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Abstract
We consider the reinforcement learning (RL) prob-
lem with general utilities which consists in max-
imizing a function of the state-action occupancy
measure. Beyond the standard cumulative re-
ward RL setting, this problem includes as par-
ticular cases constrained RL, pure exploration
and learning from demonstrations among others.
For this problem, we propose a simpler single-
loop parameter-free normalized policy gradient
algorithm. Implementing a recursive momen-
tum variance reduction mechanism, our algorithm
achieves Õ(ϵ−3) and Õ(ϵ−2) sample complexi-
ties for ϵ-first-order stationarity and ϵ-global opti-
mality respectively, under adequate assumptions.
We further address the setting of large finite state
action spaces via linear function approximation
of the occupancy measure and show a Õ(ϵ−4)
sample complexity for a simple policy gradient
method with a linear regression subroutine.

1. Introduction
While the classical Reinforcement Learning (RL) problem
consists in learning a policy maximizing the expected cu-
mulative sum of rewards through interaction with an en-
vironment, several other problems of practical interest are
concerned with objectives involving more general utilities.
Examples of such problems include pure exploration in RL
via maximizing the entropy of the state visitation distribu-
tion (see for e.g., Hazan et al. (2019); Mutti et al. (2022a)),
imitation learning via minimizing an f -divergence between
state-action occupancy measures of an agent and an ex-
pert (Ghasemipour et al., 2020), risk-sensitive (Zhang et al.,
2021a) or risk-averse RL maximizing, for instance, the Con-
ditional Value-at-Risk (Garcıa & Fernández, 2015), con-
strained RL (see for e.g., Altman (1999); Borkar (2005);
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Bhatnagar & Lakshmanan (2012); Miryoosefi et al. (2019);
Efroni et al. (2020)), experiment design (Mutny et al., 2023)
and diverse skill discovery (Eysenbach et al., 2019) among
others. We refer the interested reader to Table 1 in Zahavy
et al. (2021); Mutti et al. (2022b), Zhang et al. (2020) and
references therein for further examples and a more compre-
hensive description of such problems.

Recently, Zhang et al. (2020; 2021b) proposed a unified for-
mulation encapsulating all the aforementioned problems as
a maximization of a functional (which may not be concave)
over the set of state-action occupancy measures. Interest-
ingly, this formulation generalizes standard RL which corre-
sponds to maximizing a linear functional of the state-action
occupancy measure (Puterman, 2014). Subsuming the stan-
dard RL problem, the case where the objective functional is
convex (concave for maximization) in the occupancy mea-
sure is known as Convex RL (Zhang et al., 2020; Zahavy
et al., 2021; Geist et al., 2022; Mutti et al., 2022b).

Unlike the standard RL problem which enjoys a nice addi-
tive structure, the more general nonlinear functional alters
the additive structure of the problem, invalidates the classi-
cal Bellman equations as a consequence and hence hinders
the standard use of the dynamical programming machin-
ery (see for e.g., Bertsekas (2019); Sutton & Barto (2018)).
While value-based methods are not meaningful anymore in
this general (nonlinear) utilities setting, Zhang et al. (2020;
2021b) proposed a direct policy search method to solve the
RL problem with general utilities. This class of methods
directly updates a parametrized policy along the gradient
direction of the objective function. More precisely, Zhang
et al. (2021b) propose a double-loop Policy Gradient (PG)
method called TSIVR-PG implementing a variance reduc-
tion mechanism requiring two large batches and checkpoints.
Similarly to existing variance-reduced PG methods in the
standard RL setting, the algorithm makes use of importance
sampling (IS) weights to account for the distribution shift
inherent to the RL setting. Interestingly, while most existing
variance-reduced PG methods make an unrealistic and un-
verifiable assumption which guarantees that the IS weights
variance is bounded at each iteration of the algorithm, Zhang
et al. (2021b) alleviate this issue by using a gradient trunca-
tion mechanism. Such a strategy consisting in performing a
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truncated gradient step can be formulated as solving a trust-
region subproblem at each iteration, which is reminiscent
of trust-region based algorithms such as TRPO (Schulman
et al., 2015) and PPO (Schulman et al., 2017). In partic-
ular, implementing TSIVR-PG requires tuning a gradient
truncation radius depending on problem parameters while
also choosing adequate large batches. Besides these algo-
rithmic considerations, a major limitation of recent prior
work (Zhang et al., 2021b; 2020; Kumar et al., 2022) is the
need to estimate the unknown occupancy measure at each
state-action pair. In several problems of practical scale, the
number of states and/or actions is prohibitively large and
renders tabular methods intractable. For instance, the size
of a state space grows exponentially with the number of
state variables. This is commonly known as the curse of
dimensionality.

In this paper, we consider the RL problem with general
utilities. Our contributions are as follows:

• We propose a novel single-loop normalized PG algorithm
called N-VR-PG using only a single trajectory per it-
eration. In particular, our algorithm does not require
the knowledge of problem specific parameters, large
batches nor checkpoints unlike TSIVR-PG in Zhang et al.
(2021b). Instead of gradient truncation, we propose to
use a normalized update rule for which no additional
gradient truncation hyperparameter is needed. At the
heart of our algorithm design is a recursive double vari-
ance reduction mechanism implemented with momen-
tum for both the stochastic policy gradient and the oc-
cupancy measure estimator (in the tabular setting), akin
to STORM (Cutkosky & Orabona, 2019) in stochastic
optimization.

• We show that using a normalized gradient update guaran-
tees bounded IS weights for the softmax parametrization.
Unlike in most prior works focusing on the particular
case of the standard RL setting, variance of IS weights
is automatically bounded and no further assumption is
needed. We further demonstrate that IS weights can also
be similarly controlled when using a gaussian policy for
continuous state-action spaces under mild assumptions.

• In the general utilities setting with finite state-action
spaces and softmax policy, we show that our algorithm
requires Õ(ε−3) samples to reach an ε-stationary point
of the objective function and Õ(ε−2) samples to reach
an ε-globally optimal policy by exploiting the hidden
concavity of the problem when the utility function is con-
cave and the policy is overparametrized. In the standard
RL setting, we further show that such sample complexity
results also hold for continuous state-action spaces when
using the gaussian policy under adequate assumptions.

• Beyond the tabular setting, we consider the case of large

finite state and action spaces which has not been previ-
ously addressed in this general setting to the best of
our knowledge. We consider approximating the un-
known state-action occupancy measure itself by a linear
combination of pre-selected basis functions via a least-
mean-squares solver. This linear function approximation
procedure combined with a stochastic policy gradient
method results in an algorithm for solving the RL prob-
lem with general nonlinear utilities for large state and
action spaces. Specifically, we show that our PG method
requires Õ(ε−4) samples to guarantee an ε-first-order
stationary point of the objective function up to an error
floor due to function approximation.

Related works. We briefly discuss standard RL before
closely related works for RL with general utility.

Variance-reduced PG for standard RL. In the last few
years, there has been a vast array of work around variance-
reduced PG methods for solving the standard RL problem
with a cumulative sum of rewards to reduce the high variance
of the stochastic policy gradients (see for e.g., Papini et al.
(2018); Xu et al. (2020a); Pham et al. (2020); Gargiani et al.
(2022)). Yuan et al. (2020); Huang et al. (2020) proposed
momentum-based policy gradient methods. All the afore-
mentioned works use IS and make an unverifiable assump-
tion stipulating that the IS weights variance is bounded. To
relax this unrealistic assumption, Zhang et al. (2021b) pro-
vide a gradient truncation mechanism complementing IS for
the specific case of the softmax parameterization whereas
Shen et al. (2019); Salehkaleybar et al. (2022) incorporate
second-order information for which IS is not needed. Even
in the special case of standard cumulative reward, our algo-
rithm differs from prior work in that it combines the follow-
ing features: it is single-loop, runs with a single trajectory
per iteration and uses a normalized update rule to control
the IS weights without further assumption. In particular, our
algorithm does not make use of second order information
and thus our analysis does not require second-order smooth-
ness conditions. Typically, variance-reduced PG methods
guarantee a Õ(ε−3) sample complexity to reach a first-order
stationary policy, improving over its Õ(ε−4) counterpart for
vanilla PG. Subsequently to the recent work of Agarwal et al.
(2021) which provided global optimality guarantees for PG
methods despite the non-concavity of the problem, several
works (Liu et al., 2020; Zhang et al., 2021b; Ding et al.,
2021; 2022; Yuan et al., 2022; Masiha et al., 2022; Yuan
et al., 2023) established global optimality guarantees for
stochastic PG methods with or without variance reduction
under policy parametrization. The best known sample com-
plexity to reach an ϵ-globally optimal policy is Õ(ϵ−2) and
was achieved via policy mirror descent without parametriza-
tion (Lan, 2022; Xiao, 2022), with log-linear policies re-
cently (Yuan et al., 2023) and via variance-reduced PG
for softmax parametrization by exploiting hidden convex-
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ity (Zhang et al., 2021b). Very recently, Fatkhullin et al.
(2023) obtained a Õ(ϵ−2) sample complexity for Fisher-
non-degenerate parametrized policies.

RL with General Utility. There is a huge literature address-
ing control problems with nonstandard utilities that we can-
not hope to give justice to. Let us mention though some early
examples in Operations Research such as inventory prob-
lems with constraints on the probability of shortage (Derman
& Klein, 1965) and variance-penalized MDPs (Filar et al.,
1989; Kallenberg, 1994) where the problem is formulated as
a nonlinear program in the space of state-action frequencies.
In the rest of this section, we briefly discuss the most rele-
vant research to the present paper. Zhang et al. (2020) study
the policy optimization problem where the objective func-
tion is a concave function of the state-action occupancy mea-
sure to include several known problems such as constrained
MDPs, exploration and learning from demonstrations. To
solve this problem for which dynamic programming cannot
be employed, Zhang et al. (2020) investigate policy search
methods and first define a variational policy gradient for RL
with general utilities as the solution to a stochastic saddle
point problem. Exploiting the hidden convexity structure of
the problem, they further show global optimality guarantees
when having access to exact policy gradients. However,
the procedure to estimate even a single policy gradient via
the proposed primal-dual stochastic approximation method
from sample paths turns out to be complex. Leveraging the
formulation of the RL problem as a stochastic composite
optimization problem, Zhang et al. (2021b) later proposed
a (variance-reduced) stochastic PG approach for solving
general utility RL ensuring a Õ(ϵ−3) sample complexity to
find an ϵ-stationary policy under smoothness of the utility
function and the policy parametrization and a Õ(ϵ−2) global
optimality sample complexity for a concave utility with an
overparametrized policy. When the utility is concave as a
function of the occupancy measure, the corresponding RL
problem is known as Convex RL or Convex MDPs. Using
Fenchel duality, Zahavy et al. (2021) casted the convex MDP
problem as a min-max game between a policy player and a
cost player producing rewards that the policy player must
maximize. An insightful consequence of this viewpoint is
that any algorithm solving the standard RL problem can be
used for solving the more general convex MDP problem.
In the present paper, we adopt the direct policy search ap-
proach with policy parametrization proposed in Zhang et al.
(2021b) instead of the dual viewpoint. Geist et al. (2022)
show that Convex RL is a subclass of Mean-Field games.
Zhang et al. (2022) consider a decentralized version of the
problem with general utilities with a network of agents.

2. Preliminaries
Notations. For a given finite set X , we use the notation |X |
for its cardinality and ∆(X ) for the space of probability

distributions over X . We equip any Euclidean space with
its standard inner product denoted by ⟨·, ·⟩ . The notation ∥·∥
refers to both the standard 2-norm and the spectral norm for
vectors and matrices respectively.

Markov Decision Process with General Utility. Con-
sider a discrete-time discounted Markov Decision Process
(MDP) with a general utility function M(S,A,P, F, ρ, γ),
where S and A are finite state and action spaces respec-
tively, P : S ×A → ∆(S) is the state transition probability
kernel, F : M(S ×A) → R is a general utility function de-
fined over the space of measures M(S ×A) on the product
space S ×A, ρ is the initial state distribution and γ ∈ (0, 1)
is the discount factor. A stationary policy π : S → ∆(A)
maps each state s ∈ S to a distribution π(·|s) over the ac-
tion space A. The set of all stationary policies is denoted
by Π . At each time step t ∈ N in a state st ∈ S, the RL
agent chooses an action at ∈ A with probability π(at|st)
and the environment transitions to a state st+1 with prob-
ability P(st+1|st, at) . We denote by Pρ,π the probability
distribution of the Markov chain (st, at)t∈N induced by the
policy π with initial state distribution ρ. We use the no-
tation Eρ,π (or often simply E instead) for the associated
expectation. We define for any policy π ∈ Π the state-action
occupancy measure λπ ∈ M(S ×A) as:

λπ(s, a)
def
=

+∞∑
t=0

γtPρ,π(st = s, at = a) . (1)

We denote by Λ the set of such occupancy measures, i.e.,
Λ

def
= {λπ : π ∈ Π} . Then, the general utility function F

assigns a real to each occupancy measure λπ induced by a
policy π ∈ Π . A state-action occupancy measure λπ will
also be seen as a vector of the Euclidean space R|S|×|A| .

Policy parametrization. In this paper, we will consider
the common softmax policy parametrization defined for
every θ ∈ Rd, s ∈ S, a ∈ A by:

πθ(a|s) =
exp(ψ(s, a; θ))∑

a′∈A exp(ψ(s, a′; θ))
, (2)

where ψ : S × A × Rd → R is a smooth function. The
softmax parametrization will be important for controlling
IS weights for variance reduction. However, some of our
results will not require this specific parameterization and we
will explicitly indicate it when appropriate.

Problem formulation. The goal of the RL agent is to find a
policy πθ (determined by the vector θ) solving the problem:

max
θ∈Rd

F (λπθ ) , (3)

where F is a smooth function supposed to be upper bounded
and F ⋆ is used in the remainder of this paper to denote the
maximum in (3). The agent has only access to (a) trajec-
tories of finite length H generated from the MDP under
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the initial distribution ρ and the policy πθ and (b) the gra-
dient of the utility function F with respect to (w.r.t.) its
variable λ. In particular, provided a time horizon H and
a policy πθ with θ ∈ Rd, the learning agent can simulate
a trajectory τ = (s0, a0, · · · , sH−1, aH−1) from the MDP
whereas the state transition kernel P is unknown. This gen-
eral utility problem was described, for instance, in Zhang
et al. (2021b) (see also Kumar et al. (2022)). Recall that
the standard RL problem corresponds to the particular case
where the general utility function is a linear function, i.e.,
F (λπθ ) = ⟨r, λπθ ⟩ for some vector r ∈ RS×A in which
case we recover the expected return function as an objective:

V πθ (r)
def
= Eρ,πθ

[
+∞∑
t=0

γtr(st, at)

]
. (4)

In the standard RL case, we shall use the notation J(θ) def
=

V πθ (r) where r is the corresponding reward function.

Policy Gradient for General Utilities. Following the expo-
sition in (Zhang et al., 2021b) (see also more recently (Ku-
mar et al., 2022)), we derive the policy gradient for the
general utility objective. For convenience, we use the no-
tation λ(θ) for λπθ . Since the cumulative reward can be
rewritten more compactly V πθ (r) = ⟨λπθ , r⟩, it follows
from the policy gradient theorem that:

[∇θλ(θ)]
T r = ∇θV

πθ (r)

= Eρ,πθ

[
+∞∑
t=0

γtr(st, at)

t∑
t′=0

∇ log πθ(at′ |st′)

]
, (5)

where ∇θλ(θ) is the Jacobian matrix of the vector map-
ping λ(θ) . Using the chain rule, we have

∇θF (λ(θ)) = [∇θλ(θ)]
T∇λF (λ(θ))

= ∇θV
πθ (r)|r=∇λF (λ(θ)) . (6)

Stochastic Policy Gradient. In light of (6), in order to
estimate the policy gradient ∇θF (λ(θ)) for general utili-
ties, we can use the standard reinforce estimator suggested
by Eq. (5) but we also need to estimate the state-action
occupancy measure λ(θ) (when F is nonlinear)1. Define
for every reward function r (which is also seen as a vector
in R|S|×|A|), every θ ∈ Rd and every H-length trajectory τ
simulated from the MDP with policy πθ and initial distribu-
tion ρ the (truncated) policy gradient estimate:

g(τ, θ, r) =

H−1∑
t=0

(
H−1∑
h=t

γhr(sh, ah)

)
∇ log πθ(at|st) .

(7)
1In the cumulative reward setting, notice that the general utility

function F is linear and ∇λF (λ(θ)) is independent of λ(θ) .

We also define an estimator for the state-action occupancy
measure λπθ = λ(θ) (see (1)) truncated at the horizonH by:

λ(τ) =

H−1∑
h=0

γhδsh,ah , (8)

where for every (s, a) ∈ S ×A, δs,a ∈ R|S|×|A| is a vector
of the canonical basis of R|S|×|A|, i.e., the vector whose
only non-zero entry is the (s, a)-th entry which is equal to 1.

Importance Sampling. Given a trajectory τ =
(s0, a0, s1, a1, · · · , sH−1, aH−1) of length H generated un-
der the initial distribution ρ and the policy πθ for some θ ∈
Rd, we define for every θ′ ∈ Rd the IS weight:

w(τ |θ′, θ) def
=

H−1∏
h=0

πθ′(ah|sh)
πθ(ah|sh)

. (9)

Since the problem is nonstationary in the sense that up-
dating the parameter θ shifts the distribution over trajecto-
ries, it follows that for any r ∈ R|S|×|A|,Eρ,πθ [g(τ, θ, r)−
g(τ, θ′, r)] ̸= ∇θV

πθ (r) − ∇θV
πθ′ (r) . Using the IS

weights, we correct this bias to obtain

Eρ,πθ [g(τ, θ, r)− w(τ |θ′, θ)g(τ, θ′, r)]
= ∇θV

πθ (r)−∇θV
πθ′ (r) .

The use of IS weights is standard in variance-reduced PG.

3. Normalized Variance-Reduced Policy
Gradient Algorithm

In this section, we present our N-VR-PG algorithm (see Al-
gorithm 1) to solve the RL problem with general utilities.
This algorithm has two main distinctive features compared
to vanilla PG and existing algorithms (Zhang et al., 2021b):
(i) recursive variance reduction: instead of using the stochas-
tic PG and occupancy measure estimators respectively re-
ported in (7) and (8), we use recursive variance-reduced esti-
mators for both the PG and the state-action occupancy mea-
sure akin to STORM in stochastic optimization (Cutkosky
& Orabona, 2019). This leads to a simple single-loop algo-
rithm using a single trajectory per iteration and for which no
checkpoints nor any second order information are needed;
(ii) normalized PG update rule: normalization will be cru-
cial to control the IS weights used in the estimators. We
elaborate more on the motivation for using it in Section 4.1.

Remark 3.1. In Algorithm 1, note that g(τt, θt, rt−1)
and g(τt, θt−1, rt−2) are used in vt instead of g(τt, θt, rt)
and g(τt, θt−1, rt−1) respectively to address measurability
and independence issues in the analysis.
Remark 3.2 (Standard RL). In the cumulative reward setting,
estimating the occupancy measure is not needed. Hence,
Algorithm 1 simplifies (see Algorithm 4 in Appendix A).
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Algorithm 1 N-VR-PG (General Utilities)
Input: θ0, T , H , {ηt}t≥0, {αt}t≥0 .
Sample τ0 of length H from M and πθ0
λ0 = λ(τ0, θ0); r0 = ∇λF (λ0); r−1 = r0
d0 = g(τ0, θ0, r0)
θ1 = θ0 + α0

d0
∥d0∥

for t = 1, . . . , T − 1 do
Sample τt of length H from MDP M and πθt
ut = λ(τt)(1− w(τt|θt−1, θt))
λt = ηtλ(τt) + (1− ηt)(λt−1 + ut)
rt = ∇λF (λt)
vt = g(τt, θt, rt−1)− w(τt|θt−1, θt)g(τt, θt−1, rt−2)
dt = ηtg(τt, θt, rt−1) + (1− ηt)(dt−1 + vt)
θt+1 = θt + αt

dt
∥dt∥

end for

4. Convergence Analysis of N-VR-PG

We first introduce our assumptions regarding the regularity
of the policy parametrization and the utility function F .

Assumption 4.1. In the softmax parametrization (2), the
map ψ(s, a; ·) is twice continuously differentiable and there
exist lψ, Lψ > 0 s.t. (i) maxs∈S,a∈A supθ ∥∇ψ(s, a; θ)∥ ≤
lψ and (ii) maxs∈S,a∈A supθ ∥∇2ψ(s, a; θ)∥ ≤ Lψ .

Assumption 4.2. There exist constants lλ, Lλ, Lλ,∞ > 0
s.t. for all λ, λ′ ∈ Λ, ∥∇λF (λ)∥∞ ≤ lλ and

∥∇λF (λ)−∇λF (λ
′)∥∞ ≤ Lλ∥λ− λ′∥2 ,

∥∇λF (λ)−∇λF (λ
′)∥∞ ≤ Lλ,∞∥λ− λ′∥1 .

