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Abstract
Personalized federated learning (PFL) based on
Bayesian approach tackle the challenges from sta-
tistical heterogeneity of client data by comput-
ing a personalized posterior distribution over the
parameters of each client’s local model and con-
structing a global distribution by aggregating the
parameters of these personalized posteriors. How-
ever, the heuristic aggregation methods introduce
strong biases and result in global models with
poor generalization. We thus propose a novel hi-
erarchical Bayesian inference framework for PFL
by specifying a conjugate hyper-prior over the
parameters of the personalized posteriors. This
allows us to jointly compute a global posterior
distribution for aggregation and the personalized
ones at local level. This hierarchical Bayesian
inference framework achieves elegant balance be-
tween local personalization and global model ro-
bustness. Extensive empirical study shows that by
effectively sharing the heterogeneous statistical
strength across the local models while retaining
their distinctive characteristics, our framework
yields state-of-the-art performance. We also show
that existing Bayesian PFLs are special cases of
our framework.

1. Introduction
Federated learning (FL) emerges as a promising framework
that enables collaborative model training across decentral-
ized client devices while preserving data privacy (McMahan
et al., 2017). This approach demonstrates significant poten-
tial in various real-world applications, such as healthcare
(Yang et al., 2021; Dayan et al., 2021; Yang et al., 2024),
recommendation systems (Muhammad et al., 2020; Yuan

1College of Computing and Information Sciences, Rochester
Institute of Technology, Rochester, New York, USA. Correspon-
dence to: Rui Li <rxlics@rit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

0.0 0.5 1.0 1.5 2.0
Variance

0

1

2
Samples
Sample Mean

Figure 1. In Bayesian PFL, variance parameters of personalized
distributions often follow skewed distributions. In such cases, the
MLE/MAP estimate (e.g., arithmetic mean) is obviously a poor
estimate.

et al., 2024), and mobile applications (Hard et al., 2018; Wu
et al., 2020; Geng et al., 2024). However, FL still faces sub-
stantial challenges, mainly due to statistical heterogeneity
and limited data availability on individual clients (Ye et al.,
2023).

The Bayesian-based personalized FL (PFL) approaches fo-
cusing on learning personalized local models for individual
clients perform Bayesian inference to derive personalized
posterior distributions of local model parameters (Zhang
et al., 2022; Liu et al., 2023; Bhatt et al., 2024; Makhija et al.,
2024). The server then aggregates the parameters of these
personalized posteriors to construct a global distribution.
Specifically, the construction of the global distributions in
these approaches typically involves arithmetic aggregation
of personalized posterior parameters as the global distribu-
tion parameters (Zhang et al., 2022) or approximation of
the global distributions as the product of the personalized
ones (Liu et al., 2023), as shown in Figure 2. The global dis-
tributions are then transmitted back to all clients as a local
regularization for the next training iteration. These simple
yet rigid aggregation schemes at the global level introduce
strong constraints that obscure unique characteristics dis-
tinguishing the heterogeneous local data and lead to biased
estimates of the global models with poor generalization, as
illustrated in Figure 1.

There are Bayesian-based FL approaches focusing on con-
structing robust global models, such as computing global dis-
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tributions by fitting standard distributions to clients’ point-
estimated local models (Thorgeirsson & Gauterin, 2020;
Chen & Chao, 2021), or constructing point-estimated global
models from local estimates (Yurochkin et al., 2019) through
nonparametric Bayesian methods. Since these approaches
only obtain generic global models without personalized dis-
tributions for each client, they are less effective at capturing
the diversity of non-IID data in real-world FL settings.

We thus propose a novel hierarchical Bayesian inference
framework for PFL, addressing these challenges by balanc-
ing between local personalization and global model robust-
ness, as demonstrated in Figure 2. Specifically, we define a
conjugate hyper-prior distribution over the parameters of the
personalized posterior distributions, allowing us to perform
joint Bayesian inference at both the global level and the lo-
cal level. By computing a higher level posterior distribution
over the personalized posterior parameters on the server,
instead of summarizing them through arithmetic means,
our framework achieves an elegant compromise. Estimates
based on the global-level posterior dependencies between
the personalized distribution parameters are “shrunk” to-
gether, so that the local models share the heterogeneous
statistical strength of each other, while retaining their dis-
tinctive characteristics. Our theoretical analysis shows that
our framework recovers existing Bayesian PFL objectives
when additional constraints are introduced, which subsumes
them as special cases. Our extensive empirical analysis
shows that the proposed hierarchical Bayesian inference
PFL results in robust global and local models with superior
performance.

2. Related Works
2.1. FL and Bayesian FL

In the seminal work of FL, FedAvg (McMahan et al., 2017)
trains a local model on clients, aggregates them on the server
considering only model parameters to construct a global
model, and broadcasts this global model to all clients for
subsequent training. Subsequent research efforts have fo-
cused on improving convergence (Karimireddy et al., 2020),
ensuring privacy guarantees (Agarwal et al., 2018), enhanc-
ing communication efficiency (Reisizadeh et al., 2020), and
refining client aggregation (Zhu et al., 2021). Furthermore,
several Bayesian-based approaches have been explored to
obtain a global model by fitting Gaussian or Dirichlet dis-
tributions to clients’ point-estimated local models to de-
fine posterior distributions over global model parameters
(Chen & Chao, 2021; Thorgeirsson & Gauterin, 2020). An
alternative approach focuses on defining the global pos-
terior as the product of local posteriors under a uniform
prior (Al-Shedivat et al., 2021). Additionally, researchers
have investigated nonparametric Bayesian methods to con-
struct point-estimated global models from local estimates

(Yurochkin et al., 2019). However, these methods are less
effective in capturing the inherent statistical heterogeneity
present across clients.

2.2. Personalized FL

Personalized FL aims to introduce a personalized model
for individual clients to tackle the heterogeneity that exists
in the FL environment. Several perspectives have been ex-
plored to achieve personalization, including meta-learning
(Fallah et al., 2020; Acar et al., 2021b; Jeon et al., 2024),
multi-task learning (Smith et al., 2017; Dinh et al., 2022),
transfer learning (Yang et al., 2019), prototype-based (Tan
et al., 2022; Xu et al., 2023), and clustering (Ghosh et al.,
2020; Sattler et al., 2020). Additionally, hypernetworks
have also been employed to predict client model parameters
(Shamsian et al., 2021; Scott et al., 2024), while regulariza-
tion techniques balance personalization with global model
performance (T Dinh et al., 2020; Li et al., 2020; Acar et al.,
2021a; Li et al., 2021). Some strategies split the model,
learning shared feature extractor and personalized classi-
fier, or vice-versa (Arivazhagan et al., 2019; Liang et al.,
2020; Collins et al., 2021). These methodologies yield point
estimate solutions, which are susceptible to overfitting, par-
ticularly in scenarios where clients possess limited data.

