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ABSTRACT

Large Language Models (LLMs) have demonstrated strong reasoning and mem-
orization capabilities via pretraining on massive textual corpora. However, this
poses risk of privacy and copyright violations, highlighting the need for efficient
machine unlearning methods that remove sensitive data without retraining from
scratch. While Gradient Ascent (GA) is commonly used to unlearn by reducing
the likelihood of generating unwanted content, it leads to unstable optimization
and catastrophic forgetting of retrained knowledge. We also find that combining
GA with low-rank adaptation results in poor trade-offs between computational
cost and generative performance. To address these challenges, we propose two
novel techniques for robust and efficient unlearning for LLMs. First, we intro-
duce Inverted Hinge Loss, which suppresses unwanted tokens while maintaining
fluency by boosting the probability of the next most likely token. Second, we
develop a data-adaptive initialization for LoRA adapters via low-rank approxi-
mation weighted with relative Fisher information, thereby focusing updates on
parameters critical for removing targeted knowledge. Experiments on the Train-
ing Data Extraction Challenge dataset using GPT-Neo models as well as on the
TOFU benchmark with Phi-1.5B and Llama2-7B models demonstrate that our
approach effectively removes sensitive information while maintaining reasoning
and generative capabilities with minimal impact.

1 INTRODUCTION

Large Language Models (LLMs) exhibit substantial performance gains in downstream tasks with
increasing model size and amount of pretraining data (Zhao et al., 2023). This has prompted extensive
research on collecting high-quality textual corpora for LLM pretraining and developing larger models
to an unprecedented scale (Brown et al., 2020; Chowdhery et al., 2023; Smith et al., 2022; Rae et al.,
2021; Dubey et al., 2024). However, this approach has introduced significant privacy concerns due
to LLMs’ tendency to memorize data indiscriminately (Carlini et al., 2021; 2023). For instance,
Personally Identifiable Information (e.g., names, phone numbers, and email addresses) can be easily
extracted from LLMs (Carlini et al., 2021). Additionally, OpenAI is facing multiple copyright
infringement lawsuits due to unpermitted use of licensed articles during LLM pretraining (Grynbaum
& Mac, 2023). In response to such challenges as well as increasing interest in one’s right to be
forgotten (e.g., the GDPR legislation) (Voigt & Von dem Bussche, 2017; Rosen, 2011; Villaronga
et al., 2018), machine unlearning for LLMs has emerged a critical and rapidly growing research
field (Yao et al., 2023; Si et al., 2023).

One method for LLM unlearning would be to filter out sensitive data from the corpus and retrain the
model from scratch, an approach known as exact unlearning. With unprecedentedly large models
and pretraining datasets, this process is highly resource-intensive and can easily become intractable
under the possibility of multiple data deletion requests made in a sequential manner. This motivates
approximate unlearning, where the goal is to remove knowledge of specific data instances without
retraining the model from scratch (Figure 1). In this regard, several novel approaches have been
proposed for knowledge unlearning. For instance, Jang et al. (2023) introduced a simple method that
finetunes LLMs using Gradient Ascent (GA) on data requested for deletion and also proposed n-gram-
based metrics to evaluate its effectiveness. Meanwhile, knowledge distillation-based methods, such
as those proposed by Wang et al. (2023) and Liu et al. (2024), aim to transfer knowledge selectively
to a secondary model for unlearning. However, both GA and knowledge distillation-based methods
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Figure 1: LLM unlearning aims to forget data points in Df while maintaining knowledge of the
retain set Dr. Unlike GA, our IHL induces higher unlearning stability by reducing the likelihood
of unwanted tokens in a controlled manner. To accelerate unlearning with IHL, FILA extracts and
places parameters important in generating Df to LoRA weights a priori via weighted low-rank
approximation. IHL and FILA form a powerful synergy towards robust and efficient LLM unlearning.

face significant challenges: GA suffers from unstable optimization due to the unbounded nature of
the objective loss, while distillation-based methods incur substantial computational costs from relying
on a secondary model. Above all, these approaches share a critical drawback: the high computational
cost of full fine-tuning all parameters within the LLMs.

