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Abstract

Pairwise preference optimization, such as Di-001
rect Preference Optimization (DPO), was orig-002
inally designed to align large language mod-003
els (LLMs) with human value. It has recently004
been used to improve the supervised fine-tuning005
(SFT) performance of LLMs. Using pairs of006
single samples, DPO estimates the probabil-007
ity distribution of the preferences of picking008
one response over another. However, in reason-009
ing tasks that involve more complicated prefer-010
ences than those in the human value alignment011
task, this sampling method is likely to bring012
deviations from the ground-truth distribution.013
To solve the problem, extra efforts (e.g., ex-014
ternal annotations or amendment of the loss015
function) are often required. In this paper, we016
hypothesize that the preferences can be bet-017
ter estimated through a multi-sampling process.018
Accordingly, we propose an Expectation Prefer-019
ence Optimization (EPO) algorithm that takes020
pairs of sample groups, instead of pairs of sin-021
gle samples as in DPO, for preference learn-022
ing. Compared to pairwise DPO, the proposed023
EPO tends to produce more proper preference024
estimations. Applying different preference op-025
timization methods in a self-training paradigm,026
we have conducted extensive experiments on027
various reasoning benchmarks. The results028
show that our EPO approach outperforms a029
range of baseline approaches in terms of zero-030
shot accuracy on all benchmarks.031

1 Introduction032

Large language models (LLMs), through super-033

vised fine-tuning (SFT), have shown remarkable034

abilities on various reasoning tasks such as mathe-035

matical reasoning. However, it is well recognized036

that the effectiveness of SFT can reach its upper037

limit depending on the scale and quality of training038

samples, which are often limited and expensive to039

construct. Thus an important question arises: with040

the same SFT training data, how can we further041

improve the SFT performance? To tackle the prob- 042

lem, pairwise preference optimization, which was 043

originally developed to align with human value (e.g. 044

harmlessness or honestness), has become a widely 045

chosen solution. 046

Direct Preference Optimization (DPO) (Rafailov 047

et al., 2024) is one of the most popular preference- 048

based methods due to its simplicity and effective- 049

ness compared to Reinforcement Learning with 050

Human Feedback (RLHF) (Bai et al., 2022). DPO 051

samples the preferred and dis-preferred responses 052

once in one updating step on a prompt, and then 053

uses the Bradley-Terry (BT) model to update the 054

LLM with an implicit reward function that models 055

the preference of picking the preferred sample over 056

the dis-preferred one. As can be naturally applied 057

in the self-improving approaches that alleviate the 058

issue of data construction (Yuan et al., 2024; Sun 059

et al., 2023), using DPO in reasoning tasks has 060

shown a broad prospect. 061

The selection of pairwise training data is key 062

in the utilization of DPO. The preferred and dis- 063

preferred responses on a prompt represent an es- 064

timation of the correct preference, which in the 065

training process guides the optimization direc- 066

tion (Rafailov et al., 2024). Different from the 067

human value alignment task, in most reasoning 068

tasks the direction that the model needs to optimize 069

can be more multifaceted. For example, in math- 070

ematical reasoning, the error of an answer can be 071

attributed to various aspects, such as calculation, 072

formula and entity errors. Thus directly using DPO 073

on such reasoning tasks, especially when using 074

correctness as the selection criterion for pairs of 075

samples, would be insufficient to reflect the mul- 076

tifaceted nature of the reasoning tasks and result 077

in a poor performance (Lu et al., 2024; Lai et al., 078

2024). As shown in Fig. 1 (the red box on the 079

left-hand side), sampling a pair of single responses 080

for optimization, with one reporting the correct an- 081

swer and the other on the opposite, may lead to a 082
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wrong direction of preference estimation that devi-083