2.3. Bayesian Personalized FL

Bayesian PFL leverage various Bayesian inference tech-
niques to estimate the personalized posterior distribution.
For instance, pFedBayes (Zhang et al., 2022) utilizes vari-
ational inference, while others have explored Laplace ap-
proximation (Liu et al., 2023) and Markov chain Monte
Carlo (MCMC) methods (Kotelevskii et al., 2022; Bhatt
et al., 2024). The formulation of global distributions in
these Bayesian frameworks varies. Some methods, such as
pFedBayes, employ arithmetic aggregation of personalized
distribution parameters, while others approximate global
distributions as the product of personalized one (Bhatt et al.,
2024). In particular, pFedVEM (Zhu et al., 2023) claims the
use of hierarchical Bayesian modeling, but they do not ad-
here to the principle due to missing hyper-priors over the pa-
rameters of personalized posteriors. Studies utilize Gaussian
Processes for personalization (Yin et al., 2020; Achituve
et al., 2021; Tang et al., 2022) with mixed-effect modeling
to characterize feature extractors and personalized classifier
layers (Kotelevskii et al., 2022) and functional space prior
to enhancing collaboration (Makhija et al., 2024).

A hierarchical Bayesian model for FL is explored to de-
fine the hyper-prior as a normal-inverse-Wishart distribution
over personalized posterior parameters (Kim & Hospedales,
2023). However, by fixing the personalized posterior co-
variance to a identity matrix, this approach reduces the
local models to non-Bayesian neural networks. Similarly, a
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Figure 2. Overview of our PFL framework based on hierarchical Bayesian inference (left) in comparison with existing Bayesian-based
PFLs such as pFedBayes (Zhang et al., 2022) (middle) and pFedVEM (Zhu et al., 2023) (right). As each client uploads its updated
personalized distribution parameters (µk, σ

2
k) to the server and then downloads the aggregated global parameters (µg, σ

2
g), our framework

derives a global posterior distribution p(Wk|µg, σ
2
g) to aggregate the personalized posteriors by defining a hyper-prior over their

parameters. Other methods heuristically specify the parameters of a global distribution as weighted sums of the personalized ones.

federated variational inference method proposes to model
distribution parameters of Bayesian neural networks as la-
tent variables (Hassan et al., 2023). Yet, they only model
the weights of the first hidden layers as random variables,
while the remaining weights are MAP estimates.

3. Hierarchical Bayesian Inference for PFL
As shown in Figure 2, our hierarchical Bayesian inference
PFL framework derives a personalized posterior distribution
over the parameters of each client’s local model based on a
Bayesian neural network (BNN). We further define a hyper-
prior distribution over the parameters of these personalized
posteriors on the server. This hyper-prior enables us to ag-
gregate these personalized posteriors by computing a global
posterior distribution when the clients upload their parame-
ters to the server at each iteration. Moreover, for the joint
approximate inference, we present a stochastic variational
inference scheme that split the computation of the overall
objective into a server part for aggregation and a client part
for retaining personalization.

3.1. BNN-based Personalized Posterior distribution

We consider a FL system comprising a central server and
K decentralized clients. In this framework, each client
employs a neural network f(·) as its local model, parame-

terized by weightsWk, to capture the underlying structure
of its local data Dk. The likelihood is thus expressed as

p(Dk|Wk) =
∏

(x,y)∈Dk

p(y|f(x;Wk)) (1)

We specify a multivariate Gaussian with a diagonal covari-
ance as the prior over the weights of each client’s local
modelWk as

p(Wk|µk,σ
2
k) = N (Wk|µk,σ

2
kI) (2)

where µk and σ2
k denote the mean and variance of the

Gaussian distribution.

3.2. Global Posterior Distribution Specification

We propose to set a hyper-prior distribution over the param-
eters of the personalized posteriors. Notably, the parameters
of client k’s personalized posterior θk = {µk,σ

2
k} are

direct instantiations of the hyper-prior p(θg|α), where α
denotes hyper-parameters. Specifically, we model p(θg|α)
as the product of a Gaussian distribution and a Half-Normal
distribution (Leone et al., 1961):

p(θg|α) = p(µg,σg|α)
= N (µg|0, σ2

1I) Half-Normal(σg|σ2)
(3)

where θg = (µg,σ
2
g) and α = {σ2

1 , σ2}.
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We adopt Half-Normal distribution as a prior over σ2
g as it

is computationally stable and efficient (Röver et al., 2021).

The global posterior distribution can thus be written as

p(θg,W|D, α) ∝ p(θg|α)
K∏

k=1

p(Dk|Wk)p(Wk|θg) (4)

where W = {Wk} denotes the local BNNs’ weights of
all the clients, and D = {Dk} are all the data. The ex-
act computation of both the global and the local posterior
distributions are intractable due to the non-linearity inher-
ent in neural networks. Therefore, we employ variational
inference (VI) for approximation.

3.3. Stochastic VI for the Hierarchical Bayesian PFL

We specify a variational distribution q(θg,W;ϕ,Θ) to ap-
proximate the true posteriors as follows:

q(θg,W;ϕ,Θ) = q(θg;ϕ)

K∏
k=1

q(Wk;θk) (5)

where, Θ = {θk}Kk=1. Here, q(θg;ϕ) denotes the varia-
tional distribution of the global posterior parameters and
q(Wk;θk) represents the personalized distribution over
client k’s local model weights.

We minimize the Kullback-Leibler (KL) divergence be-
tween the variational distribution and the true posterior with
respect to the variational parameters (ϕ,Θ):

ϕ∗,Θ∗ = argmin
ϕ,Θ

KL [q(θg,W;ϕ,Θ)||p(θg,W|D, α)]

= argmin
ϕ,Θ

K∑
k=1

[
Eq(Wk;θk) [− log p(Dk|Wk)]

+ Eq(θg ;ϕ) [KL (q(Wk;θk)||p(Wk|θg))]
]

+KL (q(θg;ϕ)||p(θg|α))
(6)

The resulting overall objective is known as evidence lower
bound (ELBO) (Neal & Hinton, 1998; Jaakkola & Jordan,
2000; Blundell et al., 2015). The first term facilitates the
adaptation of the local models to the corresponding local
data. The second term aggregates the personalized posterior
distributions through the global posterior distribution. The
last term acts as a regularization for the global posterior
parameters. This ELBO thus effectively balances personal-
ization with global model generalization. We further split
the computation of the overall objective into a server part for
aggregation and a client part for retaining personalization
to avoid the potential communication overhead caused by
frequently synchronizing personalized posterior parameters.

Server Part of the Objective: On the central server, we
aggregate the parameters of the personalized posteriors

through the global posterior by optimizing the second and
the third terms of the overall objective in Equation (6) with
respect to ϕ:

Lg =

K∑
k=1

Eq(θg ;ϕ) [KL (q(Wk;θk)||p(Wk|θg))]
]

+KL (q(θg;ϕ)||p(θg|α))

(7)

For communication efficiency, we specify q(θg;ϕ) as
a Dirac distribution centered on a specific value θ̂g as
q(θg;ϕ) = δ(θg − θ̂g). This leads to a simplified server
objective:

Lg =

K∑
k=1

KL
(
q(Wk;θk)||p(Wk|θ̂g)

)
− log p

(
θ̂g|α

)
(8)

By incorporating the hyper-prior in Equation (3), we have:

Lg =

K∑
k=1

KL
(
q(Wk;θk)||p(Wk|θ̂g)

)
+

λ1||µ̂g||2 + λ2||σ̂g||2
(9)

where ||µ̂g||2 =
∑M

i=1 µ̂
2
i,g, ||σ̂g||2 =

∑M
i=1 σ̂

2
i,g and

M = |Wk|. λ1 ∝ 1
σ2
1

and λ2 ∝ 1
σ2
2

are regularization
coefficients.