Meanwhile, Low-Rank Adaptation (LoRA) has emerged as one of the most prominent techniques
for parameter-efficient fine-tuning on downstream tasks (Hu et al., 2022). The core idea of LoRA
is to freeze all pretrained weights and instead train low-rank decomposition matrices to model the
weight changes in each linear layer, effectively reducing the number of trainable parameters and thus
its memory cost. In addition to its efficiency, the low-rankness in LoRA also induces a powerful
regularization (Biderman et al., 2024), which can be beneficial in the realm of LLM unlearning
by stabilizing optimization and preventing catastrophic forgetting of other remaining knowledge.
From this perspective, we conjecture that LoRA could be a valuable approach in practical unlearning
scenarios. Recent studies have explored using LoRA for LLM unlearning: Chen et al. (2024) applied
LoRA for single-step unlearning, while Gao et al. (2024) proposed orthogonal LoRA for continual
unlearning. However, these studies focus on applying existing LoRA variants to specific unlearning
scenarios, without discussion on designing fast and cost-efficient LoRA for unlearning in LLMs.

In this paper, we explore LLM unlearning under the low-rank adaptation paradigm and propose two
novel techniques for efficient knowledge unlearning. First, we analyze the derivatives of GA and
highlight its issues: 1) gradients increasing the probability of all tokens cause unnecessary forgetting,
and 2) maximizing next-token loss can lead to unbounded optimization and divergence. To address
these issues, we propose the Inverted Hinge Loss (IHL) that aims to replace each token to unlearn
with the next most-probable token, and show that IHL enables fast and stable tuning by resolving
the issues of GA. Second, we find that the low-rank regularization in LoRA is too strong when
unlearning with IHL, leading to suboptimal cost vs. post-unlearning performance trade-offs. To
address this, we propose Fisher-Initialization of Low-rank Adapters (FILA), which data-adaptively
assigns parameters responsible for generating unwanted information to adapters prior to tuning by
decomposing the pretrained parameters weighted by the relative Fisher-information matrix (See
Figure 1). Experiments on the Training Data Extraction Challenge dataset (GPT-Neo) and the TOFU
benchmark (Phi-1.5B, Llama2-7B) demonstrate that IHL combined with FILA outperforms existing
baselines in both efficiency and post-unlearning performance. In summary, the main contributions of
our study are as follows:

• We analyze the shortcomings of GA—unbounded optimization and unnecessary forget-
ting—through its derivative and propose IHL to address these issues.

• We introduce FILA, a method to accelerate unlearning by data-adaptively assigning parame-
ters responsible for unwanted information to low-rank adapters.

• We demonstrate that IHL combined with FILA outperforms previous baselines in terms of
both efficiency and post-unlearning performance (See Figure 2).
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Figure 2: Compute cost for successful unlearning vs. post-unlearning downstream performances.
We unlearn 32 randomly sampled sequences from the Training Data Extraction Challenge from
GPT-Neo-125M. Each point represents a different forget set and LoRA rank (if used). Left: Accuracy
averaged across 9 classification tasks (higher is better). Middle: F1 score averaged across 4 dialogue
generation tasks (higher is better). Right: Perplexity on the validation set of the Pile dataset (lower
is better). Dashed lines indicate the performances of the model prior to unlearning. Unlearning via
gradient differences (GD) with vanilla LoRA leads to significant loss in performance compared to
full-parameter GD unlearning due to lack of plasticity. However, our proposed method using both the
Inverted Hinge Loss and Fisher-weighted LoRA initialization performs competitively to unlearning
via full-finetuning in all three aspects while enjoying the cost-efficiency of LoRA.