ates from the other correct responses (marked with084

crying faces).085

Various approaches have been developed to086

solve this problem. Orca-Math (Mitra et al., 2024)087

applies preference optimization on a fine-tuned088

LLM using an augmented dataset that is con-089

structed using GPT4 to select the pairs of responses,090

while Brain (Chen et al., 2024a) uses human an-091

notations. DPOP (Pal et al., 2024) tries to solve092

the unstable optimization direction of pairwise opti-093

mization by enhancing the supervision of preferred094

ends in changing the loss function of DPO. Itera-095

tive RPO (Yuanzhe Pang et al., 2024) uses a similar096

form of loss and applies it to a self-training struc-097

ture. However, these methods do not fundamentally098

solve the problem of unstable preference modeling099

when facing complicated preferences.100

In this paper, we explore a different perspective101

by leveraging more samples in preference estima-102

tion. Starting with the basic Bradley-Terry (BT)103

model, which is the basis of pairwise training, we104

hypothesize that the preferences in the BT model105

can be better estimated through a weighted multi-106

sampling process. Specifically, we assume that107

the preferences are not generated by the estima-108

tion of a single response, but by the expectation of109

the response sampling. Under this assumption, we110

propose an Expectation Preference Optimization111

(EPO) approach, a variant of DPO. EPO accepts112

group-wise preference samples, i.e., pairs of sam-113

ple groups, for training, with a length limitation114

operation. EPO estimates the preference by calcu-115

lating the weighted mean of each group. Our EPO116

shares the same objective with DPO and RLHF117

while overcoming the limitation of using only one118

preferred and one dis-preferred response each time.119

As shown in Fig. 1 (right-hand side), EPO makes120

it easier to produce proper preference estimations121

in reasoning tasks.122

Utilizing the proposed EPO, we can simply use123

correctness as the signal for preference construc-124

tion and boost the reasoning capability of LLMs125

yet bring no further human annotations. We ap-126

ply a self-training algorithm which is detailed in127

Section 3.3. After SFT on a task-specific reason-128

ing dataset, the target LLM generates responses129

for the input queries. Then we divide the re-130

sponses for each query into two groups. Using131

EPO on these grouped responses, the optimiza-132

tion direction is estimated through multiple sam-133

ples. Extensive experiments on various reasoning134

benchmarks (i.e. GSM8K (Cobbe et al., 2021), 135

ARC (Clark et al., 2018), SocialQA (Amini et al., 136

2019), MathQA (Sap et al., 2019)) across differ- 137

ent base LLMs (including Llama2-7B, Llama2- 138

13B (Touvron et al., 2023), Qwen1.5-7B (Bai et al., 139

2023), Mistral-7B (Jiang et al., 2023)) show that 140

our EPO constantly improves the performance of 141

SFT models and outperforms other preference opti- 142

mization baselines in the self-training framework. 143

2 Preliminaries 144

Given a large language model that is parameterized 145

by θ, donated as πθ, there are two categories of 146

methods to improve its performance: fine-tuning- 147

based and preference-optimization-based methods. 148

2.1 Fine-Tuning 149

SFT: Given a dataset D = {(xi, yi)}Ni=1, πθ is 150

finetuned with the cross-entropy loss following a 151

typical chain-of-thought rationale yi with respect 152

to the input query xi, resulting in πSFT
θ . 153

RFT: Rejection Sampling Fine-Tuning (RFT) 154

(Yuan et al., 2023) is a training method where πθ 155

is fine-tuned on its own correct generations. After 156

SFT on D, πSFT
θ obtains the ability to perform 157

zero-shot chain-of-thought rationales. Thus we can 158

sample M candidate rationales ˆyi,1, ˆyi,2, · · · ˆyi,M 159

for each query xi. All the rationales together are 160

denoted as D̂ =
{
(xi, ŷi,j)

M
j=1 | (xi, yi) ∈ D

}
. 161

Utilizing a filtering method (e.g. reward model 162

annotation), we can construct D̂RFT as a subset of 163

D̂. The outcome πRFT
θ is trained on the augmented 164

dataset D ∪ D̂RFT based on πθ. 165

2.2 Preference-Optimization 166

RLHF: RLHF (Bai et al., 2022) fits a reward model 167

to pairwise samples of human preferences and then 168

uses Reinforcement Learning to optimize a lan- 169

guage model policy to produce responses that are 170

assigned high reward without drifting excessively 171

far from the original model. Consider an annotated 172

dataset of pairwise samples Dp =
{
xi, y

i
w, y

i
l

}N
i=1

, 173

where xi denotes the ith prompt, yiw and yil respec- 174

tively represent the preferred and dis-preferred re- 175

sponses to xi. RLHF begins by modeling the proba- 176

bility of preferring yiw to yil using the Bradley-Terry 177

model (Bradley and Terry, 1952), which appoints 178

the following probabilistic form: 179

p
(
yiw ≻ yil | x

)
= σ

(
r
(
xi, y

i
w

)
− r

(
x, yil

))
(1) 180
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Figure 1: In the latent space of the target LLM, DPO chooses a pair of samples using correctness as the signal. In
more complicated case, as shown in the figure, DPO can result in a wrong estimation of the preference and drive the
LLM to a wrong reward updating direction (i.e., increased reward to the wrong samples and decreased to the correct
samples). On the opposite, EPO considers multi-sampling and can provide a more reliable optimizing direction.

where σ represents the logistic function and181

r(xi, yi) corresponds to a reward function rϕ (i.e.,182

LLM classifier) that gives the estimation of yi with183

respect to xi according to human preference.184

Then the target model πθ can be trained by the185

feedback from the learned reward function. In gen-186

eral, we formulate the following optimization target187

for this learning process:188

max
πθ

E [rϕ(x, y)]− βDKL [πθ(y | x)∥πref(y | x)]
(2)189

where β is a parameter controlling the deviation190

of the target model πθ from the status when the191

training starts.192

DPO: DPO (Rafailov et al., 2024) shows the193

possibility of keeping the same optimization tar-194

get as RLHF without explicitly training a reward195

function and the implementation of RL. The loss196

function of DPO is presented as below:197

LDPO (πθ;πref) = −E(x,yw,yl)∼D log σ(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

