
FLIP: Flow-Centric Generative Planning for
General-Purpose Manipulation Tasks

Chongkai Gao
National University of Singapore

gaochongkai@u.nus.edu

Haozhuo Zhang
Peking University

2100013132@stu.pku.edu.cn

Zhixuan Xu
National University of Singapore

zhixuanxu@u.nus.edu

Zhehao Cai
National University of Singapore

e1373791@u.nus.edu

Lin Shao
National University of Singapore

linshao@u.nus.edu

Abstract: We aim to develop a model-based planning framework for world mod-
els that can be scaled with increasing model and data budgets for general-purpose
manipulation tasks with only language and vision inputs. To this end, we present
FLow-CentrIc generative Planning (FLIP), a model-based planning algorithm on
visual space that features three key modules: 1) a multi-modal flow generation
model as the general-purpose action proposal module; 2) a flow-conditioned video
generation model as the dynamics module; and 3) a vision-language representa-
tion learning model as the value module. Given an initial image and language
instruction as the goal, FLIP can progressively search for long-horizon flow and
video plans that maximize the discounted return to accomplish the task. FLIP is
able to synthesize long-horizon plans across objects, robots, and tasks with image
flows as the general action representation, and the dense flow information also
provides rich guidance for long-horizon video generation. In addition, the synthe-
sized flow and video plans can guide the training of low-level control policies for
robot execution. Experiments on diverse benchmarks demonstrate that FLIP can
improve both the success rates and quality of long-horizon video plan synthesis
and has the interactive world model property, opening up wider applications for
future works. Video demos are on our website: https://flow-planning.github.io/.
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1 Introduction
World models refer to neural network-based representations or models that learn to simulate the
environment [1, 2]. With world models, agents can imagine, reason, and plan inside world models
to solve tasks more safely and efficiently. Recent advancements in generative models, especially in
the area of video generation [3, 4, 5], have demonstrated the application of generating high-quality
videos as world simulators with internet-scale training data. World models have opened new avenues
across various fields, particularly in the domain of robotic manipulation [5, 6, 7], which is the focus
of this paper.

The intelligence of generalist robots involves two levels of abilities [8, 9]: 1) high-level planning
of the abstraction sequence of the task with multi-modal inputs, and 2) low-level execution of the
plan by interacting with the real world. A well-designed world model could serve as an ideal way to
realize the first function, for which it should enable model-based planning. This requires the world
model to be interactive, i.e., can simulate the world according to some given actions. The core of this
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Figure 1: Overview of our method. Left: FLIP is trained on video datasets across different tasks,
objects, and robots, with only one language description for each video as the goal. Right: we train an
interactive world model consisting of an action module for flow generation, a dynamics module for
video generation, and a value module for assigning value at each step. These modules can perform
flow-centric model-based planning for manipulation tasks on the flow and video space.

framework is to find a scalable action representation that serves as the connection between high-
level planning and low-level control. This representation should: 1) be able to represent various
kinds of movements across diverse objects, robots, and tasks in the whole scene; 2) be easy to obtain
or label a large amount of training data for scaling up. Regarding this, Yang et al. [5], Du et al.
[10], Zhou et al. [11] use languages from VLMs [12] as high-level actions, while Wu et al. [13]
directly use low-level robot actions to interact with the world model. However, they either require
extra datasets or task-specific high-level action labeling processes for training the interactive world
model, or their representations cannot describe sophisticated subtle movements in the whole scene.
For example, they cannot describe the detailed movements of a dexterous hand spinning a pen.
These limit their application as a scalable interactive world model and inspire us to find other action
representations.

Image flow, a dynamic representation of pixel-level changes over time, is a concise yet general
representation of all kinds of movements in images for different robots and objects and can describe
more subtle changes than language. More importantly, image flow can be completely obtained by
off-the-shelf trackers [14] from pure video datasets. Meanwhile, recent works also show that flows
are effective representations for training low-level manipulation policies [15, 16, 17]. These make
flow a good choice for action representation of world models. However, it remains unclear how to
leverage flows for planning on manipulation tasks.

In this work, we present Flow-Centric General Planning (FLIP) for general-purpose robot manip-
ulation tasks. As shown in Figure 1, we train a flow-centric world model purely from language-
annotated video data from diverse tasks. This world model contains three modules: 1) a flow gener-
ation network as the action module, 2) a flow-conditioned video generation model as the dynamics
module, and 3) a visual-language representation learning model as the value module. Specifically,
we design our action and dynamics module based on CVAE [18] and DiT [19] architectures respec-
tively and propose a new training mechanism for leveraging LIV [20] as our value module. The
trained modules enable model-based planning by progressively searching successful long-horizon
plans on the flow and video spaces: given an initial image and language instruction as the goal,
the action module will propose several flow candidates, and the dynamics module will generate the
short-horizon future videos. The value module will access the favorability of generated videos that
maximize the discounted returns and perform tree search [21] to synthesize long-horizon plans for
solving the task.