Client Part of the Objective: In each client, we update the
personalized posterior by minimizing its expected negative
log-likelihood over the local data while regularizing it with
the global posterior. Thus, the k-th client part of the overall
objective in Equation (6) is :

Lk =

K∑
k=1

[
Eq(Wk;θk) [− log p(Dk|Wk)]

+KL
(
q(Wk;θk)||p(Wk|θ̂g)

) ] (10)

Specifically, we specify each client’s local model as a per-
sonalized BNN. Thus its variational distribution is:

q(Wk;θk) = q(Wk;µk,σ
2
k)

=

M∏
i=1

N (Wi,k|µi,k,σ
2
i,k)

(11)

where µk = {µi,k} and σ2
k = {σ2

i,k}. µi,k and σ2
i,k

denote the mean and variance of a Gaussian distribution for
the i-th weight of k-th client’s local. To ensure that σi,k

takes non-negative values, we replace each σi,k by another
parameters ρi,k such that σi,k = log(1 + exp(ρi,k)).

In the context of FL systems, where each client data re-
mains inaccessible to the central server, we employ a block-
coordinate optimization approach (Wu & Lange, 2008; Di-
akonikolas & Orecchia, 2018) to optimize the objective
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functions. The optimization process consists of two alter-
nating steps: first on the server side, we optimize the global
variational parameters while keeping the client-specific vari-
ational parameters Θ fixed; second, on the client side, we
update the personalized variational parameters Θ for multi-
ple rounds while fixing the ϕ as a constant.

4. Theoretical Analysis
We provide theoretical analysis for the statistical conver-
gence of the personalized posterior distributions, and show
the existing Bayesian PFL methods are special instances of
our framework.

4.1. Statistical Convergence

We analyze the convergence behavior of the personalized
distributions for each client k: p(Wk|θk) towards the global
mean µ̄ = E[µg|W], which is close to the pooled estimate
W̄ by the FedAvg method.

Theorem 4.1. Let the hyperparameters α to be fixed, and
approximate the global posterior with p(µg,σ

2
g|W) =

δ(µg − µ̄)δ(σ2
g − σ̄2) for simplicity, then the convergence

of the personalized distribution mean:

E[θk|W] = βkµ̄+ (1− βk)θ̂k (12)

where βk =
σ2

k

σ2
k+σ̄2 .

It indicates that the mean of the personalized distribution
parameters: E[θk|W] lies in between the local MLE esti-
mate θ̂k = W̄k and the global mean µ̄. The convergence
of the personalized parameters towards the global mean is
thus governed by βk. There is larger convergence for clients
with smaller measurement precision (e.g., due to smaller
data sizes or noisy labels), since βk → 1 as σ2

k →∞.

4.2. Special Instances of our Hierarchical Bayesian
Inference PFL

Our proposed framework is fully general for heuristic aggre-
gations of existing Bayesian PFL methods. We can recover
the existing methods’ objectives as special cases by intro-
ducing additional constraints to the server-side objective in
Equation (9). We first expand Equation (9) as:

Lg =

K∑
k=1

Eq(Wk;θk)

[
− log p(Wk|θ̂g)

]
λ1||µ̂g||2 + λ2||σ̂g||2

(13)

Example I: pFedBayes (Zhang et al., 2022). Given the
constraints that the regularization coefficients are to zero

(i.e., λ1 = λ2 = 0), Equation 13 is simplifies to:

Lg′ =

K∑
k=1

Eq(Wk;θk)

[
− log p(Wk|θ̂g)

]
(14)

By setting the derivative of Lg′ with respect to θ̂g to 0, we
obtain pFedBayes’ aggregation rule for µ̂g′ :

µ̂g′ =
1

K

K∑
k=1

µk; σ̂2
g′ =

1

K

K∑
k=1

[(µk − µ̂g′)2 + σ2
k]

Furthermore, given an additional constraint µk = µ̂g′ , we
recover pFedBayes’ aggregation rule for σ̂2

g′ :

σ̂2
g′ =

1

K

K∑
k=1

σ2
k

Example II: pFedVEM (Zhu et al., 2023). With the same
constraint that λ1 = λ2 = 0 and assuming each client
equipped with a specific global distribution variance σ̂2

g′′
k

,
we can re-write Equation 13 as:

Lg′′ =

K∑
k=1

Eq(Wk;θk)

[
− log p(Wk|θ̂g′′

k
)
]

(15)

where θ̂g′′
k
= {µ̂g′′ , σ̂

2
g′′
k
}

By setting the derivative of Lg′′ with respect to θ̂g′′ to 0,
we have pFedVEM’s aggregation rule for µ̂g′′ :

µ̂g′′ =

∑K
k=1 τ̂ g′′

k
µk∑K

k=1 τ̂ g′′
k

where τ̂ g′′
k
= 1

σ̂2
g′′
k

and σ̂2
g′′
k
= (µk − µ̂g′′)2 + σ2

k.

As shown above, the arithmetic aggregation adopted by the
existing Bayesian PFL methods compute the global dis-
tribution by simply averaging the personalized posterior
parameters. The samples from the averaged global distribu-
tion limits their ability to capture non-IID characteristics of
the local models, blurring the statistical heterogeneity of the
local data. In contrast, the personalized posterior parameters
in our proposed framework are sampled from the convex
combination of the averaged distribution and each person-
alized distribution’s local estimates, as in Theorem 4.1. In
Section 6.3, our ablation study shows that the arithmetic
aggregation scheme setting λ1 = λ2 = 0 leads to inferior
performance.

5. Algorithm Implementation
We provide the pseudo-code of our algorithm along with a
description in Appendix A.3.
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Figure 3. Average test accuracy (%) of Personalized Model (PM) and Global Model (GM) across varying statistical heterogeneity
controlled by (a, b) and sampling rate (i.e., 0.1 and 0.2). Although the PM performance are comparable, our GM consistently outperforms
other methods across varying levels of statistical heterogeneity and under different client participation rates.

Local BNN Optimization: To compute the local BNN
for each client, as outlined in Equation (10), we utilize
recent advancements as Bayes-by-Backprop (Blundell et al.,
2015), which formulates an unbiased estimator for gradients
through re-parameterization.

Monte Carlo Approximation: We employ Monte Carlo
estimation to approximate the expectation term in Equa-
tion (10). The estimator is expressed as follows:

Eq(Wk;θk) [− log p(Dk|Wk)] ≈ −
1

S

S∑
s=1

log p
(
Dk|W(i)

k

)

where we draw S samples from the personalized posterior
distribution q(Wk;θk).