) (3)198

Notably, this optimization objective is based on199

a theoretical optimal πθ beyond rU (x, y), which200

enables its equivalence with Eq.2.201

3 Expectation Preference Optimization202

3.1 An Analysis of Pairwise Preference203

Optimization204

Taking DPO as an example, Pairwise Preference205

Optimization methods accept one preferred sample206

and one dis-preferred sample as the unit to calculate 207

the loss for updating the reward function. Consid- 208

ering an ideal reward function r̂(x, y) reflects the 209

ground-truth preference, let us assume a sampling 210

of four responses {yα1, yα2, yβ1, yβ2} with respect 211

to the query x, where r̂(x, yαi) > r̂(x, yβi) holds. 212

When an initial reward function rtϕ is optimized 213

on (yα1, yβ1), the optimization directions of yα2 214

and yβ2 are not restricted to follow the ground- 215

truth. The updated rt+1
ϕ may give a wrong estima- 216

tion rt+1
ϕ (x, yα2) < rt+1

ϕ (x, yβ2) while correctly 217

estimating the training pair as rt+1
ϕ (x, yα1) > 218

rt+1
ϕ (x, yβ1), and vice versa. 219

The trigger for this issue is that the sampling 220

of (yα1, yβ1) with respect to the prompt x may be 221

away from the ground-truth preference distribution. 222

Accordingly, the optimization of rtϕ gives wrong 223

guidance on yα2 and yβ2. When the purpose of 224

training is to align with humans, the inconsistency 225

of preference estimation is not so prominent (com- 226

pared to reasoning tasks), so the problem is less 227

significant. However, the reasoning tasks present 228

a different situation. For example, in math reason- 229

ing tasks such as GSM8K, LLMs can make mis- 230

takes for many reasons (e.g., equation calculation 231

errors, incorrect understanding of problems, etc.) 232

and the estimates from different aspects are not in- 233

dependent. Thus the true preference distribution is 234

complicated and varies with the target LLM. 235

3.2 Expectation Preference Optimization 236

Aiming to solve the aforementioned problem 237

brought by the single sampling of preference dis- 238

tribution in the reasoning tasks, we propose an 239

Expectation Preference Optimization (EPO) algo- 240
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rithm starting from the RLHF pipeline. As we241

have previously mentioned, the reward modelling242

phase of RLHF is based on the BT model. Af-243

ter a single sampling of response pair (y1, y2) for244

a prompt x, we can annotate the responses using245

human labellers or some stronger LLMs. As the246

preferences are presented as yw ≻ yl | x where247

yw, yl ∈ {y1, y2} we can optimize a reward func-248

tion through Eq. 1.249

By estimating preferences through multi-250

sampling, which results in a group of responses251

{yiNi=1} for a prompt x, we present the group-wise252

preference form Gw ≻ Gl | x where Gw, Gl ⊆253

yi
N
i=1. In general, Gw represents the preferred254

group and Gl represents the dis-preferred group.255

We assume that the reward level of Gw and Gl is256

the expectation for all rewards in the group:257

r∗(x,G) = Eyi∼G[r(x, yi)] (4)258

Thus the Bradley-Terry model can be rewritten259

as:260

p∗ (Gw ≻ Gl | x) =
σ (EGl

[r(x, yi)]− EGw [r(x, yi)])
(5)261

EPO objective. Following the derivation pro-262

cess of DPO, we can construct the reward function263

under the optimal solution to Eq. 2 as follows:264

r(x, y) = β log
π̂(y | x)

πref (y | x)
+ β logZ(x) (6)265

where Z(x) =
∑

y πref(y | x) exp
(

1
β r(x, y)

)
266

represents a partial function referring to the previ-267

ous work (Peters and Schaal, 2007; Rafailov et al.,268

2024). Using this re-parameterization of r(x, y),269

Eq. 5 can be formed as below using the optimal270

solution.271

p∗ (Gw ≻ Gl | x) = σ(βPGl
− PGw)

PG = EG[log
π (yi | x)

πref (yi | x)
)]

(7)272

Due to space limitation, we present our proof273

and detailed deriving process in the Appendix.274

We can now formulate a minimum loss function275

for the target model πθ through this preference276

function:277

LR (rϕ,D) = −E(x,Gw,Gl)∼D[logσ(P )] (8)278

While the sampling model (reference model) pro- 279

vides the group result (i.e. Gw, Gl), we regard the 280

πref (yi | x) as the probability of yi in the expec- 281

tation. In practice, this means that the response 282

with higher probability have a higher impact on 283

the overall optimization direction. Thus, the loss 284

function of EPO can be derived as: 285

LR (rϕ,D) = −E(x,Gw,Gl)∼D

[logσ (βf(Gw, π, πref )− βf(Gl, π, πref ))]

f(G, π, πref ) =

∑
yi∈G πref (yi|x)γ log

π(yi|x)
πref (yi|x)∑

yi∈G πref (yi|x)γ

(9) 286

Notably, this method only calculates an approx- 287

imate expectation, as the sum of probabilities is 288

not 1. Thus we introduce a smoothing coefficient 289

0 < γ ≤ 1, to avoid weights with large variants 290

caused by incomplete calculation of expected devi- 291

ations. 292

A further interpretation of EPO. We here 293

present a brief analysis of EPO. The objective func- 294

tion of EPO is derived from RLHF, which means 295

that we share the same overall optimal solution with 296

RLHF and DPO. As we estimate the preferences 297

through a multi-sampling assumption, EPO has a 298

more reliable implicit reward function compared 299

to the pair-wise DPO, especially in reasoning tasks 300

with complicated preferences. EPO drives the tar- 301

get LLM to have higher probabilities of generating 302

responses in the preferred group and lower proba- 303

bilities of generating responses in the dispreferred 304

group, while ensuring the responses with higher 305

probabilities affect more on the optimization. No- 306

tably, when the sampling number of Gl and Gw is 307

1, EPO becomes a typical DPO algorithm. Theoret- 308

ically, in random sampling, the larger the sampling 309

number, the more accurate the estimation of prefer- 310

ences in line with the ground-truth distribution. 311

Length Limitation Operation. After the brief 312

analysis of the EPO loss function, we introduce 313

an additional module to the EPO algorithm. Pre- 314

vious work (Wang and Zhou, 2024) indicates that 315

the beginning tokens affect most of the decoding 316

(generating) process of an LLM. Considering the 317

subsequent tokens of the responses could adversely 318

impact the coherence of the model in the optimiz- 319

ing process, especially the dis-preferred responses, 320

we aim to increase the stability of the EPO opti- 321

mization process by limiting the length of samples. 322

Specifically, we truncate the responses in Gl 323

and Gw and ensure that the length of responses 324
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Figure 2: Overview of self-improving approach with EPO

