplex, any index c ∈ [k], and v ∈ Rk, it holds that

v⊤ (diag(s)− ss⊤
)
v ≤ 4(1− sc)∥vvT ∥.

Proof. See main text.

Lemma 13 is used in the proof of Lemma 12.
Lemma 13. For any s ∈ ∆k−1 in the k-dimensional simplex and any index c ∈ [k] it holds that∑

c′

sc′(1− sc′) ≤ 2(1− sc) .

Proof. With a bit of algebra and using
∑
c′ ̸=c sc′ = 1− sc the claim becomes equivalent to∑

c′ ̸=c

s2c′ + s2c − 2sc + 1 ≥ 0.

Since this holds true, the lemma holds.

Lemma 14. For any s ∈ ∆k−1 in the k-dimensional simplex, any index c ∈ [k], any ∆ ∈ Rk×d,
and any h ∈ Rd, it holds:

h⊤∆⊤ (diag(s)− ss⊤
)
∆h ≤ 4B2∥∆∥2 (1− sc) .

Proof. We let v := ∆h. For any Schatten p-norm, we have∣∣∣∣∣∣vv⊤∣∣∣∣∣∣ = ∥v∥22 ≤ |||∆|||2∞ ∥h∥22 ≤ |||∆|||2 ∥h∥22 ≤ B2 |||∆|||2 .
For any entry-wise p-norm, we have

∥∆h∥p = ∥∆h∥p =
∑
j

|e⊤j ∆h|p ≤
∑
j

∥e⊤j ∆∥pp∥h∥p = ∥h∥p∗
∑
ij

|∆[i, j]|p = ∥h∥p∗∥∆∥p .

This implies

∥vvT ∥ = ∥v∥2 = ∥∆h∥2 ≤ ∥∆∥2∥h∥2⋆ ≤ B2∥∆∥2.
Combine these results and apply Lemma 12, we obtain the desired.
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The following lemma summarizes the properties of the softmax map that will be used in the proof of
Lemma 25 and 35.

Lemma 15. For any v,v′, q, q′ ∈ Rk and c ∈ [k], the following inequalities hold:

(i) | Sc(v
′)

Sc(v) − 1| ≤ e2∥v−v′∥∞ − 1

(ii) | 1−Sc(v′)
1−Sc(v) − 1| ≤ e2∥v−v′∥∞ − 1

(iii) | Sc(v
′)Sc(q′)

Sc(v)Sc(q) − 1| ≤ e2(∥v′−v∥∞+∥q′−q∥∞) − 1

(iv) | Sc(v
′)(1−Sc(q′))

Sc(v)(1−Sc(q)) − 1| ≤ e2(∥v′−v∥∞+∥q′−q∥∞) − 1

(v) | (1−Sc(v′))(1−Sc(q′))
(1−Sc(v))(1−Sc(q)) − 1| ≤ e2(∥v′−v∥∞+∥q′−q∥∞) − 1

Proof. We prove each inequality:

(i) First, observe that

|Sc(v
′)

Sc(v)
− 1| = |e

v′c

evc

∑
i∈[k] e

vi∑
i∈[k] e

v′i
− 1|

= |
∑
i∈[k] e

v′c+vi −
∑
i∈[k] e

vc+v
′
i∑

i∈[k] e
vc+v′i

|

≤
∑
i∈[k] |ev

′
c+vi − evc+v′i |∑

i∈[k] e
vc+v′i

For any i ∈ [k], we have |ev
′
c+vi−evc+v′

i |
evc+v′

i
= |ev′c−vc+vi−v′i−1| ≤ e|v′c−vc+vi−v′i|−1 ≤ e2∥v−v′∥∞−1.

This implies
∑
i∈[k] |ev

′
c+vi − evc+v′i | ≤

(
e2∥v−v′∥∞ − 1

)∑
i∈[k] e

vc+v
′
i , from which we obtain the

desired inequality.

(ii) For the second inequality:

|1− Sc(v′)

1− Sc(v)
− 1| = |

1− ev
′
c∑

i∈[k] e
v′
i

1− evc∑
i∈[k] e

vi

− 1|

= |
(
∑
j∈[k],j ̸=c e

v′j )(
∑
i∈[k] e

vi)

(
∑
j∈[k],j ̸=c e

vj )(
∑
i∈[k] e

v′i)
− 1|

= |
∑
j∈[k],j ̸=c

∑
i∈[k]

[
ev

′
j+vi − evj+v′i

]∑
j∈[k],j ̸=c

∑
i∈[k] e

vj+v′i
|

≤
∑
j∈[k],j ̸=c

∑
i∈[k] |e

v′j+vi − evj+v′i |∑
j∈[k],j ̸=c

∑
i∈[k] e

vj+v′i

For any j ∈ [k], j ̸= c, and i ∈ [k], we have |ev
′
j+vi−evj+v′

i |
evj+v′

i
≤ e2∥v−v′∥∞ − 1. This implies that∑

j∈[k],j ̸=c
∑
i∈[k] |e

v′j+vi − evj+v′i | ≤ (e2∥v−v′∥∞ − 1)
∑
j∈[k],j ̸=c

∑
i∈[k] e

vj+v
′
i , from which the

result follows.
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(iii) For the third inequality:

|Sc(v
′)Sc(q′)

Sc(v)Sc(q)
− 1| = |

ev
′
c∑

i∈[k] e
v′
i

eq
′
c∑

i∈[k] e
q′
i

evc∑
i∈[k] e

vi

eqc∑
i∈[k] e

qi

− 1|

= |

ev
′
c∑

i∈[k] e
v′
i

eq
′
c∑

i∈[k] e
q′
i

evc∑
i∈[k] e

vi

eqc∑
i∈[k] e

q′
i

−

evc∑
i∈[k] e

v′
i

eqc∑
i∈[k] e

q′
i

evc∑
i∈[k] e

v′
i

eqc∑
i∈[k] e

q′
i

|

= |
ev

′
ceq

′
c
∑
i∈[k] e

vi
∑
j∈[k] e

qj

evceqc
∑
i∈[k] e

v′i
∑
j∈[k] e

q′j
−
evceqc

∑
i∈[k] e

v′i
∑
j∈[k] e

q′j

evceqc
∑
i∈[k] e

v′i
∑
j∈[k] e

q′j
|

= |
∑
i∈[k]

∑
j∈[k]

[
ev

′
c+vi+q

′
c+qj − evc+v

′
i+qc+q

′
j
]∑

i∈[k]

∑
j∈[k] e

vc+v′i+qc+q
′
j

|

≤
∑
i∈[k]

∑
j∈[k] |ev

′
c+vi+q

′
c+qj − evc+v

′
i+qc+q

′
j |∑

i∈[k]

∑
j∈[k] e

vc+v′i+qc+q
′
j

For any i ∈ [k] and j ∈ [k], |ev
′
c+vi+q′c+qj−evc+v′

i+qc+q′j |
e
vc+v′

i
+qc+q′

j
= |ev

′
c−vc+vi−v

′
i+q

′
c−qc+qj−q

′
j − 1| ≤

e|v
′
c−vc|+|vi−v′i|+|q′c−qc|+|qj−q′j | − 1 ≤ e2(∥v′−v∥∞+∥q′−q∥∞) − 1. Then, rearranging and summing

over i and j leads to the result.

(iv) For the fourth inequality:

|Sc(v
′)(1− Sc(q′))

Sc(v)(1− Sc(q))
− 1| = |

ev
′
c∑

s∈[k] e
v′
s
(1− eq

′
c∑

t∈[k] e
q′t
)

evc∑
s∈[k] e

vs (1− eqc∑
t∈[k] e

qt
)
− 1|

= |
ev

′
c∑

s∈[k] e
v′
s

∑
i∈[k],i̸=c e

q′i∑
t∈[k] e

q′t

evc∑
s∈[k] e

vs

∑
i∈[k],i̸=c e

qt∑
t∈[k] e

qt

− 1|

= |
∑
i∈[k],i̸=c

∑
t∈[k]

∑
s∈[k] e

v′c+q
′
i+vs+qt∑

i∈[k],i̸=c
∑
t∈[k]

∑
s∈[k] e

vc+qi+v′s+q
′
t
− 1|

≤
∑
i∈[k],i̸=c

∑
t∈[k]

∑
s∈[k] |ev

′
c+q

′
i+vs+qt − evc+qi+v′s+q′t |∑

i∈[k],i̸=c
∑
t∈[k]

∑
s∈[k] e

vc+qi+v′s+q
′
t

For each i ∈ [k], i ̸= c, s ∈ [k], and t ∈ [k], we obtain |ev
′
c+q′i+vs+qt−evc+qi+v′

s+q′t |
evc+qi+v′

s+q′t
≤

e2(∥v
′−v∥∞+∥q′−q∥∞) − 1. Then, rearranging and summing over i, s, and t leads to the result.

(v) Finally, for the fifth inequality:

| (1− Sc(v′))(1− Sc(q′))

(1− Sc(v))(1− Sc(q))
− 1| = |

(1− ev
′
c∑

s∈[k] e
v′
s
)(1− eq

′
c∑

t∈[k] e
q′t
)

(1− evc∑
s∈[k] e

vs )(1− eqc∑
t∈[k] e

qt
)
− 1|

= |

∑
j∈[k],j ̸=c e

v′
j∑

s∈[k] e
v′
s

∑
i∈[k],i̸=c e

q′i∑
t∈[k] e

q′t∑
j∈[k],j ̸=c e

vj∑
s∈[k] e

vs

∑
i∈[k],i̸=c e

qi∑
t∈[k] e

qt

− 1|

= |
∑
j∈[k],j ̸=c

∑
i∈[k],i̸=c

∑
t∈[k]

∑
s∈[k] e

v′j+q
′
i+vs+qt∑

j∈[k],j ̸=c
∑
i∈[k],i̸=c

∑
t∈[k]

∑
s∈[k] e

vj+qi+v′s+q
′
t
− 1|

≤
∑
j∈[k],j ̸=c

∑
i∈[k],i̸=c

∑
t∈[k]

∑
s∈[k] |e

v′j+q
′
i+vs+qt − evj+qi+v′s+q′t |∑

j∈[k],j ̸=c
∑
i∈[k],i̸=c

∑
t∈[k]

∑
s∈[k] e

vj+qi+v′s+q
′
t

.
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For each j ∈ [k] (j ̸= c), i ∈ [k] (i ̸= c), s ∈ [k], and t ∈ [k], we have

|ev
′
j+q

′
i+vs+qt − evj+qi+v′s+q′t |
evj+qi+v

′
s+q

′
t

= |ev
′
j−vj+q

′
i−qi+vs−v

′
s+qt−q

′
t − 1|

≤ e|v
′
j−vj |+|q′i−qi|+|vs−v′s|+|qt−q′t| − 1

≤ e2(∥v
′−v∥∞+∥q′−q∥∞) − 1

Then, rearranging and summing over j, i, s, and t leads to the result.

C Lemmas on Loss and Proxy Function

Lemma 16 shows that G(W ) upper and lower bound the dual norm of the loss gradient.

Lemma 16 (G(W ) as proxy to the loss-gradient norm). Under Assumption 4. For any W ∈ Rk×d,
it holds that

2B · G(W ) ≥ ∥∇L(W )∥∗ ≥ γ · G(W ) .