Base-Head Architecture: Recent studies have highlighted
the effectiveness of Base-Head architecture in PFL scenar-
ios (Collins et al., 2021; Kotelevskii et al., 2022; Zhu et al.,
2023). Following this paradigm, the global model is decom-
posed into base and head components. The corresponding
distribution parameters θ̂g of the global model are also
partitioned into base (θ̂g;base) and head (θ̂g;head) compo-
nents, such that θ̂g = θ̂g;base ⊕ θ̂g;head, where ⊕ denotes
a concatenation operation. Similarly, for each client k, the
local model is decomposed into base and head components,
with the corresponding personalized posterior distribution
parameters expressed as: θk = θk;base ⊕ θk;head. The
base component facilitates the extraction of common feature
representations across clients, while the head component
enables client-specific personalization.

Following (T Dinh et al., 2020; Zhu et al., 2023), at each
communication round, clients perform local Bayesian infer-
ence, deriving personalized posterior distribution over local
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Figure 4. Test accuracy vs. communication rounds for 100 clients
on CIFAR10. Our framework shows rapid convergence.

model parameters, regularized by global posterior distribu-
tion. A subset of clients communicates these personalized
posterior distribution parameters to the central server. The
server aggregates these personalized posteriors through a
global posterior distribution. Subsequently, the resulting
global posterior parameters are broadcast to all clients, fa-
cilitating the next training iteration. The code is available
online 1.

6. Experiments
6.1. Synthetic Experiment

In this experiment, we focus on assessing the performance
of the global model across diverse statistical heterogene-
ity scenarios of our proposed framework. We adopt (Li

1https://github.com/mahendrathapa/pFedHB
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Table 1. Average test accuracy of PMs and test accuracy of GM on FMNIST, CIFAR10, and CIFAR100 datasets for 50, 100, and 200
clients. Test accuracies are presented in percentage and the best results are highlighted in bold.

Dataset Method 50 Clients 100 Clients 200 Clients

PM (%) GM (%) PM (%) GM (%) PM (%) GM (%)

Local BNN only 88.7 ± 0.9 – 86.9 ± 0.9 – 85.2 ± 0.4 –
FedAvg – 83.5 ± 0.4 – 85.4 ± 0.3 – 85.9 ± 0.2
FedProx – 84.8 ± 0.5 – 86.3 ± 0.2 – 86.5 ± 0.1
Scaffold – 85.6 ± 0.2 – 85.4 ± 0.1 – 84.6 ± 0.0
FedPer 91.4 ± 0.1 – 90.7 ± 0.1 – 89.7 ± 0.1 –

FMNIST FedRep 91.5 ± 0.1 – 90.7 ± 0.1 – 89.9 ± 0.1 –
PerFedAvg 88.7 ± 0.2 – 88.6 ± 0.1 – 88.3 ± 0.2 –
pFedME 91.9 ± 0.1 82.0 ± 0.7 91.4 ± 0.1 84.4 ± 0.6 90.6 ± 0.1 85.1 ± 0.1
pFedBayes 91.9 ± 0.1 83.5 ± 0.3 91.3 ± 0.1 84.2 ± 0.3 90.5 ± 0.1 84.4 ± 0.1
pFedVEM 91.8 ± 0.1 83.9 ± 0.3 91.4 ± 0.1 85.6 ± 0.2 90.7 ± 0.1 86.2 ± 0.2
Ours 92.2 ± 0.3 86.1 ± 0.4 91.6 ± 0.3 85.9 ± 0.2 90.8 ± 0.1 85.2 ± 0.1

Local BNN only 54.9 ± 1.1 – 50.0 ± 0.1 – 45.6 ± 0.2 –
FedAvg – 57.7 ± 0.9 – 59.4 ± 0.6 – 59.2 ± 0.3
FedProx – 58.0 ± 0.7 – 59.4 ± 0.5 – 59.1 ± 0.2
Scaffold – 60.4 ± 0.3 – 59.8 ± 0.2 – 55.4 ± 0.3
FedPer 72.7 ± 0.3 – 68.4 ± 0.4 – 63.4 ± 0.3 –

CIFAR10 FedRep 71.4 ± 0.3 – 67.4 ± 0.4 – 62.8 ± 0.2 –
PerFedAvg 62.9 ± 0.8 – 65.6 ± 0.8 – 64.2 ± 0.1 –
pFedME 72.3 ± 0.1 56.6 ± 1.0 71.4 ± 0.2 60.1 ± 0.3 68.5 ± 0.2 58.7 ± 0.2
pFedBayes 71.4 ± 0.3 52.0 ± 1.0 68.5 ± 0.3 53.2 ± 0.7 64.6 ± 0.2 51.4 ± 0.3
pFedVEM 73.2 ± 0.2 56.0 ± 0.4 71.9 ± 0.1 60.1 ± 0.2 70.1 ± 0.3 59.4 ± 0.3
Ours 77.1 ± 0.1 65.9 ± 0.9 74.7 ± 0.3 63.8 ± 0.3 70.4 ± 0.2 59.5 ± 0.7

Local BNN only 39.5 ± 1.3 – 31.5 ± 1.0 – 26.2 ± 0.4 –
FedAvg – 51.7 ± 0.5 – 49.4 ± 0.7 – 44.7 ± 0.5
FedProx – 48.4 ± 0.6 – 45.5 ± 0.5 – 42.4 ± 0.3
Scaffold – 47.2 ± 0.4 – 41.4 ± 0.7 – 30.0 ± 0.1
FedPer 49.7 ± 0.7 – 39.3 ± 0.7 – 30.6 ± 0.9 –

CIFAR100 FedRep 50.9 ± 0.9 – 41.2 ± 0.6 – 30.5 ± 0.6 –
PerFedAvg 52.1 ± 0.4 – 48.3 ± 0.5 – 40.1 ± 0.3 –
pFedME 52.5 ± 0.5 47.9 ± 0.5 47.6 ± 0.5 45.1 ± 0.3 41.6 ± 1.8 41.5 ± 1.6
pFedBayes 49.6 ± 0.3 42.5 ± 0.5 46.5 ± 0.2 41.3 ± 0.3 40.1 ± 0.3 37.4 ± 0.3
pFedVEM 61.0 ± 0.4 52.8 ± 0.4 56.2 ± 0.4 52.3 ± 0.4 51.1 ± 0.6 49.2 ± 0.5
Ours 66.6 ± 0.4 56.0 ± 0.3 62.2 ± 0.3 55.4 ± 0.1 56.4 ± 0.6 52.4 ± 0.4

et al., 2020) to generate synthetic data that utilize param-
eters a and b to modulate statistical heterogeneity across
clients. Specifically, a controls the degree of divergence be-
tween local models, while b regulates the variation in local
data distributions among clients. The dataset is designed
to train a 10 class classifier on 60 dimensional real-value
data. Following (Li et al., 2020), we distribute the data to
N = 50 clients according to a power law distribution. We
run the experiments for 100 communication rounds. To sim-
ulate real-world federated learning conditions with partial
client participation, we measure performance across sam-
pling rates of 0.1 and 0.2. For all methods, we employ a
Bayesian Fully Connected network (Appendix A.4) for both
global and local models, with a local learning rate of 0.005,
local batch size same as local data size, and 10 local number
of epochs. We tune the hyperparameters of pFedBayes and
pFedVEM around their recommended values.