Assumptions 4.1 and 4.2 were previously considered
in Zhang et al. (2021b; 2020) and guarantee together that the
objective function θ 7→ F (λπθ ) is smooth. Assumption 4.2
is automatically satisfied for the cumulative reward setting
(i.e., F linear) if the reward function is bounded.

4.1. Normalization ensures boundedness of IS weights

Most prior works suppose that the variance of the IS weights
is bounded. Such assumption cannot be verified. In this
section we provide an alternative algorithmic way based
on the softmax policy to control the IS weights without the
aforementioned assumption. Since our algorithm only uses
IS weights for two consecutive iterates, our key observa-
tion is that a normalized gradient update rule automatically
guarantees bounded IS weights. In particular, compared
to Zhang et al. (2021b), we do not use a gradient truncation
mechanism which requires an additional truncation hyper-
parameter depending on the problem parameters and dic-
tates a non-standard stationarity measure (see Remark 4.6).
This simple algorithmic modification requires several adjust-
ments in the convergence analysis (see Appendix E and F).
We formalize the result in the following lemma.

Lemma 4.3. Let Assumption 4.1 hold true. Suppose that the
sequence (θt) is updated via θt+1 = θt+αt

dt
∥dt∥ where dt ∈

Rd is any non-zero update direction and αt is a positive
stepsize. Then, for every integer t and any trajectory τ of
length H , we have w(τ |θt, θt+1) ≤ exp{2Hlψαt} . If, in
addition, H = O( log T1−γ ) and αt = α = T− 2

3 , then there
exists a constant W > 0 s.t. w(τ |θt, θt+1) ≤ W . More-
over, we have Var [w(τt+1|θt, θt+1)] ≤ Cwα

2 where τt+1

is a trajectory of length H sampled from πθt+1 and Cw
def
=

H((8H + 2)l2ψ + 2Lψ)(W + 1) .

In this lemma, the variance of the IS weights decreases
over time at a rate controlled by α2 and this result will be
crucial for our convergence analysis of N-VR-PG. We show
in Lemma E.19 in the Appendix that such a result also holds
for Gaussian policies for continuous state action spaces.

4.2. First-order stationarity

In this section, we show that N-VR-PG requires Õ(ε−3)
samples to reach an ε-first-order stationary (FOS) point of
the objective function for RL with general utilities.2

Theorem 4.4. Let Assumptions 4.1 and 4.2 hold. Let α0 >
0 and let T ≥ 1 be an integer. Set αt = α0

T 2/3
, ηt =(

2
t+1

)2/3

and H = (1− γ)
−1

log(T + 1). Then,

E
[∥∥∇θF (λ(θ̄T ))

∥∥] ≤ O
(

1+(1−γ)3∆α−1
0 +(1−γ)−1α0

(1−γ)3T 1/3

)
,

where ∆
def
= F ⋆−E[F (λ(θ1))] and θ̄T is sampled uniformly

at random from {θ1, · · · , θT } of Algorithm 1.

Remark 4.5. In terms of dependence on (1− γ)−1, we sig-
nificantly improve over the result of Zhang et al. (2021b)
which does not make it explicit. We defer a detailed com-
parison regarding this dependence to Appendix B.
Remark 4.6. Unlike Zhang et al. (2021b) which utilizes a
gradient truncation radius, our sample complexity does not
depend on the inverse of this gradient truncation hyperpa-
rameter which might be small. Indeed, to translate their
guarantee from the non-standard gradient mapping dictated
by gradient truncation to the standard stationarity measure
(used in our result), one has to incur an additional multi-
plicative constant δ−1 where δ is the gradient truncation
radius (see Lemma 5.4 in (Zhang et al., 2021b)).

Recalling the notation J(θ) = V πθ (r) (see (4)) for the
standard RL setting, we can state the following corollary.

Corollary 4.7. Under the setting of Theorem 4.4,
if we set α0 = 1 − γ, then E

[∥∥∇J(θ̄T )∥∥] ≤
O
(
(1− γ)−2T−1/3

)
.

The next result addresses the case of continuous state-action
spaces in the standard RL setting using a Gaussian policy.

2All the proofs of our results are provided in the Appendix.
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Notably, we rely on similar considerations as for the softmax
policy to control the variance of IS weights. We defer a
precise statement of this result to Appendix E.4.

Theorem 4.8 (informal). Using the Gaussian policy under
some regularity conditions, N-VR-PG (see Algorithm 4) re-
quires Õ(ε−3) to reach an ε-first-order stationary point of
the expected return J .

4.3. Global optimality

In this section, we show that N-VR-PG only requires Õ(ε−2)
samples to reach an ε-globally optimal policy under a con-
cave reparametrization of the RL problem with concave util-
ities and an additional overparametrization assumption. Our
results and assumptions match the recent results in Zhang
et al. (2021b) for finite state-action spaces.

Assumption 4.9. The utility function F is concave.

Assumption 4.10. For the softmax policy parametriza-
tion in (2), the following three requirements hold: (i) For
any θ ∈ Rd, there exist relative neighborhoods Uθ ⊂ Rd
and Vλ(θ) ⊂ Λ respectively containing θ and λ(θ) s.t. the
restriction λ|Uθ forms a bijection between Uθ and Vλ(θ) ;
(ii) There exists l > 0 s.t. for every θ ∈ Rd, the in-
verse (λ|Uθ )−1 is l-Lipschitz continuous; (iii) There ex-
ists ϵ̄ > 0 s.t. for every positive real ϵ ≤ ϵ̄, (1 − ϵ)λ(θ) +
ϵλ(θ∗) ∈ Vλ(θ) where πθ∗ is the optimal policy.

For the tabular softmax parametrization (i.e., ψ(s, a; θ) =
θs,a, d = |S||A|), a continuous local inverse can be defined
whereas computing the Lipschitz constant l is more involved
as reported in Zhang et al. (2021b) (see Appendix C for
a discussion of Assumption 4.10). Relaxing this strong
assumption is left for future work.
Remark 4.11. Compared to Assumption 5.11 in Zhang et al.
(2021b), Assumption 4.10 is quasi-identical with the slight
difference that it does not depend on the gradient truncation
hyperparameter δ used in Zhang et al. (2021b).

Our global optimality convergence result is as follows.

Theorem 4.12. Let Assumptions 4.1, 4.2 and 4.9 hold.
Additionally, let Assumption 4.10 be satisfied with ϵ̄ ≥
α0(1−γ)

2ℓθ(T+1)a for some integer T ≥ 1 and reals α0 > 0,
a ∈ (0, 1). Set αt = α0

(T+1)a , ηt = 2
t+1 and H =

(1− γ)
−1

log(T + 1). Then the output θT of N-VR-PG (see
Algorithm 1) satisfies

F ⋆ − E [F (λ(θT ))] ≤ O
(

α2
0

(1− γ)3(T + 1)2a−
3
2

)
,

Thus, setting α0 = (1 − γ)3/2, the sample complexity to

achieve F ∗ − E [F (λ(θT ))] ≤ ε is O
(
ε

−2
4a−3

)
.

Corollary 4.13. In the setting of Theorem 4.12, N-VR-PG

(see Algorithm 4) requires Õ
(
ε

−2
2a−1

)
samples to achieve

J⋆−E [J(θT )] ≤ ε where J⋆ is the optimal expected return.

Remark 4.14. We refer the reader to Appendix F.2 for a
precise statement of Corollary 4.13. If we know problem
parameters and choose time varying step-sizes αt = α0

t ,
then we can obtain exactly Õ(ε−2) sample complexity.

We can state a similar global optimality result to Corol-
lary 4.13 for continuous state-action spaces (see Ap-
pendix F.3).

5. Large State-Action Space Setting
An important limitation of Algorithm 1 and the prior
work (Zhang et al., 2021b) is the need to estimate the oc-
cupancy measure for each state-action pair in the case of
general nonlinear utilities. This procedure is intractable if
the state and/or action spaces are prohibitively large and
finite or even worse infinite/continuous. In the case of infi-
nite or continuous state-action spaces, the occupancy mea-
sure λπθ induced by a policy πθ cannot be represented by
a vector in finite dimensions. Thus, the derivative of the
utility function F w.r.t. its variable λ is not well defined in
the chain rule in (6) for the policy gradient. Therefore, more
adequate notions of derivative for optimization on the space
of measures are probably needed and this would require
different methodological and algorithmic tools which go
beyond the scope of this work. In this paper, we propose to
do a first step by considering the setting of large finite state
and action spaces which is already of practical interest.

5.1. PG for RL with General Utilities via linear function
approximation of the occupancy measure

Similarly to the classical linear function approximation of
the (action-)value function in standard RL, we propose to
approximate the (truncated) state-action occupancy measure
by a linear combination of pre-selected basis functions in
order to break the so-called curse of dimensionality. Our
exposition is similar in spirit to the compatible function
approximation framework (Sutton et al., 1999) which was
recently extended in Agarwal et al. (2021) (see also Yuan
et al. (2023) for a recent example). However, we are not con-
cerned here by the approximation of the action-value func-
tion nor are we considering the NPG (or Q-NPG) method
but we are rather interested in approximating the discounted
occupancy measure. Recall that we are considering the
more general problem of RL with general utilities. Beyond
this connection with existing work, we shall precise that our
approach mostly shares the use of standard least squares
regression for estimating an unknown function which is the
state-action occupancy measure in our case.

Let m be a positive integer and let ϕ : S × A → Rm be

6
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a feature map. We shall approximate the truncated3 state-
action occupancy measure for a given policy πθ (θ ∈ Rd
fixed) by a linear combination of feature vectors from the
feature map, i.e., for every state-action pair (s, a) ∈ S ×A,

λπθH (s, a) ≈ ⟨ϕ(s, a), ωθ⟩ , (10)

for some ωθ ∈ Rm that we shall compute. Typically, the
dimension m is much smaller than |S| × |A| . The fea-
ture map summarizes the most important characteristics of
state-action pairs. Typically, this map is designed based
on experience and domain-specific knowledge or intuition
regarding the MDP. Standard examples of basis functions
for the feature map include radial basis functions, wavelet
networks or polynomials. Nevertheless, designing such a
feature map is an important practical question that is often
problem-specific and we will not address it in this work.

In order to compute such a vector ωθ, we will use linear
regression. Accordingly, we define the expected regression
loss measuring the estimation quality of any parameter ω
for every θ ∈ Rd, ω ∈ Rm by:

Lθ(ω)
def
= Es∼ρ,a∼U(A)[(λ

πθ
H (s, a)−⟨ϕ(s, a), ω⟩)2] , (11)

where ρ is the initial distribution in the MDP and U(A)
is the uniform distribution over the action space A .4 In
practice, we cannot minimize Lθ exactly since this would
require having access to the true state-action occupancy
measure and averaging over all state-action pairs s ∼
ρ, a ∼ U(A) . Therefore, we compute an approximate
solution ω̂θ ≈ argminω Lθ(ω) . For this procedure, we
need: (i) unbiased estimates of the true truncated state-
action occupancy measure λπθH (s, a) (or the non-truncated
one λπθ (s, a)) for s ∼ ρ, a ∼ U(A) and (ii) a regression
solver based on samples to minimize Lθ as defined in (11).
As for item (i), we use a Monte-Carlo estimate λ̂πθH (s, a) of
the truncated occupancy measure computed from a single
rollout (see Algorithm 5 for details).5 An unbiased stochas-
tic gradient of the function Lθ in (11) is then given by

∇̂ωLθ(ω)
def
= 2(⟨ϕ(s, a), ω⟩ − λ̂πθH (s, a))ϕ(s, a) . (12)

We can then solve the regression problem consisting in
minimizing Lθ in (11) via the averaged SGD algorithm (see
Algorithm 2) as proposed in Bach & Moulines (2013).

Using this procedure, we propose a simple stochastic PG
algorithm for solving the RL problem with general utilities

3We could use the non-truncated occupancy measure (see Ap-
pendix G). For simplicity of exposition, we use the truncated
version, the difference between both quantities is of the order
of γH .

4Other exploratory sampling distributions for s and a can be
considered, we choose ρ and U(A) for simplicity.

5We can also compute an unbiased estimator of the true occu-
pancy measure λπθ (s, a) via a standard procedure with a random
horizon H following a geometric distribution (see Algorithm 6).

Algorithm 2 (averaged) SGD for Occupancy Measure Esti-
mation via Linear Function Approximation

Input: ω0 ∈ Rm,K ≥ 1, β > 0, ρ, πθ .
for k = 0, . . . ,K − 1 do

Sample s ∼ ρ; a ∼ U(A)

Compute an estimator λ̂πθH (s, a) via Algorithm 5

∇̂ωLθ(ωk)
def
= 2(⟨ϕ(s, a), ωk⟩ − λ̂πθH (s, a))ϕ(s, a)

ωk+1 = ωk − β ∇̂ωLθ(ωk)
end for
Return: ω̂θ = 1

K

∑K
k=1 ωk

for large state action spaces. Since this large-scale setting
has not been priorly addressed for general utilities to the
best of our knowledge, we focus on a simpler PG algorithm
without the variance reduction and normalization features
of our algorithm in Section 3. Incorporating variance reduc-
tion to occupancy measure estimates seems more involved
with our linear regression procedure for function approxi-
mation. We leave it for future work to design a method with
improved sample complexity using variance reduction.

Algorithm 3 Stochastic PG for RL with General Utilities via
Linear Function Approximation of the Occupancy Measure

Input: θ0 ∈ Rd, T,N ≥ 1, α > 0,K ≥ 1, β > 0, H .
Run Algorithm 2 with policy πθ0 and define from its
output λ̂0(·, ·) = ⟨ϕ(·, ·), ω̂θ0⟩ .
r−1 = ∇λF (λ̂0)
for t = 0, . . . , T − 1 do

Run Algorithm 2 with policy πθt and define from its
output λ̂t(·, ·) = ⟨ϕ(·, ·), ω̂θt⟩ .
rt = ∇λF (λ̂t)
Sample a batch of N independent trajecto-
ries (τ (i)t )1≤i≤N of length H from M and πθt
θt+1 = θt +

α
N

∑N
i=1 g(τ

(i)
t , θt, rt−1)

end for
Return: θT

Remark 5.1. When running Algorithm 3, notice that the
vector λ̂t ∈ R|S|×|A| (and hence the vector rt) does
not need to be computed for all state-action pairs as this
would be unrealistic and even impossible in the large state-
action setting we are considering. Indeed, at each iteration,
one does only need to compute (rt(s

(t)
h , a

(t)
h ))0≤h≤H−1

where τt = (s
(t)
h , a

(t)
h )0≤h≤H−1 to obtain the stochastic

policy gradient g(τt, θt, rt−1) as defined in (7).

5.2. Convergence and sample complexity analysis

In this section, we provide a convergence analysis of Algo-
rithm 3. For every integer t, let ω∗(θt) ∈ argminω Lθt(ω).
We decompose the regression loss into the statistical error
measuring the accuracy of our approximate solution and

7
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the approximation error measuring the distance between the
true occupancy measure and its best linear approximation
using the feature map ϕ:

Lθt(ω̂t) = Lθt(ω̂t)− Lθt(ω∗(θt))︸ ︷︷ ︸
statistical error

+ Lθt(ω∗(θt))︸ ︷︷ ︸
approximation error

,

where we use the shorthand notation ω̂t = ω̂θt and ω̂θt is the
output of Algorithm 2 after K iterations. We assume that
both the statistical and approximation errors are uniformly
bounded along the iterates of our algorithm. Such assump-
tions have been considered for instance in a different context
in the compatible function approximation framework (see
Assumptions 6.1.1 and Corollary 21 in Agarwal et al. (2021),
also Assumptions 1 and 5 in Yuan et al. (2023)).

Assumption 5.2 (Bounded statistical error). There ex-
ists ϵstat > 0 s.t. for all iterations t ≥ 0 of Algorithm 3,
we have E[Lθt(ω̂θt)− Lθt(ω∗(θt))] ≤ ϵstat .

We will see in the next section that we can guarantee ϵstat =
O(1/K) where K is the number of iterations of SGD (Al-
gorithm 2) to find the approximate solution ω̂t at each itera-
tion t of Algorithm 3.

Assumption 5.3 (Bounded approximation error). There
exists ϵapprox > 0 s.t. for all iterations t ≥ 0 of Algorithm 3,
we have E[Lθt(ω∗(θt))] ≤ ϵapprox .

This error is due to function approximation and depends on
the expressiveness of the approximating function class. The
true state-action occupancy measure to be estimated may not
lie in the function approximation class under consideration.

Theorem 5.4. Let Assumptions 4.1, 4.2, 5.2 and 5.3 hold
true. In addition, suppose that there exists ρmin > 0 s.t.
ρ(s) ≥ ρmin for all s ∈ S . Let T ≥ 1 be an integer and
let (θt) be the sequence generated by Algorithm 3 with a
positive step size α = O(1) and batch size N ≥ 1. Then,

E[∥∇θF (λ(θ̄T ))∥2] ≤ O
(
1

T

)
+O

(
1

N

)
+O(γ2H)

+O(ϵstat + ϵapprox) , (13)

where θ̄T ∈ {θ1, · · · , θT } uniformly at random.

A few comments are in order regarding Theorem 5.4 :
(1) The specific structure of the softmax parametrization
is not needed for Theorem 5.4. Indeed, this softmax
parametrization is only useful to control IS weights used for
variance reduction in Algorithm 1. Assumption 4.1 can be
replaced by any smooth policy parametrization satisfying
the same standard conditions with ∇ log πθ instead of ψ ;
(2) If the true (truncated) occupancy measure does not lie
in the class of linear functions described, a positive func-
tion approximation error ϵapprox is incurred due to the bias
induced by the limited expressiveness of the linear function

approximation. A possible natural alternative is to consider
richer classes such as neural networks to approximate the
state-action occupancy measure and reduce the approxima-
tion bias. In this more involved case, the expected least
squares (or other metrics) regression loss would likely be-
come nonconvex and introduce further complications in our
analysis. Such an extension would require other technical
tools that are beyond the scope of the present paper and we
leave it for future work.

In order to establish the total sample complexity of our algo-
rithm, we need to compute the number of samples needed
in the occupancy measure estimation subroutine of Algo-
rithm 2. To do so, we now specify the number of SGD
iterations required in Algorithm 2 to approximately solve
our regression problem. In particular, we will show that
we can achieve ϵstat = O(1/K) where K is the number of
iterations of the SGD subroutine using Theorem 1 in Bach
& Moulines (2013). Before stating our result, we make an
additional standard assumption on the feature map ϕ .

Assumption 5.5. The feature map ϕ : S × A → Rm
satisfies: (i) There exists B > 0 s.t. for all s ∈ S, a ∈
A, ∥ϕ(s, a)∥ ≤ B and (ii) There exists µ > 0 s.t.
Es∼ρ,a∼U(A)[ϕ(s, a)ϕ(s, a)

T ] ≽ µIm where Im ∈ Rm×m

is the identity matrix.

Assumption 5.5 guarantees that the covariance matrix of
the feature map is invertible. Similar standard assumptions
have been commonly considered for linear function approx-
imation settings (Tsitsiklis & Van Roy, 1997).

We are now ready to state a corollary of Theorem 5.4 es-
tablishing the total sample complexity of Algorithm 3 to
achieve an ϵ-stationary point of the objective function.

Corollary 5.6. Let Assumptions 4.1, 4.2, 5.3 and 5.5
hold in the setting of Theorem 5.4 where we run the SGD
subroutine of Algorithm 2 with step size β = 1/8B2

and ω0 = 0 for K iterations at each timestep t of Algo-
rithm 3. Then, for every ϵ > 0, setting T = O(ϵ−2), N =
O(ϵ−2), K = O(ϵ−2) and H = O(log( 1ϵ )) guarantees
that E[∥∇θF (λ(θ̄T ))∥] ≤ O(ϵ) +O(

√
ϵapprox) where θ̄T ∈

{θ1, · · · , θT } uniformly at random. The total sample com-
plexity to reach an ϵ-stationary point (up to the O(

√
ϵapprox)

error floor) is given by T × (K +M)×H = Õ(ϵ−4) .

In terms of the target accuracy ϵ, this result matches the opti-
mal sample complexity to obtain an ϵ-FOSP for nonconvex
smooth stochastic optimization via SGD (without variance
reduction) up to a log factor.

6. Numerical Simulations
In this section, we present two simple numerical experi-
ments to illustrate the performance of our algorithm com-
pared to prior work and complement our theoretical contri-
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Figure 1. (right) Nonlinear objective maximization in the FrozenLake environment and (left) Standard RL in the CartPole environment. In
both cases, the performance curves represent the median return over 20 runs of the algorithms (with 20 seeds) and the shaded colored
areas are computed with the 1/4 and 3/4 quantiles of the outcomes.

butions. Our implementation is based on the code provided
in Zhang et al. (2021b).6 Our goal is to show that our algo-
rithm can be competitive compared to existing algorithms
while gaining simplicity. We leave further experimental
investigations in larger scale problems for future work.