Proof. First, we prove the lower bound. By duality and direct application of (12)

∥∇L(W )∥∗ = max
∥A∥≤1

⟨A,−∇L(W )⟩

≥ max
∥A∥≤1

1

n

∑
i∈[n]

(1− siyi)min
c̸=yi

(eyi − ec)
TAhi

≥ 1

n

∑
i∈[n]

(1− siyi) · max
∥A∥≤1

min
i∈[n],c̸=yi

(eyi − ec)
TAhi.

Second, for the upper bound, it holds by triangle inequality and relationships (7) that

∥∇L(W )∥∗ ≤ ∥∇L(W )∥sum ≤
1

n

∑
i∈[n]

∥∇ℓi(W )∥sum ,

where ℓi(W ) = − log(Syi(Whi)). Recall that

∇ℓi(W ) = −(ey − Syi(Whi))h
⊤
i ,

and, for two vectors v,u:
∥∥uv⊤

∥∥
sum

= ∥u∥1∥v∥1. Combining these and noting that

∥eyi − Syi(Whi)∥1 = 2(1− syi)

together with using the assumption ∥hi∥ ≤ B yields the advertised upper bound.

Built upon Lemma 16, we obtain a simple bound on the loss difference at two points.
Lemma 17. For any W ,W0 ∈ Rk×d, suppose that L(W ) is convex, we have

|L(W )− L(W0)| ≤ 2B∥W −W0∥.

Proof. By convexity of L, we have

L(W0)− L(W ) ≤ ⟨∇L(W0),W0 −W ⟩ ≤ ∥∇L(W0)∥∗∥W0 −W ∥ ≤ 2B∥W0 −W ∥ ,

where the last inequality is by Lemma 16. Similarly, we can also show that L(W ) − L(W0) ≤
2B∥W0 −W ∥.

Lemma 18 shows the close relationships between G(W ) and L(W ). The proxy G(W ) not only
lower bounds L(W ), but also upper bounds L(W ) up to a factor depending on L(W ). Moreover,
the rate of convergence G(W )

L(W ) depends on the rate of decrease in the loss.

Lemma 18 (G(W ) as proxy to the loss). Let W ∈ Rk×d, we have

(i) 1 ≥ G(W )
L(W ) ≥ 1− nL(W )

2
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(ii) Suppose that W satisfies L(W ) ≤ log 2
n or G(W ) ≤ 1

2n , then L(W ) ≤ 2G(W ).

Proof. (i) Denote for simplicity si := siyi = Syi(Whi), thus L(W ) = 1
n

∑
i∈[n] log(1/si) and

G(W ) = 1
n

∑
i∈[n](1−si). For the upper bound, simply use the fact that ex−1 ≥ x, forall x ∈ [0, 1],

thus log(1/si) ≥ 1− si for all i ∈ [n].

The lower bound can be proved using the exact same arguments in the proof of Zhang et al. [77,
Lemma C.7] for the binary case. For completeness, we provide an alternative elementary proof. It
suffices to prove for n = 1 that for s ∈ (0, 1):

1− s ≥ log(1/s)− 1

2
log2(1/s). (19)

The general case follows by summing over s = si and using
∑
i∈[n] log

2(1/si) ≤(∑
i∈[n] log(1/si)

)2
since log(1/si) > 0. For (19), let x = log(1/s) > 0. The inequality be-

comes e−x ≤ 1− x+ x2/2, which holds for x > 0 by the second-order Taylor expansion of e−x
around 0.

(ii) The sufficiency of L(W ) ≤ log 2
n (to guarantee that L(W ) ≤ 2G(W )) follows from (i) and

L(W ) ≤ log 2
n ≤ 1

n . The inequality log( 1x ) ≤ 2(1− x) holds when x ∈ [0.2032, 1]. This translates
to the following sufficient condition on siyi

si =
eℓi[yi]∑
c∈[k] e

ℓi[c]
=

1

1 +
∑
c∈[k],c̸=yi e

ℓi[c]−ℓi[yi]
≥ 0.2032.

Under the assumption G(W ) ≤ 1
2n , we have 1− si ≤

∑
i∈[n](1− si) = nG(W ) ≤ 1

2 , from which
we obtain si ≥ 1

2 ≥ 0.2032 for all i ∈ [n].

Lemma 19 shows that the data becomes separable when the loss is small. It is used in deriving the
lower bound on the un-normalized margin.
Lemma 19 (Low L(W ) implies separability). Suppose that there exists W ∈ Rk×d such that
L(W ) ≤ log 2

n , then we have

(eyi − ec)
TWhi ≥ 0, for all i ∈ [n] and for all c ∈ [k] such that c ̸= yi. (20)

Proof. We rewrite the loss into the form:

L(W ) = − 1

n

∑
i∈[n]

log(
eℓi[yi]∑
c∈[k] e

ℓi[c]
) =

1

n

∑
i∈[n]

log(1 +
∑
c̸=yi

e−(ℓi[yi]−ℓi[c])).

Fix any i ∈ [n], by the assumption that L(W ) ≤ log 2
n , we have the following:

log(1 +
∑
c̸=yi

e−(ℓi[yi]−ℓi[c])) ≤ nL(W ) ≤ log(2).

This implies:

e−minc̸=yi
(ℓi[yi]−ℓi[c]) = max

c̸=yi
e−(ℓi[yi]−ℓi[c])≤ ≤

∑
c̸=yi

e−(ℓi[yi]−ℓi[c]) ≤ 1.

After taking log on both sides, we obtain the following: ℓi[yi]− ℓi[c] = (eyi − ec)
TWhi ≥ 0 for

any c ∈ [k] such that c ̸= yi.

Lemma 20 shows that the ratio of G(W ) at two points can be bounded by exponentiating the max-
norm of their differences. It is used in handling the second order term in the Taylor expansion of the
loss.
Lemma 20 (Ratio of G(W )). For any ψ ∈ [0, 1], we have the following:

G(W − ψη∆)

G(W )
≤ e2Bψη∥∆∥max ≤ e2Bψη∥∆∥.
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Proof. Note that the second inequality is by relationships (7). Here, we only prove the first inequality.
By the definition of G(W ), we have:

G(W − ψη∆)

G(W )
=

∑
i∈[n]

(
1− Syi((W − ψη∆)hi)

)∑
i∈[n]

(
1− Syi(Whi)

) .

For any c ∈ [k] and v,v′ ∈ Rk, we have:

1− Sc(v′)

1− Sc(v)
=

1− ev
′
c∑

i∈[k] e
v′
i

1− evc∑
i∈[k] e

vi

=

∑
j∈[k],j ̸=c e

v′
j∑

i∈[k] e
v′
i∑

j∈[k],j ̸=c e
vj∑

i∈[k] e
vi

=

∑
j∈[k],j ̸=c

∑
i∈[k] e

v′j+vi∑
j∈[k],j ̸=c

∑
i∈[k] e

vj+v′i

≤ e2∥v−v′∥∞ .

The last inequality is because e
v′
j+vi

evj+v′
i
≤ e|v

′
j−vj |+|vi−v′i| ≤ e2∥v−v′∥∞ , which implies that∑

j∈[k],j ̸=c
∑
i∈[k] e

v′j+vi ≤ e2∥v−v′∥∞
∑
j∈[k],j ̸=c

∑
i∈[k] e

vj+v
′
i . Next, we specialize this result to

v′ = (W − ψη∆)hi, v = Whi, and c = yi for any i ∈ [n] to obtain:

1− Syi((W − ψη∆)hi)
)

1− Syi(Whi)
≤ e2ηψ∥∆hi∥∞ ≤ e2Bηψ∥∆∥max .

Then, we rearrange and sum over i ∈ [n] to obtain:
∑
i∈[n]

(
1 − Syi((W − ψη∆)hi)

)
≤

e2Bηψ∥∆∥max
∑
i∈[n]

(
1 − Syi(Whi)

)
, from which the desired inequality follows. The second

inequality in the lemma statement follows from the relationship (7).

D Implicit Bias of Normalized Steepest Descent

Proof Overview We consider a decay learning rate schedule of the form ηt = Θ( 1
ta ) where

a ∈ (0, 1]. The first step is to show that the loss monotonically decreases after certain time and
the rate depends on G(W ). To obtain this, we apply Lemma 16 and Lemma 12 to upper bound the
first-order and second-order terms in the Taylor expansion of the loss (21), respectively. Next, we use
the decrease in loss to derive a lower bound on the unnormalized margin which involves the ratio
G(W )
L(W ) . A crucial step involved is to find a time t̄2 such that separability (32) holds for all t ≥ t̄2, and

the existence of t̄2 is guaranteed by loss monotonicity such that the condition L(Wt) ≤ log 2
n will be

satisfied for sufficitently large t’s.

Then, we argue that the ratio G(Wt)
L(Wt)

converges to 1 exponentially fast (recalling that 1 ≥ G(Wt)
L(Wt)

≥
1− nL(Wt)

2 ) by showing the loss L(Wt) decreases exponentially fast. We first choose a time t1 after
t0 (recall that t0 is the time that satisfies Assumption 3) such that L(Wt+1) ≤ L(Wt)− ηtγ

2 G(Wt)
for all t ≥ t1. Next, we lower bound G(Wt) using L(Wt). By Lemma 18, there are two sufficient
conditions (namely, L(Wt) ≤ log 2

n =: L̃ or G(Wt) ≤ 1
2n ) that guarantee L(Wt) ≤ 2G(Wt). We

choose a time t2 (after t1) that is sufficiently large such that there exists t∗ ∈ [t1, t2] for which we
have G(Wt∗) ≤ L̃

2 ≤
1
2n . This not only guarantees that L(Wt∗) ≤ 2G(Wt∗) at time t∗, but also

(crucially due to monotonicity) implies that L(Wt) ≤ L(Wt∗) ≤ 2G(Wt∗) ≤ log 2
n for all t ≥ t2.

Thus, we observe that the other sufficient condition L(Wt) ≤ log 2
n is satisfied, from which we

conclude that L(Wt) ≤ 2G(Wt) for all t ≥ t2. We remark that the choice of t2 depends on L(Wt1)
(whose magnitude is bounded using Lemma 17), and t2 can be used as t̄2 above. To recap, t1 is the
time (after t0) after which the successive loss decrease is lower bounded by the product ηtγG(Wt);
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t2 (after t1) is the time after which L(Wt) ≤ log 2
n (thus, both L(Wt) ≤ 2G(Wt) and separability

condition (32) hold for all t ≥ t2).

In this following, we break the proof of implicit bias of NSD into several parts following previous
arguments. Lemma 21 shows the descent properties of NSD. It is used in Lemma 22 to lower bound
the un-normalized margin, and in the proof of Theorem 3 to show the convergence of G(Wt)

L(Wt)
.

Lemma 21 (NSD Descent). Under the same setting as Theorem 3, it holds for all t ≥ 0,

L(Wt+1) ≤ L(Wt)− γηt(1− αs1ηt)G(Wt),

where αs1 is some constant that depends on B and γ.

Proof. By Lemma 10, we let W ′ = Wt+1, W = Wt, ∆̃t = Wt+1 −Wt, and define Wt,t+1,ζ :=
Wt + ζ(Wt+1 −Wt). We choose ζ∗ such that Wt,t+1,ζ∗ satisfies (14), we have:

L(Wt+1) = L(Wt) + ⟨∇L(Wt), ∆̃t⟩︸ ︷︷ ︸
♠t

+
1

2n

∑
i∈[n]

h⊤
i ∆̃

⊤
t

(
diag(S(Wt,t+1,γhi))− S(Wt,t+1,ζ∗hi)S(Wt,t+1,ζ∗hi)

⊤) ∆̃t hi︸ ︷︷ ︸
♣t

.