In experiments, we show that FLIP can perform model-based planning to solve tasks for both simu-
lation manipulation tasks (LIBERO [22]) and real-world tasks (including FMB [23], cloth folding,
unfolding, and Bridge-V2 [24]). We also show that FLIP can generate high-quality long-horizon
videos for these tasks. Meanwhile, the generated flow and video plans can guide the training of
low-level policies. We also show that the three modules of FLIP are superior to their respective
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baselines [15, 25, 20]. We quantitatively show that FLIP can simulate diverse complex manipulation
tasks across objects and robots. The trained world model also demonstrates interactive properties,
zero-shot transfer ability, and scalability. In summary, our contributions are:

• We propose flow-centric generative planning (FLIP) as an interactive world model for
general-purpose model-based planning for manipulation tasks.

• We design a new flow generation network, a new flow-conditioned video generation net-
work, and a new training method for an existing vision-language representation learning
network as the three key modules of FLIP.

• In our experiments, we show FLIP can perform general-purpose model-based planning,
synthesize long-horizon videos, guide the training of low-level policy, and other promising
properties, as well as the superiority of the three modules of FLIP compared to baselines.

2 Related Works

2.1 World Models for Decision Making

Early works of world models learn system dynamics in low dimensional state space [26, 27],
perform planning in latent space [28], or train networks to predict the future observations [29]
and actions [30]. Modern model-based reinforcement learning methods [31, 32, 33, 34, 35] fo-
cus on latent space imagination with coupled dynamics and action modules. Recent works lever-
age powerful scalable video generation architectures like Diffusion Transformer [19] and large-
scale training data [36] to develop video generation networks to simulate an interactive environ-
ment [5, 37, 38, 39, 13, 25, 13]. In this work, we build a world model with separate flow-centric
action and dynamics modules as well as a vision-language value model for model-based planning
for robot manipulation tasks.

2.2 Flow and Video Models for Manipulation

Flows are the future trajectories of query points on images or point clouds. They are universal de-
scriptors for motions in the video, while video data contains rich knowledge of behaviors, physics,
and semantics, and have unparalleled scalability in terms of both content diversity and data acqui-
sition. For robotics, people have been trying to use flows as policy guidance [15, 40], learn dense
correspondence [41], tool using [42], or cross-embodiment representations [16, 25, 43]. Videos are
usually used for learning inverse dynamics [44, 29, 45, 46], rewards [47, 20, 48, 49], transferrable vi-
sual representations such as latent embeddings [50, 48, 22], key points [51, 52], affordance [53, 54],
flows [15, 16, 40], scene graphs [55, 56, 57], or acquire similar manipulation knowledge from hu-
man videos [58, 6, 59, 60]. Recent works also use video generation techniques as visual simula-
tion [5, 61]. In this work, we build our action, dynamics, and value modules all based on video and
language inputs, enabling the scalability of our framework.

3 Three Fundamental Modules of FLIP

3.1 Problem Formulation

We model a manipulation task T as a goal-conditioned Partially Observable Markov Decision Pro-
cess (POMDP) parameterized by (S,O, ϕ,A, P,R, γ, g) where S,A,O are state, action, and ob-
servation spaces, ϕ : S → O is the state-observation mapping function, P : S × A → S is the
transition function, R : S × A → R is the reward function, γ is the discount factor, and g is the
goal state. In this work, the observation space is the image space: O = RH×W×3, where H and W
are the height and width of the image, and R(s, g) = I(s == g) − 1 is a goal-conditioned sparse
reward. The task is solved if the agent maximizes the return

∑T
t=0 γ

tR(st, g).

We aim to solve this problem by learning a world model and a low-level policy. The world model
performs model-based planning on image and flow spaces to maximize the return, synthesizing long-
horizon plans, and the low-level policy executes the plan in the real environment. We aim to train
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Flow-conditioned Video Generation as Dynamics
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Figure 2: The action module and dynamics module of FLIP. Left: the tokenizing process of different
modalities in training data. Middle: we use a Conditional VAE to generate flows as actions. It sep-
arately generates the delta scale and directions on each query point for flow reconstruction. Right:
we use a DiT model with the spatial-temporal attention mechanism for flow-conditioned video gen-
eration. Flows (and observation history) are conditioned with cross attention, while languages and
timestep are conditioned with AdaLN-zero.

the world model only on language-annotated video datasets to make it general-purpose and scalable,
and train the low-level policy on a few action-labeled datasets. To enable model-based planning, our
world model contains three key modules, as introduced in the following sections.