We evaluate the performance of both Personalized Models
(PMs) and Global Model (GM). The experimental results in
Figure 3 demonstrate that our framework consistently out-
performs the competing methods in GM performance across
varying levels of statistical heterogeneity and under differ-
ent client participation rates. Notably other methods’ GMs
exhibit significant performance degradation under high het-
erogeneity conditions. This indicates that the computation
of a higher level posterior distribution over the parameters
of the personalized posterior distribution on the server ef-
fectively harness the heterogeneous statistical strength of
the clients’ non-IID data to construct a robust and stable
global model. The performance of PMs remains comparable
across all approaches. This may be attributed to the rela-
tive simplicity of the synthetic dataset, characterized by low
feature dimensionality and a small data size, which enables
all methods to effectively capture the underlying non-IID
characteristics.
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Figure 5. Test accuracy vs. local data size for 50 and 100 clients on CIFAR100. Our framework provides greater collaborative learning
benefits for clients.

6.2. Performance Comparison on Real Data

We examine various categories of statistical heterogeneity
that exist in real-world FL scenarios – label distribution
skew: clients possess varying label distributions, label con-
cept drift: feature distributions differ among clients, and
data quantity disparity: clients have different amounts of
data (Ye et al., 2023; Zhu et al., 2023). Following (Zhu
et al., 2023), we assess performance on Fashion-MNIST
(FMNIST) (Xiao et al., 2017), CIFAR10 (Krizhevsky et al.,
2009), and CIFAR100 (Krizhevsky et al., 2009) datasets.
For label distribution skew, each client on FMNIST and CI-
FAR10 datasets has unique local data of 5 labels out of 10.
For label concept drift in CIFAR100, the task is superclass
predictions. We compare the performance of our approach
with the following FL frameworks: FedAvg (McMahan
et al., 2017), FedProx (Li et al., 2020), Scaffold (Karim-
ireddy et al., 2020), FedPer (Arivazhagan et al., 2019), Fe-
dRep (Collins et al., 2021), PerFedAvg (Fallah et al., 2020),
pFedME (T Dinh et al., 2020), pFedBayes (Zhang et al.,
2022), pFedVEM (Zhu et al., 2023), and Local BNN only,
which refers to BNN optimized independently at each client.

We run the experiments for 100 communication rounds. To
emulate real-world FL conditions characterized by partial
client participation, each client has a probability of 0.1 to
communicate its local model parameters back to the server
during each round of communication following a binomial
distribution. The experimental setup encompasses varying
numbers of clients, specifically 50, 100, and 200. For model
architectures, we employ Bayesian MLP with one hidden
layer for FMNIST, a LeNet-like Bayesian CNN for Cifar10,
and a 6-layer Bayesian CNN for CIFAR-100 similar to the

configuration in (Zhu et al., 2023) (Appendix A.4). For
each dataset, we conduct grid search for hyperparameter op-
timization for our proposed method using K = 100 client
and apply those configurations to K = 50 and K = 200
case. We report the average test accuracy (%) with corre-
sponding standard error, computed over three independent
runs, each with a different random seed. We conduct all the
experiments using NVIDIA A5000 GPUs.

6.2.1. PERFORMANCE COMPARISON

Table 1 presents a comprehensive performance across three
datasets: FMNIST, CIFAR10 and CIFAR100, with vary-
ing number of clients (50, 100, 200). Our Global Model
(GM) consistently outperforms existing approaches. On
the CIFAR10 dataset, our GM outperforms competing mod-
els by 5.5%, 3.7% for 50 and 100 clients, respectively, and
achieves comparable performance for 200 clients. Our GM’s
performance on the CIFAR100 dataset is consistently supe-
rior, surpassing other models by 3.2%, 3.1%, and 3.2% for
50, 100, and 200 clients, respectively. These results indicate
that our framework effectively shares the heterogeneous
statistical strength across local models via a hierarchical
setup. For the FMNIST dataset, especially with 100 and
200 clients, our GM maintains performance comparable to
state-of-the-art approaches, likely due to the relative sim-
plicity of the dataset and the limited presence of non-IID
characteristics. Our Personalized Model (PM) demonstrates
superior performance compared to the competing methods.
On the FMNIST dataset, our approach exhibits superior per-
formance across all client configurations. On the CIFAR10
dataset, our PM consistently outperforms competing algo-
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Table 2. Average test accuracy of PM and GM on CIFAR100 dataset of our method using different global model regularization coefficients.
Test accuracies are presented in percentage and the best results are highlighted in bold.

Regularization Coefficients 50 Clients 100 Clients 200 Clients

(λ1, λ2) PM (%) GM (%) PM (%) GM (%) PM (%) GM (%)

(0, 0) 61.9 ± 1.1 53.1 ± 0.2 59.4 ± 0.4 52.9 ± 0.2 55.3 ± 0.2 51.1 ± 0.5
(1, 1) 63.2 ± 1.1 54.7 ± 0.4 60.7 ± 0.3 54.4 ± 0.4 56.2 ± 0.3 51.8 ± 0.4
(0, 5) 61.7 ± 0.6 53.8 ± 0.2 59.6 ± 0.4 53.8 ± 0.2 55.9 ± 0.1 52.4 ± 0.7
(5, 0) 65.4 ± 1.2 54.6 ± 0.4 60.7 ± 0.3 52.9 ± 0.3 53.9 ± 1.1 48.1 ± 0.8
(5, 5) 66.6 ± 0.4 56.0 ± 0.3 62.2 ± 0.3 55.4 ± 0.1 56.4 ± 0.6 52.4 ± 0.4

(10, 10) 66.6 ± 1.3 51.9 ± 0.7 62.2 ± 0.2 50.1 ± 3.7 55.4 ± 0.4 49.2 ± 1.6

rithms, with performance gains of 3.9%, 2.8%, and 0.3%
for 50, 100, and 200 clients, respectively. The performance
gains are even more pronounced on the CIFAR100 dataset,
where our PM surpasses competing algorithms by substan-
tial margins of 5.6%, 6.0%, and 5.3% for 50, 100, and 200
clients, respectively. This demonstrates the ability of our
method to effectively retain distinctive characteristics of
local data via enabling client-level model personalization.

Moreover, Figure 4 shows the convergence behavior of vari-
ous algorithms on CIFAR10 for 100 clients. Our framework
demonstrates rapid convergence, achieving competitive per-
formance at approximately half the total communication
rounds required by the baseline methods. This efficiency is
crucial in FL, where minimizing communication rounds is
important. Similar convergence patterns are observed for
scenarios involving 50 and 200 clients (Appendix A.7).