is smaller than a preset threshold. Knowing that325

this truncation drops some information from the326

supervised data, we will analyze the effect of this327

operation in our experiments.328

3.3 Self-improve Training approach With329

EPO330

As EPO can provide reliable preference estimation,331

we can simply use correctness as signals and boost332

the reasoning capability of LLM. We design a self-333

improve training approach, which is presented in334

Fig 2.335

We start with access to a base LLM πinit and336

samples of a reasoning task D = {xi, yi}Ni=1.337

First, we give the model the ability to follow and338

generate rational instructions by applying SFT to339

it. The fine-tuned model is denoted as πSFT .340

Then we generate M different responses for ev-341

ery query in D. We denote all the generated342

responses (Ri) with the original responses yi as343

Daug = {xi, yi, Ri}Ni=1 where Ri = {ri,j}Mj=1.344

In the next step, we generate the group-wise345

preference data from Daug using the correctness of346

generated responses in Ri as the annotation signal.347

Specifically, if a response reports the same answer348

as the typical rationale, it is put in Gw and it is349

put in Gl while it reports a different answer (which350

means it is wrong). The constructed training data351

are presented as follows:352

DEPO = {xi, Gw
i , G

l
i}N

′
i=1 (10)353

where Gw
i ∪Gl

i = Ri ∪ {yi}. Notably, we con-354

struct the preference groups on Ri combining with355

yi, thus for each prompt x the number of candi-356

dates’ correct responses is always greater than 1.357

As the wrong response of a query does not always358

exist in the sampling, we drop the triplets in Daug359

whose Ri contains all correct responses.360

Applying EPO algorithm on πSFT with DEPO,361

we can obtain the resultant LLM denoted as πEPO.362

In general, πEPO is optimized based on the su-363

pervising information of base dataset D (i.e. the364

correct answer), and the self-improve training en-365

sures that the model can have better performance 366

on the fine-tuning dataset. 367

4 Experiments 368

We evaluate the effectiveness of our EPO on two 369

representative reasoning tasks: arithmetic reason- 370

ing and commonsense reasoning. We test four dif- 371

ferent LLMs: Llama2-7B (Touvron et al., 2023), 372

Llama2-13B (Touvron et al., 2023), Qwen1.5- 373

7B (Bai et al., 2023) and Mistral-7B (Jiang et al., 374

2023) as our base LLM model. We mainly evaluate 375

the performance of EPO in the self-improving sce- 376

nario. Notably, we put the our Implement Details 377

in D 378

4.1 Datasets and Preprocessing 379

The experiments are carried out on two arithmetic 380

reasoning datasets and three commonsense reason- 381

ing datasets. 382

GSM8K. GSM8K (Cobbe et al., 2021) has been 383

adopted as a benchmark for the mathematical rea- 384

soning skills of LLMs. It contains 7,473 training 385

and 1,319 test problems, and each sample is paired 386

with a rationale that clearly states the final answer. 387

MetaMaths MetaMath (Yu et al., 2023) 388

is a popular augmentation of GSM8K and 389

MATH (Hendrycks et al., 2020). It contains 240K 390

augmented samples based on GSM8K and 155K 391

samples based on MATH. Notably, for lighter re- 392

sponse generation, we only take 80K augmented 393

GSM8K samples for training. The subset is de- 394

noted as MetaMaths 395

AI2 Reasoning Challenge (ARC). ARC (Clark 396

et al., 2018) consists of two subsets: ARC-Easy 397

and ARC-Challenge. Each sample in the dataset 398

contains a commonsense query and four candi- 399

date answers with one correct answer but does not 400

contain rationales. To obtain the rationales of the 401

queries for SFT, we apply a strong LLM (i.e. Yi- 402

Chat-34B (Young et al., 2024)) to generate typical 403

answers. Using the prompt presented in the Ap- 404

pendix, we generate a rationale ending with an 405

answer statement for each query. After filtering the 406

rationales with wrong answers and incorrect format, 407
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we construct an SFT training set with 1599 sam-408