3.2 Flow Generation Network as Action Module

Overview. The action module of FLIP is a flow generation network πf that generates image flows
(future trajectories on query points) as actions for planning. The reason why we use a generation
model rather than a predictive model is that we are doing model-based planning, where the action
module should give different action proposals for sampling-based planning. Formally, given h step
image observation history ot−h:t at timestep t, the language goal g, and a set of 2D query points
coordinates pt = {pkt }Kk=1, where pt,k = (u, v) is the k-th query point coordinate on ot, the flow
generation network πf generates coordinates of query points in future L timesteps (including the
current step): pt:t+L = πf (ot−h:t,pt, g) ∈ RL×K×2.

Training Data Annotation. The flows of query points can be extracted from pure video data
by the off-the-shelf point tracking models. The problem is how to select query points. Previous
works either use SAM [62] to select query points on the region of interest or select query points
on active/stationary regions with a predefined ratio [15]. These methods face two problems: 1) for
diverse kinds of videos with complex scenes, it is hard for modern segmentation models [62] to
segment perfect regions of interest with no human assistance; 2) for long-horizon videos, there may
be objects appearing/disappearing in the video, and using query points only from the initial frame
become problematic. To this end, in this work, we uniformly sample dense grid query points for the
whole image (for the first problem) at each timestep, and track them for only a short-horizon video
clip, i.e., tracking on video clips starting from every frame of the long-horizon video (for the second
problem). This can mitigate the second problem because even if some objects appear/disappear, their
influences are restricted in a short horizon. Formally, for each frame in the dataset, we uniformly
sample a grid of Nq points, then use Co-Tracker [14] to generate the flows {pkt:t+L}

Nq

k=1 within a
future video clip of L steps.

Model Design. We design a Conditional VAE [18] with transformer [63] architecture for flow
generation, as illustrated in Figure 2. As opposed to previous flow prediction works [15, 16, 40], we
observe enhanced performance when predicting relative displacements rather than absolute coordi-
nates, i.e., we predict ∆pkt = pkt+1 − pkt for the k-th point at each time step.

For the VAE encoder, we encode ground truth flow {pt}Lt=1, patchify observation history ot−h:t, and
encode language embedding from Llama 3.1 8B [64] to tokens, concatenate them with a CLS token
for gathering the information, and then send them to a transformer encoder to extract the output
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at the CLS token position as the latent variable of VAE. For the VAE decoder, we first encode the
query points {pkt }

Nq

k=1 at only timestep t to query tokens, concatenate them with image and language
tokens as well as the sampled latent variable z from reparameterization, and send them to another
transformer encoder. We extract the output at the query tokens and use two MLPs to predict the
delta scale δs ∈ RL×K≥0 and delta direction δ⃗d ∈ R2L×K for L future horizons. Thus we can get

∆pkt = δtks δ⃗
tk
d , and the whole future flow can be reconstructed step by step. We also decode the

output at the image token positions as an auxiliary image reconstruction task [15, 65], which we find
useful for improving the training accuracy.

3.3 Flow-Conditioned Video Generation Network as Dynamics Module

Overview. The flow-conditioned video generation network D generates the following L frames
based on current image observation history ot−h:t, the language goal g, and the predicted flow
pt:t+L to enable iterative planning for the next planning step: ôt+1:t+L = D(ot−h:t, g,pt:t+L).

Model Design. We design a new latent video diffusion model that can effectively take as input
different kinds of conditions such as images, flows, and language. This model is built on the DiT [19]
architecture with spatial-temporal attention mechanism [66, 37, 25]. The background knowledge of
latent video diffusion models is in Appendix A.1. Here we introduce the design of the multi-modal
condition mechanism.

In the original DiT [19] and previous trajectory-conditional video diffusion paper [25], they use
adaptive layer norm zero (AdaLN-Zero) blocks to process conditional inputs (such as diffusion
timestep and class labels), which regress the scale and shift parameters of the layer norm layers
from all conditions with a zero-initialized MLP. However, AdaLN will compress all conditional
information to scalars, and cannot enable fine-grained interaction between different parts of condi-
tions with the inputs. Thus, this mechanism is not suitable for complex conditions such as image and
flow [67, 68]. To this end, we propose a mixed conditioning mechanism for multi-modal conditional
generation. We use cross attention for fine-grained interactions between flow conditions (tokenized
as Nq tokens) and observation conditions and noisy frames. For image history conditions, we con-
catenate them on the Gaussian noise frames. We use AdaLN-Zero to process the global conditions
including the diffusion timestep and language instruction, as shown in Figure 2. To keep the ob-
servation condition clean, we do not add noise to ot−h:t during the diffusion process and do not
perform denoising on them either.

3.4 Vision-Language Representation Learning as Value Module

Vision-Language Similarity as Value Function

clip
clip

clip

clip

Instruction

“put both the 

cream cheese 

box and the 

butter in the 

basket”

𝒗

𝒕

𝒗

𝒕

LIV Ours

Figure 3: Top: The value module of FLIP. We
follow the idea of [20] and use time-contrastive
learning for the visual-language representation,
but we treat each video clip (rather than each
frame) as a state. Bottom: the fine-tuned value
curves of Ma et al. [20] and ours.