Furthermore, Table 1 shows the overall performance of PFL
methods consistently surpasses that of Local BNN only
approach across all experimental settings. We further inves-
tigate the collaborative learning benefits across clients with
diverse local data sizes. Specifically, we perform an exper-
iment using CIFAR100 across 50 and 100 clients and plot
test accuracy over local data size in Figure 5. It shows that
our framework provides greater benefits to clients compared
to the competing approaches and incentivize participation
from clients for the collaborative training process.

6.3. Ablation Study

We conduct an ablation study to investigate the impact of
regularization on model performance. For this, we perform
experimentation using CIFAR100 across 50, 100, and 200
clients. Table 2 shows the model’s performance without
regularization (λ1, λ2) = (0, 0) consistently underperforms
compared to regularized configurations. It suggests that
hyper-prior over personalized posterior parameters plays an
important role in enhancing both PM and GM generaliza-
tion. The best performance is achieved with regularization
coefficients (λ1, λ2) = (5, 5). Importantly, with either λ1

or λ2 set to 0, the model’s performance degrades. This

indicates that the hyper-prior over both µ̂g and σ̂g plays
a crucial role in enhancing the model performance. Fur-
thermore, excessive regularization (e.g., (10, 10)) negatively
impacts the model performance, particularly for the global
model. This suggests that overly stringent regularization
can potentially constrain the model’s learning capacity.

We investigate the impact of updating order of local model’s
base and head components in Appendix A.5. Consistent
with (Collins et al., 2021; Zhu et al., 2023), our findings
indicate that updating the head component prior to the
base yields the best performance. We also demonstrate
the scalability of our proposed method to a large number
of clients and the generalization to more complex datasets,
along with the evaluation of uncertainty quantification in
Appendix A.9.

7. Conclusion
Our hierarchical Bayesian inference PFL framework speci-
fies a hyper-prior over the parameters of personalized poste-
riors. This enables us to jointly compute a global posterior
for aggregation and local posteriors for personalization. Re-
sults shows by sharing heterogeneous statistical strength
across clients while retaining their distinctive characteris-
tics, our framework yields state-of-the-art performance. Our
hierarchical Bayesian approach for PFL offers a principled
framework that enables effective generalization in low-data
regimes, quantifies uncertainty, and enhances robustness
(Cao et al., 2023).
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A. Appendix
A.1. Stochastic VI for the Hierarchical Bayesian PFL

We minimize the Kullback-Leibler (KL) divergence between the variational distribution q(θg,W;ϕ,Θ) and true posterior
p(θg,W|D, α) with respect to the variational parameters (ϕ,Θ):

ϕ∗,Θ∗ = argmin
ϕ,Θ

KL [q(θg,W;ϕ,Θ)||p(θg,W|D, α)]

By the definition of KL divergence:

KL [q(θg,W;ϕ,Θ)||p(θg,W|D, α)] = Eq(θg,W;ϕ,Θ)

[
log

q(θg,W;ϕ,Θ)

p(θg,W|D, α)

]
Using Bayes’ theorem:

p(θg,W|D, α) =
p(D|W)p(W|θg)p(θg|α)

p(D|α)
Thus, the KL divergence becomes:

Eq(θg,W;ϕ,Θ) [log q(θg,W;ϕ,Θ)− log p(D|W)− log p(W|θg)− log p(θg|α) + log p(D|α)]

Since p(D|α) is independent of ϕ and Θ, minimizing the KL divergence is equivalent to minimizing the following ELBO:

L = Eq(θg,W;ϕ,Θ) [− log p(D|W)− log p(W|θg)− log p(θg|α) + log q(θg,W;ϕ,Θ)]

We specify a variational distribution q(θg,W;ϕ,Θ) to approximate the true posteriors as follows:

log q(θg,W;ϕ,Θ) = log q(θg;ϕ) + log q(W;Θ)

where q(θg;ϕ) denotes the variational distribution of the global posterior parameters and q(W;Θ) represents the personal-
ized posterior distribution over client local model weights.

Thus, the ELBO becomes:

L = Eq(θg,W;ϕ,Θ) [− log p(D|W)− log p(W|θg)− log p(θg|α) + log q(θg;ϕ) + log q(W;Θ)]

= Eq(θg,W;ϕ,Θ)

[
− log p(D|W) + log

q(W;Θ)

p(W|θg)
+ log

q(θg;ϕ)

p(θg|α)

]

As clients are conditionally independent given the common prior θg , the ELBO becomes:

L =

K∑
k=1

[
Eq(Wk;θk) [− log p(Dk|Wk)] + Eq(θg ;ϕ)[Eq(Wk;θk)[log

q(Wk;θk)

p(Wk|θg)
]]
]
+ Eq(θg ;ϕ)

[
log

q(θg;ϕ)

p(θg|α)

]

=

K∑
k=1

[
Eq(Wk;θk) [− log p(Dk|Wk)] + Eq(θg ;ϕ) [KL (q(Wk;θk)||p(Wk|θg))]

]
+KL (q(θg;ϕ)||p(θg|α))

A.2. Statistical Convergence

After computing the approximate global posterior in Equation (4) via stochastic variational inference (i.e., Section 3.3),
we analyze the convergence of the personalized distribution for each client k: p(Wk|θk), where θk = {µk,σ

2
k} are the

parameters of the client k’s personalized posterior, as in Section 3.2, andWk denotes the weights of the local model (i.e.,
Bayesian neural networks).

Specifically, we analyze the convergence behavior of the personalized distributions towards the global mean µ̄ = E[µg|W],
which is close to the pooled estimate W̄ . Let the hyperparameters α to be fixed, and we adopt the approximation to the

13



Harnessing Heterogeneous Statistical Strength for Personalized Federated Learning via Hierarchical Bayesian Inference

global posterior p(µg,σ
2
g|W) = δ(µg − µ̄)δ(σ2

g − σ̄2) for simplicity, then the marginal distribution of the personalized
distribution parameters is:

p(θk|W) =

∫
p(θk|Wk,θg)p(θg|W)dθg (16)

≈ p(θk|Wk, µ̄, σ̄
2) (17)

note that θg = {µg,σ
2
g}.

Meanwhile, the above marginal posterior can be expressed as

p(θk|Wk, µ̄, σ̄
2) ∝ p(Wk|θk) · p(θk|µ̄, σ̄2) (18)

= N (Wk|θk) · N (θk|µ̄, σ̄2) (19)

= exp(− (θ̂k − θk)
2

σ2
k

) · exp(− (θk − µ̄)2

σ̄2
) (20)

= exp(−( 1

2σ2
k

+
1

2σ̄2
)θ2

k + (
θ̂k

σ2
k

+
µ̄

σ̄2
)θk − (

θ̂
2

k

2σ2
k

+
µ̄2

2σ̄2
)) (21)

where θ̂k = W̄k denotes the local MLE estimate.