2 RELATED WORK

Machine Unlearning. The primary objective of machine unlearning is to adapt a pretrained model
to discard information acquired from a specific subset of data previously used during pretraining, with
active research focused on image classification (Cao & Yang, 2015; Golatkar et al., 2020; Tarun et al.,
2023; Mehta et al., 2022; Chundawat et al., 2023; Cha et al., 2024). Recently, its significance has
grown notably with Large Language Models (LLMs) due to crucial need for managing unintended
memorization of pretraining data intrinsic to LLMs (Si et al., 2023; Yao et al., 2024b). Several machine
unlearning algorithms for LLMs focus on parameter optimization (Si et al., 2023). For example,
Wang et al. (2023) introduced Knowledge Gap Alignment, using knowledge distillation between
models trained on different datasets. Chen & Yang (2023) proposed an unlearning layer to selectively
remove specific knowledge while preserving other parameters, while Liu et al. (2024) developed
a two-stage framework to capture and negate harmful knowledge. However, these approaches are
limited by the need to retain large datasets (Wang et al., 2023; Chen & Yang, 2023) or rely on
secondary models for distillation (Wang et al., 2023; Liu et al., 2024). Model-editing methods, such
as task arithmetic for suppressing harmful content (Ilharco et al., 2023; Wu et al., 2023), avoid
substantial costs but show limited effectiveness in unlearning. In contrast, Jang et al. (2023) used
Gradient Ascent (GA) for LLM unlearning by maximizing the next-token prediction loss on the
forget data, effectively unlearning while preserving model performance. Following this, GA has
become a standard baseline, with Yao et al. (2024a) improving its robustness by combining GA with
gradient descent on in-distribution data.

Parameter-Efficient Fine-Tuning. Fine-tuning large language models (LLMs) for specific tasks is
computationally expensive due to their size. To address this, Parameter-Efficient Fine-Tuning (PEFT)
methods adapt only a small subset of parameters while keeping the pretrained ones frozen (Liu
et al., 2022b; Qiu et al., 2023; Liu et al., 2023). Inspired by the small intrinsic rank of LLMs (Li
et al., 2018; Aghajanyan et al., 2021), LoRA and its derivatives add low-rank adapters to the model’s
linear layers (Hu et al., 2022; Zhang et al., 2023; Yeh et al., 2023; Kopiczko et al., 2024; yang Liu
et al., 2024). These adapters can be merged with pretrained parameters after fine-tuning, maintaining
the original inference cost. While most methods use random initialization for LoRA adapters,
PiSSA (Meng et al., 2024) suggests initializing them using the principal singular vectors and values
of the linear weights.

Although various methods in machine unlearning and parameter-efficient finetuning for LLMs have
been discussed, this paper focuses on analyzing the inherent issues of GA, introducing a novel
unlearning loss function to overcome these issues, and exploring cost-effective unlearning methods
that do not require full finetuning. These areas have not been adequately addressed in previous
studies, highlighting the contributions of our work.
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3 PROPOSED METHOD

3.1 PRELIMINARIES

Problem and notation. Given a sequence of T tokens x = (x1, x2, . . . , xT ), a language model (LM)
models the likelihood of the sequence via next-token prediction: pθ(x) =

∏T
t=1 pθ(xt|x<t). After

pretraining, we assume that an end-user has requested to delete a subset of the training set Df ⊂ D,
which we refer to as the forget set. The retain set Dr refers to an auxiliary dataset that contains other
relevant knowledge that must be retained after unlearning (e.g., Wikitext; Merity et al. 2017).

Gradient Ascent. Ideally, the LM must assign low probability to sequences in Df , leading to a
simple yet effective baseline of Gradient Ascent (GA; Jang et al. 2023). GA unlearns a sequence of
tokens x = (x1, . . . , xT ) by maximizing the next-token prediction loss:

LGA(x) = −
T∑

t=1

log(pθ(xt|x<t)). (1)

In practice, the log-likelihood is computed using cross-entropy loss and thus we GA essentially
minimizes the Negative Cross-Entropy (NCE) loss. Therefore, GA maximizing the next-token
prediction loss involves unbounded optimization, leading to an ill-posed process with unstable tuning.
While Gradient Difference (GD) aims to alleviate this instability by minimizing the next-token
prediction loss for Dr alongside NCE on Df as regularization, we find that the approach falls short
of a fundamental solution, showing performance degradation as unlearning updates are made.