(21)

For the ♠t term, we have by Lemma 16:

♠t = −ηt∥∇L(Wt)∥∗ ≤ −ηtγG(Wt).

For the ♣t term, we let v = ∆̃thi and s = S(Wt,t+1,ζ∗hi), and apply Lemma 14 to obtain

♣t ≤ 4∥∆̃t∥2∥hi∥2∗(1− Syi(Wt,t+1,ζ∗hi)) ≤ 4η2tB
2(1− Syi(Wt,t+1,ζ∗hi)),

where in the second inequality we have used ∥∆̃t∥ ≤ ηt and ∥hi∥∗ ≤ ∥hi∥1 ≤ 1. Putting these two
pieces together, we obtain

L(Wt+1) ≤ L(Wt)− γηtG(Wt) + 2η2tB
2 1

n

∑
i∈[n]

(1− Syi(Wt,t+1,ζ∗hi))

= L(Wt)− γηtG(Wt) + 2η2tB
2G(Wt,t+1,ζ∗)

≤ L(Wt)− γηtG(Wt) + 2η2tB
2 sup
ζ∈[0,1]

G(Wt,t+1,ζ)

= L(Wt)− γηtG(Wt) + 2η2tB
2G(Wt) sup

ζ∈[0,1]

G(Wt + ζ∆̃t)

G(Wt)

(a)

≤ L(Wt)− γηtG(Wt) + 2η2tB
2G(Wt) sup

ζ∈[0,1]

e2Bζ∥∆̃t∥

(b)

≤ L(Wt)− γηtG(Wt) + 2η2tB
2e2Bη0G(Wt), (22)

where (a) is by Lemma 20 and (b) is by ∥∆̃t∥ ≤ ηt. Letting αs1 = 2B2e2Bη0

γ , Eq. (22) simplifies to:

L(Wt+1) ≤ L(Wt)− γηt(1− αs1ηt)G(Wt),

from which we observe that the loss starts to monotonically decrease after ηt satisfies ηt ≤ 1
αs1

for a
decreasing learning rate schedule.

For a decaying learning rate schedule, Lemma 21 implies that the loss monotonically decreases after
a certain time. Thus, we know that the assumption of Lemma 22 can be satisfied. In the proof of
Theorem 3, we will specify a concrete form of t̃ in Lemma 22.
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Lemma 22 (NSD Unnormalized Margin). Suppose that there exist t̃ such that L(Wt) ≤ log 2
n for all

t > t̃, then we have

min
i∈[n],c̸=yi

(eyi − ec)
TWthi ≥ γ

t−1∑
s=t̃

ηs
G(Ws)

L(Ws)
− αs2

t−1∑
s=t̃

η2s ,

where αs2 is some constant that depends on B.

Proof. We let αs2 = 2Be2Bη0 , then from (22), we have for t > t̃:

L(Wt+1) ≤ L(Wt)− γηtG(Wt) + αs2η
2
t G(Wt)

= L(Wt)
(
1− γηt

G(Wt)

L(Wt)
+ αs2η

2
t

G(Wt)

L(Wt)

)
≤ L(Wt) exp

(
−γηt

G(Wt)

L(Wt)
+ αs2η

2
t

G(Wt)

L(Wt)

)
≤ L(Wt̃) exp

(
−γ

t∑
s=t̃

ηs
G(Ws)

L(Ws)
+ αs2

t∑
s=t̃

η2s
)
.

≤ log 2

n
exp
(
−γ

t∑
s=t̃

ηs
G(Ws)

L(Ws)
+ αs2

t∑
s=t̃

η2s
)
, (23)

where the penultimate inequality uses Lemma 18, and the last inequality uses the assumption that
L(Wt) ≤ log 2

n for all t ≥ t̃. Then, we have for all t > t̃:

e−mini∈[n],c̸=yi
(eyi

−ec)
TWthi = max

i∈[n]
e−minc̸=yi

(eyi
−ec)

TWthi

(a)

≤ max
i∈[n]

1

log 2
log
(
1 + e−minc̸=yi

(eyi
−ec)

TWthi
)

≤ max
i∈[n]

1

log 2
log(1 +

∑
c̸=yi

e−(eyi
−ec)

TWthi) ≤ nL(Wt)

log 2

(b)

≤ exp
(
−γ

t−1∑
s=t̃

ηs
G(Ws)

L(Ws)
+ αs2

t−1∑
s=t̃

η2s
)
.

(a) is by the following: the assumption L(Wt) ≤ log 2
n implies that minc̸=yi(eyi − ec)

TWthi ≥ 0

for all i ∈ [n] by Lemma 19. We also know the inequality log(1+e−z)
e−z ≥ log 2 holds for any z ≥ 0.

Then, for any i ∈ [n], we can set z = minc̸=yi(eyi − ec)
TWthi to obtain the desired inequality;

and (b) is by (23). Finally, taking log on both sides leads to the result.

Next Lemma upper bounds the p-norm of NSD’s iterates using learning rates. It is used in the proof
of Theorem 3.

Lemma 23 (NSD ∥Wt∥). For NSD, we have for any t > 0 that

∥Wt∥ ≤ ∥W0∥+
t−1∑
s=0

ηs.

Proof. By the NSD update rule (3), we have

Wt+1 = W0 −
t∑

s=0

ηs∆s.

This leads to ∥Wt∥ ≤ ∥W0∥+
∑t−1
s=0 ηs given ∆s ≤ 1 for all s ≥ 0.
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The main step in the proof of Theorem 3 is to determine the time that satisfies the assumption in
Lemma 22 and show the convergence of G(Wt)

L(Wt)
. Then, Lemma 22 and Lemma 23 will be combined

to obtain the final result.
Theorem 3. Suppose that Assumption 1, 2, and 4 hold, then there exists ts2 = ts2(n, γ,B,W0) such
that NSD achieves the following for all t > ts2∣∣∣∣∣mini∈[n],c̸=yi(eyi − ec)

TWthi

∥Wt∥
− γ

∣∣∣∣∣ ≤ O
(∑t−1

s=ts2
ηse

− γ
4

∑s−1
τ=ts2

ητ +
∑ts2−1
s=0 ηs +

∑t−1
s=ts2

η2s∑t−1
s=0 ηs

)
.

Proof. Determination of ts1 . In Lemma 21 we choose ts1 such that ηt ≤ 1
2αs1

for all t ≥ ts1 .

Considering ηt = Θ( 1
ta ) (where a ∈ (0, 1]), we set ts1 = (2αs1)

1
a = ( 4B

2e2Bη0

γ )
1
a . Then, we have

for all t ≥ ts1

L(Wt+1) ≤ L(Wt)−
ηtγ

2
G(Wt). (24)

Rearranging this equation and using non-negativity of the loss we obtain γ
∑t
s=ts1

ηsG(Ws) ≤
2L(Wts1

).
Determination of ts2 . By Lemma 17, we can bound L(Wts1

) as follows

|L(Wts1
)− L(W0)| ≤ 2B∥Wts1

−W0∥ ≤ 2B

ts1−1∑
s=0

ηs∥∆s∥ ≤ 2B

ts1−1∑
s=0

ηs,

where the last inequality is by ∥∆s∥ ≤ 1 for all s ≥ 0. Combining this with the result above and
letting L̃ := log 2

n , we obtain

G(Wt∗) = min
s∈[ts1 ,ts2 ]

G(Ws) ≤
2L(W0) + 4B

∑ts1−1
s=0 ηs

γ
∑ts2
s=ts1

ηs
≤ L̃

2
≤ 1

2n
,

from which we derive the sufficient condition on ts2 to be
∑ts2
s=ts1

ηs ≥ 4L(W0)+8B
∑ts1−1

s=0 ηs

γL̃ .

Convergence of G(Wt)
L(Wt)

Given G(Wt∗) ≤ L̃
2 ≤

1
2n , we obtain thatL(Wt) ≤ L(Wt∗) ≤ 2G(Wt∗) ≤

L̃ for all t ≥ ts2 , where the first and second inequalities are due to monotonicity in the risk and
Lemma 18, respectively. Thus, the other sufficient condition L(Wt) ≤ log 2

n in Lemma 18 is satisfied,
from which we conclude that L(Wt) ≤ 2G(Wt) for all t ≥ ts2 . Substituting this into (24), we obtain
for all t > ts2

L(Wt) ≤ (1− γηt−1

4
)L(Wt−1) ≤ L(Wts2

)e
− γ

4

∑t−1
s=ts2

ηs ≤ L̃e−
γ
4

∑t−1
s=ts2

ηs

Then, by Lemma 18, we obtain

G(Wt)

L(Wt)
≥ 1− nL(Wt)

2
≥ 1− nL̃e−

γ
4

∑t−1
s=ts2

ηs

2
≥ 1− e−

γ
4

∑t−1
s=ts2

ηs . (25)

Margin Convergence Finally, we combine Lemma 22, Lemma 23, and (25) to obtain

|
mini∈[n],c̸=yi(eyi − ec)

TWthi

∥Wt∥
− γ| ≤

γ
(
∥W0∥+

∑t−1
s=ts2

ηse
− γ

4

∑s−1
τ=ts2

ητ +
∑ts2−1
s=0 ηs

)
+ αs2

∑t−1
s=ts2

η2s

∥W0∥+
∑t−1
s=0 ηs

≤ O(
∑t−1
s=ts2

ηse
− γ

4

∑s−1
τ=ts2

ητ +
∑ts2−1
s=0 ηs +

∑t−1
s=ts2

η2s∑t−1
s=0 ηs

)

Next, we explicitly upper bound ts2 in Theorem 3 to derive the margin convergence rates of NSD.
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Corollary 1. Consider learning rate schedule of the form ηt = Θ( 1
ta ) where a ∈ (0, 1], under the

same setting as Theorem 3, then we have for SignGD

|
mini∈[n],c̸=yi(eyi − ec)

TWthi

∥Wt∥
− γ| =


O( t

1−2a+n
t1−a ) if a < 1

2

O( log t+n
t1/2

) if a = 1
2

O( n
t1−a ) if 1

2 < a < 1
O( n

log t ) if a = 1

Proof. Recall that ts1 = ( 4B
2e2Bη0

γ )
1
a =: Cs1 , and the condition on ts2 is

∑ts2
s=ts1

ηs ≥
4L(W0)+8B

∑ts1−1

s=0 ηs

γL̃ , where L̃ = log 2
n . We can apply integral approximations to the terms that

involve sums of learning rates to obtain

ts2 ≤ Cs2n
1

1−a ts1 + Cs3n
1

1−aL(W0)
1

1−a .

Given ts1 is some constant, this further implies that
ts2−1∑
s=0

ηs = O(t1−as2 ) = O(n+ nL(W0)).

Next, we focus on the term
∑t−1
s=ts2

η2s . For a > 1
2 , this term can be bounded by some constant.

For a < 1
2 , we have

∑t−1
s=ts2

η2s = O(t1−2a), and it evaluates to O(log t) for a = 1
2 . Finally,

we have that
∑t−1
s=0 ηs = O(t1−a) for a < 1 and

∑t−1
s=0 ηs = O(log t) for a = 1. The term∑t−1

s=ts2
ηse

− γ
4

∑s−1
τ=ts2

ητ is bounded by some constant as shown in Zhang et al. [77, Corollary
4.7].