(a) Nonlinear objective function maximization. We con-
sider a general utility RL problem where the objective func-
tion F : R|S|×|A|

+ → R is a nonlinear function of the occu-
pancy measure defined for every λ ∈ R|S|×|A|

+ by:

F (λ)
def
=
∑
s∈S

log

(∑
a∈A

λs,a + σ

)
,

where σ is a small constant which we set to σ = 0.125. We
test our algorithm in the FrozenLake8x8 benchmark environ-
ment available in OpenAI gym (Brockman et al., 2016). The
result of the experiment is illustrated in Figure 1 (right). The
performance curves show that our NVR-PG algorithm shows
a relatively faster convergence compared to the TSIVR-PG
algorithm (Zhang et al., 2021b) and the MaxEnt algorithm
which is specific to the maximum entropy exploration prob-
lem (by Hazan et al. (2019)) while the final performances
are comparable (see also the overlapping shaded areas). We
refer the reader to Section 6.3 in Zhang et al. (2021b) for
further details regarding our setting.

(b) Standard RL. While the focus of our work is on the
general utility case beyond the standard RL setting, we also
perform simulations for the particular case where the ob-
jective is a linear function of the state action occupancy
measure (i.e., the standard cumulative reward setting) in the
CartPole benchmark environment (Brockman et al., 2016).

6Available in OpenReview (https://openreview.net/
forum?id=Re_VXFOyyO).

Figure 1 (left) shows that our algorithm is competitive with
TSIVR-PG (actually even slightly faster, see between 250-
500 episodes and see also the shaded areas) and all other
algorithms which are not designed for the general utility case
(REINFORCE (Williams, 1992), SVRPG (Xu et al., 2020b),
SRVR-PG (Xu et al., 2020a), HSPGA (Pham et al., 2020))
while gaining simplicity compared to existing variance-
reduced methods. Indeed, our algorithm is single-loop and
does not require two distinct batch sizes and checkpoints
nor does it require bounded importance sampling weights.
Hyperparameters of the algorithms are tuned.

7. Perspectives
Compared to the standard RL setting, the general utilities
setting is much less studied. A better understanding of the
hidden convexity structure of the problem and its interplay
with general policy parametrization would be interesting to
derive global optimality guarantees under milder assump-
tions which would accommodate more practical and expres-
sive policy parametrizations such as neural networks. Re-
garding the case of large state action spaces, future avenues
of research include designing more efficient procedures and
guarantees for approximating and estimating the occupancy
measure to better address the curse of dimensionality as well
as investigating the dual point of view for designing more
efficient algorithms. Addressing the case of continuous
state-action spaces is also an interesting research direction.
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Appendix

A. N-VR-PG algorithm for standard RL setting with cumulative reward
In this section, we report the special case of Algorithm 3 for the standard cumulative sum of rewards setting.

Algorithm 4 N-VR-PG (Standard Cumulative Reward)
Input: θ0, T , H , {ηt}t≥0, {αt}t≥0 .
Sample τ0 of length H from M
d0 = g(τ0, θ0)
θ1 = θ0 + α0

d0
∥d0∥

for t = 1, . . . , T − 1 do
Sample τt of length H from M and πθt
vt = g(τt, θt)− w(τt|θt−1, θt)g(τt, θt−1)
dt = ηtg(τt, θt) + (1− ηt)(dt−1 + vt)
θt+1 = θt + αt

dt
∥dt∥

end for

Remark A.1. If the direction dt in Algorithms 1 and 4 is null, then we formally take θt+1 = θt. Note that dt ̸= 0 with
probability 1 in general. Observe for instance that with ηt = 1, dt = 0 means that the stochastic policy gradient is equal to
zero which means we are already at a first-order stationary point in expectation.

B. Dependence on (1− γ)−1

In this section, we discuss the dependence of our convergence guarantee in Theorem 4.4 on (1−γ)−1 where γ is the discount
factor of the MDP. The dependence on 1− γ of our proposed method is Õ((1− γ)−6ε−3) compared to Õ((1− γ)−25ε−3)
for TSIVR-PG of (Zhang et al., 2021b).

Dependence on (1 − γ)−1 of our N-VR-PG algorithm. It follows from Theorem 4.4 by setting α0 = (1 − γ)2 that we
need Õ((1− γ)−6ε−3) samples to reach an ε-stationary point of the utility function (i.e., E∥∇θF (λ(θout))∥ ≤ ε).

Derivation of explicit dependence on (1− γ)−1 in Theorem 5.9 of (Zhang et al., 2021b). Although the dependence is
not made explicit in the aforementioned work, we can use their intermediate results in the proofs in order to derive it. We
use their notations in the following.

From the last two lines of page 26 (in the proof of Theorem 5.9), we can infer that E [∥G(θout)∥] ≤ O(C3ε), where
C3 = O(H(1− γ)−7) which is defined in the statement of Lemma F.2 on page 23. Here in O we only hide the dependence
on the smoothness constants and other numerical constants. The statement of Theorem 5.9 guarantees that in order
to achieve this, we need T (mB + N)H = O(Hε−3) number of samples. By setting ε1 = C3ε, this translates to
O(HC3

3ε
−3
1 ) = O(H4(1 − γ)−21ε−3

1 ) = Õ((1 − γ)−25ε−3
1 ) samples to achieve E [∥G(θout)∥] ≤ ε1, where in the last

step we used the expression of H = 2
1−γ log(1/ε). Moreover, if we translate this guarantee to a more standard stationarity

measure E [∥∇θF (λ(θ))∥], the dependence on (1− γ)−1 may further degrade for TSIVR-PG, see Lemma 5.4 in (Zhang
et al., 2021b) where they establish E[∥∇θF (λ(θ))∥] = O(δ−1E [∥G(θ)∥]) and δ = O(H−1) = Õ(1− γ) is the truncation
parameter. Indeed, their convergence result is stated in terms of the gradient mapping (because their algorithm uses a
truncation mechanism with hyperparameter δ) and then translated to the standard first-order stationarity measure we use in

14



Reinforcement Learning with General Utilities: Simpler Variance Reduction and Large State-Action Space

this work.

C. Further discussion of Assumption 4.10
A few comments are in order regarding Assumption 4.10:

1. In Assumption 4.10, the uniformity of the Lipschitz constant l (independent of θ) and ϵ̄ is important. Without this
requirement, for instance, for item (iii), the existence of ϵ̄θ > 0 (depending on θ) with the desired property for
every θ ∈ Rd is always guaranteed since Vλ(θ) is an open set.

2. As it was recently reported in Zhang et al. (2020), the direct parametrization satisfies the bijection Assumption 4.10. We
refer the reader to Appendix H in (Zhang et al., 2020) for a complete proof of this fact. Notice also that Assumption 4.10
which was first introduced in (Zhang et al., 2021b) is a local version of Assumption 1 in (Zhang et al., 2020) and is
hence less restrictive.

3. As for the softmax parametrization, verifying Assumption 4.10 is more challenging as we explain in the main part
of the present paper. It is a delicate and interesting question to investigate whether Assumption 4.10 accommodates
complex policy parametrizations such as practical neural networks or if it can be relaxed to do so.

D. Proof of Lemma 4.3 in Section 4.1
The proof of this lemma is simple and combines an elementary technical lemma from Zhang et al. (2021b) (Lemma 5.6)
upper bounding the IS weights for the special case of the softmax parametrization with Lemma B.1 in Xu et al. (2020a)
which provides a bound on the variance of IS weights which are bounded as a function of the squared euclidean distance
between two policy parameters.

Proof. Using the softmax parametrization (2) with Assumption 4.1 satisfied, Lemma 5.6 in Zhang et al. (2021b) stipulates
that for every θ, θ′ ∈ Rd and every truncated trajectory τ = (st, at)0≤t≤H−1 of length H , the IS weights defined in (9)
satisfy:

w(τ |θ′, θ) ≤ exp{2Hlψ∥θ − θ′∥} . (14)

It suffices to observe that ∥θt+1 − θt∥ = αt with the normalized update rule to prove that for every integer t and any
trajectory τ of length H , we have w(τ |θt, θt+1) ≤ exp{2Hlψαt} . This proves the first part of the result.

Combining this first part with Lemma B.1 in Xu et al. (2020a), we obtain the desired fine-grained control of the IS weights
variance. Specifically, if τt+1 is a trajectory of length H generated following the initial distribution ρ and policy πθt+1

, then

E[w(τt+1|θt, θt+1)] = 1 , (15)

Var [w(τt+1|θt, θt+1)] ≤ Cwα
2 , (16)

where Cw
def
= H((8H + 2)l2ψ + 2Lψ)(W + 1) .

E. Proofs for Section 4.2: First-order stationarity
From the technical point of view, our proofs for the general utility setting depart from the proof techniques of Zhang et al.
(2021b) in several ways although we share several common points. First, normalized policy gradient requires an adequate
ascent-like lemma which is different from the analysis of gradient truncation mechanism. Second, our algorithm uses a
different variance reduction scheme which does not require checkpoints and consists of a single loop. This requires careful
changes in the proof. Compared to standard STORM variance reduction proofs in stochastic optimization (Cutkosky &
Orabona, 2019), our setting involves two estimators which are intertwined, namely the state-action occupancy measure
estimate and the stochastic policy gradient. This makes the analysis more complex and we refer the reader to the
decomposition in (24) and the subsequent lemmas to observe this. In contrast, STORM only involves the stochastic gradient
and uses a different update rule. More broadly, we believe the techniques we use here could also be useful for stochastic
composite optimization.
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E.1. Proof sketch

For the convenience of the reader, we highlight the main steps of the proof in this subsection before diving into the full
detailed proof. The main steps consist in:

(a) showing an ascent-like lemma on the general utility function (see Lemma E.1). Notice that our algorithm is not a
standard policy gradient algorithm but features normalization which requires a particular treatment;

(b) controlling the variance error due to two coupled stochastic estimates: the stochastic estimates of the state-action
occupancy measures (for distinct policy parameters) and the stochastic policy gradients. Controlling these coupled
estimates in our single-loop batch-free algorithm constitutes one of the main challenges of the proofs. More precisely,
we use the following steps:

(i) We decompose the overall stochastic policy gradients errors in estimating the true policy gradients in (24) into
two errors (see (25)): the error due to the state action occupancy measure estimation (which provides an estimate
of the reward sequence) and the error due to the policy gradient given an estimate of the reward sequence.

(ii) We control each one of the aforementioned errors by establishing recursions in Lemma E.5 and Lemma E.8
respectively. Then, we solve the resulting recursions in the second parts of the lemmas.

(iii) We sum up each one of the expected errors over time in Lemma E.6 and Lemma E.6 and we obtain an estimation
of the overall error in Lemma E.10 by combining both errors using Lemma E.4.

Further technical steps needed are described in the full proof (see for e.g. Lemma E.7).

(c) incorporating the estimates obtained in the second step to the descent lemma and telescoping the obtained inequality to
derive our final convergence guarantee (see the proof of Theorem E.11 for the concluding steps).

E.2. Proof of Theorem 4.4 (General utilities setting)

In this section, we provide a proof for the case of general utilities. Notice that the case of cumulative rewards is a particular
case. The first lemma is a an ascent-like lemma which follows from smoothness of the objective function. Before stating the
lemma, we define the error sequence (et) for every integer t as follows:

et
def
= dt −∇θF (λH(θt)) . (17)

Lemma E.1. Let Assumptions 4.1 and 4.2 hold true. Then, the sequence (θt) generated by Algorithm 1 and the sequence (et)
satisfy for every integer t ≥ 0,

F (λ(θt+1)) ≥ F (λ(θt)) +
αt
3
∥∇θF (λ(θt))∥ − 2αt∥et∥ −

4

3
Dλγ

Hαt −
Lθ
2
α2
t . (18)

Proof. Since the objective function θ 7→ F (λ(θ)) is Lθ-smooth by Lemma H.1, we obtain the following by using the update
rule of the sequence (θt):

F (λ(θt+1)) ≥ F (λ(θt)) + ⟨∇θF (λ(θt)), θt+1 − θt⟩ −
Lθ
2
∥θt+1 − θt∥2

= F (λ(θt)) + αt⟨∇θF (λ(θt)),
dt

∥dt∥
⟩ − Lθ

2
α2
t

= F (λ(θt)) + αt⟨∇θF (λH(θt)),
dt
∥dt∥

⟩+ αt⟨∇θF (λ(θt))−∇θF (λH(θt)),
dt

∥dt∥
⟩ − Lθ

2
α2
t

≥ F (λ(θt)) + αt⟨∇θF (λH(θt)),
dt
∥dt∥

⟩ − αt∥∇θF (λ(θt))−∇θF (λH(θt))∥ −
Lθ
2
α2
t

(a)

≥ F (λ(θt)) + αt⟨∇θF (λH(θt)),
dt
∥dt∥

⟩ − αtDλγ
H − Lθ

2
α2
t , (19)

where (a) follows from Lemma H.2-(i).

Then we control the scalar product term. We distinguish two different cases:
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Case 1: ∥et∥ ≤ 1
2∥∇θF (λH(θt))∥ . In this case, we have

⟨∇θF (λH(θt)),
dt
∥dt∥

⟩ = 1

∥dt∥
(∥∇θF (λH(θt))∥2 + ⟨∇θF (λH(θt)), et⟩)

≥ 1

∥dt∥
(∥∇θF (λH(θt))∥2 − ∥∇θF (λH(θt))∥ · ∥et∥)

=
1

∥dt∥
∥∇θF (λH(θt))∥ · (∥∇θF (λH(θt))∥ − ∥et∥)

≥ 1

3
∥∇θF (λH(θt))∥ ,

where the last inequality follows from observing that ∥dt∥ ≤ ∥et∥+ ∥∇θF (λH(θt))∥ ≤ 3
2∥∇θF (λH(θt))∥ .

Case 2: ∥et∥ ≥ 1
2∥∇θF (λH(θt))∥ . In this case, we simply have

⟨∇θF (λH(θt)),
dt
∥dt∥

⟩ ≥ −∥∇θF (λH(θt))∥ ≥ −2∥et∥ .

Combining both cases, we obtain:

αt⟨∇θF (λH(θt)),
dt

∥dt∥
⟩ ≥ αt

3
∥∇θF (λH(θt))∥ − 2αt∥et∥

≥ αt
3
∥∇θF (λ(θt))∥ −

αt
3
Dλγ

H − 2αt∥et∥ . (20)

Combining (19) and (20), we get

F (λ(θt+1)) ≥ F (λ(θt)) +
αt
3
∥∇θF (λ(θt))∥ − 2αt∥et∥ −

4

3
Dλγ

Hαt −
Lθ
2
α2
t ,

which completes the proof.

We now proceed with some preliminary results in order to control the error term ∥et∥ in expectation.

The next lemma appeared in Prop. E.1 (Zhang et al., 2021b).
Remark E.2. With a slight abuse of notation, τ ∼ πθ means that the trajectory τ (of length H) is sampled from the MDP
controlled by the policy πθ. We adopt this notation to highlight the dependence on the parametrized policy πθ, the MDP
being fixed in the problem formulation.

Lemma E.3. For any reward vector r ∈ R|S|×|A|, we have

Eτ∼πθ [λ(τ)] = λH(θ) , (21)

Eτ∼πθ [g(τ, θ, r)] = [∇θλH(θ)]T r . (22)

In particular, under Assumption 4.2,

Eτ∼p(·|πθ)[g(τ, θ,∇λF (λH(θ)))] = [∇θλH(θ)]T∇λF (λH(θ)) = ∇θF (λH(θ)) . (23)

Proof. The proof follows from the definitions of the estimators λ(τ) and g(τ, θ, r) in Eqs. (8)-(7) and the definition of the
truncated state-action occupancy measure λH(θ) (see Eq.(1)) as well as the policy gradient theorem in Eq. (5).

In view of controlling the error sequence (et), we first observe the following decomposition:

et = dt −∇θF (λH(θt))

= dt − [∇θλH(θt)]
T rt−1 + [∇θλH(θt)]

T (rt−1 −∇λF (λH(θt)))

= dt − [∇θλH(θt)]
T rt−1 + [∇θλH(θt)]

T (∇λF (λt−1)−∇λF (λH(θt))) . (24)
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Given the previous decomposition, we define two useful additional notations:

êt
def
= dt − [∇θλH(θt)]

T rt−1 , (25)

ẽt
def
= λt − λH(θt) . (26)

Using these notations, we establish the following result relating the error ∥et∥2 to the errors ∥êt∥2 and ∥ẽt∥2 in expectation.

Lemma E.4. Let Assumptions 4.1 and 4.2 hold true. Then we have for every integer t ≥ 1,

E[∥et∥] ≤ E[∥êt∥] + C1 E[∥ẽt−1∥] + C2 αt−1 , (27)

where C1
def
=

2L2
λlψ

(1−γ)2 and C2
def
=

2LλLλ,∞lψ
(1−γ)2 .

Proof. It follows from the decomposition in (24) and the definitions (25)-(26) that

E[∥et∥] ≤ E[∥êt∥] + E[∥[∇θλH(θt)]
T (∇λF (λt−1)−∇λF (λH(θt)))∥] . (28)

We now control the second term in the above inequality. The following step is similar to the treatment in (Zhang et al.,
2021b)(Eq.(18)). Indeed, the policy gradient theorem (see (5)) yields

[∇θλH(θt)]
T (∇λF (λt−1)−∇λF (λH(θt))) = E

H−1∑
t′=0

γt
′
[∇λF (λt−1)−∇λF (λH(θt))]st′ ,at′ ·

 t′∑
h=0

∇θ log πθ(ah, sh)


As a consequence,

∥[∇θλH(θt)]
T (∇λF (λt−1)−∇λF (λH(θt)))∥ ≤ E

H−1∑
t′=0

γt
′
∥∇λF (λt−1)−∇λF (λH(θt))∥∞

∥∥∥∥∥∥
t′∑
h=0

∇θ log πθ(ah, sh)

∥∥∥∥∥∥
 .

(29)

Then, using Assumption 4.2, we have

∥∇λF (λt−1)−∇λF (λH(θt))∥∞ ≤ ∥∇λF (λt−1)−∇λF (λH(θt−1))∥∞ + ∥∇λF (λH(θt−1))−∇λF (λH(θt))∥∞
≤ Lλ∥λt−1 − λH(θt−1)∥+ Lλ,∞∥λH(θt−1)− λH(θt)∥1
≤ Lλ∥ẽt−1∥+ Lλ,∞∥θt − θt−1∥ , (30)

where the last inequality follows from Lemma H.1-(ii). Plugging this inequality in (29) and using Lemma H.1-(i) yields

∥[∇θλH(θt)]
T (∇λF (λt−1)−∇λF (λH(θt)))∥ ≤ E

[
H−1∑
t′=0

2(t′ + 1)lψγ
t′(Lλ∥ẽt−1∥+ Lλ,∞∥θt − θt−1∥)

]

=

(
H−1∑
t′=0

2(t′ + 1)lψγ
t′Lλ

)
(LλE[∥ẽt−1∥] + Lλ,∞αt−1)

≤ 2Lλlψ
(1− γ)2

(LλE[∥ẽt−1∥] + Lλ,∞αt−1) . (31)

Hence, taking the total expectation, we obtain

E[∥[∇θλH(θt)]
T (∇λF (λt−1)−∇λF (λH(θt)))∥] ≤

2L2
λlψ

(1− γ)2
E[∥ẽt−1∥] +

2LλLλ,∞lψ
(1− γ)2

αt−1 . (32)

Combining (28) and (32) yields the desired inequality.
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We now control each one of the errors in the right-hand side of the previous lemma in what follows. We start with the
error ẽt (see (26)) induced by the (truncated) state-action occupancy measure estimation.

Lemma E.5. Let Assumption 4.1 hold. Then, for every integer t ≥ 1, if ηt ∈ [0, 1] we have

E[∥ẽt∥2] ≤ (1− ηt)E[∥ẽt−1∥2] +
2Cw

(1− γ)2
α2
t−1 +

2

(1− γ)2
η2t , (33)

where we recall that ẽt = λt − λH(θt) and Cw = H((8H + 2)l2ψ + 2Lψ)(W + 1) as defined in Lemma 4.3. Moreover,

(i) if ηt = 2
t+1 , then for all integers t ≥ 1, we have

E[∥ẽt∥] ≤
4

(1− γ)
ηt · t

1/2 +
2C

1/2
w

(1− γ)
αt−1 · t

1/2. (34)

(ii) if ηt =
(

2
t+1

)q
and αt = α

(
2
t+1

)p
for some reals α > 0, q ∈ (0, 1), p ≥ 0 and all integers t ≥ 1, then we have

E
[
∥ẽt∥2

]
≤ (2C + 1)ηt+1

(1− γ)2
+

2CCw
(1− γ)2

α2
t η

−1
t+1 , (35)

where C > 0 is an absolute numerical constant.