Overview. The value module V assigns an
estimated value V̂t for each frame ot to en-
able model-based planning on the image space,
based on the language goal g: V̂t = V(ot, g).
In this work, we adopt LIV [20] to instan-
tiate the value function. LIV first learns
a shared language-vision representation from
action-free videos with language annotations.
It then computes the similarity between current
frame ot and g as the value for timestep t: V̂t =
S(ψI(ot), ψL(g)) = 1

1−γ cos(ψI(ot), ψL(g)),
where ψI and ψL are the encoding network for
image and language respectively, and S is the
γ-weighted cosine similarity metric.

The pretrained LIV model needs to be fine-
tuned to give good value representation on
new tasks [20]. The original fine-tuning
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Algorithm 1 Flow-Centric Generative Planning

1: Input: Current observation history o0−h:0, language goal g, query points p, flow prediction
network πf , flow-conditioned video generation network D, vision-language value module V .

2: Hyperparameters: Flow candidates number A, planning Beams B, planning horizon H .
3: Initialization: Flow plans fp ← [pi0−h:0, i ∈ 1 . . . B], video plans vp ← [oi0−h:0, i ∈ 1 . . . B].
4: for h = 1 . . . H do
5: for b = 1 . . . B do
6: o← vp[b][−h :] ▷ Get the Latest Observation History in the Plan Beam
7: a1:A ← π(o,P, g) ▷ Generate A Different Flow Actions
8: v1:A ← D(o, ai, g) for i in(1 . . . A) ▷ Generate Corresponding Different Video Clips
9: id← argmaxR(vi, g) for i in (1 . . . A)

10: fp[b].append(aid), vp[b].append(vid) ▷ Add Plans with Highest Value
11: end for
12: max idx,min idx← argmax(vp,V), argmin(vp,V)
13: fp[min idx]← fp[max idx], vp[min idx]← vp[max idx] ▷ Periodically Replace
14: end for
15: f ← fp[argmax(vp,V)], v ← vp[argmax(vp,V)] ▷ Return Highest Value Plan

loss LLIV = LI(ψI) + LL(ψI , ψL) is calculated on sampled sub-trajectory batch data{
ois, . . . , o

i
k, o

i
k+1, . . . , o

i
T , g

i
}B
i=1

from each task Ti, where s ∈ [0, Ti − 1] , s ≤ k < Ti. For
∀ task i, LI(ψI) will use time contrastive learning to increase the similarity S(ois, oiT ) between
the sampled start frame and the end frame and keep the embedding distance between two adjacent
frames as (γ-discounted) 1, and LL encourages the image goal oiT and language goal gi have the
same embedding for the same task i. Details of this process can be found in Appendix A.2.

Finetuning LIV on Long-Horizon Imperfect Videos. Finetuning LIV with the original training
objective works well on short-horizon perfect videos (about 50 frames in their original papers [47,
20]). However, we find that it does not work well for our long-horizon imperfect videos, as shown
in Figure 3, where the fine-tuned value curve exhibits numerous jagged peaks. This is disastrous
for sampling-based planning algorithms since most planning algorithms expect a smoothing value
curve to be effective [21, 20].

We point out that this problem is caused by imperfect long-horizon videos, where the task does not
necessarily progress smoothly as the video progresses. For example, the robot arm may hesitate in
the air during the task. To mitigate this problem, we replace the concept of adjacent frames in the
original loss to adjacent states, where we define states as short-horizon video clips. Formally, we di-
vide a long-horizon video into small segments of fixed length and treat each clip sclip as the smallest
unit of the video. The original os, oT , ok, ok+1 are seamlessly replaced by sclips , sclipT , sclipk , sclipk+1 re-
spectively. As shown in Figure 3, this simple strategy is surprisingly useful and makes the fine-tuned
vale curve much smoother than the originally fine-tuned ones.

4 Flow-Centric Generative Planning

4.1 Model-based Planning with Flows, Videos, and Value Functions

Directly generating long-horizon videos autoregressively is usually not accurate [15, 5, 44] due to
compounding errors. In this work, we use model-based planning to search for a sequence of flow
actions and video plans that maximizes the discounted return:

o∗0:L = argmax
o0:L∼πf ,D

L∑
i=0

γiR(oi, g). (1)

According to Bellman Equation [69], this equals stepping towards the next state that maximizes
V ∗(st+1, g) at each time step given an optimal value function V ∗. In our problem, we learn the
optimal value function V = V ∗ through our proposed method, thus our problem is simplified to
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LIBERO-LONG [22] FMB-S [23] FMB-M Folding Unfolding

UniPi [44] 2% 0% 0% 20% 10%
FLIP-NV 78% 52% 40% 100% 70%

FLIP(Ours) 100% 86% 78% 100% 90%
Table 1: Success rates of model-based planning on long-horizon tasks.