E Implicit Bias of Normalized Momentum Steepest Descent

Recall that ∥·∥ refer to either entry-wise or Schatten p-norm with its dual norm denoted as ∥·∥∗.

Lemma 24. Consider the following W † := W − η∆, where ∆ ∈ Rk×d is defined in (4). Let
M ∈ Rk×d be any matrix. It holds:

⟨∇L(W ),W † −W ⟩ ≤ 2η∥Ω∥sum − ηγG(W ),

where Ω is defined to be Ω := M −∇L(W ).

Proof. We define Ω := M −∇L(W ) to obtain

⟨∇L(W ),W † −W ⟩ = ⟨∇L(W )−M ,W † −W ⟩+ ⟨M ,W † −W ⟩
= −η⟨∇L(W )−M ,∆⟩ − η⟨M ,∆⟩
(a)

≤ η∥∇L(W )−M∥∗∥∆∥ − η∥M∥∗
(b)

≤ η∥M −∇L(W )∥∗ − η∥M −∇L(W ) +∇L(W )∥∗
(c)

≤ η∥Ω∥sum − η∥Ω− (−∇L(W ))∥∗
(d)

≤ η∥Ω∥sum − η(∥∇L(W )∥∗ − ∥Ω∥∗)
= 2η∥Ω∥sum − η∥∇L(W )∥∗
(e)

≤ 2η∥Ω∥sum − ηγG(W ),

where (a) is by Cauchy Schwarz inequality and ⟨M ,∆⟩ = ∥M∥∗, (b) is by ∥∆∥ ≤ 1, (c) is via
Lemma 11, (d) is by reverse triangle inequality, and (e) is via Lemma 16.

The following Lemma bounds the entries of the momentum (Mt) of NMD in terms of the product of
ηt with the sume of Gc(Wt) and Qc(Wt).
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Lemma 25. Suppose that Ass. 1, 2, 3, and 4 hold. Let c ∈ [k] and j ∈ [d]. There exists time t0 such
that for all t ≥ t0:

|Mt[c, j]− (1− βt+1
1 )∇L(Wt)[c, j]| ≤ αMηt

(
Gc(Wt) +Qc(Wt)

)
,

where αM := B(1− β1)c2.

Proof. For any fixed c ∈ [k] and j ∈ [d],

|Mt[c, j]− (1− βt+1
1 )∇L(Wt)[c, j]| = |

t∑
τ=0

(1− β1)βτ1
(
∇L(Wt−τ )[c, j]−∇L(Wt)[c, j]

)
|

≤
t∑

τ=0

(1− β1)βτ1 |∇L(Wt−τ )[c, j]−∇L(Wt)[c, j]|︸ ︷︷ ︸
♣

.

(26)

We first notice that for any W ∈ Rk×d, we have ∇L(W )[c, j] = eTc ∇L(W )ej =
− 1
n

∑
i∈[n] e

T
c

(
eyi − S(Whi)

)
hTi ej = − 1

n

∑
i∈[n] e

T
c

(
eyi − S(Whi)

)
hij . Then, the gradient

difference term becomes

♣ = | − 1

n

∑
i∈[n]

eTc
(
eyi − S(Wt−τhi)

)
hij +

1

n

∑
i∈[n]

eTc
(
eyi − S(Wthi)

)
hij |

= | 1
n

∑
i∈[n]

eTc
(
S(Wt−τhi)− S(Wthi)

)
hij |

= | 1
n

∑
i∈[n]

(
Sc(Wt−τhi)− Sc(Wthi)

)
hij |

≤ B 1

n

∑
i∈[n]

|Sc(Wt−τhi)− Sc(Wthi)|

= B
1

n

∑
i∈[n],yi ̸=c

|Sc(Wt−τhi)− Sc(Wthi)|︸ ︷︷ ︸
♣1

+B
1

n

∑
i∈[n],yi=c

|Sc(Wt−τhi)− Sc(Wthi)|︸ ︷︷ ︸
♣2

Next, we link the ♣1 and ♣2 terms with G(W ). Starting with the first term, we obtain:

♣1 =
1

n

∑
i∈[n],yi ̸=c

Sc(Wthi)|
Sc(Wt−τhi)

Sc(Wthi)
− 1|

(a)

≤ 1

n

∑
i∈[n],yi ̸=c

Sc(Wthi)(e
2∥(Wt−τ−Wt)hi∥∞ − 1)

(b)

≤ 1

n

∑
i∈[n],yi ̸=c

Sc(Wthi)(e
2B∥Wt−τ−Wt∥max − 1)

(c)

≤
(
e2B

∑τ
s=1 ηt−s∥∆t−s∥max − 1

)( 1
n

∑
i∈[n],yi ̸=c

Sc(Wthi)
)

(d)

≤
(
e2B

∑τ
s=1 ηt−s − 1

)
Qc(Wt),

where (a) is by Lemma 15, (b) is by ∥hi∥1 ≤ B for all i ∈ [n], (c) is by (3) and triangle inequality,
and (d) is by ∥∆t−s∥max ≤ ∥∆t−s∥ ≤ 1 (for any entry-wise or Schatten p-norm) and the definition
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of G(Wt). For the second term, we obtain:

♣2 =
1

n

∑
i∈[n],yi=c

|Sc(Wt−τhi)− Sc(Wthi)|

=
1

n

∑
i∈[n],yi=c

|Syi(Wt−τhi)− 1 + 1− Syi(Wthi)|

=
1

n

∑
i∈[n],yi=c

(
1− Syi(Wthi)

)
|Syi(Wt−τhi)− 1

1− Syi(Wthi)
+ 1|

=
1

n

∑
i∈[n],yi=c

(
1− Syi(Wthi)

)
|1− Syi(Wt−τhi)

1− Syi(Wthi)
− 1|

(e)

≤ 1

n

∑
i∈[n],yi=c

(
1− Syi(Wthi)

)
(e2∥(Wt−τ−Wt)hi∥∞ − 1)

(f)

≤
(
e2B

∑τ
s=1 ηt−s − 1

)
Gc(Wt),

where (e) is by Lemma 15, and (f) is by the same approach taken for ♣1. Based on the upper bounds
for ♣1 and ♣2, we obtain the following: ♣ ≤ 2B

(
e2αB

∑τ
s=1 ηt−s − 1

)
(Gc(Wt) +Qc(Wt)). Then,

we substitute this into (26) to obtain:

|Mt[c, j]− (1− βt+1
1 )∇L(Wt)[c, j]| ≤ B(1− β1)(Gc(Wt) +Qc(Wt))

t∑
τ=0

βτ1
(
e2B

∑τ
s=1 ηt−s − 1

)
(g)

≤ B(1− β1)c2ηt(Gc(Wt) +Qc(Wt)),

where (g) is by the Assumption 3.

Lemma 26. Let Ωt = Mt −∇L(Wt), where Mt is defined in (5). Then, it holds

∥Ωt∥sum ≤ 2Bβ
t/2
1 G(Wt) + 2αMdηtG(Wt),

where αM := B(1− β1)c2.

Proof. For simplicity, we drop the subscripts t. Denote Tc(W ) := Gc(W ) + Qc(W ). Then, by
Lemma 25, we have for any c ∈ [k] and j ∈ [d]:

M [c, j] = (1− βt+1
1 )∇L(W )[c, j] + αMηTc(W )ϵm,c,j

= ∇L(W )[c, j]− βt+1
1 ∇L(W )[c, j] + αMηTc(W )ϵm,c,j ,

where αM := B(1 − β1)c2 and ϵm,c,j is some constant s.t. |ϵm,c,j | ≤ 1. Recall that Ω :=
M −∇L(W ), then we have

|Ω[c, j]| = |M [c, j]−∇L(W )[c, j]|
= | − βt+1

1 ∇L(W )[c, j] + αMηTc(W )ϵm,c,j |
≤ βt+1

1 |∇L(W )[c, j]|+ αMηTc(W ).

This implies the following:

∥Ω∥sum =
∑
c,j

|Ω[c, j]| ≤ βt+1
1

∑
c,j

|∇L(W )[c, j]|+ αMη
∑
c,j

Tc(W )

= βt+1
1 ∥∇L(W )∥sum + 2αMdηG(W )

≤ 2Bβ
t/2
1 G(W ) + 2αMdηG(W ),

where in the last inequality we have used Lemma 16.
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Lemma 27. Suppose that there exist t̃ such that L(Wt) ≤ log 2
n for all t > t̃, then we have

min
i∈[n],c̸=yi

(eyi − ec)
TWthi ≥ γ

t−1∑
s=t̃

ηs
G(Ws)

L(Ws)
− a2

∑
η2s −Q

where a2 = (4αM + 2B2e2Bη0)d and Q = 4Bη0
1

1−β1/2
1

.

Proof. We follow a similar approach as Lemma 21 to show the descent of NMD. Specifically, we
apply Lemma 24 to bound the first-order term. For the Hessian term, we apply Lemma 14 and Lemma
20 similar to NSD. Then, we can obtain the following

L(Wt+1) ≤ L(Wt)− ηtγG(Wt) + 2ηt∥Ωt∥sum + 2η2tB
2e2Bη0G(Wt)

(a)

≤ L(Wt)− ηtγG(Wt) + 4Bβ
t/2
1 ηtG(Wt) + 4αMη

2
t dG(Wt) + 2η2tB

2e2Bη0G(Wt)

(b)

≤ L(Wt)− ηtγG(Wt) + a1β
t/2
1 ηtG(Wt) + a2η

2
t dG(Wt)

≤ L(Wt̃) exp
(
−γ

t∑
s=t̃

ηs
G(Ws)

L(Ws)
+ a1

t∑
s=t̃

β
s/2
1 ηs + a2d

t∑
s=t̃

η2s
)

(c)

≤ log 2

n
exp
(
−γ

t∑
s=t̃

ηs
G(Ws)

L(Ws)
+ a2d

t∑
s=t̃

η2s +Q
)
,

where (a) is by Lemma 24. In (b), we have defined a1 := 4B and a2 = (4αM + 2B2e2Bη0)d. In
(c), we have used the assumption and defined Q := a1η0

1

1−β1/2
1

≥ a1
∑t
s=t̃ β

s/2
1 ηs. The rest of the

proof follows the same steps as Lemma 22.

Theorem 4. Suppose that Ass. 1, 2, 3, and 4 hold. Set learning rate ηt = Θ( 1
t1/2

). The margin gap
of NMD’s iterates satisfy

γ −
mini∈[n],c̸=yi(eyi − ec)

TWthi

∥Wt∥
≤ O(

d log t+ dn

t1/2
).

Proof. Given the updates of NMD are normalized (i.e., ∥∆∥ ≤ 1), we can obtain the following via
Lemma 27:

γ −
mini∈[n],c̸=yi(eyi − ec)

TWthi

∥Wt∥
≤
γ(∥W0∥+

∑t2−1
s=0 ηs +

∑t−1
s=t2

ηse
γ
4

∑s−1
τ=t2

ητ ) + a2d
∑t−1
s=t2

η2s +Q

∥W0∥+
∑t−1
s=0 ηs

≤ O(

∑t−1
s=t2

ηse
− γ

4

∑s−1
τ=t2

ητ +
∑t2−1
s=0 ηs + d

∑t−1
s=t2

η2s∑t−1
s=0 ηs

).