Proof. We start with the proof of (33). Using the update rule of the sequence (λt) in Algorithm 1, we first derive a recursion
on the error sequence ẽt from the following decomposition:

ẽt = λt − λH(θt)

= ηtλ(τt) + (1− ηt)(λt−1 + ut)− λH(θt)

= (1− ηt)ẽt−1 + (1− ηt)(λH(θt−1) + ut) + ηt(λ(τt)− λH(θt))− (1− ηt)λH(θt)

= (1− ηt)ẽt−1 + (1− ηt)z̃t + ηtỹt ,

where

ỹt
def
= λ(τt)− λH(θt) , (36)

z̃t
def
= ut − (λH(θt)− λH(θt−1)) = λ(τt)(1− w(τt|θt−1, θt))− (λH(θt)− λH(θt−1)) . (37)

Using these notations, we have

E[∥ẽt∥2] = (1− ηt)
2E[∥ẽt−1∥2] + E[∥(1− ηt)z̃t + ηtỹt∥2] + E[⟨(1− ηt)ẽt−1, (1− ηt)z̃t + ηtỹt⟩] . (38)

Then, we notice that the scalar product term is equal to zero. We consider for this the filtration (Ft) of σ-algebras defined s.t.
for every integer t, Ft

def
= σ(θk, τk : k ≤ t) where τt is a (random) trajectory of length H generated following the policy πθt .

This σ-algebra represents the history of all the random variables until time t. As a consequence, the random variable ẽt
being Ft−1-measurable, it follows from the tower property of the conditional expectation that

E[⟨(1− ηt)ẽt−1, (1− ηt)z̃t + ηtỹt⟩] = E[E[⟨(1− ηt)ẽt−1, (1− ηt)z̃t + ηtỹt⟩|Ft−1]]

= E[⟨(1− ηt)ẽt−1,E[(1− ηt)z̃t + ηtỹt⟩|Ft−1]]

= 0 , (39)

where the last step stems from the fact that E[z̃t|Ft−1] = E[ỹt|Ft−1] = 0, recall for this that τt ∼ πθt for every t and see
the definitions (36) and (37).

It follows from (38) and (39) that

E[∥ẽt∥2] ≤ (1− ηt)
2E[∥ẽt−1∥2] + 2(1− ηt)

2E[∥z̃t∥2] + 2η2tE[∥ỹt∥2] . (40)
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Then, we upperbound each one of the last two terms in (40). As for the first term, since E[z̃t] = 0, we have the following

E[∥z̃t∥2] ≤ E[∥ut∥2] = E[∥λ(τt)(1− w(τt|θt−1, θt))∥2] = E[(1− w(τt|θt−1, θt))
2∥λ(τt)∥2] . (41)

Given the definition of λ(τt) in (8), we first observe that with probability one,

∥λ(τt)∥ ≤
H−1∑
t=0

γt∥δst,at∥ =

H−1∑
t=0

γt ≤ 1

1− γ
. (42)

Using Lemma 4.3 together with the previous bound, we get

E[(1−w(τt|θt−1, θt))
2∥λ(τt)∥2] ≤

1

(1− γ)2
E[(1−w(τt|θt−1, θt))

2] =
1

(1− γ)2
Var [w(τt|θt−1, θt)] ≤

Cw
(1− γ)2

α2
t−1 .

(43)
We deduce from (41) and (43) together that

E[∥z̃t∥2] ≤
Cw

(1− γ)2
α2
t−1 . (44)

Regarding the last term in (40), since E[ỹt] = 0, we observe that

E[∥ỹt∥2] ≤ E[∥λ(τt)∥2] ≤
1

(1− γ)2
, (45)

where the last inequality stems from (42). Incorporating (44) and (45) into (40) leads to the following inequality

E[∥ẽt∥2] ≤ (1− ηt)
2E[∥ẽt−1∥2] +

2Cw
(1− γ)2

(1− ηt)
2α2

t−1 +
2

(1− γ)2
η2t , (46)

which concludes the proof of the first since ηt ∈ [0, 1].

Proof of (34): In order to derive (34), we apply Lemma H.4 with ηt = 2
t+1 , βt = 2

(1−γ)2 η
2
t + 2Cw

(1−γ)2α
2
t−1. Using

E[∥ẽ0∥2] ≤ E[∥λ(τt)∥2] ≤ 1
(1−γ)2 , we derive

E[∥ẽt∥] ≤
(
E[∥ẽt∥2]

) 1
2 ≤

(
4

(1− γ)2(t+ 1)2
+

2

(1− γ)2
η2t · t+

2Cw
(1− γ)2

α2
t−1 · t

)1/2

≤ 2

(1− γ)(t+ 1)
+

2

(1− γ)
ηt · t

1/2 +
2C

1/2
w

(1− γ)
αt−1 · t

1/2

≤ 4

(1− γ)
ηt · t

1/2 +
2C

1/2
w

(1− γ)
αt−1 · t

1/2 . (47)

Proof of (35): Let ηt =
(

2
t+1

)q
for some q ∈ (0, 1). In order to derive (35), we unroll the recursion (33) from t = 1 to

t = t′ where t′ ≤ T − 1. Denoting βt = 2
(1−γ)2 η

2
t +

2Cw
(1−γ)2α

2
t−1 , we have

E
[
∥ẽt′∥2

]
≤

t′∏
τ=1

(1− ητ )E
[
∥ẽ0∥2

]
+

t′∑
t=1

βt

t′∏
τ=t+1

(1− ητ )

≤ ηt′+1

(1− γ)2
+ Cβt′+1η

−1
t′+1 , (48)

where we used E
[
∥ẽ0∥2

]
≤ E

[
∥λ(τt)∥2

]
≤ 1

(1−γ)2 and the results of Lemmas H.5-H.6 with C > 1 being a numerical
constant.
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Lemma E.6. Let Assumption 4.1 hold. Let α0 > 0 and consider an integer T ≥ 1 . Set ηt =
(

2
t+1

)2/3

and αt = α0

T 2/3
for

every nonzero integer t ≤ T . Then, we have

1

T

T∑
t=1

E[∥ẽt∥] ≤
C
(
1 + C

1/2
w α0

)
(1− γ)

1

T 1/3
, (49)

where C > 0 is an absolute numerical constant.

Proof. Summing up inequality (35) from Lemma E.6 from t = 1 to t = T and choosing αt = α = α0

T 2/3
, we obtain

1

T

T∑
t=1

E [∥ẽt∥] ≤ 1

T

T∑
t=1

(
E
[
∥ẽt∥2

])1/2
≤

(
1

T

T∑
t=1

E
[
∥ẽt∥2

])1/2

≤

(
1

T

T∑
t=1

ηt+1

(1− γ)2
+ C

2

(1− γ)2
ηt+1 +

2Cw
(1− γ)2

α2η−1
t+1

)1/2

(i)

≤
(

3ηT−1

(1− γ)2
+

6CηT−1

(1− γ)2
+

2CCw
(1− γ)2

α2

ηT+1

)1/2

≤
(
9CηT−1

(1− γ)2
+

2CCw
(1− γ)2

α2

ηT+1

)1/2

≤
(

18C

(1− γ)2T 2/3
+

3CCw
(1− γ)2

α2
0

T 2/3

)1/2

≤
12C1/2

(
1 + C

1/2
w α0

)
(1− γ)

1

T 1/3
. (50)

where (i) follows from observing that

T∑
t=1

ηt+1 ≤ 2
2
3

T∑
t=1

1

(t+ 2)
2
3

≤ 2
2
3

∫ T

t=1

1

(t+ 1)
2
3

≤ 3 · 2 2
3T

1
3 = 3T

2
2
3

T
2
3

= 3T ηT−1. (51)

In view of controlling the error êt, we first state a technical lemma that will be useful. This result controls the expected
squared difference between two consecutive estimates of the (truncated) state-action occupancy measure.

Lemma E.7. Suppose Assumption 4.1 holds. Then for all integers t ≥ 1,

E[∥λt−1 − λt∥2] ≤
3η2t

(1− ηt)2
E[∥ẽt∥2] +

3η2t
(1− ηt)2(1− γ)2

+
3Cw

(1− γ)2
α2
t−1 , (52)

where Cw = H((8H + 2)l2ψ + 2Lψ)(W + 1) as defined in Lemma 4.3. Moreover, if in addition ηt =
(

2
t+1

)q
for some

q ∈ [0, 1) then for every integer t ≥ 1,

E[∥λt−1 − λt∥2] ≤
12Cη2t
(1− γ)2

+
6Cw

(1− γ)2
α2
t−1 , (53)

where C > 0 is a numerical constant.
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Proof. Using the update rule of the truncated occupancy measure estimate sequence (λt), we have

λt−1 − λt = λt−1 − [ηtλ(τt) + (1− ηt)(λt−1 + ut)]

= ηt(λt−1 − λ(τt))− (1− ηt)ut

= ηt(λt−1 − λt) + ηt(λt − λ(τt))− (1− ηt)ut .

As a consequence, we have

λt−1 − λt =
ηt

1− ηt
(λt − λ(τt))− ut

=
ηt

1− ηt
ẽt +

ηt
1− ηt

(λH(θt)− λ(τt))− ut . (54)

Taking expectation of the square of the previous identity, we obtain the following bound:

E[∥λt−1 − λt∥2] ≤
3η2t

(1− ηt)2
E[∥ẽt∥2] +

3η2t
(1− ηt)2

E[∥λ(τt)− λH(θt)∥2] + 3E[∥ut∥2] . (55)

Recall now that E[∥ut∥2] ≤ Cw
(1−γ)2α

2
t−1 and E[∥λ(τt) − λH(θt)∥2] ≤ 1

(1−γ)2 from (41)-(44) and (45) respectively.
Incorporating these bounds into (55) yields:

E[∥λt−1 − λt∥2] ≤
3η2t

(1− ηt)2
E[∥ẽt∥2] +

3η2t
(1− ηt)2(1− γ)2

+
3Cw

(1− γ)2
α2
t−1 .

This completes the proof of (52). We now set ηt =
(

2
t+1

)q
for some q ∈ (0, 1). By (76) in the proof of Lemma E.5, we

have

E
[
∥ẽt∥2

]
≤ ηt

(1− γ)2
+ Cβtη

−1
t , (56)

where βt = 2
(1−γ)2 η

2
t +

2Cw
(1−γ)2α

2
t−1, and C > 0 is a numerical constant. Thus,

E[∥λt−1 − λt∥2] ≤
3η2t

(1− ηt)2

(
ηt

(1− γ)2
+ Cβtη

−1
t

)
+

3η2t
(1− ηt)2(1− γ)2

+
3Cw

(1− γ)2
α2
t−1

≤ 12Cη2t
(1− γ)2

+
6Cw

(1− γ)2
α2
t−1 .

We are now ready to prove a recursive upper bound on the error sequence (êt) defined in (25). Notice that this result is
of the same flavor as Lemma E.5 which we already proved. In particular, the result illustrates a variance reduction effect
stemming from the variance reduction updates used for both the stochastic policy gradients and the state-action occupancy
measure estimates.

Lemma E.8. Suppose Assumptions 4.1 and 4.2 hold. Then, for every integer t ≥ 2,

E[∥êt∥2] ≤ (1− ηt)
2E[∥êt−1∥2] + C3η

2
t−1 + C4α

2
t−2, (57)

where C3
def
=

288Cl2ψL
2
λ

(1−γ)6 +
32l2λl

2
ψ

(1−γ)4 , C4
def
=

12l2λ[(l
2
ψ+Lψ)

2+Cwl
2
ψ]

(1−γ)4 +
144Cwl

2
ψL

2
λ

(1−γ)6 , and Cw = H((8H + 2)l2ψ + 2Lψ)(W + 1)

as defined in Lemma 4.3. Moreover,

(i) if ηt = 2
t+1 , then for all integers t ≥ 1, we have

E[∥êt∥] ≤ 2Ê

t+ 1
+ 2C

1/2
3 ηt · t

1/2 + C
1/2
4 αt−2 · t

1/2 . (58)
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(ii) if ηt =
(

2
t+1

)q
and αt = α

(
2
t+1

)p
for some reals α > 0, q ∈ (0, 1), p ≥ 0 and all integers t ≥ 1, then we have

E
[
∥êt∥2

]
≤ Ê2ηt+1 + 2CC3ηt+1 + CC4α

2
t−1η

−1
t+1, (59)

where Ê =
4lλlψ
(1−γ)2 .

Proof. The first step of the proof consists in decomposing the error êt in a suitable way using the update rule of the
sequence (dt) so that for every integer t ≥ 2,

êt = dt − [∇θλH(θt)]
T rt−1

= (1− ηt)(dt−1 + vt) + ηtg(τt, θt, rt−1)− [∇θλH(θt)]
T rt−1

= (1− ηt)(êt−1 + [∇θλH(θt−1)]
T rt−2 + vt) + ηt(g(τt, θt, rt−1)− [∇θλH(θt)]

T rt−1)− (1− ηt)[∇θλH(θt)]
T rt−1

= (1− ηt)êt−1 + (1− ηt)ẑt + ηtŷt ,

where

ŷt
def
= g(τt, θt, rt−1)− [∇θλH(θt)]

T rt−1 , (60)

ẑt
def
= vt − ([∇θλH(θt)]

T rt−1 − [∇θλH(θt−1)]
T rt−2) (61)

= g(τt, θt, rt−1)− [∇θλH(θt)]
T rt−1 + [∇θλH(θt−1)]

T rt−2 − w(τt|θt−1, θt)g(τt, θt−1, rt−2) . (62)

Then we use similar derivations to (38) and (39). We consider again the same filtration (Ft) of σ-algebras where Ft
represents the randomness until time t (including time t and random trajectories τt of length H generated by following the
policy πθt ). Therefore, we have (see Lemma E.3)

E[ŷt|Ft−1] = 0 ; E[ẑt|Ft−1] = 0 . (63)

Note here as a comment that the reason why we used rt−1 instead of rt in Algorithm 1 (for the sequence (vt)) becomes
clearer here in the previous identities: rt−1 is Ft−1- measurable unlike rt and this allows to obtain a null conditional
expectation avoiding in particular dependency issues between rt and θt.

Employing (63) and using the same derivations as in (39) leads to

E[∥êt∥2] = E[∥(1− ηt)êt−1 + (1− ηt)ẑt + ηtŷt∥2]
= (1− ηt)

2E[∥êt−1∥2] + E[∥(1− ηt)ẑt + ηtŷt∥2]
≤ (1− ηt)

2E[∥êt−1∥2] + 2(1− ηt)
2E[∥ẑt∥2] + 2η2tE[∥ŷt∥2] . (64)

We now derive a bound for the term E[∥ẑt∥2] . Observe for this that

E[∥ẑt∥2] ≤ E[∥g(τt, θt, rt−1)− w(τt|θt−1, θt)g(τt, θt−1, rt−2)∥2]
= E[∥g(τt, θt, rt−1)− g(τt, θt−1, rt−1) + g(τt, θt−1, rt−1)− g(τt, θt−1, rt−2)

+ g(τt, θt−1, rt−2)(1− w(τt|θt−1, θt))∥2]
≤ 3E[∥g(τt, θt, rt−1)− g(τt, θt−1, rt−1)∥2] + 3E[∥g(τt, θt−1, rt−1)− g(τt, θt−1, rt−2)∥2]
+ 3E[(1− w(τt|θt−1, θt))

2∥g(τt, θt−1, rt−2)∥2] . (65)

Each term in this inequality is upper bounded separately in what follows.

Term 1: E[∥g(τt, θt, rt−1)− g(τt, θt−1, rt−1)∥2]. Using Lemma H.3-(ii), we obtain

∥g(τt, θt, rt−1)− g(τt, θt−1, rt−1)∥ ≤
2(l2ψ + Lψ)

(1− γ)2
∥rt−1∥∞ · ∥θt − θt−1∥

=
2(l2ψ + Lψ)

(1− γ)2
∥∇λF (λt−1)∥∞ · αt−1

≤
2(l2ψ + Lψ)lλ

(1− γ)2
αt−1 , (66)

23



Reinforcement Learning with General Utilities: Simpler Variance Reduction and Large State-Action Space

where the last inequality stems from Assumption 4.2. We deduce from this the bound for the first term:

E[∥g(τt, θt, rt−1)− g(τt, θt−1, rt−1)∥2] ≤
4(l2ψ + Lψ)

2l2λ
(1− γ)4

α2
t−1 . (67)

Term 2: E[∥g(τt, θt−1, rt−1)− g(τt, θt−1, rt−2)∥2]. Together with Assumption 4.2, Lemma H.3-(i) yields

∥g(τt, θt−1, rt−1)− g(τt, θt−1, rt−2)∥ ≤ 2lψ
(1− γ)2

∥rt−1 − rt−2∥∞

=
2lψ

(1− γ)2
∥∇λF (λt−1)−∇λF (λt−2)∥∞

≤ 2lψLλ
(1− γ)2

∥λt−1 − λt−2∥ . (68)

Invoking Lemma E.7, we obtain from (68)

E[∥g(τt, θt−1, rt−1)− g(τt, θt−1, rt−2)∥2] ≤
4l2ψL

2
λ

(1− γ)4
E[∥λt−1 − λt−2∥2]

≤
4l2ψL

2
λ

(1− γ)4

(
12Cη2t−1

(1− γ)2
+

6Cw
(1− γ)2

α2
t−2

)
≤

48l2ψL
2
λ

(1− γ)6
(
Cη2t−1 + Cwα

2
t−2

)
. (69)

Term 3: E[(1− w(τt|θt−1, θt))
2∥g(τt, θt−1, rt−2)∥2].

First, observe that

∥g(τt, θt−1, rt−2)∥
(a)
=

∥∥∥∥∥
H−1∑
t=0

(
H−1∑
h=t

γhrt−2(sh, ah)

)
∇ log πθ(at|st)

∥∥∥∥∥
≤
H−1∑
t=0

H−1∑
h=t

γh∥rt−2∥∞ · ∥∇ log πθ(at|st)∥

(b)

≤ lλ

H−1∑
t=0

H−1∑
h=t

γh∥∇ log πθ(at|st)∥

(c)

≤ 2lλlψ

H−1∑
t=0

H−1∑
h=t

γh

= 2lλlψ

H−1∑
h=0

h∑
t=0

γh

≤ 2lλlψ

H−1∑
h=0

(h+ 1)γh

≤ 2lλlψ
(1− γ)2

, (70)

where (a) follows from the expression of the stochastic policy gradient (7), (b) stems from Assumption 4.2 and (c) is a
consequence of Lemma H.1-(i).
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Using Lemma 4.3 together with the previous bound yields

E[(1− w(τt|θt−1, θt))
2∥g(τt, θt−1, rt−2)∥2] ≤

4l2λl
2
ψ

(1− γ)4
E[(1− w(τt|θt−1, θt))

2]

=
4l2λl

2
ψ

(1− γ)4
Var [w(τt|θt−1, θt)]

≤
4l2λl

2
ψCw

(1− γ)4
α2
t−1 . (71)

Collecting (67), (69) and (71) in (65), we obtain

E[∥ẑt∥2] ≤
12l2λ[(l

2
ψ + Lψ)

2 + Cwl
2
ψ]

(1− γ)4
α2
t−1 +

144l2ψL
2
λ

(1− γ)6
(
Cη2t−1 + Cwα

2
t−2

)
≤

144Cl2ψL
2
λ

(1− γ)6
η2t−1 +

(
12l2λ[(l

2
ψ + Lψ)

2 + Cwl
2
ψ]

(1− γ)4
+

144Cwl
2
ψL

2
λ

(1− γ)6

)
α2
t−2 . (72)

We now bound the term E[∥ŷt∥2] in (64). First, recall from (60) that ŷt = g(τt, θt, rt−1)− [∇θλH(θt)]
T rt−1 . Then, with

probability one,

∥ŷt∥ ≤ ∥g(τt, θt, rt−1)∥+ ∥[∇θλH(θt)]
T rt−1∥

(a)

≤ 2lλlψ
(1− γ)2

+ ∥[∇θλH(θt)]
T rt−1∥

(b)

≤ 4lλlψ
(1− γ)2

, (73)

where (a) stems from the same bound as in (70) and (b) also follows from a similar bound to (70). Indeed, notice using (5)
that

∥[∇θλH(θt)]
T rt−1∥ =

∥∥∥∥∥∥E
H−1∑
t′=0

γt
′
rt−1(s

′
t, a

′
t)

 t′∑
h=0

∇ log πθ(ah|sh)

∥∥∥∥∥∥
≤ E

H−1∑
t′=0

γt
′
∥rt−1∥∞

t′∑
h=0

∥∇ log πθ(ah|sh)∥


(a)

≤ 2lλlψ

H−1∑
t′=0

(t′ + 1)γt
′

≤ 2lλlψ
(1− γ)2

, (74)

where again (a) stems from Assumption 4.2 and Lemma H.1-(i).

We conclude from (64), (72) and (73) that

E[∥êt∥2] ≤ (1−ηt)2E[∥êt−1∥2]+

(
288Cl2ψL

2
λ

(1− γ)6
+

32l2λl
2
ψ

(1− γ)4

)
η2t−1+

(
12l2λ[(l

2
ψ + Lψ)

2 + Cwl
2
ψ]

(1− γ)4
+

144Cwl
2
ψL

2
λ

(1− γ)6

)
α2
t−2 ,

where Cw = H((8H + 2)l2ψ + 2Lψ)(W + 1) as defined in Lemma 4.3.