Since the marginal posterior p(θk|Wk, µ̄, σ̄
2) = N (θk|E[θk|W], V ar[θk|W]) is a Gaussian due to conjugacy, by matching

the coefficients in the quadratic and linear terms of the two expressions, we have the variance of the marginal distribution as

1

2V ar[θk|W]
=

1

2σ2
k

+
1

2σ̄2
(22)

V ar[θk|W] =
σ2

kσ̄
2

σ2
k + σ̄2

(23)

and the mean of the marginal distribution as

E[θk|W]

V ar[θk|W]
=

θ̂k

σ2
k

+
µ̄

σ̄2
(24)

E[θk|W] = (
θ̂k

σk
+

µ̄2

σ̄2
) · V ar[θk|W] (25)

= βkµ̄+ (1− βk)θ̂k (26)

where βk =
σ2

k

σ2
k+σ̄2 .

It indicates that the mean of the personalized distribution parameters: E[θk|W] lies in between the local MLE estimate
θ̂k = W̄k and the global mean µ̄. The convergence of the personalized parameters towards the global mean is governed by
βk. Thus, we see that there is larger convergence for clients with smaller measurement precision (e.g., due to smaller data
sizes or noisy labels), since βk → 1 as σ2

k →∞.

A.3. Algorithmic Description

In our proposed framework, clients perform local Bayesian inference at each communication round, deriving personalized
posterior distribution over local model parameters. A subset of clients communicates these parameters to the central server.
The central server then aggregates these personalized posteriors to construct a global posterior, which is regularized by a
hyper-prior. Subsequently, the server broadcasts the latest global posterior to all clients for the next training iteration. The
full procedure of our proposed works is shown in Algorithm 1.

A.4. Model Architecture

The Model architectures for Synthetic, FMNIST, CIFAR10, and CIFAR100 datasets used in this proposed work are shown
in Figure 6. We employ a Bayesian Fully Connected network for synthetic data, a Bayesian MLP with one hidden layer
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for FMNIST, a LeNet-like Bayesian CNN for Cifar10, and a 6-layer Bayesian CNN for CIFAR-100. Each architecture
incorporates ReLU activation functions following Bayesian Fully Connected networks and Bayesian Convolutional Layer.
All models are structurally decomposed into Base and Head components, with the Head component comprising only the
last layer, while the Base component encompasses all preceding layers. Notably, as the synthetic data model consists of
Bayesian Fully Connected layers only, it doesn’t have a Base component.

5 x 5 @ 32 BCONV

2 x 2 Max Pool

2 x 2 Max Pool

5 x 5 @ 16 BCONVBase784 x 100 BFCBase

FMNIST

64 x 10 BFCHead

100 x 10 BFCHead

84 x 10 BFC

800 x 120 BFC

120 x 84 BFC

Head

Synthetic Data CIFAR10 CIFAR100

3 x 3 @ 64 BCONV

2 x 2 Max Pool

2 x 2 Max Pool

3 x 3 @ 128 BCONV

2 x 2 Max Pool

3 x 3 @ 256 BCONV

2 x 2 Max Pool

3 x 3 @ 100 BCONV

Adaptive Avg Pool

3 x 3 @ 32 BCONVBase

100 x 10 BFCHead

Figure 6. Model architectures for Synthetic, FMNIST, CIFAR10 and CIFAR100 datasets. BFC refers to Bayesian Fully Connected Layer
and BCONV refers to Bayesian Convolutional Layer.
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Figure 7. Test accuracy vs. communication rounds for 50 and 100 clients on CIFAR10.

A.5. Base-Head Updating Order

We investigate the impact of different updating orders of the local model’s base and head components. Specifically, we
consider three updating orders: updating the base component only (Oh et al., 2022), updating the base followed by the head,
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Table 3. Average test accuracy of PM and GM on CIFAR10 dataset of our method using different update orders. Test accuracies are
presented in percentage and the best results are highlighted in bold.

Update Order Sharing Component 50 Clients 100 Clients 200 Clients

PM (%) GM (%) PM (%) GM (%) PM (%) GM (%)

Base only Base only 76.8 ± 0.2 – 72.9 ± 0.2 – 68.3 ± 0.4 –
Base → Head Both base & head 76.7 ± 0.4 65.1 ± 0.5 72.6 ± 0.8 60.6 ± 0.6 68.3 ± 0.4 57.3 ± 0.6
Head → Base Both base & head 77.1 ± 0.1 65.9 ± 0.9 74.7 ± 0.3 63.8 ± 0.3 70.4 ± 0.2 59.5 ± 0.7

and updating the head followed by the base (Collins et al., 2021; Zhu et al., 2023). We perform experimentation using
CIFAR10 across 50, 100 and 200 clients. The experimental results in Table 3 indicate that the strategy of updating the head
followed by the base consistently yields superior performance. This updating order facilitates initial adaptation of the head
components to the client’s local data, which is subsequently followed by refinement of shared feature representation through
updates to the base components.

A.6. Hyperparameters

We list all the hyperparameters of our method for the Synthetic, FMNIST, CIFAR10, and CIFAR100 datasets in Table 4.
Our initial hyperparameters configuration is based on the recommendation provided by pFedVEM (Zhu et al., 2023).
Subsequently, we leverage grid search to finetune these hyperparameters for our proposed method. Compared to baseline
methods, our proposed approach incurs additional computational overhead of tuning the regularization coefficients λ1 and
λ2 via grid search. Our ablation study, as in Section 6.3, demonstrate that these regularization coefficients are critical to the
superior performance for Bayesian personalized federated learning (pFL) in general. Disabling them leads to a substantial
degradation in performance, highlighting the major performance bottleneck of the prior approaches.

Table 4. Hyperparameters of our proposed method for various datasets. For the synthetic data, which consists only of the head component,
base component hyperparameters are not applicable (denoted by –).

Hyperparameter Synthetic Data FMNIST CIFAR10 CIFAR100

Local Batch size for base – 50 50 50
Local Batch size for head Local data size Local data size Local data size Local data size

Local optimizer Adam Adam Adam Adam
Local learning rate for base – 0.001 0.001 0.001
Local learning rate for head 0.005 0.001 0.001 0.001

Local epochs for base – 2 2 4
Local epochs for head 10 10 10 20

Global learning rate for base – 0.01 0.01 0.01
Global learning rate for head 0.01 0.01 0.01 0.01

Global epochs for base – 5 5 5
Global epochs for head 10 5 5 5

Global optimizer Adam Adam Adam Adam
λ1 1 5 5 5
λ2 1 5 5 5

Local KL coefficient for base – 10−6 10−6 10−6

Local KL coefficient for head 1 1 1 1

A.7. Convergence Behavior

Figure 7 show the convergence behavior of various algorithms on the CIFAR10 dataset for 50 and 200 clients, respectively.
Our proposed method demonstrates rapid convergence for 50 clients, achieving the competitive performance of PM and GM
at approximately one-fourth and half of the communication rounds needed by the baseline approaches. In the case of 200
clients, our method’s convergence rate is comparable to other competitive approaches.
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A.8. Computational Cost

We measure the average local training time per communication round across three configurations: non-Bayesian (McMahan
et al., 2017), non-Bayesian base with Bayesian head (Zhu et al., 2023), and full-Bayesian approaches (Zhang et al., 2022).
Our proposed method also employs a full-Bayesian framework. For this, we perform an experiment using CIFAR10, with all
100 clients participating in each communication round. As shown in Table 5, full-Bayesian methods incur high computation
costs, leading to a longer local training time per communication round.