LIBERO-LONG [22] FMB [23] Bridge-V2 [24]

Latent L2 ↓ FVD ↓ PSNR ↑ Latent L2 ↓ FVD ↓ PSNR ↑ Latent L2 ↓ FVD ↓ PSNR ↑
LVDM [70] 0.566 610.98 10.852 0.484 358.22 12.349 0.373 153.41 16.481
IRASim [25] 0.407 206.28 12.205 0.395 172.45 13.157 0.325 138.97 16.796
FLIP(Ours) 0.217 35.62 26.452 0.264 43.712 25.531 0.173 36.15 33.485

Table 2: Quantitative results on long-horizon video generation.

search for the next state that maximizes V at each time step. Note this reward design also encourages
finding the shortest plan. We use hill climbing [21] to solve this problem. It initializes B plan
beams. At each timestep t, given current image history ot−h:t and the language goal g, it employs
πf to generate multiple flow actions pt+1:t+L = πf (ot−h:t,pt, g) on uniformly sampled query
points as candidates for tree search, then use D to generate corresponding short-horizon videos

ˆot+1:t+L = D(ot−h:t, g,pt+1:t+L). The value module V is then used to select the generated video
with the highest reward among A videos to enable the next iteration of generation for each beam. In
order to prevent exploitative planning routes that over-exploit on an irregular state, we periodically
replace the lowest value plan among the beams with the beam with the highest value. The algorithm
is summarized in Algorithm 1.

4.2 Plan-Conditioned Low-Level Policy

The low-level policy πL takes as input the image observation history ot−h:t, the language goal g,
and the predicted flow plan pt:t+L as well as the video plan ˆot+1:t+L = D(ot−h:t, g,pt+1:t+L) to
predict the low-level robot action at:t+L that actually drive the robot to operate in the environment.
We train this policy through imitation learning on a few demonstrations with action labels. We
employ a spatial-temporal transformer to instantiate πL with a similar structure to Wen et al. [15].
Details can be found in Appendix A.3.

5 Experiments
In this section, we first demonstrate that FLIP can: 1) perform model-based planning for differ-
ent manipulation tasks; 2) synthesize long-horizon videos (≥ 200 frames); and 3) can guide the
low-level policy for executing the plan. We also evaluate the action, dynamics, and value mod-
ules separately compared to corresponding baselines and show the interactive, zero-shot, scalability
properties of FLIP. More details of experiment settings and results can be found in Appendix C and
our website.

5.1 Model-Based Planning for Manipulation Tasks

Setup. In this section, we train FLIP on four benchmarks to show its model-based planning ability.
The model is given an initial image and a language instruction, and it is required to search the flow
and video spaces to synthesize the plan for this task. The first one is LIBERO-LONG [22], a long-
horizon table-top manipulation benchmark of 10 tasks in simulation. We train FLIP on 50×10 long-
horizon videos with a resolution of 128 × 128 × 3 and test on 50 × 10 new random initializations.
The second one is the FMB benchmark [23], a long-horizon object manipulation and assembly
benchmark with varying object shapes and appearances. We train FLIP on 1K single-object multi-
stage videos and 100 multi-object multi-stage videos with a resolution of 128×128×3 and test on 50
new initialization for each. The third and fourth suites are cloth folding and cloth unfolding. These
two datasets are collected by ourselves. We train each suite on 40 videos with varying viewpoints
and test on 10 new viewpoints for each with a resolution of 96× 128× 3.
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Figure 4: Model-based planning results on LIBERO-LONG, FMB, cloth folding, and cloth unfold-
ing. All of the flows, images, and values shown are generated by FLIP.

We follow previous works[10, 25] and evaluate our model-based planning results by human eval-
uating the correctness of generated video plans. That is, we visually assess the percentage of time
the video successfully solved the given task. We compare FLIP to two baselines: 1) UniPi [44], a
text-to-video generation method with long-horizon text goals. 2) FLIP-NV, an ablation of FLIP that
performs the same beam search but with no value module as guidance.

Results. Table 1 shows the results. We can see that UniPi achieves low success rates across all
tasks, which shows that directly synthesizing long-horizon videos is difficult. FLIP-NV achieves
better results than UniPi. This shows that with dense flow information as guidance, the performance
of the video generation model is improved. FLIP outperforms all baselines, pointing out the ef-
fectiveness of using value functions for model-based planning. This can eliminate incorrect search
routes during planning. We show such incorrect search routes on our website.