ples from ARC-Easy and another with 793 samples409

from ARC-Challenge. They are then applied in the410

first SFT phase of the approach. For the generation411

phase, we use the original training set.412

MathQA. MathQA (Amini et al., 2019) con-413

tains 29837 training samples and 2985 test samples.414

Each sample contains a math query, four candidate415

results, a rationale, and a correct answer. We man-416

ually add the answer statements at the end of the417

rationales for SFT.418

SocialIQA. Social IQA (Sap et al., 2019) has419

33410 training samples, each containing a query420

and 3-5 candidate results without rationales, as well421

as 2224 test samples. We utilize the same method422

we use in constructing the ARC SFT dataset to423

generate rationales. Notably, we generate 23624424

samples with one correct rationale each.425

4.2 Baselines426

In the experiments, we compare the proposed self-427

training EPO method (i.e. SFT + EPO) with var-428

ious existing self-training approaches. They are429

described as follows. We present the detailed intro-430

duction in the Appendix.431

SFT presents the πSFT which is the LLM fine-432

tuned on typical rationales for specific tasks. It433

is used as the initialization of each self-training434

method below and our EPO.435

(SFT +) RFT presents the model fine-tuned on436

the correct generated responses based on πSFT ,437

referring to the RFT method.438

(SFT +) DPO presents the fine-tuned model439

using DPO on the pair-wise preference samples440

which are randomly chosen once for each prompt.441

(SFT +) DPObatch presents the model using442

DPO training on pairs selected as many as possible443

to the prompt (while ensuring the single utilization444

of each response) in Gl and Gw for each prompt.445

It shows the performance of using batched DPO446

compared to EPO447

(SFT +) RPO represents the model using the448

RPO algorithm (combining DPO loss with an NLL449

loss on the preferred response) on the pair-wise450

preference samples same as SFT + DPO.451

4.3 Main Results452

The main results of our experiments are presented453

in Tab. 1 and Tab. 2. Remarkably, on the GSM8K454

benchmark, EPO achieves a 5.43% increase over455

the SFT model in accuracy on the GSM8K dataset456

and 3.29% based on the Metasubs dataset for457

Llama2-13B. This improvement comes to 4.54% 458

and 7.05% for Qwen1.5-7B. As for the Common- 459

sense tasks, EPO brings an increase of 6.01% for 460

Llama2-7B on SocialIQA, 4.47% for Mitral-7B 461

on ARC-Easy, 6.94% for Llama2-13B on ARC- 462

Challenge, and 6.29% for Mistral-7B on MathQA. 463

A cursory examination reveals that our EPO con- 464

sistently outperforms all the preference optimiza- 465

tion baselines across all tasks. Such a pattern un- 466

derscores the effectiveness of EPO in improving 467

LLM’s ability in reasoning tasks. The DPO base- 468

lines can eventually damage the performance of the 469

model and this happens more frequently in math- 470

ematical reasoning. The DPObatch method also 471

shows an unstable effect compared to the DPO 472

while it can bring a slight improvement in many 473

cases. RPO, compared to the former two, shows 474

a more stable improvement effect. However, our 475

EPO provides a more reliable preference estimation 476

and constantly brings better performance improve- 477

ments. 478

4.4 Further Analysis 479

4.4.1 Analysis of Generation Parameters and 480

Length Limitation 481

Effect of sampling temperature and length limi- 482

tation. We analyze the effect of sampling tempera- 483

ture in the generation phase and length limitation 484

operation in the training phase. Fig. 3(a) shows the 485

effectiveness of length limitation in contributing 486

to the optimization stability. For GSM8K datasets, 487

limiting the length of participation in the responses 488

to the interval between 10 and 20 can result in 489

better performance. As the sampling temperature 490

grows, the peak is gradually moving rightwards. 491

We consider this effect to be due to the increas- 492

ing variety of responses that would decrease the 493

instability responses. 494

Effect of sampling number and length limita- 495

tion. We analyze the effect of sampling number in 496

the generation phase and length limitation opera- 497

tion in the training phase. As shown in Fig 3(b), 498

with the increase of the sampling number, the per- 499

formance increases for the length limitation of less 500

than 20. This result indicates that our EPO esti- 501

mates the preference distribution more accurately 502

as the number of samples increases. When the 503

length limitation is increased, this benefit becomes 504

unstable. 505
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Table 1: Overall results on the math tasks in comparison with 4 base models. We report the accuracy of CoT Pass@1
greedy sampling. The best performance is in bold and the second-best is underlined.

Base Model Datasets SFT Result
Methods

RFT DPO DPObatch RPO EPO

Llama2-7B
GSM8K 28.96 34.11 28.45 28.47 27.89 30.47
MetaMaths 60.87 60.27 59.34 58.65 58.21 62.33

Llama2-13B
GSM8K 49.27 47.99 48.47 48.53 50.09 54.70
MetaMaths 69.82 68.38 67.39 68.46 71.19 73.11

Qwen1.5-7B
GSM8K 54.20 55.19 55.12 54.07 56.46 58.74
MetaMaths 69.52 68.38 68.43 68.12 70.56 76.57

Mistral-7B
GSM8K 41.84 41.74 39.57 38.89 41.48 45.40
MetaMaths 70.05 70.15 68.01 68.29 71.72 74.72

Table 2: Overall results on the Commonsense tasks in comparison with 4 base models. We report the accuracy of
CoT Pass@1 greedy sampling. The best performance is in bold and the second-best is underlined.

Base Model Datasets SFT Result
Self-Training Methods

RFT DPO DPObatch RPO EPO

Llama2-7B

ARC-Easy 75.71 76.26 77.23 76.53 76.39 78.10
ARC-Challenge 52.98 56.56 54.77 55.02 54.88 55.74
MathQA 37.05 38.15 34.80 35.03 36.85 38.88
SocialIQA 72.52 72.52 77.42 77.30 77.17 78.53

Llama2-13B

ARC-Easy 82.28 82.07 82.74 82.93 83.20 84.35
ARC-Challenge 57.93 62.62 61.60 62.07 63.99 64.87
MathQA 44.62 47.07 38.22 43.37 45.31 46.91
SocialIQA 74.14 74.55 78.50 77.58 77.36 79.86