Proof of (58): In order to derive (58), we apply Lemma H.4 with ηt = 2
t+1 , βt = C3η

2
t−1+C4α

2
t−2. Using E[∥ê0∥2] ≤ Ê2,

we derive
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E[∥êt∥] ≤
(
E[∥êt∥2]

) 1
2 ≤

(
4Ê2

(t+ 1)2
+ 4C3η

2
t · t+ C4α

2
t−2 · t

)1/2

≤ 2Ê

t+ 1
+ 2C

1/2
3 ηt · t

1/2 + C
1/2
4 αt−2 · t

1/2 . (75)

Proof of (59): Let ηt =
(

2
t+1

)q
for some q ∈ (0, 1). In order to derive (59), we unroll the recursion from t = 1 to

t = t′ ≤ T . Denoting βt = C3η
2
t−1 + C4α

2
t−2, we derive

E
[
∥êt′∥2

]
≤

 t′∏
τ=1

(1− ητ )

E
[
∥ê0∥2

]
+

t′∑
t=1

βt

t′∏
τ=t+1

(1− ητ )

≤ Ê2ηt′+1 + Cβt′+1η
−1
t′+1

≤ Ê2ηt′+1 + CC3η
2
t′η

−1
t′+1 + CC4α

2
t′−1η

−1
t′+1

≤ Ê2ηt′+1 + 2CC3ηt′+1 + CC4α
2
t′−1η

−1
t′+1. , (76)

where we used the results of Lemmas H.5-H.6 and E
[
∥ê0∥2

]
≤ Ê2 with Ê =

4lλlψ
(1−γ)2 , which can be derived similarly

to (73).

In the next lemma, we derive an estimate of the average expected error E[∥êt∥] from the recursion we have just established
in Lemma E.8.

Lemma E.9. Suppose Assumptions 4.1 and 4.2 hold. Let T ≥ 1 be an integer, let α0 > 0 and set ηt =
(

2
t+1

)2/3

, αt = α0

T 2/3

for every integer t. Then

1

T

T∑
t=1

E [∥êt∥] ≤
C
(
Ê + C

1/2
3 + C

1/2
4 α0

)
T 1/3

, (77)

where Ê =
4lλlψ
(1−γ)2 , C3 =

288Cl2ψL
2
λ

(1−γ)6 +
32l2λl

2
ψ

(1−γ)4 , C4 =
12l2λ[(l

2
ψ+Lψ)

2+Cwl
2
ψ]

(1−γ)4 +
144Cwl

2
ψL

2
λ

(1−γ)6 , Cw = H((8H+2)l2ψ+2Lψ)(W+

1) as defined in Lemma 4.3, and C > 1 is a numerical constant.

Proof. Summing up inequality (59) from Lemma E.8 from t = 1 to t = T and choosing αt = α = α0

T 2/3
, we obtain

1

T

T∑
t=1

E [∥êt∥] ≤ 1

T

T∑
t=1

(
E
[
∥êt∥2

])1/2
≤

(
1

T

T∑
t=1

E
[
∥êt∥2

])1/2

≤

(
1

T

T∑
t=1

Ê2ηt+1 + 2CC3ηt+1 + CC4α
2η−1
t+1

)1/2

(i)

≤
(
3(Ê2 + 2CC3)ηT−1 + CC3α

2η−1
T+1

)1/2

≤

(
12(Ê2 + CC3)

T 2/3
+

2CC4α
2
0

T 2/3

)1/2

≤
4C1/2

(
Ê + C

1/2
3 + C

1/2
4 α0

)
T 1/3

,
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where (i) holds by (51).

We are now ready to state the main lemma controlling the error sequence (et) in expectation as defined in (17).

Lemma E.10. Suppose Assumptions 4.1 and 4.2 hold. Let T ≥ 1 be an integer, let α0 > 0 and set ηt =
(

2
t+1

)2/3

,
αt =

α0

T 2/3
for every integer t. Then

1

T

T∑
t=1

E[∥et∥] ≤
C
(
Ê + C

1/2
3 + C

1/2
4 α0

)
T 1/3

+
CC1

(
1 + C

1/2
w α0

)
(1− γ)

1

T 1/3
+
C2α0

T 2/3
, (78)

where C1 =
2L2

λlψ
(1−γ)2 and C2 =

2LλLλ,∞lψ
(1−γ)2 , C3 =

288Cl2ψL
2
λ

(1−γ)6 +
32l2λl

2
ψ

(1−γ)4 , C4 =
12l2λ[(l

2
ψ+Lψ)

2+Cwl
2
ψ ]

(1−γ)4 +
144Cwl

2
ψL

2
λ

(1−γ)6 , C is a
numerical constant and Cw = H((8H + 2)l2ψ + 2Lψ)(W + 1) as defined in Lemma 4.3.

Proof. By Lemma E.5 and E.9 we have the bounds

1

T

T∑
t=1

E [∥êt∥] ≤
C
(
Ê + C

1/2
3 + C

1/2
4 α0

)
T 1/3

,
1

T

T∑
t=1

E[∥ẽt∥] ≤
C
(
1 + C

1/2
w α0

)
(1− γ)

1

T 1/3
. (79)

Summing up the result of Lemma E.4 from t = 1 to t = T and using the above bounds, we obtain

1

T

T∑
t=1

E[∥et∥] ≤ 1

T

T∑
t=1

E[∥êt∥] +
C1

T

T∑
t=1

E[∥ẽt−1∥] +
C2

T

T∑
t=1

αt−1

≤
C
(
Ê + C

1/2
3 + C

1/2
4 α0

)
T 1/3

+
CC1

(
1 + C

1/2
w α0

)
(1− γ)

1

T 1/3
+
C2α0

T 2/3
. (80)

End of the proof of Theorem 4.4. We conclude the proof of Theorem 4.4 which is first recalled in the following for the
convenience of the reader.

Theorem E.11. Let Assumptions 4.1 and 4.2 hold. Let α0 > 0 and consider an integer T ≥ 1. Set αt = α0

T 2/3
, ηt =

(
2
t+1

)2/3

and H = (1− γ)
−1

log(T + 1). Let θ̄T be sampled from the iterates {θ1, · · · , θT } of Algorithm 1 uniformly at random.
Then, we have

E
[∥∥∇θF (λ(θ̄T ))

∥∥] ≤ O
(
1 + (1− γ)3∆α−1

0 + (1− γ)−1α0

(1− γ)3T 1/3

)
. (81)

If moreover α0 = (1− γ)2
√
∆, then E

[∥∥∇θF (λ(θ̄T ))
∥∥] ≤ O

(
1+(1−γ)

√
∆

(1−γ)3T 1/3

)
.

Proof. By Lemma E.1, we have for every integer t,

F (λ(θt+1)) ≥ F (λ(θt)) +
αt
3
∥∇θF (λ(θt))∥ − 2αt∥et∥ −

4

3
Dλγ

Hαt −
Lθ
2
α2
t . (82)

Setting constant step-size αt = α = α0

T 2/3
, taking expectation, telescoping and rearranging, we get
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1

T

T∑
t=1

E [∥∇θF (λ(θt))∥] ≤ 3(F ⋆ − F (λ(θ1)))

αT
+

6

T

T∑
t=1

E [∥et∥] +
3Lθα

2
+ 4Dgγ

H

≤ 3(F ⋆ − F (λ(θ1)))

α0T
1/3

+
6C
(
Ê + C

1/2
3 + C

1/2
4 α0

)
T 1/3

+
6CC1

(
1 + C

1/2
w α0

)
(1− γ)

1

T 1/3

+
C2α0

T 2/3
+

3Lθα0

2T 2/3
+ 4Dgγ

H

= O
(
(1− γ)−3 +∆α−1

0 + α0(1− γ)−4

T 1/3

)
, (83)

where we set H = (1− γ)−1 log(T ). Setting α0 = (1− γ)2
√
∆, we obtain the desired result.

E.3. Proof of Corollary 4.7 (Cumulative reward setting)

For this particular case, we redefine the error sequence (et) by overloading the notation since it plays a similar role. Define
the error sequence (et) for every integer t as follows:

et
def
= dt −∇JH(θt) , (84)

where the truncated cumulative reward JH(θ) is defined as follows for any policy parameter θ ∈ Rd:

JH(θ) = E

[
H−1∑
t=0

γtr(st, at)

]
. (85)

We start by stating a complete version of Corollary 4.7 which we shall prove in this section.

Corollary E.12 (FOS convergence of N-VR-PG). Let Assumptions 4.1 and 4.2 hold. Let α0 > 0 and let T be an

integer larger than 1. Set αt = α0

T 2/3
, ηt =

(
2
t+1

)2/3

and H = (1− γ)
−1

log(T + 1). Let θ̄T be sampled from the

iterates {θ1, · · · , θT } of N-VR-PG (Algorithm 4) uniformly at random. Then we have

E
[∥∥∇J(θ̄T )∥∥] ≤ O

(
J∗ − J(θ1)

α0T
1/3

+
V + (Lg +GC

1/2
w )α0

T 1/3

)
, (86)

where V , Lg , G, and Cw are defined in Lemma 4.3, H.3, and E.13. Moreover, if we set α0 = 1− γ, then

E
[∥∥∇J(θ̄T )∥∥] ≤ O

(
1

(1− γ)2T 1/3

)
.

The proof of this result follows the same lines as the proof of Theorem 4.4 which addresses the more general setting of
general utilities. In the special case of cumulative rewards, recall that the estimation of the state-action occupancy measure
is not required. In the following, we provide for clarity the intermediate results required to prove our result, mirroring the
proof of the more general result of Theorem 4.4.

In order to derive the improved dependence on the (1− γ) factor in the final rate compared to Theorem 4.4, we will apply
the following results from Yuan et al. (2022, Lemma 4.2, (68) and Lemma 4.4, (19)) and (Xu et al., 2020a, Proposition 4.2
(1) and (3)), which offer a tighter dependence on 1− γ in the standard cumulative reward setting. We use the notation g(τ, θ)
instead of g(τ, θ, r) in this simpler standard RL setting.

Lemma E.13. Let Assumption 4.1 hold true and let τ = {s0, a0, · · · , sH−1, aH−1} be an arbitrary trajectory of length H .
Then the following statements hold:

(i) The objective function θ 7→ J(θ) is Lθ-smooth with Lθ
def
=

2∥r∥∞(Lψ+3l2ψ)

(1−γ)2 .
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(ii) For all θ1, θ2 ∈ Rd, ∥g(τ, θ1)− g(τ, θ2)∥ ≤ Lg∥θ1 − θ2∥ where Lg
def
=

2(l2ψ+Lψ)∥r∥∞
(1−γ)2 ,

(iii) For all θ ∈ Rd, E
[
∥g(τ, θ)−∇θJH(θ)∥2

]
≤ V 2 where V

def
=

2lψ∥r∥∞

(1−γ)3/2 .

(iv) For all θ ∈ Rd, ∥g(τ, θ)∥ ≤ G where G
def
=

2lλlψ
(1−γ)2 .

We start with the next lemma which corresponds exactly to Lemma E.1.

Lemma E.14. Let Assumption 4.1 hold true. Then, the sequence (θt) generated by Algorithm 4 and the sequence (et)
defined in (84) satisfy for every integer t ≥ 0,

J(θt+1) ≥ J(θt) +
αt
3
∥∇J(θt)∥ − 2αt∥et∥ −

4

3
Dgγ

Hαt −
Lθ
2
α2
t . (87)

Proof. The proof is identical to the proof of Lemma E.1 upon noticing that Assumption 4.2 is not needed here since
smoothness of the objective function J is a standard result in the RL literature following from Assumption 4.1 (see for e.g.,
Lemma 4.4 in Yuan et al. (2022)).

Then next lemma is similar to Lemma E.8 and controls the error et in Lemma E.14. We provide here a complete statement
and proof of this result for clarity and completeness since the corresponding lemma in the more general case is more
involved. Indeed, the latter result involves an additional error due to the occupancy measure estimation which is not required
in our present setting.

Lemma E.15. Under Assumption 4.1, we have for every integer t ≥ 1

E[∥et∥2] ≤ (1− ηt)
2E[∥et−1∥2] + 2V 2η2t + 4(L2

g +G2Cw)(1− ηt)
2α2

t−1 . (88)

where V , G, Lg are constants defined in Lemma H.3 and E.13. If in addition

(i) ηt = 2
t+1 , then for all t ≥ 1, we have

E[∥et∥] ≤ 4V ηt · t
1/2 + 2(Lg +GC

1/2
w )αt−1 · t

1/2 . (89)

(ii) ηt =
(

2
t+1

)2/3

, then for all integers T ≥ 1, if αt = α0

T 2/3
for some α0 > 0, we have

T∑
t=1

E[∥et∥] ≤
C
(
V +

(
Lg +GC

1/2
w

)
α0

)
T 1/3

, (90)

where C > 0 is an absolute numerical constant.

Proof. Using the update rule of the sequence (dt) and recalling the definition of the error et = dt −∇JH(θt), we have

et = dt −∇JH(θt)

= (1− ηt)(dt−1 + vt) + ηtg(τt, θt)−∇JH(θt)

= (1− ηt)(et−1 +∇JH(θt−1) + vt) + ηtg(τt, θt)−∇JH(θt)

= (1− ηt)et−1 + ηt(g(τt, θt)−∇JH(θt)) + (1− ηt)(vt − (∇JH(θt)−∇JH(θt−1))) .

Introducing additional notation for convenience:

yt
def
= g(τt, θt)−∇JH(θt) , (91)

zt
def
= vt − (∇JH(θt)−∇JH(θt−1)) , (92)
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we obtain the following useful decomposition:

et = (1− ηt)et−1 + ηtyt + (1− ηt)zt . (93)

Defining Ft as the σ-algebra generated by all the random variables until time t, we observe that E[yt|Ft−1] = E[zt|Ft−1] =
0 . As a consequence, we have

E[∥et∥2] = (1− ηt)
2E[∥et−1∥2] + E[∥ηtyt + (1− ηt)zt∥2]

≤ (1− ηt)
2E[∥et−1∥2] + 2η2tE[∥yt∥2] + 2(1− ηt)

2E[∥zt∥2] . (94)

We now control each one of the last two terms in the previous inequality. For the first term, we have by Lemma E.13-(iii)

E[∥yt∥2] ≤ V 2 . (95)

Concerning the second remaining term, using Lemma H.3-(ii) and Lemma E.13-(iv), we write

E[∥zt∥2] ≤ E[∥vt∥2]
= E[∥g(τt, θt)− w(τt|θt−1, θt)g(τt, θt−1)∥2]
= E[∥g(τt, θt)− g(τt, θt−1) + g(τt, θt−1)(1− w(τt|θt−1, θt))∥2]
≤ 2L2

gE[∥θt − θt−1∥2] + 2G2E[(1− w(τt|θt−1, θt))
2]

= 2L2
gE[∥θt − θt−1∥2] + 2G2 Var(w(τt|θt−1, θt))

≤ 2(L2
g +G2Cw)E[∥θt − θt−1∥2]

= 2(L2
g +G2Cw)α

2
t−1 . (96)

Combining (94) with (95) and (96) concludes the first part of the proof.

Applying Lemma H.4 with ηt = 2
t+1 , βt = 2V 2η2t + 4(L2

g +G2Cw)(1− ηt)
2α2

t−1 and using E[∥e0∥2] ≤ V 2, we get

E[∥et∥] ≤
(
E[∥et∥2]

) 1
2 ≤

(
4V 2

(t+ 1)2
+ 2V 2η2t · t+ 4(L2

g +G2Cw)α
2
t−1 · t

)1/2

≤ 2V

(t+ 1)
+ 2V ηt · t

1/2 + 2(Lg +GC
1/2
w )αt−1 · t

1/2

≤ 4V ηt · t
1/2 + 2(Lg +GC

1/2
w )αt−1 · t

1/2 . (97)

In order to derive (90), we unroll the recursion (88) from t = 1 to t = t′, where t′ ≤ T . Denoting βt = 2V 2η2t + 4(L2
g +

G2Cw)(1− ηt)
2α2

t−1 , we have

E
[
∥et′∥2

]
≤

t′∏
τ=1

(1− ητ )E
[
∥e0∥2

]
+

t′∑
t=0

βt

t′∏
τ=t+1

(1− ητ )

≤ V 2ηt′+1 + Cβt+1η
−1
t′+1 , (98)

where we used E
[
∥e0∥2

]
≤ V 2 and the result of Lemma H.6 with C > 0 being a numerical constant. Finally, summing up
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the above inequality from t′ = 1 to t′ = T and choosing αt = α = α0

T 2/3
, we obtain

1

T

T∑
t=1

E [∥et∥] ≤ 1

T

T∑
t=1

(
E
[
∥et∥2

])1/2
≤

(
1

T

T∑
t=1

E
[
∥et∥2

])1/2

≤

(
1

T

T∑
t=1

V 2ηT+1 + 2CV 2ηt+1 + 4C(L2
g +G2Cw)α

2η−1
t+1

)1/2

(i)

≤
(
3V 2ηT−1 + 6CV 2ηT−1 + 4C(L2

g +G2Cw)
α2

ηT+1

)1/2

≤
(
9CV 2ηT + 6C(L2

g +G2Cw)
α2
0

ηT

1

T 4/3

)1/2

≤
4C1/2

(
V +

(
Lg +GC

1/2
w

)
α0

)
T 1/3

.

where in (i) we used (51).

End of Proof of Corollary 4.7. The last steps of the proof are standard. Taking expectation on both sides of the result of
Lemma E.14, telescoping and rearranging, we have for every integer T ≥ 1 and constant step-size αt = α0

T 2/3
,

1

T

T∑
t=1

E [∥∇J(θt)∥] ≤ 3(J∗ − J(θ1))

α0T
T

2/3 +
6

T

T∑
t=1

E [∥et∥] +
3Lθα0

T 2/3
+ 4Dgγ

H

≤ 3(J∗ − J(θ1))

α0T
1/3

+
6C
(
V +

(
Lg +GC

1/2
w

)
α0

)
T 1/3

+
3Lθα0

T 2/3
+ 4Dgγ

H (99)

with C > 0 being a numerical constant, where we applied Lemma E.15 to bound
∑T
t=1 E [∥et∥]. Then choosing H large

enough, we have after T iterations

1

T

T∑
t=1

E [∥∇J(θt)∥] ≤ O

(
J∗ − J(θ1)

α0T
1/3

+
V + (Lg +GC

1/2
w )α0

T 1/3

)
,

which concludes the first part of the corollary.

As for the second part of the statement, we know from Lemma H.3 that

J∗ − J(θ1) = O
(

1

1− γ

)
, V = O

(
1

(1− γ)3/2

)
, G = O

(
1

(1− γ)2

)
,

Lg = O
(

1

(1− γ)2

)
, C

1/2
w = O

(
1

1− γ

)
.

If we set α0 = 1− γ, we derive the desired bound.

E.4. Proof of Theorem 4.8 (Cumulative reward setting for continuous state-action space and Gaussian policy)

In this section, we consider continuous state and action spaces where S = Rp and A = Rq for two positive integers p, q ≥ 1 .
Our focus is on the popular class of Gaussian policies which are common to handle the case of continuous state action
spaces in practice.
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Let σ > 0 . Define for every θ ∈ Rd a map µθ : S → Rq . Then, we define the Gaussian policy πθ for each parameter θ ∈ Rd
and each state-action pair (s, a) ∈ S ×A as follows:

πθ(a|s) =
1

σ
√
2π

exp

(
−∥µθ(s)− a∥2

2σ2

)
. (100)

Let us mention that µθ is a parametrization of the Gaussian mean which can be a neural network in practice. The standard
deviation σ can be fixed or parametrized as well in practice. We consider a fixed standard deviation for the purpose of our
discussion.
Remark E.16. Note that one can consider even more general parametrizations such as the exponential family or symmetric
α-stable policies which include the Gaussian policy as a particular case. We refer the interested reader to the nice exposition
in Bedi et al. (2021) for a discussion around such heavy-tailed policy parametrizations (see also Bedi et al. (2022)).

We make the following standard smoothness assumption on our Gaussian policy parametrization.
Assumption E.17. In the Gaussian parametrization (100), the map θ 7→ µθ(s) is continuously differentiable for every s ∈ S ,
lµ-Lipschitz continuous (uniformly in s ∈ S) and there exist Mg > 0,Mh > 0 s.t. for every θ ∈ Rd, (s, a) ∈ S × A,
∥∇ log πθ(a|s)∥ ≤Mg , ∥∇2

θ log πθ(a|s)∥ ≤Mh .