Then, we follow the same approach as Corollary 1 for a decreasing learning rate of the form
ηt = Θ( 1

ta ). Specifically, we have t1 = Θ(d1/a) and t2 ≤ C1n
1

1−a t1 + C2n
1

1−aL(W0)
1

1−a . This
leads to

t2−1∑
s=0

ηs = O(t1−a2 ) = nt1−a1 + nL(W0) + d log(t).

Thus, we have the margin gap upper bounded by O(nd+d log(t)
t1/2

).

F Other multiclass loss functions

F.1 Exponential Loss

The multiclass exponential loss is given as

Lexp(W ) :=
1

n

∑
i∈[n]

∑
c̸=yi

exp
(
−(eyi − ec)

⊤Whi
)
.
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The gradient of Lexp(W ) is

∇Lexp(W ) =
1

n

∑
i∈[n]

∑
c̸=yi

− exp(−(eyi − ec)
TWhi)(eyi − ec)h

T
i .

Thus, for any matrix A ∈ Rk×d, we have

⟨A,−∇Lexp(W )⟩ = 1

n

∑
i∈[n]

∑
c̸=yi

exp
(
−(eyi − ec)

⊤Whi
)
· (eyi − ec)

⊤
Ahi .

This motivates us to define G(W ) as

Gexp(W ) =
1

n

∑
i∈[n]

∑
c̸=yi

exp
(
−(eyi − ec)

⊤Whi
)
,

from which we recognize that Gexp(W ) = Lexp(W ). Then, the proof follows similar steps as the
CE loss.

F.2 PairLogLoss

The PairLogLoss loss [72] is given as

Lpll(W ) :=
1

n

∑
i∈[n]

∑
c̸=yi

log
(
1 + exp

(
−(eyi − ec)

⊤Whi
))
.

Note that L = 1
n

∑
i∈[n]

∑
c̸=yi f

(
(eyi − ec)

⊤Whi
)

where f(t) := log(1 + e−t) denotes the
logistic loss. Therefore, the Taylor expansion of PLL writes:

Lpll(W +∆) = L(W ) +
1

n

∑
i∈[n]

∑
c̸=yi

f ′
(
(eyi − ec)

⊤Whi
)
· (eyi − ec)

⊤∆hi

+
1

n

∑
i∈[n]

∑
c̸=yi

f ′′
(
(eyi − ec)

⊤Whi
)
· h⊤

i ∆
⊤(eyi − ec)(eyi − ec)

⊤∆hi + o
(
∥∆∥3

)
.

(27)

From the above, the gradient of the PLL loss is:

∇Lpll(W ) =
1

n

∑
i∈[n]

∑
c̸=yi

f ′
(
(eyi − ec)

⊤Whi
)
· (eyi − ec)h

⊤
i

=
1

n

∑
i∈[n]

∑
c̸=yi

− exp
(
−(eyi − ec)

⊤Whi
)

1 + exp (−(eyi − ec)⊤Whi)
(eyi − ec)h

⊤
i (28)

Thus, for any matrix A ∈ Rk×d,

⟨A,−∇Lpll(W )⟩ = 1

n

∑
i∈[n]

∑
c̸=yi

|f ′
(
(eyi − ec)

⊤Whi
)
| · (eyi − ec)

⊤
Ahi . (29)

This motivates us to define

Gpll(W ) =
1

n

∑
i∈[n]

∑
c̸=yi

∣∣f ′ (−(eyi − ec)
⊤Whi

)∣∣ = 1

n

∑
i∈[n]

∑
c̸=yi

exp
(
−(eyi − ec)

⊤Whi
)

1 + exp (−(eyi − ec)⊤Whi)

(30)

Lemma 28 (Analogue of Lemma 16 for PLL). For any W , the PairLogLoss (PLL) satisfies:

2B · Gpll(W ) ≥ ∥∇Lpll(W )∥ ≥ γ · Gpll(W ) .
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Proof. The lower bound follows immediately from (29) and expressing ∥∇Lpll(W )∥∗ =
max∥A∥≤1⟨A,−∇Lpll(W )⟩. The lower bound follows from triangle inequality applied to (28):

∥∇Lpll(W )∥sum ≤
1

n

∑
i∈[n]

∑
c̸=yi

∣∣f ′ (−(eyi − ec)
⊤Whi

)∣∣ ∥eyi − ec∥1∥hi∥1 ≤ 2B · G(W ) ,

and use the relationships in (7), i.e. ∥∇Lpll(W )∥ ≤ ∥∇Lpll(W )∥sum for any entry-wise or Schatten
p-norm with p ≥ 1.

For bounding with G(W ) the second-order term in the Taylor expansion of PLL, note the following.
First, for all i ∈ [n], c ̸= yi:

h⊤
i ∆

⊤(eyi − ec)(eyi − ec)
⊤∆hi = ⟨(eyi − ec)(eyi − ec)

⊤,∆hih
⊤
i ∆

T ⟩
≤
∥∥(eyi − ec)(eyi − ec)

⊤∥∥
sum

∥∥∆hih
⊤
i ∆

T
∥∥
max

≤ ∥eyi − ec)∥21 · (∥∆hi∥∞)2

≤ 4 · (∥∆∥max)
2 · ∥hi∥21 ≤ 4B2(∥∆∥max)

2

≤ 4B2∥∆∥2.
Second, the (easy to check) property of logistic loss that f ′′(t) ≤ |f ′(t)|. Putting these together:

1

n

∑
i∈[n]

∑
c̸=yi

f ′′
(
(eyi − ec)

⊤Whi
)
·h⊤

i ∆
⊤(eyi − ec)(eyi − ec)

⊤∆hi ≤ 4B2 · G(W ) · (∥∆∥)2 .

Finally, we verify PLL satisfies Lemma 18.
Lemma 29 (Analogue of Lemma 18 for PLL). Let W ∈ Rk×d, we have

(i) 1 ≥ Gpll(W )
Lpll(W ) ≥ 1− nLpll(W )

2

(ii) Suppose that W satisfies Lpll(W ) ≤ log 2
n or Gpll(W ) ≤ 1

2n , then Lpll(W ) ≤ 2Gpll(W ).

Proof. (i) The upper bound follows by the well-known self-boundedness property of the logistic loss,
namely |f ′(t)| ≤ f(t)
To prove the upper bound, it suffices to prove for for x > 0:

x

1 + x
≥ log(1 + x)− 1

2
log2(1 + x). (31)

The general case follows by summing over xic = exp
(
−(eyi − ec)

⊤Whi
)
, i ∈ [n], c ̸= yi since

then we have

G(W ) =
∑
i∈[n]

∑
c̸=yi

xic
1 + xic

≥
∑
i∈[n]

∑
c̸=yi

log(1 + xic)−
1

2

∑
i∈[n]

∑
c̸=yi

log2(1 + xic)

≥
∑
i∈[n]

∑
c̸=yi

log(1 + xic)−
1

2

∑
i∈[n]

∑
c̸=yi

log(1 + xic)

2

,

where the last line used log(1 + xic) ≥ 0. For (19), let a = log(1 + x) > 0. The inequality becomes
e−a ≤ 1− a+ a2/2, which holds for a > 0 by the second-order Taylor expansion of e−a around 0.

(ii) Denote L := Lpll and G := Gpll. Given L ≤ log(2)
n ≤ 1

n , we have 1− nL
2 ≥

1
2 , then the first part

follows from (i). For the second part, denote lic := (eyi − ec)
⊤Whi, i ∈ [n], c ̸= yi. For L ≤ 2G

to hold, it is sufficient to show that log(1 + e−lic) ≤ 2 e−lic

1+e−lic
for all i ∈ [n], c ̸= yi. This holds true

when lic ≥ −1.366, which is clearly satisfied given the assumption G ≤ 1
2n implying lic ≥ 0.

Lemma 30 (Analogue of Lemma 20 for PLL). For any ψ ∈ [0, 1], we have the following:

Gpll(W − ψη∆)

Gpll(W )
≤ e2Bψ∥△W ∥ + 2
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Proof. For logistic loss f(z) = log(1 + e−z), for any z1, z2 ∈ R, we have the following∣∣ f ′(z1)
f ′(z2)

∣∣=∣∣ 1 + ez2

1 + ez1

∣∣ =∣∣ 1 + ez2 − ez1 + ez1

1 + ez1

∣∣
=
∣∣ ez2 − ez1

1 + ez1
+ 1

∣∣≤∣∣ ez2 − ez1
1 + ez1

∣∣ +1

≤
∣∣ ez2−z1 − 1

∣∣ +1

≤ e|z2−z1| + 2.

Denote xWic := (eyi −ec)
TWhi and xW

′

ic := (eyi −ec)
T (W −ψη∆)hi, then we have for i ∈ [n],

c ̸= yi

f ′(xW
′

ic )

f ′(xWic )
= |f

′(xW
′

ic )

f ′(xWic )
| ≤ e|x

W
ic −xW ′

ic | + 2 = eψη|(ec−eyi
)T∆hi| + 2 = eψη|⟨∆,(ec−eyi

)hT
i ⟩| + 2

≤ eψη∥∆∥max∥(ec−eyi
)hT

i ∥sum + 2

= eψη∥∆∥max∥ec−eyi∥sum∥hi∥sum + 2

≤ e2Bψη∥∆∥max + 2.

This leads to
∑
i∈[n]

∑
c̸=yi f

′(xW
′

ic ) ≤ (e2Bψ∥∆W ∥max + 2)
∑
i∈[n]

∑
c̸=yi f

′(xWic ). Rearrange
and using the definition of Gpll(W ) and relationships in (7), we obtain the desired.

Lemma 31 (Analogue of Lemma 19 for PLL). Suppose that there exists W ∈ Rk×d such that
Lpll(W ) ≤ log 2

n , then we have

(eyi − ec)
TWhi ≥ 0, for all i ∈ [n] and for all c ∈ [k] such that c ̸= yi. (32)

Proof. Denote xic = (eyi − ec)
TWhi. Then, by the assumption, we have for any i ∈ [n], c ̸= yi

log(1 + e−xic) ≤
∑
i∈[n]

∑
c̸=yi

log(1 + e−xic) ≤ log(2).

This implies that xic ≥ 0 for all i ∈ [n], c ̸= yi.

Lemma 32 (Analogue of Lemma 17 for PLL). For any W ,W0 ∈ Rk×d, suppose that L(W ) is
convex, we have

|Lpll(W )− Lpll(W0)| ≤ 2B∥W −W0∥.

Proof. This lemma is a direct consequence of Lemma 28 and can be proved in the same way as
Lemma 17.

Thus, we have proved all the Lemmas for Gpll(W ) and its relationships to Lpll(W ) in analogous
to those in section C. The proof of NSD ((3)) with PairLogLoss follow the same steps as with
cross-entropy loss given in section D.

G Implicit Bias of Adam

We consider Adam without the stability constant (ϵ), which performs the following coordinate-wise
updates for iteration t ≥ 0 and initialization W0 [33]:

Mt = β1Mt−1 + (1− β1)∇L(Wt) (33a)

Vt = β2Vt−1 + (1− β2)∇L(Wt)
2 (33b)

Wt+1 = Wt − ηt
Mt√
Vt

, (33c)

33



where Mt and Vt are the first and second moment estimates of the gradient (with momentum
parameters β1 and β2) respectively. The squaring (·)2 and dividing ·

· operations are applied entry-
wise. In the special case of β1 = β2 = 0, this simplifies to the SignGD updates.