Qwen1.5-7B

ARC-Easy 85.35 85.85 87.74 87.03 88.04 88.15
ARC-Challenge 74.82 70.32 77.55 77.58 76.73 78.92
MathQA 51.89 51.75 51.62 52.19 50.84 53.00
SocialIQA 73.74 74.82 75.85 76.73 78.59 79.31

Mistral-7B

ARC-Easy 74.47 72.83 74.83 75.05 78.30 78.94
ARC-Challenge 60.45 62.71 63.84 60.03 62.97 64.73
MathQA 52.09 52.36 50.83 51.95 55.70 58.38
SocialIQA 74.10 74.37 76.30 75.58 76.15 78.05

4.4.2 Effect of EPO from the Training Set506

Perspective507

Considering that all the self-improving methods508

can more sufficiently utilize the training set com-509

pared to simple SFT, we analyze the performance510

of our EPO in comparison with baselines from the511

perspective of the training set. We apply an N=5512

inference on GSM8K for each trained model with513

different methods. Taking the leftmost bar (SFT)514

in Fig 4 as the reference, we can observe that EPO515

increases the probability of the model responding516

correctly (i.e., increased number of the "5" seg-517

ments and decreased number of the "0" segments)518

most. In fact, EPO drives the increase of the num-519

ber of all-correct generations from 2441 to 3253,520

while DPO and RPO even drive it to decrease. This521

demonstrates the effectiveness of our method.522

4.4.3 Effects of Sampling Distribution on523

Training Result524

As we utilize the expectation of a sampling process525

to estimate the preference in EPO, the sampling526

distribution (i.e. the samples in groups) can affect527

Table 3: Effect of sampling distribution on DPO. "High-
est / Lowest Prob" represents selection of the responses
with the highest / lowest probabilities

Base Model Random Highest Prob Lowest Prob
Llama2-7B 30.20 29.50(-0.70) 27.89(-2.31)
Llama2-13B 54.13 53.92(-0.21) 49.47(-4.66)

the final optimization direction. Here we present 528

an analysis of the choice of responses for EPO. 529

Firstly we apply an N=30 generation on GSM8K 530

with T=0.7. Then we present three different meth- 531

ods to select 15 responses for each prompt: ran- 532

domly selecting, selecting the responses with the 533

highest probabilities, and selecting the responses 534

with the lowest ones. We perform this analysis on 535

two base LLMs: Llama2-7B and Llama2-13B. As 536

shown in Table 4, the randomly selecting approach 537

presents the best performance, and selecting with 538

the lowest probabilities shows a poor performance. 539

This implies that when selecting sample groups, 540

it is necessary to follow a true distribution that 541

guides a correct optimization direction, otherwise 542
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(a) (b)

Figure 3: Analysis of hyperparameters. The analysis experiments are conducted on GSM8K for Llama2-13B. The
sampling number for the experiments in (a) is set to 10 and the temperature for the experiments in (b) is set to 0.7.
The blue dashed line represent the performance of DPO utilizing the length-limitation method.

Figure 4: We calculate the number of correct responses
for each query in an N=5 generation for each method on
GSM8K, using Llama2-13B as base LLM. The different
colors reflect different numbers of correct responses.
The length of the bar represents the number of prompts.

optimization deviations may occur, leading to poor543

performance.544

5 Related Work545

Despite the success of instruction tuning on546

LLMs which has shown a great zero-shot perfor-547

mance (Chung et al., 2024; Mishra et al., 2021;548

Sanh et al., 2021), preference optimization has549

demonstrated its great effectiveness in aligning550

LLMs with humans (Bai et al., 2022). As reinforce-551

ment Learning with Human Feedback (RLHF) (Bai552

et al., 2022) is a complex and often unstable proce-553

dure (Pal et al., 2024), DPO (Rafailov et al., 2024)554

has been proposed as a more stable and compu-555

tationally lightweight algorithm with no need for556

extra reward function training.557

Reasoning ability is important for LLMs in prac-558

tice. Let us take mathematical reasoning as an559

example. To make a stronger math-reasoning560

model, previous studies have focused on training561

the base model on larger datasets of better qual-562

ity (Yuanzhe Pang et al., 2024; Yu et al., 2023).563

However, it is well-recognized that creating large-564

scale and better-quality training samples is chal- 565

lenging and expensive. 566

The use of preference learning to improve the 567

LLM’s reasoning ability has attracted increas- 568

ing attention, while also facing certain problems. 569

DPOP (Pal et al., 2024) enhances the supervision 570

of the positive end in DPO by adjusting the loss 571

function. Iterative RPO (Yuanzhe Pang et al., 2024) 572

presents a similar loss function in a self-improving 573

scenario without the SFT phase. Step-DPO (Lai 574

et al., 2024; Lu et al., 2024) takes extra effort to 575

create step-wise paired data and utilizes methods 576

that are similar to vanilla DPO. However, these 577

methods do not solve the problem of preference 578

estimation of pair-wise optimization, thus gaining 579

little improvement. 580

6 Conclusions and Future Work 581

In this paper, we propose an Expectation Preference 582

Optimization (EPO) method that accepts pairs of 583

response groups for preference learning. Compared 584

to the existing pairwise preference optimization ap- 585

proaches that take pairs of single responses, our 586

EPO method can more reliably estimate the pref- 587

erence distribution, especially when facing com- 588

plicated reasoning tasks. We further design a self- 589

improving framework, in which EPO can be effec- 590

tively leveraged to improve the reasoning ability of 591

LLMs. Experimental results on various reasoning 592

tasks and datasets demonstrate the superior perfor- 593

mance of our EPO which consistently outperforms 594

a wide range of baseline approaches. 595

For future work, we plan to explore other reason- 596

able methods (e.g., adding weights on responses) 597

to better estimate the preferences based on EPO. 598
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7 Limitations599