Notice that conditions on the map θ 7→ µθ(s) and its higher-order derivatives can be enforced for every s ∈ S so that the
desired regularity conditions on the policy parametrization in Assumption E.17 are satisfied upon considering a set of actions
lying in a compact set. Consider for instance the simpler case where q = 1 and the mean of the policy is parametrized with
a linear function, i.e., µθ(s) = ϕ(s)T θ for some feature map ϕ : S → Rd . Then, the boundedness of ∥∇2

θ log πθ(a|s)∥
is automatically satisfied since ∇2

θ log πθ(a|s) is the matrix − 1
σ2ϕ(s)ϕ(s)

T which is independent from the parameter θ .
As for the first condition, it is satisfied if the feature map ϕ as well as ϕθ(s) are bounded over the state space and the
policy parameter space while the action set is also bounded. Notice though that Assumption E.17 can be relaxed to hold in
expectation (over state-action pairs) in order to include an even larger class of policies (Yuan et al., 2022). In this work, we
do not pursue such relaxations and assume the standard bound for all s ∈ S, a ∈ A for simplicity (Xu et al., 2020a; Liu
et al., 2020).

Similarly to the softmax parametrization setting with Lemma E.13, under Assumption E.17, one can show smoothness of
the expected return function J and derive useful bounds for the norm and the variance of stochastic gradients, see (Yuan
et al., 2022, Lemma 4.2, (68) and Lemma 4.4, (19)), and (Xu et al., 2020a, Proposition 4.2 (1) and (3)).
Lemma E.18. Let Assumption E.17 hold true and let τ = {s0, a0, · · · , sH−1, aH−1} be an arbitrary trajectory of length H .
Then the following statements hold:

(i) The objective function θ 7→ J(θ) is Lθ-smooth with Lθ
def
=

∥r∥∞(M2
g+Mh)

(1−γ)2 .

(ii) For all θ1, θ2 ∈ Rd, ∥g(τ, θ1)− g(τ, θ2)∥ ≤ Lg∥θ1 − θ2∥ with Lg
def
=

2M2
g∥r∥∞

(1−γ)3 + Mh∥r∥∞
(1−γ)2 ,

(iii) For all θ ∈ Rd, E
[
∥g(τ, θ)−∇θJH(θ)∥2

]
≤ V 2 with V

def
=

Mg∥r∥∞

(1−γ)3/2 .

(iv) For all θ ∈ Rd, ∥g(τ, θ)∥ ≤ G with G
def
=

Mg∥r∥∞
(1−γ)2 .

Given a trajectory τ = (s0, a0, s1, a1, · · · , sH−1, aH−1) of length H generated under the initial distribution ρ and the
Gaussian policy πθ as defined in (100) for some θ ∈ Rd, recall the definition of the IS weight for every θ′ ∈ Rd:

w(τ |θ′, θ) def
=

H−1∏
h=0

πθ′(ah|sh)
πθ(ah|sh)

. (101)

Lemma E.19. Let H ≥ 1 be an integer and let Assumption E.17 be satisfied. Suppose that the sequence (θt) is updated
via θt+1 = θt + αt

dt
∥dt∥ where dt ∈ Rd is any nonzero update direction and αt is a positive stepsize. If τt+1 is a (random)

trajectory of length H generated following the initial distribution ρ and the Gaussian policy πθt+1 as defined in (100), then

E[w(τt+1|θt, θt+1)] = 1 , (102)

Var [w(τt+1|θt, θt+1)] ≤ Cwα
2
t , (103)
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where the IS weight w(τt+1|θt, θt+1) is as defined in (101) and Cw
def
= (2H2Mg +HMh)(W + 1) .

Proof. The first identity follows from the definitions of the expectation and the IS weight. We now prove the second identity.
For any θ ∈ Rd, let p(·|πθ) denote the probability distribution induced by the policy πθ over the space of random trajectories
of length H initialized with the state distribution ρ. The probability density is then given by

p(τ |πθ) = ρ(s0)πθ(a0|s0)
H−1∏
t=1

P(st|st−1, at−1)πθ(at|st) , (104)

where τ = (s0, a0, · · · , sH−1, aH−1) .

We use the shorthand notations θ1 = θt, θ2 = θt+1 and τ = τt+1 for the rest of this proof. Then, we have

E[w(τ |θ1, θ2)2] =
∫
p(τ |πθ1)2

p(τ |πθ2)
dτ

=

∫
ρ(s0)πθ(a0|s0)

H−1∏
t=1

P(st|st−1, at−1)
πθ1(at|st)2

πθ2(at|st)
dτ . (105)

We bound the above integral starting from the integral of the last term of the product7 which writes as follows:∫
P(sH−1|sH−2, aH−2)

∫
πθ1(aH−1|sH−1)

2

πθ2(aH−1|sH−1)
daH−1dsH−1 . (106)

We shall now compute the integral w.r.t. aH−1. In dimension 1 for the action variable aH−1 (similar derivations hold for
higher dimensions), we have for every s,∫ +∞

−∞

πθ1(x | s)2

πθ2(x | s)
dx

=
1

σ
√
2π

∫ +∞

−∞
exp

[
−2 (x− µθ1 (s))

2 − (x− µθ2 (s))
2

2σ2

]
dx

=
1

σ
√
2π

exp

[
−2µθ1 (s)

2 − µθ2 (s)
2

2σ2

]∫ +∞

−∞
exp

[
−x

2 − 2 (2µθ1 (s)− µθ2 (s))x

2σ2

]
dx

=
1

σ
√
2π

exp

[
−2µθ1 (s)

2 − µθ2 (s)
2 − (2µθ1 (s)− µθ2 (s))

2

2σ2

]∫ +∞

−∞
exp

[
− (x− (2µθ1 (s)− µθ2 (s)))

2

2σ2

]
dx

= exp

[
−2µθ1 (s)

2 − µθ2 (s)
2 − (2µθ1 (s)− µθ2 (s))

2

2σ2

]

= exp

 (µθ2 (s)− µθ1 (s))
2
]

σ2

 (107)

As a consequence, we obtain∫
P(sH−1|sH−2, aH−2)

∫
πθ1(aH−1|sH−1)

2

πθ2(aH−1|sH−1)
daH−1dsH−1

≤
∫

P(sH−1|sH−2, aH−2) exp

(
∥µθ1 (sH−1)− µθ2 (sH−1)∥2

σ2

)
dsH−1

(i)

≤
∫

P(sH−1|sH−2, aH−2) exp

(
l2µ ∥θ1 − θ2∥2

σ2

)
dsH−1

(ii)
= exp

(
l2µα

2
t

σ2

)
, (108)

7Notice that the integrand is nonnegative and we can integrate in any order by Tonelli’s theorem.
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where (i) follows from the lµ-Lipschitzness of the parametrized mean in Assumption E.17 and (ii) utilizes the normalized
update rule as well as the fact that P(·|sH−2, aH−2) is a transition probability kernel. Using a similar reasoning to bound
the different integrals like in (106) backward from H − 1 to 0 successively, we obtain the following bound on the second
moment of IS weights in (105):

E[w(τ |θ1, θ2)2] ≤ exp

(
Hl2µα

2
t

σ2

)
. (109)

Therefore, similarly to the argument in Lemma 4.3, we obtain:

Var(w(τ |θ1, θ2)) ≤W , (110)

where W = O (1) is a numerical constant, which can be ensured, for example, by setting the step-sizes as αt = α = T−2/3.
As a consequence, we can apply Lemma B.1 in (Xu et al., 2020a) and derive the bound on the variance of IS weights:

Var [w(τt+1|θt, θt+1)] ≤ Cw∥θt+1 − θt∥2 = Cwα
2
t ,

where the last step follows by the update rule θt+1 = θt + α dt
∥dt∥ . This concludes the proof.

Given the above results, we immediately obtain convergence of Algorithm 4 for Gaussian policy parametrization.

Corollary E.20 (Stationary convergence of N-VR-PG). Let Assumption E.17 hold. Let α0 > 0 and let T be an integer larger

than 1. Set αt = α0

T 2/3
, ηt =

(
2
t+1

)2/3

and H = (1− γ)
−1

log(T + 1). Let θ̄T be sampled from the iterates {θ1, · · · , θT }
of N-VR-PG (Algorithm 4) uniformly at random. Then we have

E
[∥∥∇J(θ̄T )∥∥] ≤ O

(
J∗ − J(θ1)

α0T
1/3

+
V + (Lg +GC

1/2
w )α0

T 1/3

)
, (111)

where V , Lg , G, and Cw are defined in Lemma E.18 and E.19. Moreover, if we set α0 = 1− γ, then

E
[∥∥∇J(θ̄T )∥∥] ≤ O

(
1

(1− γ)2T 1/3

)
.

Proof. Given the results of Lemma E.18 and E.19, the proof of this statement follows immediately from the result of
Corollary E.20. We notice that in order to specify the dependence on 1− γ, we invoke Lemma E.18, which is analogous
to the corresponding Lemma E.13 for softmax policy parameterization. The only difference in terms of the dependence
on 1− γ is in the bound for Lg. However, this fact does not affect the final dependence on 1− γ since it is dominated by
other terms in (111).

F. Proofs for Section 4.3: Global optimality convergence
F.1. Proof of Theorem 4.12 (General utilities setting)

In this section, to prove our global convergence result under an additional concave reparametrization assumption, we refine
the result of Lemma E.1. The proof is similar to the proof of Lemma 5.12 in Zhang et al. (2021b). Nevertheless, we would
like to mention that it deviates from the latter in that our algorithm is significantly different and its normalized nature
requires a significantly different treatment. In particular, the reader can appreciate from the statement of the result that
the error term ∥et∥ to the gradient estimation is not squared unlike in (Zhang et al., 2021b) and controlling its magnitude
required different proof techniques given the different recursive loopless variance reduction mechanism that we consider.

Lemma F.1. Let Assumptions 4.1, 4.2 and Assumption 4.9 hold. Additionally, let Assumption 4.10 be satisfied with
some positive ϵ̄ . Then, the sequence (θt) generated by Algorithm 1 and the sequence (et) satisfy for every positive

real ϵ ≤ min
{
ϵ̄, αt(1−γ)2ℓθ

}
and every integer t,

F (λ(θ∗))− F (λ(θt+1)) ≤ (1− ϵ)(F (λ(θ∗))− F (λ(θt))) + 2αt∥et∥+
4Lθl

2
θ

(1− γ)2
ϵ2 +

4

3
αtDλγ

H +
Lθ
2
α2
t . (112)
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Proof. Lemma E.1 provides the following inequality:

F (λ(θt+1)) ≥ F (λ(θt)) +
αt
3
∥∇θF (λ(θt))∥ − 2αt∥et∥ −

4

3
Dλγ

Hαt −
Lθ
2
α2
t . (113)

Now, for any ϵ < ϵ̄, the concavity reparametrization assumption implies that (1− ϵ)λ(θt) + ϵλ(θ∗) ∈ Vλ(θt) and therefore
we have

θϵ
def
= (λ|Uθt )

−1((1− ϵ)λ(θt) + ϵλ(θ∗)) ∈ Uθt . (114)

It also follows from the smoothness of the objective function θ 7→ F (λ(θ)) that

F (λ(θt)) ≥ F (λ(θϵ))− ⟨∇θF (λ(θt)), θϵ − θt⟩ −
Lθ
2
∥θϵ − θt∥2 . (115)

Combining (113) and (115) yields

F (λ(θt+1)) ≥ F (λ(θϵ))− ⟨∇θF (λ(θt)), θϵ − θt⟩ −
Lθ
2
∥θϵ − θt∥2

+
αt
3
∥∇θF (λ(θt))∥ − 2αt∥et∥ −

4

3
Dλγ

Hαt −
Lθ
2
α2
t . (116)

Then, we notice that:

(i) By assumption, the mapping λ ◦ (λ|Uθt )
−1 coincides with the identity mapping on the set Uθt . Hence, given the

definition of θϵ in (114), we have

F (λ(θϵ)) = F ((1− ϵ)λ(θt) + ϵλ(θ∗))

≥ (1− ϵ)F (λ(θt)) + ϵF (λ(θ∗)) , (117)

where the last step follows from the concavity of the function F .

(ii) Again since the mapping λ ◦ (λ|Uθt )
−1 coincides with the identity mapping on the set Uθt and using the (uniform)

lipschitzness of the inverse mapping (λ|Uθt )
−1, we have

∥θϵ − θt∥ = ∥(λ|Uθt )
−1((1− ϵ)λ(θt) + ϵλ(θ∗))− (λ|Uθt )

−1(λ(θt))∥
≤ lθϵ∥λ(θt)− λ(θ∗)∥

≤ 2lθϵ

(1− γ)
. (118)

(iii) Using the Cauchy-Schwarz inequality together with the inequality established in the previous item gives

|⟨∇θF (λ(θt)), θϵ − θt⟩| ≤ ∥∇θF (λ(θt))∥ · ∥θϵ − θt∥

≤ 2lθϵ

1− γ
∥∇θF (λ(θt))∥ . (119)

Substituting the inequalities (117), (118) and (119) into (116) leads to

F (λ(θt+1)) ≥ (1− ϵ)F (λ(θt)) + ϵF (λ(θ∗)) +

(
αt
3

− 2lθϵ

1− γ

)
∥∇θF (λ(θt))∥ −

4Lθl
2
θ

(1− γ)2
ϵ2 − 2αt∥et∥

−4

3
Dλγ

Hαt −
Lθ
2
α2
t

≥ (1− ϵ)F (λ(θt)) + ϵF (λ(θ∗))− 4Lθl
2
θ

(1− γ)2
ϵ2 − 2αt∥et∥ −

4

3
Dλγ

Hαt −
Lθ
2
α2
t , (120)

where the last step follows from the condition ϵ ≤ αt(1−γ)
2ℓθ

.
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Finally, substracting F (λ(θ∗)) from both sides and rearranging the terms gives the desired result:

F (λ(θ∗))− F (λ(θt+1)) ≤ (1− ϵ)(F (λ(θ∗))− F (λ(θt))) + 2αt∥et∥+
4Lθl

2
θ

(1− γ)2
ϵ2 +

4

3
αtDλγ

H +
Lθ
2
α2
t . (121)

Theorem F.2 (Global convergence of N-VR-PG for general utilities). Let Assumptions 4.1 and 4.9 hold. Additionally, let
Assumption 4.10 be satisfied with ϵ̄ ≥ α0(1−γ)

2ℓθ(T+1)a for some integer T ≥ 1 and reals α0 > 0, a ∈ (0, 1). Set αt = α0

(T+1)a ,

ηt =
2
t+1 for every integer t and H = (1− γ)

−1
log(T + 1). Then the output θT of N-VR-PG (see Algorithm 1) satisfies

F (λ(θ∗))− E [F (λ(θT ))] ≤ O
(

α2
0

(1− γ)3(T + 1)2a−
3
2

)
,

where F (λ(θ∗)) is the optimal utility value. Therefore, the sample complexity to achieve F (λ(θ∗))− E [F (λ(θT ))] ≤ ε is

O
(
ε

−2
4a−3

)
.

Proof. Define δt
def
= E [F (λ(θ∗))− F (λ(θt))]. Applying expectation to the result of Lemma F.1, we have for ϵ ≤

min
{
ϵ̄, αt(1−γ)2ℓθ

}
,

δt+1 ≤ (1− ϵ)δt + 2αtE [∥et∥] +
4Lθl

2
θ

(1− γ)2
ϵ2 +

4

3
αtDλγ

H +
Lθ
2
α2
t

≤ (1− ϵ)δt + 2αtE [∥êt∥] + 2C1αtE [∥ẽt∥] + 2C2αtαt−1 +
4Lθl

2
θ

(1− γ)2
ϵ2 +

4

3
αtDλγ

H +
Lθ
2
α2
t (122)

where in the last step we apply Lemma E.4 with C1
def
=

2L2
λlψ

(1−γ)2 and C2
def
=

2LλLλ,∞lψ
(1−γ)2 .

By Lemma E.5 (Equation (34)), for ηt = 2
t+1 , we have

E[∥ẽt∥] ≤
4

(1− γ)
ηt · t

1/2 +
2C

1/2
w

(1− γ)
αt−1 · t

1/2. (123)

With the same ηt as above, by Lemma E.8 (Equation (58)), we have

E[∥êt∥] ≤ 2Ê

t+ 1
+ 2C

1/2
3 ηt · t

1/2 + C
1/2
4 αt−2 · t

1/2, (124)

where C3
def
=

288Cl2ψL
2
λ

(1−γ)6 +
32l2λl

2
ψ

(1−γ)4 , C4
def
=

12l2λ[(l
2
ψ+Lψ)

2+Cwl
2
ψ]

(1−γ)4 +
144Cwl

2
ψL

2
λ

(1−γ)6 , and Cw = H((8H + 2)l2ψ + 2Lψ)(W + 1) .

Unrolling (122) from t = T − 1 to t = 0, using (123) and (124) and setting αt = α, we have

δT ≤ (1− ϵ)T δ0 + 2α

T−1∑
t=0

(E [∥êt∥] + C1E [∥ẽt∥]) + 2C2α
2T +

4Lθl
2
θ

(1− γ)2
ϵ+

4

3

α

ϵ
Dλγ

H +
Lθ
2

α2

ϵ

≤ (1− ϵ)T δ0 + 2α

T−1∑
t=0

(
2Ê

t+ 1
+ 2C

1/2
3 ηt · t

1/2 + C
1/2
4 α · t1/2

)
+ 2C2α

2T

+2C2α

T−1∑
t=0

(
4

(1− γ)
ηt · t

1/2 +
2C

1/2
w

(1− γ)
α · t1/2

)
+

4Lθl
2
θ

(1− γ)2
ϵ+

4

3

α

ϵ
Dλγ

H +
Lθ
2

α2

ϵ

≤ (1− ϵ)T δ0 + 4αÊ log(T ) + 8αC
1/2
3 (T + 1)

1/2 + 2C
1/2
4 α2 · (T + 1)

3/2 + 2C2α
2T

+
16C2α

(1− γ)
(T + 1)

1/2 +
4C2C

1/2
w

(1− γ)
α2(T + 1)

3/2 +
4Lθl

2
θ

(1− γ)2
ϵ+

4

3

α

ϵ
Dλγ

H +
Lθ
2

α2

ϵ
.
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Notice that (1 − ϵ)T ≤ exp (T log(1− ϵ)) ≤ exp (−ϵT ). Finally setting α = α0

(T+1)a , for 0 < a < 1 and ϵ =

min
{
ϵ̄, α(1−γ)2ℓθ

}
= α(1−γ)

2ℓθ
, we obtain

δT ≤ exp

(
−α0(1− γ)

2ℓθ
T 1−a

)
+

4Ê log(T )α0

(T + 1)a
+

(
8C

1/2
3 +

16C2

(1− γ)

)
α0

(T + 1)a−1/2
+

2C2α
2
0

(T + 1)2a−1

+

(
2C

1
2
4 +

4C2C
1/2
w

(1− γ)

)
α2
0

(T + 1)2a−
3
2

+
4Lθl

2
θ

(1− γ)2
ϵ+

4

3

α

ϵ
Dλγ

H +
Lθ
2

α2

ϵ

≤ exp

(
−α0(1− γ)

2ℓθ
T 1−a

)
+

4Ê log(T )α0

(T + 1)a
+

(
8C

1/2
3 +

16C2

(1− γ)

)
α0

(T + 1)a−1/2
+

2C2α
2
0

(T + 1)2a−1

+

(
2C

1
2
4 +

4C2C
1/2
w

(1− γ)

)
α2
0

(T + 1)2a−
3
2

+
3Lθlθα0

(1− γ)(T + 1)a
+

8ℓθDλ

3(1− γ)
γH

≤ O
(

1

(1− γ)3(T + 1)2a−
3
2

)
,

where the last step follows by setting H = (1 − γ)−1 log(T ) and noticing that 2a − 3
2 < a − 1

2 for a ∈ (0, 1), C4 =
O
(
(1− γ)−6

)
, Cw = O

(
(1− γ)−2

)
, C2 = O

(
(1− γ)−2

)
.

F.2. Proof of Corollary 4.13 (Cumulative reward setting)

We first recall that similarly to Section E.3, for cumulative reward setting, we redefine the error sequence (et) as

et = dt −∇JH(θt) ,

where the truncated cumulative reward JH(θ) is defined as

JH(θ) = E

[
H−1∑
t=0

γtr(st, at)

]
.

Now we state a complete version of Corollary 4.13, which we shall prove in this section.

Corollary F.3 (Global convergence of N-VR-PG). Let Assumptions 4.1 and 4.9 hold. Additionally, let Assumption 4.10
be satisfied with ϵ̄ ≥ α0(1−γ)

2ℓθ(T+1)a for some integer T ≥ 1 and reals α0 > 0, a ∈ (0, 1). Set αt = α0

(T+1)a , ηt = 2
t+2

and H = (1− γ)
−1

log(T + 1). Then the output θT of N-VR-PG (see Algorithm 4) satisfies

J∗ − E [J(θT )] ≤ O
(

α0V

(T + 1)a−
1
2

)
,

where J∗ is the optimal expected return and V is defined in Lemma E.13. Therefore, the sample complexity to achieve
J∗ − E [J(θT )] ≤ ε is O

(
ε

−2
2a−1

)
.