To study the implicit bias of Adam, we further make the following assumption, which ensures
that all entries of the second moment buffer Vt of Adam are bounded away from 0 for all t ≥ 0.
Previously used by Zhang et al. [77] in binary classification, this assumption is satisfied when the
data distribution is continuous and non-degenerate. A similar assumption appears in [76].

Assumption 5. The Adam initialization satisfies ∇L(W0)[c, j]
2 ≥ ω for all c ∈ [k] and j ∈ [d].

The proof of Adam follows the similar approach as NSD. The key challenge is to connect Mt and
Vt to a per-class decomposition of G(Wt). The following Lemma in [77, Lemma 6.5] is useful. It
provides an entry-wise bound on the ratio between the first moment and square root of the second
moment.

Lemma 33. Considering the Adam updates given in (5), (33b), and (33c), suppose that β1 ≤ β2 and

set α =
√

β2(1−β1)2

(1−β2)(β2−β2
1)

2 , then we obtain Mt[c, j] ≤ α ·
√
Vt[c, j] for all c ∈ [k] and j ∈ [d].

The following Lemma bounds the first moment buffer (Mt) of Adam in terms of the product of ηt
with the sume of Gc(Wt) and Qc(Wt). It is used in the proof of Lemma 36.

Lemma 34. Let c ∈ [k]. Under the same setting as Theorem 5, there exists a time t0 such that the
following holds for all t ≥ t0

|Mt[c, j]− (1− βt+1
1 )∇L(Wt)[c, j]| ≤ αMηt(Gc(Wt) +Qc(Wt)),

where j ∈ [d] and αM is some constant that depends on B and β1.

Proof. The proof follows the same steps as Lemma 25 with ∥∆∥ replaced by
∥∥∥ M√

V

∥∥∥
max

.

The following Lemma bounds the first moment buffer (Vt) of Adam in terms of the product of ηt and
with Gc(Wt) and Qc(Wt). It is used in the proof of Lemma 36.

Lemma 35. Let c ∈ [k]. Under the same setting as Theorem 5, there exists a time t0 such that the
following holds for all t ≥ t0∣∣ √Vt[c, j]−

√
(1− βt+1

2 )|∇L(Wt)[c, j]|
∣∣ ≤ αV√ηt(Qc(Wt) + Gc(Wt)),

where j ∈ [d], and αV is some constant that depends on B and β2.

Proof. Consider any fixed c ∈ [k] and j ∈ [d],

|Vt[c, j]− (1− βt+1
2 )∇L(Wt)[c, j]

2| = |
t∑

τ=0

(1− β2)βτ2
(
∇L(Wt−τ )[c, j]

2 −∇L(Wt)[c, j]
2
)
|

≤
t∑

τ=0

(1− β2)βτ2 |∇L(Wt−τ )[c, j]
2 −∇L(Wt)[c, j]

2|︸ ︷︷ ︸
♠

.

(34)

For any W ∈ Rk×d, recall that − 1
n

∑
i∈[n] e

T
c

(
eyi − S(Whi)

)
hij . Then, we can obtain

∇L(W )[c, j]2 = 1
n2

∑
i∈[n]

∑
p∈[n] hijhpj(δcyi − Sc(Whi))(δcyp − Sc(Whp)) where δcy = 1

if and only if c = y. Next, we define the function fc,i,p to be fc,i,p(W ) := (δcyi−Sc(Whi))(δcyp−
Sc(Whp)). Then, we have

|fc,i,p(Wt−τ )− fc,i,p(Wt)| = δcyi
(
Sc(Wthp)− Sc(Wt−τhp)

)
+ δcyp

(
Sc(Wthi)− Sc(Wt−τhi)

)
+
(
Sc(Wt−τhi)Sc(Wt−τhp)− Sc(Wthi)Sc(Wthp)

)
34



We can substitute this result into ♠ to obtain

♠ = | 1
n2

∑
i∈[n]

∑
p∈[n]

hijhpj(fc,i,p(Wt−τ )− fc,i,p(Wt))|

≤ B2

n2

∑
i∈[n]

∑
p∈[n]

|fc,i,p(Wt−τ )− fc,i,p(Wt)|

= B2 1

n2

∑
i∈[n],yi ̸=c

∑
p∈[n],yp ̸=c

|fc,i,p(Wt−τ )− fc,i,p(Wt)|︸ ︷︷ ︸
♠1

+B2 1

n2

∑
i∈[n],yi ̸=c

∑
p∈[n],yp=c

|fc,i,p(Wt−τ )− fc,i,p(Wt)|︸ ︷︷ ︸
♠2

+B2 1

n2

∑
i∈[n],yi=c

∑
p∈[n],yp ̸=c

|fc,i,p(Wt−τ )− fc,i,p(Wt)|︸ ︷︷ ︸
♠3

+B2 1

n2

∑
i∈[n],yi=c

∑
p∈[n],yp=c

|fc,i,p(Wt−τ )− fc,i,p(Wt)|︸ ︷︷ ︸
♠4

We deal with the 4 terms ♠1,♠2,♠3, and ♠4 separately. Starting with the first term, we have

♠1 =
1

n2

∑
i∈[n],yi ̸=c

∑
p∈[n],yp ̸=c

|Sc(Wt−τhi)Sc(Wt−τhp)− Sc(Wthi)Sc(Wthp)|

=
1

n2

∑
i∈[n],yi ̸=c

∑
p∈[n],yp ̸=c

Sc(Wthi)Sc(Wthp)|
Sc(Wt−τhi)Sc(Wt−τhp)

Sc(Wthi)Sc(Wthp)
− 1|

(a)

≤ 1

n2

∑
i∈[n],yi ̸=c

∑
p∈[n],yp ̸=c

Sc(Wthi)Sc(Wthp)
(
e2
(
∥(Wt−τ−Wt)hi∥∞+∥(Wt−τ−Wt)hp∥∞

)
− 1
)

(b)

≤ 1

n2

∑
i∈[n],yi ̸=c

∑
p∈[n],yp ̸=c

Sc(Wthi)Sc(Wthp)
(
e4B∥Wt−τ−Wt∥max − 1

)
(c)

≤
(
e
4B

∑τ
s=1 ηt−s

∥∥∥∥ Mt−s√
Vt−s

∥∥∥∥
max − 1

) 1

n2

∑
i∈[n],yi ̸=c

∑
p∈[n],yp ̸=c

Sc(Wthi)Sc(Wthp)

(d)

≤
(
e4Bα

∑τ
s=1 ηt−s − 1

)
Qc(Wt)

2,

where (a) is by Lemma 15, (b) is by ∥hi∥1 ≤ B for all i ∈ [n], (c) is by (33c) and the triangle
inequality, and (d) is by Lemma 33 and the definition of G(Wt). For the second term, we have

♠2 =
1

n2

∑
i∈[n],yi ̸=c

∑
p∈[n],yp=c

|
(
Sc(Wthi)− Sc(Wt−τhi)

)
+
(
Sc(Wt−τhi)Sc(Wt−τhp)− Sc(Wthi)Sc(Wthp)

)
|

=
1

n2

∑
i∈[n],yi ̸=c

∑
p∈[n],yp=c

|Sc(Wthi)
(
1− Sc(Wthp)

)
−
(
1− Sc(Wt−τhp)

)
Sc(Wt−τhi)|

=
1

n2

∑
i∈[n],yi ̸=c

∑
p∈[n],yp=c

Sc(Wthi)
(
1− Sc(Wthp)

)
|1−

(
1− Sc(Wt−τhp)

)
Sc(Wt−τhi)(

1− Sc(Wthp)
)
Sc(Wthi)

|

≤
(
e4Bα

∑τ
s=1 ηt−s − 1

)
Qc(Wt)Gc(Wt),
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where the last inequality is by Lemma 15 and the same steps taken for ♠1. The third term can be
derived similarly as the second term and we can obtain the same bound as follows:

♠3 =
1

n2

∑
i∈[n],yi=c

∑
p∈[n],yp ̸=c

Sc(Wthp)
(
1− Sc(Wthi)

)
|1−

(
1− Sc(Wt−τhp)

)
Sc(Wt−τhi)(

1− Sc(Wthi)
)
Sc(Wthp)

|

≤
(
e4Bα

∑τ
s=1 ηt−s − 1

)
Qc(Wt)Gc(Wt).

For the fourth term, we obtain:

♠4 =
1

n2

∑
i∈[n],yi=c

∑
p∈[n],yp=c

|
(
1− Sc(Wt−τhi)

)(
1− Sc(Wt−τhp)

)
−
(
1− Sc(Wthi)

)(
1− Sc(Wthp)

)
|

=
1

n2

∑
i∈[n],yi=c

∑
p∈[n],yp=c

(
1− Sc(Wthi)

)(
1− Sc(Wthp)

)
|
(
1− Sc(Wt−τhi)

)(
1− Sc(Wt−τhp)

)(
1− Sc(Wthi)

)(
1− Sc(Wthp)

) − 1|

≤
(
e4Bα

∑τ
s=1 ηt−s − 1

)
Gc(Wt)

2,

where the last inequality is by Lemma 15 and the same steps taken for ♠1. We combine the bounds
for ♠1, ♠2, ♠3, and ♠4 to obtain: ♠ ≤ 4B2

(
e4Bα

∑τ
s=1 ηt−s − 1

)
(Gc(Wt) +Qc(Wt))

2. Then, we
substitute this into (34) to obtain:

|Vt[c, j]− (1− βt+1
2 )∇L(Wt)[c, j]

2| ≤ B2(1− β2)(Qc(Wt) + Gc(Wt))
2

t∑
τ=0

βτ2
(
e4αB

∑τ
s=1 ηt−s − 1

)
≤ B2(1− β2)c2ηt(Qc(Wt) + Gc(Wt))

2,

where the last inequality is by the Assumption 3. The final result follows from the fact that |p− q|2 ≤
|p2 − q2| when both p and q are positive.

The following Lemma bounds the term
∣∣ ⟨∇L(Wt),

Mt√
Vt
− ∇L(Wt)

|∇L(Wt)| ⟩
∣∣ using G(Wt). It is used in

Lemma 37 to show the decrease in the risk. The proof is similar to that of Zhang et al. [77, Lemma
A.3], but here we need to carefully track the index c ∈ [k] using both Gc(W ) and Qc(W ) to avoid
k dependence. The final result crucially relies on the decomposition G(Wt) =

∑
c∈[k] Tc(Wt) =∑

c∈[k]Qc(Wt).

Lemma 36. Under the same setting as Theorem 5, we have

∣∣ ⟨∇L(Wt),
Mt√
Vt
− ∇L(Wt)

|∇L(Wt)|
⟩
∣∣︸ ︷︷ ︸

♣

≤ 4

√
βt+1
1

1− βt+1
2

∥∇L(Wt)∥sum+

2d√
1− β2

( 6αV√
1− βt+1

2

√
ηt + 3αMηt

)
G(Wt).