Our paper presents a simple and practical method600

to improve the capability of LLMs in any reasoning601

task. However, the theory of EPO is not confined602

to reasoning tasks. Our intuition is to replace a603

single sample with an expectation in the Bradley-604

Terry model. Thus EPO can also used in alignment605

tasks. However, we have not found a proper way to606

calculate the expectation in alignment tasks since607

in reasoning tasks the answer to a query is binary608

(i.e., correct or incorrect) while it is not in align-609

ment tasks. Finding a proper method to calculate610

the expectation in alignment tasks can be a more611

comprehensive demonstration of the superiority of612

EPO theory.613

8 Discussion of Ethical Considerations614

Our proposed methods are used to improve the615

capabilities of LLMs. Though we mainly utilize it616

in reasoning tasks, it can also be used in other tasks617

which depends on the purpose of its user. On the618

other hand, using EPO training LLMs may cause an619

environmental impact as all other training methods620

do.621

For the permissions of our used artifact,622

each of our used models (Llama2-13B, Llama2-623

7B, Mistral-7B, Qwen1.5-7B) and the datasets624

(GSM8K, ARC, MathQA) are open-sourced and625

can be found from Github or Huggingface. Sec-626

ondly, all the models can not be used commercially.627

We utilize all the models and datasets consis-628

tent with their intended use. We do not provide629

extra data. Our construction of self-training data us-630

ing the LLMs presents the answers to the datasets,631

which is the purpose LLMs are designed.632

The datasets we used contain no information that633

names or uniquely identifies individual people or634

offensive content.635
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A Used Prompt2

A.1 Prompt for Yi to generate rationales3

user: Please answer the following single-choice question by presenting the thinking process and4

presenting the answer. 1. The question has an answer. 2. The thinking process part is a coherent5

paragraph. 3. Present the answer in the end of the response which is in the format of T̈he answer is6

A/B/C/D.̈.7

Question:8

[present question here]9

Choice:10

[present choice here]11

assistant:12

A.2 Prompt for base models to generate CoT answer for GSM8K13

Below is an instruction that describes a task.14

"Write a response that appropriately completes the request.15

Instruction:16

[present query here]17

Response:18

A.3 Prompt for base models to generate CoT answer for Commonsense choosing task19

Below is an instruction that describes a task.20

Write a response that appropriately completes the request.21

Instruction:22

Pick the most correct option to answer the following question.23

[present question here]24

A.[present choice here]25

B.[present choice here]26

C.[present choice here]27

D.[present choice here]28

Response:29

B Proof for optimal solution to EPO30

B.1 Proof for optimal solution to EPO31

We construct our proof following the previous works[1, 2]. From Eq. 2, our optimizing target is:32

max
π

Ex∼D,y∼π[r(x, y)]− βDKL [π(y | x)∥πref(y | x)] (1)

Notably, we can derive as:33

2



max
π

Ex∼D,y∼π[r(x, y)]− βDKL [π(y | x)∥πref(y | x)]

= max
π

Ex∼DEy∼π(y|x)

[
r(x, y)− β log

π(y | x)
πref(y | x)

]
= min

π
Ex∼DEy∼π(y|x)

[
log

π(y | x)
πref(y | x)

− 1

β
r(x, y)

]

= min
π

Ex∼DEy∼π(y|x)

log π(y | x)
1

Z(x)πref(y | x) exp
(

1
β r(x, y)

) − logZ(x)


(2)

where we define as :34

Z(x) =
∑
y

πref (y | x) exp
(
1

β
r(x, y)

)
(3)

Notably, Z(x) is a function of only x and πref . We can additionally define:35

π∗(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
(4)

As is a probability distribution which holds
∑

y π
∗(y | x) = 1. Using the Z(x), we can re-organize36

the Eq. A1 as:37

min
π

Ex∼D

[
Ey∼π(y|x)

[
log

π(y | x)
π∗(y | x)

]
− logZ(x)

]
=

min
π

Ex∼D [DKL (π(y | x)∥π∗(y | x))− logZ(x)]
(5)

Since Z(x)does not depend on π, the optimal solution is achieved by the policy that minimizes the38

first term. The KL divergence is minimized in the situation where two distributions are equal. Thus39

we have the optimal solution:40

π(y | x) = π∗(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
(6)

B.1.1 Deriving the EPO Objective Under the Bradley-Terry Model41

To derive the EPO objective under the Bradley-Terry preference model, we have the origin Bradley-42

Terry Model:43

p∗ (Gw ≻ Gl | x) =
1

1 + exp (Eyi∼Gl
[r (x, yi)]− Eyi∼Gw

[r (x, yi)])
(7)

In Eq. 6, we have:44

r(x, y) = β log
π̂(y | x)
πref (y | x)

+ β logZ(x) (8)

Substituting Eq. A7 into Eq. A8, we can get:45
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p∗ (Gw ≻ Gl | x) =
1

1 + exp (Eyi∼Gl
[r (x, yi)]− Eyi∼Gw

[r (x, yi)])

=
1

1 + exp
(
Eyi∼Gl

[
β log π̂(yi|x)

πref (yi|x) + β logZ(x)
]
− Eyi∼Gw

[
β log π̂(yi|x)