Remark F.4. If we are allowed to select α0 based on the problem parameters (only the bound on (1− γ) is actually needed
here), then the dependence on (1− γ)−1 in the above theorem can be made arbitrary small.

Proof. By Lemma E.15, we have the control of the variance sequence for ηt = 2
t+2 as

E [∥et∥] ≤ 4V ηt · t
1/2 + 2(Lg +GC

1/2
w )αt−1 · t

1/2. (125)

Define δt
def
= E [J(θ∗)− J(θt)], where in the cumulative reward case F (λ(θ)) = J(θ). Let αt = α for all t = 0, . . . , T − 1.

Then applying full expectation to the result of Lemma F.1, we have for ϵ ≤ min
{
ϵ̄, α(1−γ)2ℓθ

}
δt+1 ≤ (1− ϵ)δt + 2αE [∥et∥] +

4Lθl
2
θ

(1− γ)2
ϵ2 +

4

3
αDλγ

H +
Lθ
2
α2 .
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Unrolling the recursion from t = 0 to t = T − 1, we have

δT ≤ (1− ϵ)T δ0 + 2α

T−1∑
t=0

E [∥et∥] +
4Lθl

2
θ

(1− γ)2
ϵ+

4

3

α

ϵ
Dλγ

H +
Lθ
2

α2

ϵ

≤ (1− ϵ)T δ0 + 8V α

T−1∑
t=0

ηt · t
1/2 + 4(Lg +GC

1/2
w )α2T

1/2 +
4Lθl

2
θ

(1− γ)2
ϵ+

4

3

α

ϵ
Dλγ

H +
Lθ
2

α2

ϵ

≤ (1− ϵ)T δ0 + 8V α(T + 1)
1/2 + 4(Lg +GC

1/2
w )α2T

1/2 +
4Lθl

2
θ

(1− γ)2
ϵ+

4

3

α

ϵ
Dλγ

H +
Lθ
2

α2

ϵ
.

Notice that (1 − ϵ)T ≤ exp (T log(1− ϵ)) ≤ exp (−ϵT ). Finally setting α = α0

(T+1)a , for 0 < a < 1 and ϵ =

min
{
ϵ̄, α(1−γ)2ℓθ

}
= α(1−γ)

2ℓθ
, we obtain

δT ≤ exp

(
−α0(1− γ)

2ℓ0
T 1−a

)
+

8α0V

(T + 1)a−
1
2

+
4α2

0(Lg +GC
1/2
w )

T 2a− 1
2

+
4Lθl

2
θ

(1− γ)2
ϵ+

4

3

α

ϵ
Dλγ

H +
Lθ
2

α2

ϵ

≤ exp

(
−α0(1− γ)

2ℓ0
T 1−a

)
+

8α0V

(T + 1)a−
1
2

+
4α2

0(Lg +GC
1/2
w )

T 2a− 1
2

+
2Lθlθα0

(1− γ)(T + 1)a
+

4

3

α

ϵ
Dλγ

H +
Lθ
2

α2

ϵ

≤ exp

(
−α0(1− γ)

2ℓ0
T 1−a

)
+

8α0V

(T + 1)a−
1
2

+
4α2

0(Lg +GC
1/2
w )

T 2a− 1
2

+
3Lθlθα0

(1− γ)(T + 1)a
+

8ℓθDλ

3(1− γ)
γH

≤ O
(

1

(T + 1)a−
1
2

)
,

where the last step follows by setting H = (1− γ)−1 log(T ).

F.3. Global optimality in the cumulative reward setting for continuous state-action space and Gaussian policy

We first present our set of assumptions to derive global convergence results under the Gaussian policy parameterization. We
start by assuming that our Gaussian policy parametrization is Fisher-non-degenerate, meaning that the Fisher information
matrix induced by the policy parametrization is (uniformly) positive definite. This assumption is standard in the literature (Liu
et al., 2020; Ding et al., 2022; Yuan et al., 2022; Masiha et al., 2022; Fatkhullin et al., 2022). We remark that Fatkhullin et al.
(2023) recently obtained a O(ε−2) sample complexity under similar assumptions using a similar proof technique. The key
difference between our N-VR-PG method and their (N)-HARPG algorithm is that our algorithm does not require the use of
second-order information. The bound of IS weights is automatically ensured by the normalization step of the algorithm and
the specific structure of the Gaussian policy parametrization (Lemma E.19).

Assumption F.5. There exists µF > 0 such that for every θ ∈ Rd, the Fisher information matrix satisfies

Fρ(θ)
def
= Es∼dπθρ , a∼πθ(·|s)[∇ log πθ(a|s)∇ log πθ(a|s)⊤] ⪰ µF Id ,

where dπθρ (·) def
= (1− γ)

∑∞
t=0 γ

tPρ,πθ (st ∈ ·) is the discounted state visitation measure.

For Gaussian policies with fixed covariance matrix and linear mean parametrization µθ(s) = ϕ(s)⊤θ, the Fisher information
matrix can be written explicitly. Namely, we have Fρ(θ) = σ−2ϕ(s)ϕ(s)⊤ for every s ∈ S . Therefore, the above assumption
is satisfied if we assume that the feature map ϕ(s) has full-row-rank.

Now we introduce an assumption which characterizes the expressivity of our policy parameterization class via the framework
of compatible function approximation (Sutton et al., 1999; Agarwal et al., 2021). In order to state this assumption, we
first define the advantage function. Define for every policy π the state-action value function Qπ : S × A → R for
every s ∈ S, a ∈ A as:

Qπ(s, a)
def
= Eπ

[ ∞∑
t=0

γtr(st, at)|s0 = a, a0 = a

]
.
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Under the same policy π, the state-value function V π : S → R and the advantage function Aπ : S ×A → R are defined for
every s ∈ S, a ∈ A as follows:

V π(s)
def
= Ea∼π(·|s)[Qπ(s, a)] ,

Aπ(s, a)
def
= Qπ(s, a)− V π(s) .

Now we are ready to state the compatible function approximation error assumption.

Assumption F.6. There exists εbias ≥ 0 s.t. for every θ ∈ Rd, the transfer error satisfies:

E[(Aπθ (s, a)− (1− γ)w∗(θ)⊤ ∇ log πθ(a|s))2] ≤ εbias ,

where Aπθ is the advantage function, w∗(θ)
def
= Fρ(θ)

†∇J(θ) where Fρ(θ)† is the pseudo-inverse of the matrix Fρ(θ) and
expectation is taken over s ∼ dπ

∗

ρ , a ∼ π∗(·|s) where π∗ is an optimal policy (maximizing J(π)).

The above assumption requires that the policy parametrization πθ should be able to approximate the advantage function Aπθ
by the score function ∇ log πθ. Naturally εbias is necessarily positive for a parameterization πθ that does not cover the
set of all stochastic policies and εbias is small for a rich neural policy (Wang et al., 2020). We note that this is a common
assumption which was used for instance in (Agarwal et al., 2021; Liu et al., 2020; Ding et al., 2022; Yuan et al., 2022).

Equipped with Assumptions E.17, F.5, F.6, and following the derivations of Ding et al. (2022), we obtain a relaxed weak
gradient dominance inequality.

Lemma F.7 (Relaxed weak gradient domination, (Ding et al., 2022)). Let Assumptions E.17, F.5 and F.6 hold. Then

∀ θ ∈ Rd, ε′ + ∥∇J(θ)∥ ≥
√

2µ (J∗ − J(θ)) , (126)

where J∗ is the optimal expected return, ε′ = µF
√
εbias

Mg(1−γ) and µ =
µ2
F

2M2
g
.

Corollary F.8 (Global convergence of N-VR-PG). Let Assumptions E.17, F.5 and F.6 hold. Set αt = 3√
2µ(T+1)a

, for some

0 < a < 1 , ηt = 2
t+1 and H = (1− γ)

−1
log(T + 1). Then the output θT of N-VR-PG (see Algorithm 4) satisfies

J∗ − E [J(θT )] ≤ O
(

1

(1− γ)3/2(T + 1)a−
1
2

)
+

√
εbias

1− γ
,

where J∗ is the optimal expected return. Therefore, the sample complexity to achieve J∗ − E [J(θT )] ≤ ε +
√
εbias

1−γ is

O
(
ε

−2
2a−1

)
.

Proof. As in the case of softmax parametrization, given the result of Lemma E.18, and following the steps in the proof of
Lemma E.15, we can derive the control of the variance sequence for ηt = 2

t+1 as

E [∥et∥] ≤ 4V ηt · t
1/2 + 2(Lg +GC

1/2
w )αt−1 · t

1/2. (127)

Similarly to Lemma E.1, we can obtain

J(θt+1) ≥ J(θt) +
αt
3
∥∇J(θt)∥ − 2αt∥et∥ −

4

3
Dgγ

Hαt −
Lθ
2
α2
t

≥ J(θt) +
αt
√
2µ

3
(J∗ − J(θt))− 2αt∥et∥ −

4

3
Dgγ

Hαt −
Lθ
2
α2
t −

ε′αt
3
, (128)

where in the last step we applied the relaxed weak gradient dominance condition (Lemma F.7). Now we define δt
def
=

E [J(θ∗)− J(θt)]. Let αt = α for all t = 0, . . . , T . Then applying full expectation to the result of Lemma F.1, we have

δt+1 ≤
(
1− α

√
2µ

3

)
δt + 2αE [∥et∥] +

4

3
Dgγ

Hα+
Lθ
2
α2 +

ε′α

3
.
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Unrolling the recursion from t = 0 to t = T − 1, we have

δT ≤
(
1− α

√
2µ

3

)T
δ0 + 2α

T−1∑
t=0

E [∥et∥] +
4√
2µ
Dgγ

H +
3√
2µ

Lθ
2
α+

ε′√
2µ

≤
(
1− α

√
2µ

3

)T
δ0 + 8V α

T−1∑
t=0

ηt · t
1/2 + 4(Lg +GC

1/2
w )α2T

1/2 +
4√
2µ
Dgγ

H +
3√
2µ

Lθ
2
α+

ε′√
2µ

≤
(
1− α

√
2µ

3

)T
δ0 + 8V α(T + 1)

1/2 + 4(Lg +GC
1/2
w )α2T

1/2 +
4√
2µ
Dgγ

H +
3√
2µ

Lθ
2
α+

ε′√
2µ

.

Finally, setting α = 3√
2µ(T+1)a

, for 0 < a < 1 and noticing that (1 − (T + 1)−a)T ≤ exp (T log(1− (T + 1)−a)) ≤
exp

(
−T 1−a), we obtain

δT ≤ exp
(
−T 1−a) δ0 + 24V

√
2µ(T + 1)a−

1
2

+
18(Lg +GC

1/2
w )

µ · T 2a− 1
2

+
4√
2µ
Dgγ

H +
9Lθ
8µ

1

(T + 1)a
+

ε′√
2µ

≤ O

(
V

√
µ(T + 1)a−

1
2

)
+

ε′√
2µ
,

where the last step follows by setting H = (1− γ)−1 log(T ). It only remains to notice from Lemma E.18 and F.7 that

ε′ =
µF

√
εbias

Mg(1− γ)
= O

(
1

1− γ

)
, V =

Mg∥r∥∞
(1− γ)3/2

= O
(

1

(1− γ)3/2

)
.

G. Proofs for Section 5: Large state-action space setting
G.1. Unbiased estimates of the occupancy measure at state-action pairs

Notation. For a given set A, the indicator function 1A is equal to one on the set A and zero otherwise.

In this section, we provide two different estimators: the first one is a Monte-Carlo estimate of the truncated occupancy
measure whereas the second one is an unbiased estimate of the true occupancy measure. Notice that we can also slightly
modify the second estimator to a obtain a minibatch estimator via sampling (independently) similarlyN different state-action
pairs (s(i)H , a

(i)
H )0≤i≤N via the same sampling procedure as in Algorithm 6 and averaging out the outputs, i.e., considering

the following estimator:

λ̂πθ (s, a) =
1

N

N∑
i=1

1{s(i)H =s, a
(i)
H =a} . (129)

Algorithm 5 Monte-Carlo estimate of the truncated state-action occupancy measure for (s, a): λπθH (s, a)

Input: Initial state distribution ρ, state-action pair (s, a) ∈ S × A, policy πθ, discount factor γ ∈ [0, 1), truncation
horizon H .
Sample a trajectory τ = (st, at)0≤t≤H−1 from the MDP controlled by policy πθ
λ̂πθH (s, a) =

∑H
t=0 γ

t1{st=s, at=a}

Return: λ̂πθH (s, a) .
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Algorithm 6 Unbiased estimator of the state-action occupancy measure for (s, a): λπθ (s, a)
Input: Initial state distribution ρ, state-action pair (s, a) ∈ S ×A, policy πθ, discount factor γ ∈ [0, 1), h = 0.
s0 ∼ ρ, a0 ∼ πθ(·|s0)
Draw H from the geometric distribution Geom(1− γ)
for h = 0, . . . ,H − 1 do
sh+1 ∼ P (·|sh, ah); ah+1 ∼ πθ(·|sh)

end for
λ̂πθ (s, a) = 1{sH=s, aH=a}

Return: λ̂πθ (s, a) .

G.2. Proof of Theorem 5.4: Convergence analysis under bounded statistical and approximation errors

We first state a more detailed version of Theorem 5.4.

Theorem G.1. Let Assumptions 4.1, 4.2, 5.2 and 5.3 hold true. In addition, suppose that there exists ρmin > 0 s.t. the
initial distribution ρ satisfies ρ(s) ≥ ρmin for all s ∈ S . Let T ≥ 1 be an integer and let (θt) be the sequence generated by
Algorithm 3 with a positive step size α ≤ min(1/

√
5C̃1, 1/2Lθ) (see C̃1 below) and batch size N ≥ 1. Then, we have

E[∥∇θF (λ(θ̄T ))∥2] ≤
16(F ∗ − E[F (λ(θ1))]) + αC̃4

αT
+
C̃3

N
+ 2D2

λγ
2H + C̃2(ϵstat + ϵapprox) , (130)

where θ̄T be a random iterate drawn uniformly at random from {θ1, · · · , θT }, C̃1
def
=

48l3ψL
2
λ,∞

(1−γ)6 , C̃2
def
=

48l2ψL
2
λ

(1−γ)4
|A|
ρmin

,

C̃3
def
=

24l2λl
2
ψ

(1−γ)4 , C̃4
def
=

8l2λl
2
ψ

(1−γ)4 and Dλ is defined in Lemma H.2.

Proof. We introduce the shorthand notation ut
def
= 1

N

∑N
i=1 g(τ

(i)
t , θt, rt−1) for this proof. The smoothness of the objective

function θ 7→ F (λ(θ)) (see Lemma H.1) together with the update rule of the sequence (θt) yields

F (λ(θt+1)) ≥ F (λ(θt)) + ⟨∇θF (λ(θt)), θt+1 − θt⟩ −
Lθ
2
∥θt+1 − θt∥2

= F (λ(θt)) + α⟨∇θF (λ(θt)), ut⟩ −
Lθα

2

2
∥ut∥2

= F (λ(θt)) + α⟨∇θF (λ(θt))− ut, ut⟩+ α

(
1− Lθα

2

)
∥ut∥2

≥ F (λ(θt))−
α

2
∥∇θF (λ(θt))− ut∥2 −

α

2
∥ut∥2 + α

(
1− Lθα

2

)
∥ut∥2

= F (λ(θt))−
α

2
∥∇θF (λ(θt))− ut∥2 +

α

2
(1− Lθα)∥ut∥2

(i)

≥ F (λ(θt))−
α

2
∥∇θF (λ(θt))− ut∥2 +

α

4
∥ut∥2

= F (λ(θt))−
α

2
∥∇θF (λ(θt))− ut∥2 +

α

8
∥ut∥2 +

α

8
∥ut∥2

(ii)

≥ F (λ(θt)) +
α

16
∥∇θF (λ(θt))∥2 −

5

8
α∥∇θF (λ(θt))− ut∥2 +

α

8
∥ut∥2 , (131)

where (i) follows from the condition α ≤ 1/2Lθ and (ii) from 1
2∥∇θF (λ(θt))∥2 ≤ ∥ut∥2 + ∥∇θF (λ(θt))− ut∥2 .

We now control the last error term in the above inequality in expectation. Observe first that

E[∥∇θF (λ(θt))− ut∥2] ≤ 2E[∥∇θF (λ(θt))−∇θF (λH(θt))∥2] + 2E[∥∇θF (λH(θt))− ut∥2]
≤ 2D2

λγ
2H + 2E[∥∇θF (λH(θt))− ut∥2] , (132)

where the last inequality stems from Lemma H.2. Now, it remains to control E[∥∇θF (λH(θt)) − ut∥2] . Using the
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notation rt
def
= ∇λF (λH(θt)), we have the following decomposition:

∇θF (λH(θt))− ut = ∇θF (λH(θt))− [∇θλ(θt)]
T r∗t−1 + [∇θλ(θt)]

T r∗t−1 − [∇θλ(θt)]
T rt−1 + [∇θλ(θt)]

T rt−1 − ut .
(133)

Then it follows that

E[∥∇θF (λH(θt))− ut∥2] ≤ 3E[∥∇θF (λH(θt))− [∇θλ(θt)]
T r∗t−1∥2] + 3E[∥[∇θλ(θt)]

T (r∗t−1 − rt−1)∥2]
+ 3E[∥[∇θλ(θt)]

T rt−1 − ut∥2] . (134)

We control each term in the above decomposition separately in what follows.

Term 1 in (134): For this term, we have the following series of inequalities

∥∇θF (λH(θt))− [∇θλ(θt)]
T r∗t−1∥2 = ∥[∇θλ(θt)]

T (r∗t − r∗t−1)∥2

(a)

≤
4l2ψ

(1− γ)4
∥r∗t−1 − r∗t ∥2∞

(b)

≤
4l2ψL

2
λ,∞

(1− γ)4
∥λH(θt−1)− λH(θt)∥21

(c)

≤
8l3ψL

2
λ,∞

(1− γ)6
∥θt − θt−1∥2

(d)
=

8l3ψL
2
λ,∞

(1− γ)6
∥ut−1∥2 · α2 , (135)

where (a) follows from similar derivations to (29)-(31) using (5), (b) stems from Assumption 4.2, (c) is an immediate
consequence of Lemma H.1-(ii) and (d) uses the update rule of Algorithm 3.

Term 2 in (134): For this term, we start with the following inequalities:

E[∥[∇θλ(θt)]
T (r∗t−1 − rt−1)∥2]

(i)

≤
4l2ψ

(1− γ)4
E[∥rt−1 − r∗t−1∥2∞]

(ii)

≤
4l2ψL

2
λ

(1− γ)4
E[∥λ̂t−1 − λH(θt−1)∥2] , (136)

where (i) follows from similar derivations to (29)-(31) using (5) and (ii) follows from Assumption 4.2. Then we decompose
and upper bound the above error as follows:

E[∥λ̂t−1 − λH(θt−1)∥2] = E[∥⟨ϕ(·, ·), ω̂θt−1⟩ − λH(θt−1)∥2]
= E[∥⟨ϕ(·, ·), ω̂θt−1

− ω∗(θt−1)⟩+ ⟨ϕ(·, ·), ω∗(θt−1)⟩ − λH(θt−1)∥2]
≤ 2E[∥⟨ϕ(·, ·), ω̂θt−1

− ω∗(θt−1)⟩∥2] + 2E[∥⟨ϕ(·, ·), ω∗(θt−1)⟩ − λH(θt−1)∥2] . (137)

Our task now is to upper bound each one of the above errors, the first one being related to the statistical error whereas the
second one relates to the approximation error. Recall the definition of the regression loss function for every θ ∈ Rd, ω ∈ Rm,

Lθ(ω) = Es∼ρ,a∼U(A)[(λ
πθ
H (s, a)− ⟨ϕ(s, a), ω⟩)2] , (138)

where U(A) is the uniform distribution over the action space A .