5.2 Long-Horizon Video Generation Evaluation

Setup. In this section, we quantitatively evaluate the long-horizon video generation quality of
FLIP compared to other video generation models. We choose the same datasets as in Section 5.1 as
well as Bridge-V2 [24] as the evaluation benchmarks. Here all videos are longer than 200 frames ex-
cept for Bridge-V2. For Bridge-V2, we train on 10k videos and test on 256 videos with a resolution
of 96 × 128 × 3. We choose two baselines: 1) LVDM [70], a state-of-the-art text-to-video method
for video generation; 2) IRASim [25], a conditional video generation method with the end-effector
trajectories as the condition. We use SAM2 [62] to label the end-effector trajectory for IRASim. We
choose model-based metrics including Latent L2 loss and FVD [71] as well as a computation-based
metric PSNR [72]. Latent L2 loss and PSNR measure the L2 distance between the predicted video
and the ground-truth video in the latent space and pixel space, and FVD assess video quality by
analyzing the similarity of video feature distributions

Results. Table 2 shows the results. The analysis is in Appendix C. More results about Plan-Guided
Low-Level Policy, Fundamental Module, Applications, and Scaling can be found in Appendix C.

6 Conclusion and Limitation

In this work, we present FLIP, a flow-centric generative planning method for general-purpose manip-
ulation tasks. FLIP is trained on only video and language data, can perform model-based planning on
the trained world model to synthesize long-horizon plans, and can guide low-level policy learning.
FLIP has the potential to scale up with increasing data and computation budgets in the future.

A major limitation of FLIP is the slow speed of planning, which is restricted by extensive video gen-
eration processes during the planning phase. This restricts our method on quasi-static manipulation
tasks. Another limitation is that FLIP does not use physical properties and 3D information of the
scene. Future works can develop physical 3D world models and extend FLIP to 3D scenarios.
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A Method Details

A.1 Latent Diffusion Models

Diffusion Models. Diffusion models [73, 74] typically contain a forward nosing process and a
reverse denoising process. During the forward process, we gradually apply noise to real data x0:
q(xt|x0) = N (xt;

√
atx0, (1−at)I) over T timesteps, where constants at are hyperparameters. By

applying the reparameterization trick, we can sample xt =
√
atx0+

√
1− atϵt, where ϵt ∼ N (0, I).

During the reverse process, it starts from Gaussian noise xT ∼ N (0, I) and gradually removes
noises to recover x0: pθ(xt−1|xt) = N (µθ(xt),Σθ(xt)). With reparameterizing µθ as a noise
prediction network ϵθ, the model can be trained with Lsimple(θ) = ||ϵθ(xt) − ϵt||22. We also learn
the covariance Σθ following Nichol and Dhariwal [75], Peebles and Xie [19] with the full KL loss.

Latent Diffusion and Tokenization. Latent diffusion models [76, 66] perform diffusion process
in a low-dimensional latent space zld rather than the original pixel space. We leverage the pre-
trained VAE in SDXL [77] to compress each frame ot to latent representations: zldt = Enc(ot), and
after the denoising process, the latent representation can be decoded back to the pixel space with
the VAE decoder: ot = Dec(zldt ). For each zld, it is divided into image patches and tokenized by
convolutional networks to P tokens with D dimensions (hidden size). Sequencing the image tokens
of all T frames, we get the video token in the shape of T × P ×D.

Spatial-Temporal Attention Mechanism. We leverage transformers [63] to implement the dy-
namics module, and use the memory-efficient spatial-temporal attention mechanism [66, 37, 25],
where each attention block consists of a spatial attention block and a temporal attention block. The
spatial attention operates on the 1×P tokens within each frame, and the temporal attention operates
on the T × 1 tokens across T timesteps at the same location.

A.2 Language-Vision Representation

The original fine-tuning loss LLIV = LI(ψI)+LL(ψI , ψL) is calculated on sampled sub-trajectory
batch data

{
ois, . . . , o

i
k, o

i
k+1, . . . , o

i
T , g

i
}B
i=1

from each task Ti, where s ∈ [0, Ti − 1] , s ≤ k < Ti.
They have the following forms:

LI(ψI) =
1− γ
B

B∑
i=1

[−S(ψI(ois), ψI(oiT ))]+ log
1

B

B∑
i=1

exp[S(ψI(oik), ψI(oiT )) + 1− γS(ψI(oik+1), ψI(o
i
T ))],

LL(ψI , ψL) =
1− γ
B

B∑
i=1

− log
e(1−γ)S(ψI(oiT ),ψL((gi))

1
B

∑B
j=1

[
e (1−γ)S(ψI(ojT ),ψL(gi))]

]
 ,

(2)