Table 5. Average local training time (in seconds) per communication round on CIFAR10 with all 100 clients available

Method Local Training Time (seconds)

non-Bayesian 21.42 ± 1.36
non-Bayesian base with Bayesian head 43.14 ± 3.22

full-Bayesian 90.38 ± 4.50

A.9. Additional Experiments

A.9.1. SCALABILITY UNDER LARGE NUMBER OF CLIENTS

To evaluate the scalability of our proposed methods under a significantly large number of clients, we conduct experiments on
the CIFAR10 dataset with 1000 clients, where each client has unique local data of 5 labels out of 10. As shown in Table 6,
our methods scale well with a large number of clients.

Table 6. Average test accuracy of PM and GM on CIFAR10 dataset for 1000 clients. Test accuracies are presented in percentage and the
best results are highlighted in bold.

Method PM (%) GM (%)

FedAvg – 48.7 ± 1.1
pFedVEM 59.0 ± 0.4 48.6 ± 0.9

Ours 61.0 ± 0.3 52.3 ± 0.4

A.9.2. GENERALIZATION UNDER COMPLEX DATASET

To assess the generalization capability of our proposed method on a more complex dataset with a large number of categories,
we conduct experiments on the Tiny-ImageNet dataset (Le & Yang, 2015). The experimental setup includes 50 clients,
each with local data consisting of 50 labels out of 200. As presented in Table 7, our proposed framework achieves the best
performance.

Table 7. Average test accuracy of PM and GM on Tiny-ImageNet dataset for 50 clients. Test accuracies are presented in percentage and
the best results are highlighted in bold.

Method PM (%) GM (%)

FedAvg – 10.1 ± 0.7
pFedVEM 33.5 ± 0.2 18.5 ± 0.4

Ours 42.4 ± 0.1 25.7 ± 0.1

A.9.3. UNCERTAINTY QUANTIFICATION

To demonstrate the effectiveness of the Bayesian framework in uncertainty quantification, we evaluate predictive uncertainty
on the CIFAR10 dataset. We adopt (Hahn et al., 2022) to simulate a noisy labels scenario by applying symmetric flipping
(Van Rooyen et al., 2015) with a noise ratio of 0.2. We report the test Expected Calibration Error (ECE) (Naeini et al., 2015)
and test accuracy. As shown in Table 8, our proposed method’s uncertainty quantification is comparable with pFedVEM in
the Personalized Model setting, while consistently achieving higher accuracy across all experimental configurations.
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Table 8. Average test Expected Calibration Error (ECE) and test accuracy (Acc) of PM and GM on CIFAR10 dataset under noisy labels.
Test accuracies are presented in percentage and the best results are highlighted in bold.

Method 50 Clients 100 Clients

PM: ECE (Acc) GM: ECE (Acc) PM: ECE (Acc) GM: ECE (Acc)

FedAvg – 0.37 ± 0.06 (36.8 ± 0.9) – 0.35 ± 0.08 (37.9 ± 2.5)
pFedVEM 0.13 ± 0.01 (70.1 ± 0.4) 0.19 ± 0.01 (46.1 ± 2.3) 0.17 ± 0.00 (68.0 ± 0.4) 0.22 ± 0.00 (49.6 ± 2.9)
Ours 0.15 ± 0.00 (72.6 ± 0.4) 0.28 ± 0.00 (59.8 ± 0.3) 0.16 ± 0.01 (70.3 ± 0.3) 0.26 ± 0.00 (57.6 ± 0.7)

A.9.4. COMPARISON WITH NON-FL SETUP

We compare the performance of our proposed method against a non-federated learning (non-FL) centralized setup, imple-
mented using a deterministic neural network trained on the entire dataset. As shown in Table 9, the performance of the
centralized setup does not necessarily serve as an upper bound for the federated learning (FL) setup, particularly in the
case of personalized model. This may be attributed to the centralized model’s need to generalize across the entire data
distribution, which often leads to a reliance on globally shared features while neglecting local patterns that may be critical
for certain subsets of the data. In contrast, personalized model captures local patterns effectively, resulting in improved
performance.

Table 9. Average test accuracy of PMs and GM for 50 clients for Federated Learning (FL) setup and test accuracy for non-FL Centralized
Learning setup on FMNIST, CIFAR10, and CIFAR100 datasets.Test accuracies are presented in percentage. NN refers to determinstic
neural networks.

Method FMNIST CIFAR10 CIFAR100

PM (%) GM (%) PM (%) GM (%) PM (%) GM (%)

FL (Ours; 50 Clients) 92.2 ± 0.3 86.1 ± 0.4 77.1 ± 0.1 65.9 ± 0.9 66.6 ± 0.4 56.0 ± 0.3
Non-FL (Centralized; NN) 88.6 ± 0.2 68.3 ± 0.4 57.3 ± 0.5
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Algorithm 1 Our Method
Input:
K: Total number of clients indexed by k
T : Total number of communication rounds
C: Client sampling rate
Eb: Total number of local base epochs
Eh: Total number of local head epochs
Es: Total number of global epochs

Initialize:
Global BNN model characterized by Global posterior distribution parameters θ̂

0

g

Local BNN model characterized by Personalized posterior distribution for all client {θ0
k} ∀k ∈ K

for t = 0 to T − 1 do
Server executes:
for k = 1 to K in parallel do
θt+1
k ← ClientUpdate(k, θ̂

t

g)
St ← Select a random subset of clients using Binomial distribution B(K,C)

θ̂
t+1

g ← ServerUpdate({θt+1
k′ }k′∈St)

ServerUpdate({θt+1
k′ }k′∈St):

▷ Optimize global BNN model’s base component distribution parameters using Equation (9)
for i = 1 to Es do
θ̂
t+1

g;base = argmin
θ̂g;base

Lg(θ̂
t

g;base, θ̂
t

g;head, {θ
t+1
k′ }k′∈St)

▷ Optimize global BNN model’s head component distribution parameters using Equation (9)
for i = 1 to Es do
θ̂
t+1

g;head = argmin
θ̂g;head

Lg(θ̂
t+1

g;base, θ̂
t

g;head, {θ
t+1
k′ }k′∈St)

θ̂
t+1

g ← θ̂
t+1

g;base ⊕ θ̂
t+1

g;head

return θ̂
t+1

g

ClientUpdate(k, θ̂
t

g):

▷ Initialize local BNN model’s base component distribution parameters
θt
k;base ← θ̂

t

g;base

▷ Optimize local BNN model’s head component distribution parameters using Equation (10)
for i = 1 to Eh do
θt+1
k;head = argmin

θk;head

Lk(θ
t
k;base,θ

t
k;head, θ̂

t

g;head)

▷ Optimize local BNN model’s base component distribution parameters using Equation (10)
for i = 1 to Eb do
θt+1
k;base = argmin

θk;base

Lk(θ
t
k;base,θ

t+1
k;head, θ̂

t

g;base)

θt+1
k ← θt+1

k;base ⊕ θt+1
k;head

return θt+1
k
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