(a) Bounding term 1 in (137) by the statistical error. First, observe for this term that

E[∥⟨ϕ(·, ·), ω̂θt−1 − ω∗(θt−1)⟩∥2] = E

 ∑
s∈S,a∈A

⟨ϕ(s, a), ω̂θt−1 − ω∗(θt−1)⟩2


≤ |A|
ρmin

E

 ∑
s∈S,a∈A

ρ(s)

|A|
⟨ϕ(s, a), ω̂θt−1 − ω∗(θt−1)⟩2


=

|A|
ρmin

E
[
Es∼ρ,a∼U(A)[⟨ϕ(s, a), ω̂θt−1 − ω∗(θt−1)⟩2]

]
. (139)
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Then, we have for all ω ∈ Rm,

Lθt−1(ω)− Lθt−1(ω∗(θt−1))

= Es∼ρ,a∼U(A)[(⟨ϕ(s, a), ω⟩ − λπθt−1 (s, a))2]− Lθt−1
(ω∗(θt−1))

= Es∼ρ,a∼U(A)[(⟨ϕ(s, a), ω − ω∗(θt−1)⟩+ ⟨ϕ(s, a), ω∗(θt−1)⟩ − λπθt−1 (s, a))2]− Lθt−1(ω∗(θt−1))

= Es∼ρ,a∼U(A)[⟨ϕ(s, a), ω − ω∗(θt−1)⟩2] + 2⟨ω − ω∗(θt−1),Es∼ρ,a∼U(A)[(⟨ϕ(s, a), ω∗(θt−1)⟩ − λπθt−1 (s, a))ϕ(s, a)]⟩
= Es∼ρ,a∼U(A)[⟨ϕ(s, a), ω − ω∗(θt−1)⟩2] + ⟨ω − ω∗(θt−1),∇ωLθt−1

(ω∗(θt−1))⟩
≥ Es∼ρ,a∼U(A)[⟨ϕ(s, a), ω − ω∗(θt−1)⟩2] , (140)

where the last inequality stems from the first-order optimality condition for ω∗(θt−1) ∈ argminω Lθt−1
(ω) , which gives

the inequality ⟨ω − ω∗(θt−1),∇ωLθt−1
(ω∗(θt−1))⟩ ≥ 0 for every ω ∈ Rm .

Combining (139) with (140) and using Assumption 5.2, we obtain

E[∥⟨ϕ(·, ·), ω̂θt−1
− ω∗(θt−1)⟩∥2] ≤

|A|
ρmin

E[Lθt−1
(ω̂θt−1

)− Lθt−1
(ω∗(θt−1))] ≤

|A|
ρmin

ϵstat . (141)

(b) Bounding term 2 in (137) by the approximation error. Similar derivations as for the previous term yield

E[∥⟨ϕ(·, ·), ω∗(θt−1)⟩ − λH(θt−1)∥2] = E

 ∑
s∈S,a∈A

(⟨ϕ(s, a), ω∗(θt−1)⟩ − λ
πθt−1

H (s, a))2


≤ |A|
ρmin

E

 ∑
s∈S,a∈A

ρ(s)

|A|
(⟨ϕ(s, a), ω∗(θt−1)⟩ − λ

πθt−1

H (s, a))2


=

|A|
ρmin

E
[
Es∼ρ,a∼U(A)[(⟨ϕ(s, a), ω∗(θt−1)⟩ − λ

πθt−1

H (s, a))2]
]

=
|A|
ρmin

E[Lθt−1
(ω∗(θt−1))]

≤ |A|
ρmin

ϵapprox . (142)

Combining (136), (137), (141) and (142) yields

E[∥[∇θλ(θt)]
T (r∗t−1 − rt−1)∥2] ≤

8l2ψL
2
λ

(1− γ)4
|A|
ρmin

(ϵstat + ϵapprox) . (143)

Term 3 in (134): For this last term, we have

E[∥[∇θλ(θt)]
T rt−1 − ut∥2]

(a)
= E

∥∥∥∥∥ 1

N

N∑
i=1

([∇θλ(θt)]
T rt−1 − g(τ

(i)
t , θt, rt−1))

∥∥∥∥∥
2


(b)
=

1

N
E[∥g(τ (i)t , θt, rt−1)− [∇θλ(θt)]

T rt−1∥2]

(c)

≤ 1

N
E[∥g(τ (i)t , θt, rt−1)∥2]

(d)

≤
4l2λl

2
ψ

N(1− γ)4
, (144)

where (a) stems from the definition of ut, (b) follows from using Lemma E.3 and recalling that the trajectories (τ (i)t )1≤i≤N
are independently drawn in Algorithm 3, (c) is due to the inequality Var(X) ≤ E[∥X∥2] for any random vector X ∈ Rd
and (d) uses a similar bound to (70).
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Combining (134), (135), (143) and (144) together with (132) gives

E[∥∇θF (λ(θt))− ut∥2] ≤ C̃1α
2∥ut−1∥2 + C̃2(ϵstat + ϵapprox) +

C̃3

N
+ 2D2

λγ
2H , (145)

where C̃1 =
48l3ψL

2
λ,∞

(1−γ)6 , C̃2 =
48l2ψL

2
λ

(1−γ)4
|A|
ρmin

and C̃3 =
24l2λl

2
ψ

(1−γ)4 .

Rearranging (131), dividing by α
16 and taking full expectation yields

E[∥∇θF (λ(θt))∥2] ≤
16

α
(F (λ(θt+1))− F (λ(θt)))− 2E[∥ut∥2] + 10E[∥∇θF (λ(θt))− ut∥2] . (146)

Plugging (145) into (146), summing the resulting inequality for t = 1, · · · , T and dividing by T gives

1

T

T∑
t=1

E[∥∇θF (λ(θt))∥2] ≤
16

αT
E[F (λ(θT+1))− F (λ(θ1))] +

1

T

T∑
t=1

(
10C̃1α

2E[∥ut−1∥2]− 2E[∥ut∥2]
)

+ C̃2(ϵstat + ϵapprox) +
C̃3

N
+ 2D2

λγ
2H (147)

Then, we upper bound the remaining sum in the right-hand side of (147) as follows:

1

T

T∑
t=1

(
10C̃1α

2E[∥ut−1∥2]− 2E[∥ut∥2]
)
=

1

T

T∑
t=1

(10C̃1α
2 − 2)E[∥ut−1∥2] +

2

T

T∑
t=1

E[∥ut−1∥2 − ∥ut∥2]

(a)

≤ 2

T

T∑
t=1

E[∥ut−1∥2 − ∥ut∥2]

(b)

≤ 2E[∥u0∥2]
T

(c)

≤ C̃4

T
, (148)

where C̃4 =
8l2λl

2
ψ

(1−γ)4 , (a) stems from the condition α ≤ 1√
5C̃1

, (b) follows telescoping the sum and upper bounding the

remaining resulting negative term by zero and (c) is a consequence of a similar bound to (70).

Finally, we obtain

E[∥∇θF (λ(θ̄T ))∥2] ≤
16(F ∗ − E[F (λ(θ1))]) + αC̃4

αT
+
C̃3

N
+ 2D2

λγ
2H + C̃2(ϵstat + ϵapprox) , (149)

where θ̄T be a random iterate drawn uniformly at random from {θ1, · · · , θT }. This concludes the proof.

G.3. Proof of Corollary 5.6: Sample complexity analysis

In order to establish the total sample complexity of our algorithm, we shall use Theorem 1 in Bach & Moulines (2013)
for the least-mean-square algorithm corresponding to SGD for least-squares regression to explicit the number of samples
needed in the occupancy measure estimation subroutine of Algorithm 2. In other words, our objective here is to precise the
number of iterations of SGD needed to approximately solve our regression problem. In particular, we will show that we can
achieve ϵstat = O(1/K) where K is the number of iterations of the SGD subroutine. We first report Theorem 1 from Bach
& Moulines (2013) before applying it to our specific case.

Theorem G.2 (Theorem 1, (Bach & Moulines, 2013)). Let H be an m-dimensional Euclidean space with m ≥ 1 .
Let (xn, zn) ∈ H ×H be independent and identically distributed observations. Assume the following:

(i) The expectations E[∥xn∥2] and E[∥zn∥2] are finite; the covariance matrix E[xnxTn ] is invertible.
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(ii) The global minimum of f(ω) = 1
2E[⟨ω, xn⟩

2 − 2⟨ω, zn⟩] is attained at a certain ω∗ ∈ H. Denoting by ξn
def
=

zn − ⟨ω∗, xn⟩xn the residual, assume that E[ξn] = 0 .

(iii) There exist R > 0, σ > 0 s.t. E[ξnξTn ] ≼ σ2E[xnxTn ] and E[∥xn∥2xnxTn ] ≼ R2E[xnxTn ] , where for two matri-
ces A,B ∈ Rm×m, A ≼ B if and only if B −A is positive semi-definite.

Consider the Stochastic Gradient Descent (SGD) recursion started at ω0 ∈ H and defined for every integer n ≥ 1 as

ωn = ωn−1 − β′ (⟨ωn−1, xn⟩xn − zn) , (150)

where β′ > 0 . Then for a constant step size β′ = 1
4R2 the averaged iterate ω̄n

def
= 1

n+1

∑n
k=0 ωk satisfies

E[f(ω̄n)− f(ω∗)] ≤
2

n
(σ
√
m+R∥ω0 − ω∗∥)2 . (151)

Proof of Corollary 5.6. It follows from Theorem 5.4 that

E[∥∇θF (λ(θ̄T ))∥2] ≤
16(F ∗ − E[F (λ(θ1))]) + C̃4

αT
+
C̃3

N
+ 2D2

λγ
2H + C̃2(ϵstat + ϵapprox) , (152)

where θ̄T is a random iterate drawn uniformly at random from {θ1, · · · , θT }. We now upper bound the statistical error ϵstat
as a function of the number K of SGD iterations (see Algorithm 2) by applying Theorem G.2. Let ω∗ ∈ argminω Lθ(ω)
where θ ∈ Rd is fixed (at each iteration of Algorithm 3). To do so, we successively verify each assumption of the latter
theorem in the Euclidean space Rm. Recall from (12) that the stochastic gradient of the loss function Lθ(ω) is given for
every θ ∈ Rd, ω ∈ Rm by

∇̂ωLθ(ω)
def
= 2(⟨ϕ(s, a), ω⟩ − λ̂πθH (s, a))ϕ(s, a) . (153)

Note here that we consider the unbiased estimator λ̂πθH (s, a) of the truncated state-action occupancy measure as computed in
Algorithm 5.
Remark G.3. One could also consider the unbiased estimator λ̂πθH (s, a) of the true state-action occupancy measure (without
truncation) using Algorithm 6 and slightly modify the definition of the expected loss with λ̂πθ (s, a) instead of λ̂πθH (s, a) .
The latter procedure would lead to the same result since the truncation error can be made as small as desired via setting the
horizon large enough, the error being of the order of γH .

Take xn = ϕ(s, a) ∈ Rm, zn = λ̂πθH (s, a)ϕ(s, a) ∈ Rm . The observations (xn, zn) are indeed independent and identically
distributed (for each state-action pair (s, a) sample).

(i) Given Assumption 5.5, we have E[∥xn∥2] = E[∥ϕ(s, a)∥2] ≤ B2 . Similarly we haveE[∥zn∥2] ≤ B2/(1 − γ)2 .
Moreover, the covariance matrix E[ϕ(s, a)ϕ(s, a)T ] has full rank by Assumption 5.5.

(ii) Take f = Lθ . Define the residual ξ def
= (λ̂πθH (s, a)− ⟨ω∗, ϕ(s, a)⟩)ϕ(s, a) . Then we conclude the verification of the

second item by observing that

E[ξ] = E
[
1

2
∇̂ωLθ(ω∗)

]
=

1

2
∇ωLθ(ω∗) = 0 , (154)

where the last identity stems from the definition of the optimal solution ω∗ .

(iii) As for this last item, recall again that ∥ϕ(s, a)∥ ≤ B which immediately implies that E[∥xn∥2xnxTn ] ≼ R2E[xnxTn ]
with R = B . It remains to show that the covariance matrix of ξ satisfies E[ξξT ] ≼ σ2E[ϕ(s, a)ϕ(s, a)T ] for some
positive constant σ that we will now determine. First, we write

E[ξξT ] = E[(λ̂πθH (s, a)− ⟨ω∗, ϕ(s, a)⟩)2ϕ(s, a)ϕ(s, a)T ]

= E
[
E[(λ̂πθH (s, a)− ⟨ω∗, ϕ(s, a)⟩)2|s, a]ϕ(s, a)ϕ(s, a)T

]
, (155)
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where the conditional expectation E[·|s, a] is w.r.t. randomness induced by sampling the state-action pair (s, a) . Then,
we have for every s ∈ S, a ∈ A ,

E[(λ̂πθH (s, a)− ⟨ω∗, ϕ(s, a)⟩)2|s, a] = E[(λ̂πθH (s, a))2 − 2λ̂πθH (s, a)⟨ω∗, ϕ(s, a)⟩+ ⟨ω∗, ϕ(s, a)⟩2|s, a] . (156)

We know that |λ̂πθH (s, a)| ≤ 1
1−γ . It remains to bound ∥ω∗∥ to be able to upper bound the quantity of (156). Recall for

this that ∇ωLθ(ω∗) = 0 , i.e., E[(⟨ϕ(s, a), ω∗⟩ − λπθH (s, a))ϕ(s, a)] = 0 , which can be rewritten as follows:

E[λπθH (s, a)ϕ(s, a)] = E[ϕ(s, a)ϕ(s, a)T ]ω∗ .

Therefore, we obtain by invoking Assumption 5.5 that ω∗ = E[ϕ(s, a)ϕ(s, a)T ]−1E[λπθH (s, a)ϕ(s, a)] and hence

∥ω∗∥ ≤ B

µ(1− γ)
. (157)

Using this inequality, it follows from (156) that:

E[(λ̂πθH (s, a)− ⟨ω∗, ϕ(s, a)⟩)2|s, a] ≤
1

(1− γ)2
+

2B

1− γ
∥ω∗∥+B2∥ω∗∥2

≤ 1

(1− γ)2

(
1 +

2B2

µ
+
B4

µ2

)
=

1

(1− γ)2

(
1 +

B2

µ

)2

. (158)

Hence, the missing part of item (iii) is satisfied with σ = 1
1−γ (1 +

B2

µ ) .

We conclude the proof by using the result of Theorem G.2 with β′ = 2β = 1
4B2 and ω0 = 0 to obtain after K iterations of

the SGD subroutine (see Algorithm 2)

E[Lθ(ω̄K)− Lθ(ω∗)] ≤
4

K
(σ
√
m+R∥ω∗∥)2

=
4

(1− γ)2K

(
B2

µ
(1 +

√
m) +

√
m

)2

, (159)

where ω̄K is the output of Algorithm 2. As a consequence, we have

ϵstat ≤
4

(1− γ)2K

(
B2

µ
(1 +

√
m) +

√
m

)2

. (160)

Plugging this inequality into (152) leads to

E[∥∇θF (λ(θ̄T ))∥2] ≤
16(F ∗ − E[F (λ(θ1))]) + C̃4

αT
+
C̃3

N
+ 2D2

λγ
2H

+
4C̃2

(1− γ)2K

(
B2

µ
(1 +

√
m) +

√
m

)2

+ C̃2ϵapprox , (161)

We set the number of iterations T , the batch size N , the number of iterations K in the subroutine of Algorithm 2 and
the horizon H to guarantee that E[∥∇θF (λ(θ̄T ))∥2] ≤ O(ϵ2) + O(ϵapprox) where the expectation is taken over both
the randomness inherent to the sequence produced by the algorithm together with the uniform sampling defining θ̄T .
Given (161), choosing T = O(ϵ−2), N = O(ϵ−2), K = O(ϵ−2) and H = O(log( 1ϵ )) concludes the proof. In particular,
the total sample complexity to solve the RL problem with general utilities with occupancy measure approximation in
order to achieve an ϵ-approximate stationary point of the objective function (up to the O(

√
ϵapprox) error floor) is given

by T × (K +N)×H = Õ(ϵ−4) , where Õ hides a logarithmic factor in ϵ .
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H. Useful technical lemma
In this section, we gather a few technical results that are useful throughout the proofs of our results.

H.1. Smoothness, Lipschitzness and truncation error technical lemmas

The following result from (Zhang et al., 2021b)(Lemma 5.3) ensures in particular that the objective function θ 7→ F (λπθ ) is
smooth which is used to derive an ascent-like lemma in our convergence analysis.

Lemma H.1. Let Assumptions 4.1 and 4.2 hold. Then, the following statements hold:

(i) ∀θ ∈ Rd ,∀(s, a) ∈ S ×A, ∥∇ log πθ(a|s)∥ ≤ 2lψ , ∥∇2
θ log πθ(a|s)∥ ≤ 2(Lψ + l2ψ) , and ∥∇θF (λ(θ))∥ ≤ 2lψlλ

(1−γ)2 .

(ii) ∀θ1, θ2 ∈ Rd , ∥λπθ1 − λπθ2∥1 ≤ 2lψ
(1−γ)2 ∥θ1 − θ2∥ and ∥λH(θ1)− λH(θ2)∥1 ≤ 2lψ

(1−γ)2 ∥θ1 − θ2∥ .

(iii) The objective function θ 7→ F (λπθ ) is Lθ-smooth with Lθ =
4Lλ,∞l2ψ
(1−γ)4 +

8l2ψlλ
(1−γ)3 +

2lλ(Lψ+l
2
ψ)

(1−γ)2 .

Proof. See Lemma 5.3 in (Zhang et al., 2021b). The second part of item (ii) was not reported in the aforementioned
reference but the proof follows the same lines upon replacing the infinite horizon but the finite one H for the truncated
state-action occupancy measures.

The next lemma controls the truncation error due to truncating simulated trajectories to the horizon H in our infinite horizon
setting. Notably, this error vanishes geometrically fast with the horizon H .

Lemma H.2. Let Assumptions 4.1 and 4.2 be satisfied. Then, we have for any H ≥ 1 and every θ ∈ Rd:

(i) ∥∇θF (λH(θ))−∇θF (λ(θ))∥ ≤ Dλγ
H where D2

λ =
8l2ψL

2
λ

(1−γ)6 + 16l2ψl
2
λ

(
(H+1)2

(1−γ)2 + 1
(1−γ)4

)
.

(ii) ∥∇JH(θ)−∇J(θ)∥ ≤ Dgγ
H with Dg

def
=

2lψ∥r∥∞
1−γ

√
1

1−γ +H and r is the fixed reward function in the cumulative
reward setting .

Proof. See Lemma E.3 in (Zhang et al., 2021b) for the first item. The second item is standard and follows directly from
using the policy gradient expression together with Lemma H.1-(i).

The following result whose proof follows immediately from (7) and Assumption 4.1 (see Lemma E.2, (Zhang et al., 2021b))
establishes the Lipschitz continuity of the policy gradient estimator w.r.t. the policy parameter and the reward variable.

Lemma H.3. Let Assumption 4.1 hold true and let τ = {s0, a0, · · · , sH−1, aH−1} be an arbitrary trajectory of length H .
Then the following statements hold:

(i) ∀θ ∈ Rd,∀r1, r2 ∈ R|S|×|A|, ∥g(τ, θ, r1)− g(τ, θ, r2)∥ ≤ 2lψ
(1−γ)2 ∥r1 − r2∥∞ ,

(ii) ∀θ1, θ2 ∈ Rd,∀r ∈ R|S|×|A|, ∥g(τ, θ1, r)− g(τ, θ2, r)∥ ≤ Lg∥θ1 − θ2∥ where Lg
def
=

2(l2ψ+Lψ)∥r∥∞
(1−γ)2 ,

H.2. Technical lemma for solving a recursion

The next lemma is useful for solving recursions appearing in our analysis to derive convergence rates.

Lemma H.4. Let τ be a positive integer and let {rt}t≥1 be a non-negative sequence satisfying for every integer t ≥ 1

rt ≤ (1− ηt)rt−1 + βt,

where {βt}t≥1 is a non-negative sequence. Then for ηt = 2
t+τ we have for every integer T ≥ 1

rT ≤ τ2r0
(T + τ)2

+

∑T
t=1 βt(t+ τ)2

(T + τ)2
.
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Proof. Notice that 1− ηt =
t+τ−2
t+τ . Then for all t ≥ 1

rt ≤
t+ τ − 2

t+ τ
rt−1 + βt.

Multiplying both sides by (t+ τ)2, we get

(t+ τ)2rt ≤ (t+ τ − 2)(t+ τ)rt−1 + βt(t+ τ)2

≤ (t+ τ − 1)2rt−1 + βt(t+ τ)2.

By summing this inequality from t = 1 to T , we obtain

(T + τ)2rT ≤ τ2r0 +

T∑
t=1

βt(t+ τ)2.

H.3. Technical lemma for decreasing stepsizes

Lemma H.5. Let q ∈ [0, 1] and let ηt =
(

2
t+2

)q
for every integer t. Then for every integer t and any integer T ≥ 1 we

have

ηt(1− ηt+1) ≤ ηt+1, (162)

T−1∏
t=0

(1− ηt+1) ≤ ηT .

Proof. For every integer t we have

1− ηt+1 = 1−
(

2

t+ 3

)q
≤ 1− 1

t+ 3
=
t+ 2

t+ 3
≤ ηt+1

ηt
.

Using the above result, we can write

T−1∏
t=0

(1− ηt+1) ≤
T−1∏
t=0

ηt+1

ηt
=
ηT
η0

= ηT .

Lemma H.6. Let q ∈ [0, 1), p ≥ 0, β0 > 0 and let ηt =
(

2
t+2

)q
, βt = β0

(
2
t+2

)p
for every integer t. Then for any

integers t and T ≥ 1, it holds
T−1∑
t=0

βt

T−1∏
τ=t+1

(1− ητ ) ≤ CβT η
−1
T ,

where C > 1 is an absolute constant depending on p and q.

Proof. See, for instance, (Gadat et al., 2018, Proposition B.1) or (Fatkhullin et al., 2023, Lemma 15).
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