A.3 Low-Level Policy

In this work, we use a low-level policy with a similar structure to ATM [15]. The flow-guided
policy, video-guided policy, and the flow-video-guided policy are illustrated in Figure 5. We employ
a spatial-temporal attention mechanism. Specifically, the input contains the agent view observation
history oat−4:t ∈ R4×3×128×128 and the eye in hand observation history oet−4:t ∈ R4×3×128×128 at
timestep t, the proprioception state history st−4:t ∈ R4×47, the language tokens extracted from Meta
Llama 3.1 8B [64] g ∈ RTg×4096, the predicted flow for both the agent view pat:t+16 ∈ R16×529×2

and eye in hand view pet:t+16 ∈ R16×529×2, and the predicted future videos for both the agent view
ôat:t+16 ∈ R16×3×128×128 and eye in hand view ôet:t+16 ∈ R16×3×128×128. The low-level policies
output the future action sequences a ∈ R8×7 where 7 is the action size. The policies have three
stages:

Spatial Encoding. First, oa and oe are patchified by CNNs, and adding spatial and temporal po-
sitional encodings. The language token is processed by an MLP to reduce the dimension to 384.
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Figure 5: Low-level policies.

For video-guided policy and flow-video-guided policy, the ôa and ôe are also patchified in the same
manner. For the flow-guided policy and flow-video-guided policy, the flows pa and pe are tokenized
where and MLP is used to process each query point and get a set of flow tokens ∈ R529×384. Second,
these tokens are sent to a 4 layer spatial transformer together with a CLS token ∈ R16×384.

Temporal Encoding. The output at the CLS token positions are concatenated with st and a set of
action tokens ∈ R16×384 and sent to a temporal transformer.

Late Fusion. The output at the action tokens are concatenated with the flow tokens. For video-
guided policy and flow-video-guided policy, they are also concatenated with the observation history
tokens. Then an MLP is used to process these inputs and predict the future actions a.

B Experiment Details

B.1 Training Details

We report the hyperparameters of the models we trained in Table 3 and Table 4. We train all data
with observation history equals to 16 and future flow horizon equals to 16.

C More Results

We can see that our method consistently outperforms baselines in all datasets. LVDM performs
badly on LIBERO-LONG and FMB, and better on Bridge-V2. This is because the videos in Bridge-
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CVAE-S CVAE-B CVAE-L

Encoder Layer 4 6 8
Decoder Layer 6 8 12

Hideen Size 384 768 1024
Learning Rate 1e-4 5e-5 1e-5

Image Patch Size 8 8 8
Head Number 4 8 12

Table 3: Hyperparameters of CVAE.

D-S D-B D-L

Layers 8 12 16
Hideen Size 384 768 1024

Learning Rate 1e-4 1e-4 1e-4
Head Number 6 12 16

Table 4: Hyperparameters of the dynamics module.

V2 are shorter than the previous two benchmarks. IRASim performs better than LVDM, which
shows the importance of trajectory guidance. However, it generates long-horizon videos in an auto-
regressive manner, which has worse results than our method, showing that model-based planning can
also help generate high-quality videos by concatenating short-horizon videos generated with rich
flow guidance. The results on the FMB benchmark are the worst for all methods. This is because
the training videos have many discontinuous transitions, where the robot gripper instantly moves to
where the next stage begins. Since our model leverages history observations as input conditions, it
can sometimes overcome this discontinuous gap. We qualitatively show the model-based planning
results on the four tasks in Figure 4.

Since FLIP is a universal framework for all manipulation tasks as long as they have language-
annotated video datasets, here we qualitatively show FLIP can be used for complex long-horizon
video generation including the ALOHA tasks [78], pen spinning [79], robot pilling [80], tying plastic
bags [81], and human peeling eggs, as shown in Figure 8. More video demos are on our website.

C.1 Plan-Guided Low-Level Policy

Setup. In this evaluation we explore how the generated flow and video plans can be used as con-
ditions for training a manipulation policy to accomplish the task. We aim to answer the question:
which one, flow or video (or both at the same time), is more suitable to be used as the condition to
guide the learning of the underlying strategy? We use LIBERO-LONG [22] for evaluation, where
for each task in LIBERO-LONG, we use 10 demonstrations with action labels and 50 demonstra-
tions without action labels, as done in the baseline method ATM [15]. In the evaluation, we use a
receding horizon online planning manner: FLIP will first search the whole task plan, and the policy
will take a plan of 16 steps as condition and predicts and go 8 steps, then FLIP will plans again and
the whole process goes iteratively.

Results. The results are in Figure 6. We can see that the flow-guided policy achieves a little
higher success rate and lower variance than ATM, showing that dense flow information is better than
sparse flow information. The video-guided policy achieves the best average success rates across all
methods, but it has a large variance. This shows that high-quality future videos can serve as better
guidance for policy learning, however, consistently generating high-quality videos across different
tasks is more difficult than flows. Surprisingly, the flow-video-guided policy performs worse than
when they were the only condition respectively. This may come from that the errors from two
conditions are superimposed, which can lead to worse performances.

C.2 Experiments on Fundamental Modules of FLIP
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Figure 6: Success rates of different low-level
policies on LIBERO-LONG.
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Figure 7: Value curves from the pretrained LIV, fine-
tuned by LIV, and fine-tuned by FLIP.