Low-Rank Adaptation. Based on the assumption that parameter changes due to LLM adaptation
exhibits an intrinsic low-rank (Aghajanyan et al., 2021), LoRA models the change in parameters
∆W ∈ Rd×k of each linear weight W ∈ Rd×k via a product of two low-rank matrices A ∈ Rr×k

and B ∈ Rd×r where r ≪ min(d, k) is the rank of the LoRA adapter. In other words, the output of
the adapted linear layer given an input x becomes:

(W +∆W )x = Wx+BAx.

During fine-tuning, the original weight W is kept frozen and only the low-rank factors A and B are
updated via gradient descent. To ensure that the initial attachment of LoRA adapters does not alter
the output of the LLM, LoRA defaults to initializing A with a Kaiming-uniform distribution (He
et al., 2015) and B as the zero matrix. After finetuning, LoRA adapters can simply be merged with
the original weights W ′ = W +BA, thereby avoiding any additional latency during inference.

3.2 PRELIMINARY RESULTS

Despite its wide use in domain adaptation and instruction tuning, LoRA is not yet explored under
the task of LLM unlearning to the best of our knowledge. Therefore, we first share empirical results
from low-rank adapting LLMs using GD as our objective to motivate our approach. Figure 2 shows
the results. Notably, vanilla LoRA suffers from lack of plasticity and ends up failing to sufficiently
unlearn Df within 20 epochs. When running more unlearning epochs or increasing the learning rate
for sufficient unlearning, the model loses its previously acquired reasoning and generative capabilities,
as shown in the significant decrease in Reasoning and Dialogue performances. In the remainder of
this section, we present two techniques towards making LLM unlearning viable while enjoying the
efficiency of LoRA.

3.3 INVERTED HINGE LOSS: A NOVEL LOSS FUNCTION FOR LLM UNLEARNING

Motivation. We analyze the inherent issues of GA from the perspective of its derivative. The output
layer of a language model is a softmax layer that outputs probabilities over the vocabulary. Let yt
be the logits (pre-softmax activations) produced by the LLM model for the t-th token, and let V be
the vocabulary size. The probability pθ(xt|x<t) is given by the softmax function: pθ(xt|x<t) =

exp(y
(xt)
t )/

∑V
v=1 exp(y

(v)
t ) where y

(xt)
t is the logit corresponding to the true token xt and y

(v)
t is

the logit corresponding to the v-th token in the vocabulary. When we use LGA for unlearning for
LLMs, the gradient of the log-probability with respect to the logits is

∂ log (pθ(xt|x<t))

∂y
(v)
t

=

{
1− pθ(xt|x<t) if v = xt

−pθ(v|x<t) if v ̸= xt
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From this derivative of GA, we can interpret its unlearning mechanism: given the prefix x<t, GA
reduces the prediction score of the true token xt in proportion to 1− pθ(xt|x<t) while increasing
the scores of other tokens (i.e., v ̸= xt) by pθ(v|x<t). This process effectively shifts the model’s
prediction for x<t away from the true token xt, thereby achieving unlearning. However, we can
confirm that GA suffers form the following problems during unlearning: (1) Gradient spread,
where reducing the score of xt while increasing the scores of all other tokens leads to inefficient
unlearning in large vocabularies by predominantly boosting other tokens; (2) Unbounded loss, where
minimizing log(pθ(xt|x<t)) through maximizing cross-entropy loss introduces a risk of divergence
due to the unbounded nature of entropy; and (3) Degradation of generative performance, where
GA applies uniform gradient updates (i.e. increasing the scores of other tokens) to all sequences in
the forget set Df , despite each sequence requiring a unique number of updates for unlearning. This
redundancy can cause degrade the model’s generative capabilities, resulting in catastrophic forgetting.