πref (yi|x) + β logZ(x)
])

=
1

1 + exp
(
Eyi∼Gl

[
β log π̂(yi|x)

πref (yi|x)

]
− Eyi∼Gw

[
β log π̂(yi|x)

πref (yi|x)

])
= σ

(
Eyi∼Gl

[
β log

π̂(yi | x)
πref (yi | x)

]
− Eyi∼Gw

[
β log

π̂(yi | x)
πref (yi | x)

])
(9)

This leads to Eq. 7.46

C Implementation Details47

C.1 Baselines48

In this section, we present the details of the baselines we used compared to EPO. Notably, we are49

using different training methods in the self-training scenario. Thus all of our baselines start from the50

SFT model:51

SFT presents the πSFT which is the LLM fine-tuned on typical rationales for specific tasks. It is52

used as the initialization of each self-training method below and our EPO.53

Beyond the SFT model, we utilize several self-training methods that do not introduce additional54

supervising information as our EPO does. The below methods are all beyond SFT model and the55

inference responses D̂ sampled from SFT model and the certain dataset:56

(SFT +) RFT presents the model fine-tuned on the correct generated responses based on πSFT ,57

referring to the RFT method. Notably, we get a subset of D̂ using the correction of responses as the58

filtering signal, denoted as D̂RFT . RFT are fine-tuned on D ∪ D̂RFT [3]. This method stands for the59

performance of fine-tuning in the self-improving scenario.60

(SFT +) DPO presents the fine-tuned model using typical DPO on the pair-wise preference samples61

which are randomly chosen once for each prompt. Notably, we sample one correct response and one62

incorrect response for each prompt in D ∪ D̂[3] randomly. Then we apply DPO to this dataset. It has63

the same optimizing steps as our EPO.64

(SFT +) DPObatch presents the model using DPO training on pairs selected as many as possible to65

the prompt (while ensuring the single utilization of each response) in Gl and Gw for each prompt.66

Notably, for each prompt in D ∪ D̂, we sample min(Numright, Numwrong) preference pairs as67

Numright and Numwrong represent the number of correct and incorrect responses. It shows the68

performance of using batched DPO compared to EPO.69

(SFT +) RPO represents the model using the RPO algorithm (combining DPO loss with an NLL loss70

on the preferred response) on the pair-wise preference samples same as SFT + DPO. Notably, the71

RPO objective is represented as:72

LRPO = − log σ

(
β log

Mθ (c
w
i , y

w
i | xi)

Mt (cwi , y
w
i | xi)

− β log
Mθ

(
cli, y

l
i | xi

)
Mt

(
cli, y

l
i | xi

))− α
logMθ (c

w
i , y

w
i | xi)

|cwi |+ |ywi |
(10)

C.2 Hyperparameters73

For the SFT training setups, we train SFT models using the following hyperparameters: learning rate74

of 2e-5, batch size of 64, max sequence length of 2048, and cosine learning rate schedule with 10%75
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warmup steps for 3 epochs. All the models are trained with an Adam optimizer [4]. This setting is76

also the same for RFT.77

For the preference optimization DPO, DPObatch, RPO and EPO. We apply a search on the learning78

rate, training epoch, and additional hyperparameters. The search range is presented as below:79

C.3 Search range of Baselines80

Table 1: Hyperparameter search range.

Methods Search Range

DPO β ∈ [0.05, 0.1, 0.5, 1.0]
lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]

DPObatch
β ∈ [0.05, 0.1, 0.5, 1.0]

lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]

RPO
β ∈ [0.05, 0.1, 0.5, 1.0]

lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]
α ∈ [0.25, 0.5, 1, 2]

EPO
β ∈ [0.05, 0.1, 0.5, 1.0]

lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]
γ ∈ [0.1, 0.2, 0.5, 1.0]

Notably, we are referring the papers [2, 5, 6] to set the search ranges. The length limitation of EPO81

is tuned from 5 to 100.82

D Implement Details83

The experiments are carried out on 16 A100-80G GPUs with a Linux system. For all methods, we84

search the hyperparameters as we present the details in the Appendix. We train 3 epochs in each85

setting and report the performance of the best checkpoint. For the response generation phase in the86

self-improving scenario, we use the sample number N = 20 with temperature T = 0.7 following [5].87

We use Pytorch1 and Huggingface2 as tools for the implementation. For preference optimization, we88

run our experiments based on trl3. All the generations were done using vllm [7]4. The code will be89

released on GitHub5.90

E The Time Cost of EPO91

The training cost involves time cost and memory costs. For the former, taking the sample of 2092

responses per prompt, EPO requires the LLM to process an input that is 10 times larger than other93

methods (20 to 2). Benefiting from CUDA’s parallel strategy for tensors, the extra time cost we need94

to bear is smaller than the linear estimation. For the latter, the extra GPU memory cost by a larger95

input tensor is much smaller than that is required for LLM training.96

We present the relevance of training costs and the performance of our EPO. As it is shown in Fig 1,97

EPO’s training time is less than 3 times of the other methods (while N is less than 30), while requiring98

a small amount of extra GPU memory.99

1https://pytorch.org/
2https://huggingface.co/
3https://github.com/huggingface/trl
4https://github.com/vllm-project/vllm
5http://github.com/xxxxxx
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Figure 1: Analysis of training cost of EPO and baseline (i.e. DPO) under different N along with their
performance.
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