Proof. For simplicity, we drop the subscripts t. Denote Tc(W ) := Gc(W ) + Qc(W ). Then, by
Lemmas 34 and 35, we have for any c ∈ [k] and j ∈ [d]:

M [c, j] = (1− βt+1
1 )∇L(W )[c, j] + αMηtTc(W )ϵm,c,j , (35)√

V [c, j] =

√
1− βt+1

2 |∇L(W )[c, j]|+ αV
√
ηtTc(W )ϵv,c,j , (36)

where |ϵm,c,j | ≤ 1 and |ϵv,c,j | ≤ 1 are some residual terms. We denote

ψc,j := ∇L(W )[c, j]( M [c,j]√
V [c,j]

− ∇L(W )[c,j]
|∇L(W )[c,j]| ), the set of index Ec,j := {j ∈ [d]

∣∣∣√
1− βt+1

2 |∇L(W )[c, j]| ≥ 2αV
√
η
t
Tc(W )|ϵv,c,j |}, and its complement Ecc,j = [d]\Ec,j . The

36



goal is to bound |ψc,j | when j ∈ Ecc,j or j ∈ Ec,j using Tc(W ). We start with the indices in Ecc,j :∑
j∈Ec

c,j

|ψc,j | ≤
∑
j∈Ec

c,j

|∇L(W )[c, j]|
( |M [c, j]|√

V [c, j]
+ 1
)

(a)

≤
∑
j∈Ec

c,j

|∇L(W )[c, j]|
( (1− βt+1

1 )|∇L(W )[c, j]|+ αMηtTc(W )√
1− β2|∇L(W )[c, j]|

+ 1
)

(b)

≤
∑
j∈Ec

c,j

(
1− βt+1

1√
1− β2

+ 1)
2αV
√
ηtTc(W )√

1− βt+1
2

+
αMηtTc(W )√

1− β2

≤ d√
1− β2

( 4αV√
1− βt+1

2

√
ηt + αMηt

)
Tc(W ),

where (a) is by (35), |ϵm,c,j | ≤ 1, and V [c, j] ≥ (1− β2)∇L(W )[c, j]2; and (b) is by j ∈ Ecc,j s.t.

|∇L(W )[c, j]| ≤ 2αV
√
ηtTc(W )√

1−βt+1
2

. Next, we focus on the indices j ∈ Ec,j . In this case, we have

ψc,j = ∇L(W )[c, j]
( M [c, j]√

1− βt+1
2 |∇L(W )[c, j]|+ αV

√
ηtTc(W )ϵv,c,j

− ∇L(W )[c, j]

|∇L(W )[c, j]|
)

= ∇L(W )[c, j]
M [c, j]|∇L(W )[c, j]| −

(√
1− βt+1

2 |∇L(W )[c, j]|+ αV
√
ηtTc(W )ϵv,c,j

)
∇L(W )[c, j](√

1− βt+1
2 |∇L(W )[c, j]|+ αV

√
ηtTc(W )ϵv,c,j

)
|∇L(W )[c, j]|︸ ︷︷ ︸

♠1
♠2

,

where∣∣∣ ♠1

∣∣∣ =∣∣∣ (1− βt+1
1 −

√
1− βt+1

2

)
∇L(W )[c, j]|∇L(W )[c, j]|+

αMηtTc(W )ϵm,c,j |∇L(W )[c, j]| − αV
√
ηtTc(W )ϵv,c,j∇L(W )[c, j]

∣∣∣
(c)

≤
∣∣ 1− βt+1

1 −
√

1− βt+1
2 ||∇L(W )[c, j]|3 + (αMηt + αV

√
ηt)Tc(W )|∇L(W )[c, j]|2,

and ∣∣∣ ♠2

∣∣∣= ♠2

(d)

≥ 1

2

√
1− βt+1

2 |∇L(W )[c, j]|2.

Inequality (c) is by |ϵm,c,j | ≤ 1 and |ϵv,c,j | ≤ 1, and (d) is by αV
√
ηtTc(W )ϵv,c,j ≥

− 1
2

√
1− βt+1

2 |∇L(W )[c, j]| for any j ∈ Ec,j . Putting these two pieces together, we obtain

∑
j∈Ec,j

|ψc,j | ≤
∑
j∈Ec,j

|1− βt+1
1 −

√
1− βt+1

2 ||∇L(W )[c, j]|3 + (αMηt + αV
√
ηt)Tc(W )|∇L(W )[c, j]|2

1
2

√
1− βt+1

2 |∇L(W )[c, j]|2

(e)

≤
( ∑
j∈Ec,j

4

√
βt+1
1

1− βt+1
2

|∇L(W )[c, j]|
)
+ d
( 2αV√

1− βt+1
2

√
ηt +

2αM√
1− βt+1

2

ηt
)
Tc(W )

≤ 4

√
βt+1
1

1− βt+1
2

∥∇L(W )[c, :]∥sum +
d√

1− β2
( 2αV√

1− βt+1
2

√
ηt + 2αMηt

)
Tc(W ),

where (e) is by
√
a ≤
√
a− b +

√
b implying 1 −

√
1− βt+1

2 ≤ β
t+1
2

1 , and ∇L(W )[c, :] denotes

the cth row of ∇L(W ). Finally, we note that |⟨∇L(W ), M√
V
− ∇L(W )

|∇L(W )| ⟩| = |
∑

(c,j) ψc,j | ≤
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∑
(c,j) |ψc,j |. Then, we obtain∑

c,j

|ψc,j | =
∑
c∈[k]

( ∑
j∈Ec

c,j

|ψc,j |+
∑
j∈Ec,j

|ψc,j |
)

=
∑
c∈[k]

4

√
βt+1
1

1− βt+1
2

∥∇L(W )[c, :]∥sum +
∑
c∈[k]

d√
1− β2

( 2αV√
1− βt+1

2

√
ηt + 2αMηt

)
Tc(W )

(f)
= 4

√
βt+1
1

1− βt+1
2

∥∇L(W )∥sum +
2d√
1− β2

( 2αV√
1− βt+1

2

√
ηt + 2αMηt

)
G(W ),

where (f) is by
∑
c∈[k] Tc(W ) =

∑
c∈[k]Qc(W ) + Gc(W ) = 2G(W ).

Lemma 37 (Adam Descent). Under the same setting as Theorem 5, set tA :=
2 log(

√
1−β2
4 )

log(β1)
, then we

have for all t ≥ tA

L(Wt+1) ≤ L(Wt)− ηtγ
(
1− αa1β

t/2
1 − αa2dη

1
2
t − αa3dηt

)
G(Wt),

where αa1 , αa2 , and αa3 are some constants that depend on B, γ,β1, and β2.

Proof. We follow the same notations and strategy of Lemma 21,
and recall the definitions ♠t = ⟨∇L(Wt),∆t⟩ and ♣t =
h⊤
i ∆

⊤
t

(
diag(S(Wt,t+1,γhi))− S(Wt,t+1,ζ∗hi)S(Wt,t+1,ζ∗hi)

⊤)∆t hi. In the case of
Adam, we have ∆t =

Mt√
Vt

. We bound ♠t and ♣t separately. Starting with ♠t, we have for all
t ≥ tA

♠t = −ηt⟨∇L(Wt),
Mt√
Vt
⟩

= −ηt
(
⟨∇L(Wt),

Mt√
Vt
− ∇L(Wt)

|∇L(Wt)|
⟩+ ⟨∇L(Wt),

∇L(Wt)

|∇L(Wt)|
⟩
)

≤ −ηt∥∇L(Wt)∥sum + ηt
∣∣ ⟨∇L(Wt),

Mt√
Vt
− ∇L(Wt)

|∇L(Wt)|
⟩
∣∣

(a)

≤ −ηt
(
1− 4

√
βt+1
1

1− βt+1
2

)
∥∇L(Wt)∥sum +

2d√
1− β2

( 6αV√
1− βt+1

2

η
3
2
t + 3αMη

2
t

)
G(Wt)

≤ −ηt
(
1− 4

β
t
2
1√

1− β2
)
∥∇L(Wt)∥sum +

12αV
1− β2

dη
3/2
t G(Wt) +

6αM√
1− β2

dη2t G(Wt)

(b)

≤ −ηtγ
(
1− 4

β
t
2
1√

1− β2
)
G(Wt) +

12αV
1− β2

dη
3/2
t G(Wt) +

6αM√
1− β2

dη2t G(Wt),

where (a) is by Lemma 36, and (b) is by Lemma 16. For ♣t, we apply Lemma 12 to obtain

♣t ≤ 4∥∆thi∥2∞(1− Syi(Wt,t+1,ζ∗hi)) ≤ 4η2tα
2B2(1− Syi(Wt,t+1,ζ∗hi)),

where in the second inequality we have used ∥∆thi∥∞ ≤ ∥∆t∥max∥hi∥1, ∥hi∥1 ≤ B, and

∥∆t∥max = ηt

∥∥∥ Mt√
Vt

∥∥∥
max
≤ ηtα by Lemma 33 given t ≥ tA implying that 1 ≥ 4

β
t
2
1√

1−β2
. Combing

this with Lemma 12, we obtain

1

2n

∑
i∈[n]

h⊤
i ∆

⊤
t

(
diag(S(Wt,t+1,γhi))− S(Wt,t+1,ζ∗hi)S(Wt,t+1,ζ∗hi)

⊤)∆t hi

≤ 1

2n

∑
i∈[n]

4η2tα
2B2(1− Syi(Wt,t+1,ζ∗hi)) ≤ 2α2η2tB

2e2Bη0G(Wt),
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where the derivation of the second inequality can be found in the derivation of 22. Putting everything
together, we obtain

L(Wt+1) ≤ L(Wt)− ηtγG(Wt) + 4
β

t
2
1√

1− β2
γηtG(Wt) +

12αV
1− β2

dη
3/2
t G(Wt)+( 6αM√

1− β2
+ 2α2B2e2Bη0

)
dη2t G(Wt)

= L(Wt)− ηtγ
(
1− αa1β

t/2
1 − αa2dη

1
2
t − αa3dηt

)
G(Wt),

where we have defined αa1 := 4√
1−β2

, αa2 := 12αV

γ(1−β2)
, and αa3 := 6αM

γ
√
1−β2

+ 2α2B2e2Bη0

γ .

Built upon Lemma 37, we can further lower bound the unnormalized margin of Adam iterates for a
sufficiently large t. The proof is similar to that of NSD (i.e., Lemma 22), which crucially depends
on the separability condition obtained after achieving a low loss (Lemma 19). The time t̃A will be
specified in the proof of Theorem 5.
Lemma 38 (Adam Unnormalized Margin). Under the same setting as Theorem 5, suppose that there
exist t̃ such that L(Wt) ≤ log 2

n for all t > t̃, then we have for all t ≥ t̃A := max{tA, t̃}

min
i∈[n],c̸=yi

(eyi − ec)
TWthi ≥ γ

t−1∑
s=t̃A

ηs
G(Ws)

L(Ws)
− αa5d

t−1∑
s=t̃A

η
3
2
s − αa6d

t−1∑
s=t̃A

η2s − αa7 ,

where tA =
2 log(

√
1−β2
4 )

log(β1)
, and αa5 , αa6 , and αa7 are some constants that depend on B, β1, and β2.