LIBERO-10 Language-Table Bridge-V2

Latent L2 ↓ FVD ↓ PSNR ↑ Latent L2 ↓ FVD ↓ PSNR ↑ Latent L2 ↓ FVD ↓ PSNR ↑
LVDM [70] 0.366 109.41 18.852 0.364 124.75 19.943 0.328 111.34 18.104
IRASim [25] 0.307 92.76 19.205 0.335 132.56 18.156 0.318 107.89 19.967

FLIP-SC 0.271 89.77 20.089 0.304 137.89 18.904 0.316 127.65 18.375
FLIP(Ours) 0.197 27.62 28.602 0.159 21.23 33.632 0.171 38.41 34.576

Table 5: Quantitative results on short-horizon video generation.

LIBERO-10 Bridge-V2

ADE ↓ LTDR ↑ ADE ↓ LTDR ↑
ATM [15] 19.6 53.8% 18.4 66.1%
Ours-ABS 20.5 57.3% 17.9 59.3%

Ours-NoAUX 14.5 73.2% 12.7 75.6%
Ours 12.7 76.5% 11.9 80.2%

Table 6: Quantitative results of the action model.

Action Module Experiments. We use two
metrics to assess the flow generation model πf
quantitatively [41]: 1) Average Distance Error
(ADE) between the generated and the ground
truth flows in pixel units on all query points;
2) Less Than Delta Ratio (LTDR): the average
percentage of points within the distance thresh-
old of 1, 2, 4, and 8 pixels between the reconstructed and the ground truth flows at each time step.
Since most of the points are stationary points, in order to better demonstrate the results, we only
calculate points with δs ≥ 1.

We use LIBERO-LONG [22] and Bridge-V2 [24] for evaluation. We compare our method with 3
baselines: 1) ATM [15], the state-of-the-art flow prediction module for manipulation tasks; 2) Ours-
ABS: directly generating absolute flow coordinates at each timestep rather than generating the scale
and direction; 3) Ours-NoAUX: the same architecture of ours with no auxiliary training losses (the
flow and image reconstruction losses).

From Table 6, we can see that Ours-ABS generally achieves the same results as ATM, and predicting
the scale and directions are better than ATM and Ours-ABS, showing that directly regressing the
absolute coordinates is worse than predicting the delta of flows at each timestep. We can also see
that the auxiliary losses can help improve the final results.

Dynamics Module Experiments. We evaluate our dynamics module separately with the ground
truth flows as conditions on short-horizon video generation. We use PSNR [72], latent L2 loss, and
FVD [71] as metrics. We use LIBERO-LONG [22], Bridge-V2 [24], and Language-Table [82] as
the evaluation datasets. We use three baselines (as introduced in Section 5.2): 1) LVDM [70]; 2)
IRAsim [25]; 3) Ours-SC: using AdaLN-Zero for all kinds of conditions.

Results are in Table 5. The result trends across methods are generally consistent with the long-
horizon video generation results in Table 2. FLIP-SC generally achieves the same performance with
IRASim, showing that even if the model is given dense flow information, it requires a fine-grained
mechanism to leverage the condition for video generation.

Value Module Experiments. We here qualitatively show the fine-tuned value curves of our
method compared to the original LIV [20] method on two different tasks consisting of Language-
Table [82] and cloth folding in Figure 7. We also show the value curves before fine-tuning. We can
see our method consistently gets smoother value curves than the original LIV method, where the
value curves have violent oscillations.
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Figure 8: FLIP is a general framework for diverse kinds of manipulation tasks across objects and
robots, even for human hands. All of the flows and images are generated.

Figure 9: Interactive ability. Figure 10: Zero-shot transfer. Figure 11: Scalability.

C.3 Applications and Scaling

Finally, we train FLIP on LIBERO-90, a large-scale simulation manipulation dataset to show three
properties of FLIP. We use 50 videos for each task in the resolution of 3× 64× 64.

Interactive World Model. We first show that the trained dynamics module is interactive: it can
generate corresponding videos given image flows specified by humans. We use SAM2 [62] to select
the region of the robot arm and manually give flows in different directions. Results are shown in
Figure 9. We can see the robot arm can move left or right according to the given flow.

Zero-Shot Generation. Secondly, we show that the trained FLIP has zero-shot transfer ability.
We test the trained model on LIBERO-LONG. Results are shown in Figure 10. Interestingly, we
can see that the pretrained model, without fine-tuning, can generate natural movement for the robot
arm with unseen observations and instructions. This shows FLIP has a certain knowledge transfer
ability.

Model Scaling. We show that the action and dynamics module are scalable with increasing model
sizes. Figure 11 shows the smoothed ADE and Latent L2 loss on the validation set. It shows that
increasing the model size can consistently help achieve better performance for both modules.
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