Proof. We denote αa4 := 4√
1−β2

, αa5 := 12αV

1−β2
, and αa6 := 6αM√

1−β2
+ 2α2B2e2Bη0 . Under the

assumption that L(Wt) ≤ log 2
n for all t ≥ t̃, we have for all t ≥ t̃A := max{tA, t̃} (recall that

tA =
2 log(

√
1−β2
4 )

log(β1)
)

L(Wt+1)
(a)

≤ L(Wt)− ηtγG(Wt) + αa4β
t
2
1 γηtG(Wt) + αa5dη

3
2
t G(Wt) + αa6dη

2
t G(Wt)

(b)

≤ L(Wt)
(
1− ηtγ

G(Wt)

L(Wt)
+ αa4β

t
2
1 γηt + αa5dη

3
2
t + αa6dη

2
t

)
≤ L(Wt̃A

) exp
(
−γ

t∑
s=t̃A

ηs
G(Ws)

L(Ws)
+ αa4γ

t∑
s=t̃A

β
s
2
1 ηs + αa5d

t∑
s=t̃A

η
3
2
s + αa6d

t∑
s=t̃A

η2s
)

(c)
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where (a) is by Lemma 37, (b) is by G(Wt)
L(Wt)

≤ 1 (shown in Lemma 18), and (c) is by L(Wt̃A
) ≤ log 2

n

and αa4γ
∑t
s=t̃A

β
s
2
1 ηs ≤

αa4γη0

1−β
1
2
1

=: αa7 . The rest of the proof follows the same arguments in

Lemma 22. Namely, the assumption L(Wt) ≤ log 2
n implies that minc̸=yi(eyi − ec)

TWthi ≥ 0 for
all i ∈ [n]. This separability condition can be used further to show that for all t ≥ t̃A

e−mini∈[n],c̸=yi
(eyi

−ec)
TWthi ≤ exp

(
−γ
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)
.

Taking the log on both sides leads to the final result.

Next lemma upper bounds the max-norm of Adam iterates. It involves showing that the risk upper
bounds entry-wise second moment, which will become small after the risk starts to monotonically
decrease. Its proof can be found in Zhang et al. [77, Lemma 6.4]. Here, we only show the steps that
are specific in our settings.
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Lemma 39 (Adam ∥Wt∥max). Under the same setting as Theorem 5, suppose that there exists
t̃B > log( 1

ω ) such that L(Wt) ≤ 1√
4B2+αV η0

for all t ≥ t̃B , then we have

∥Wt∥max ≤ αa8
t̃B−1∑
s=0

ηs +

t−1∑
s=t̃B

ηs + ∥W0∥max,

where αa8 is some constant that depends on B, β1, and β2.

Proof. For any c ∈ [k] and j ∈ [d], we have for all t ≥ t̃B

Vt[c, j]
(a)

≤ (1− βt+1
2 )∇L(Wt)[c, j]

2 + αV ηtG(Wt)
2

≤ ∇L(Wt)[c, j]
2 + αV ηtG(Wt)

2

(b)

≤ 4B2G(Wt)
2 + αV η0G(Wt)

2

(c)

≤ (4B2 + αV η0)L(Wt)
2

(d)

≤ 1,

where (a) is by Lemma 34, (b) is by Lemma 16, (c) is by Lemma 18, and (d) is by the assumption.
This implies that for all t ≥ t̃B

0 ≥ log(Vt[c, j]) ≥ log(βt2(1− β2)L(Wt)[c, j]
2)

(e)

≥ t log(β2) + log(1− β2) + log(ω),

where (e) is by the Assumption 5. The rest proof follows the same arguments in Zhang et al. [77,
Lemma 6.4].

Theorem 5. Suppose that Assumption 1, 2, 3, 4, and 5 hold, and β1 ≤ β2, then there exists
ta2 = ta2(n, d, γ,B,W0, β1, β2, ω) such that Adam achieves the following for all t > ta2∣∣∣∣∣mini∈[n],c̸=yi(eyi − ec)

TWthi

∥Wt∥max

− γ
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η
3/2
s∑t−1

s=0 ηs
).

Proof. Determination of ta1 . Here, we consider learning rate schedule of the form ηt = Θ( 1
ta )

where a ∈ (0, 1]. We choose ta1 after (max{t0, tA, log( 1
ω )} where t0 satisfies Assumption 3 and

tA =
2 log(

√
1−β2
4 )

log β1
) such that the following conditions are met: αa1β

t/2
1 ≤ 1

6 , αa2dη
1/2
t ≤ 1

6 ,

and αa3dηt ≤ 1
6 . Concretely, we can set ta1 = max{−2 log(6αa1

)

log β1
, (36α2

a2d
2)1/a, (6αa3d)

1/a} =
Θ(d2/a). Then, we have for all t ≥ ta1

L(Wt+1) ≤ L(Wt)−
ηtγ

2
G(Wt). (37)

Rearranging this equation and using non-negativity of the loss we obtain γ
∑t
s=ta1

ηsG(Ws) ≤
2L(Wta1

).
Determination of ta2 . By Lemma 17, we can bound L(Wts1

) as follows

|L(Wta1
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where the last inequality is by Lemma 33. Combining this with the result above and letting L̃ =
min{ log 2

n , 1√
4B2+αV η0

}), we obtain

G(Wt∗) = min
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from which we derive the sufficient condition on ta2 to be
∑ta2
s=ta1

ηs ≥ 4L(W0)+8Bα
∑ta1

−1

s=1 ηs

γL̃ .

Convergence of G(Wt)
L(Wt)

We follow the same arguments in the proof of NSD (Theorem 3) to conclude
that

G(Wt)

L(Wt)
≥ 1− e−

γ
4

∑t−1
s=ta2

ηs . (38)

We note that ta2 satisfies the assumptions in Lemma 38 and Lemma 39.
Margin Convergence Finally, we combine Lemma 38, Lemma 39, and (38) to obtain

|
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)

Similar to the case of NSD, we can derive the margin convergence rates for Adam.
Corollary 2. Consider learning rate schedule of the form ηt = Θ( 1

ta ) where a ∈ (0, 1], under the
same setting as Theorem 5, then we have for Adam

|
mini∈[n],c̸=yi(eyi − ec)

TWthi

∥Wt∥max

−γ| =
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2 +nd
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a +nL(W0)+[log(1/ω)]1−a

t1−a ) if a < 2
3

O(d log(t)+nd+nL(W0)+[log(1/ω)]1/3

t1/3
) if a = 2

3

O(d+nd
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a +nL(W0)+[log(1/ω)]1−a

t1−a ) if 2
3 < a < 1

O(d+n log(d)+nL(W0)+log log(1/ω)
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Proof. Recall that ta1 = Θ(d2/a) = Ca1d
2/a, and the condition on ta2 is 2L(W0)+4Bα

∑ta1−1

s=1 ηs

γ
∑ta2

s=ta1
ηs

≤

L̃
2 , where L̃ = min{ log 2

n , 1√
4B2+αV η0

}. Then, we apply integral approximations and the rest of the

proof can be found in [77, Corollary 4.7 and Lemma C.1].

Remark 3. These rates match exactly those in the binary case of Zhang et al. [77] with logarithmic
dependence on the initialization parameter ω (Ass. 5). This is only made possible through the
fine-grained per-class bounding of the first and second moments using both Gc(W ) and Qc(W ).
Note that Lemma 36 takes the same form as Zhang et al. [77, Lemma A.4]. However, without the tight
per-class bound and the equivalent decomposition of G(W ) using eitherQc(W ) or Gc(W ), an extra
factor of k would appear. Interestingly, our rates for SignGD in Corollary 1 reveal a theoretical gap:
Adam’s optimal choice a = 2

3 yields O(d log(t)+nd
t1/3

) while SignGD achieves O( log(t)+n
t1/2

) with a = 1
2 .

Despite achieving tightness w.r.t. class-dimension (k), this gap emerges from our entry-wise analysis
of the ♣ term in Lemma 36 across the feature dimension (d) using scalar functions Gc(W ),Qc(W ).
Closing this theoretical gap–revealed through our NSD analysis–that also appears in the binary case
[77], forms an important direction for future work.

Numerical Validations We test the margin converge of Adam with different stability constants (ϵ)
chosen from the set {0, 10−6, 10−7, 10−8}. We make the following observations: (1) SignGD/Adam
vs NGD: SignGD and Adam(with zero stability) iterates favor the max-norm margin over the 2-norm
margin. The opposite is true for NGD (Figs. 5c, 5d); (2) Speed of convergence: For the learning
rate schedules considered, the margin convergence of SignGD is faster than that of Adam (with zero
stability constant), consistent with our theoretical results (Fig. 5d); (3) Effect of Adam’s stability
constant: For Adam with non-zero stability constants, when the magnitude of the gradient (or the
second moment) is above the stability constant, the convergence to the max-norm margin is favored
over that to the 2-norm margin. However, when the gradient values approach or fall below the stability
constant, the max-norm margin starts to decrease while the 2-norm margin increases. This is shown in
Figs. 6a and 6b (compared against the case of zero stability constant in which the max-norm margin
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Figure 5: Implicit bias of NGD, SignGD, and Adam on multiclass separable data (k = 5,d = 25,
and 50 data points in each class). (a,b) Loss and gradient 2-norm vs. iterations: SignGD converges
faster than others. (c) We normalize the iterates w.r.t. 2-norm (aka Frobenius), compute the margin,
then plot its difference to the dataset’s max-margin w.r.t. 2-norm (given in captions). Only NGD
converges to the max 2-norm margin. (d) Same as (c) with 2-norm replaced by max-norm. Margins
of SignGD/Adam(with ϵ = 0) converge to max-margin w.r.t max-norm. For SignGD, the training is
stopped after 104 iterations due to the numerical instabilities caused by the small gradient norm.
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Figure 6: Effects of non-zero stability constants ϵ for Adam. We focus on late training stage between
iteration 103 to iteration 105. (a) Gradient 2-norm vs. iterations. (b) Same quantity as Figure 5d. We
observe the max-norm margin of non-zero stability constants decreases after gradient magnitudes
approach or fall below the values of the constants (drawn as horizontal lines in (a)). (c) Same quantity
as Figure 5c. After 104 iterations, the non-zero stability constants start to increase towards the max
2-norm margin. (d, e) Correlations between Wt and max-margin classifiers V2, V∞ against iterations.
Considering correlations to V2, its value stays nearly constant for the zero stability constant, whereas
rise after 104 iterations for non-zero ones. We also observe the transitions occur earlier for larger
stability constants. Considering correlations to V∞, the values rise and plateau for non-zero stability
constants. However, its value keeps increasing for the zero stability constant.

keeps increasing). Moreover, the max-norm to 2-norm margin transition occurs earlier in training for
larger stability constants. The experiments in Figs 6d and 6c further confirm this two-phase behavior
given the correlations to the 2-norm separator V2 rise while those to the max-norm separator V∞
plateau in the late training stage. These experiments confirm that the results of Wang et al. [68] also
hold in the multiclass setting provided that the stability constant is non-zero and the magnitudes of the
second moment are small (compared against the stability constant). Note, however, that the stability
constant is typically chosen to be very small (ϵ ∼ 10−8) and the training is not long enough until
all gradients are below this value. Thus, the max-norm margin convergence results are practically
relevant.
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Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that
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the architecture clearly and fully.
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to have some path to reproducing or verifying the results.
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• If error bars are reported in tables or plots, The authors should explain in the text how
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eration due to laws or regulations in their jurisdiction).
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societal impacts of the work performed?
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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46

https://neurips.cc/public/EthicsGuidelines


• If there are negative societal impacts, the authors could also discuss possible mitigation
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should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No existing assets used.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets released.

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing and research with human subjects are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing and research with human subjects are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs usage involved.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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