Inverted Hinge Loss. To cope with aforementioned limitations of GA, we aim to design a new loss
function that achieves effective unlearning by decreasing the prediction score of the true token, while
focusing gradient updates on only a minimal number of viable replacements for the ground-truth
token. Inspired by the Hinge Loss (Cortes & Vapnik, 1995), we devise Inverted Hinge Loss (IHL) as:

LIHL(x) = 1 + pθ(xt|x<t)−max
v ̸=xt

(pθ(v|x<t))

As the probability pθ(xt|x<t) is given by the softmax function, the derivative of LIHL(x) with
respect to y

(v)
t is:

∂LIHL(x)

∂y
(v)
t

=


pθ(xt|x<t)(pθ(v

⋆|x<t)− pθ(xt|x<t) + 1) if v = xt

pθ(v
⋆|x<t)(pθ(v

⋆|x<t)− pθ(xt|x<t)− 1) if v = v⋆

pθ(v|x<t)(pθ(v
⋆|x<t)− pθ(xt|x<t)) if v ̸= xt and v ̸= v⋆,

where v⋆ = argmaxv ̸=xt
pθ(v|x<t). The detailed derivation can be found in Appendix A.

The above derivative clearly illustrate how the IHL addresses the shortcomings of GA in knowledge
unlearning for LLMs. First, IHL mitigates gradient spread by ensuring that the gradients primarily
focus on the true token xt and its competitive token v⋆, without excessively boosting irrelevant tokens
in large vocabularies. For example, in the case where unlearning has not yet been achieved (i.e., when
pθ(xt|x<t) > pθ(v

⋆|x<t)), the absolute value of the gradient for the true token xt is equal to or
greater than that of v⋆ (with opposite sign) and exceeds that of other tokens (i.e., v ̸= xt and v ̸= v⋆).
This ensures efficient and targeted unlearning while avoiding the unnecessary spread of gradients
across irrelevant tokens. Second, IHL resolves the issue of unbounded loss by defining a bounded
loss function, ensuring that the prediction scores for tokens other than xt and v⋆ decrease once
unlearning is complete (i.e., when pθ(xt|x<t) becomes less than pθ(v

⋆|x<t)). This bounded loss
prevents instability and divergence during unlearning. Lastly, IHL prevents the degradation of
generative performance by adapting gradient updates based on the prediction scores of xt and v⋆,
alleviating redundant updates for other tokens (i.e., v ̸= xt and v ̸= v⋆). Compared to GA, this
approach reduces redundant updates for other tokens in each sequence of the forget set Df , thereby
preserving the model’s generative capabilities while achieving effective and stable unlearning.

3.4 FILA: A NOVEL LORA INITIALIZATION FOR LLM UNLEARNING

Motivation. While IHL effectively stabilizes the unlearning process by reducing the likelihood
of unwanted tokens in a controlled manner, we empirically find that combining IHL with LoRA
naïvely leads to requiring large number of unlearning iterations to fully forget samples in Df .
Naturally, an increasing number of updates with Df comes with the risk of overfitting, which for
unlearning, may result in significant loss of knowledge on Dr. We hypothesize that this is due
to the random initialization of LoRA weights together with its low-rank structure imposing too
strong a regularization to handle precise gradients needed for proper minimization of IHL (Biderman
et al., 2024). Drawing inspiration from PiSSA (Meng et al., 2024), we therefore aim to accelerate
optimization of IHL under LoRA by extracting weights relatively more important to Df than to Dr

from each pretrained weight, then using them to initialize LoRA weights prior to unlearning. We
conjecture that this approach reinforces the model’s plasticity to forget Df as well as its stability
on keeping knowledge on Dr. The remainder of this section presents how parameter importances
are measured via Fisher information, and how low-rank adapter weights are initialized based on the
measured importances.
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Parameter Importances via Fisher Information. The Fisher information matrix Fθ(D) is defined
as the variance of the partial derivative of the log-likelihood of data D with respect to the model
parmeter θ (left of Eq. 2). Intuitively, the matrix can be considered a measurement on how much the
model output changes following a small change on its parameter weight. However, as marginalizing
across the space of D is intractable, many works in continual learning (Kirkpatrick et al., 2017) and
model compression (Hsu et al., 2022) literature have thus used the empirical Fisher information F̂θ

instead. In the context of LLMs, this can be computed as:

Fθ(D) = ED

[(
∂

∂θ
log pθ(D|θ)

)2
]
≈ 1

|D|
∑
x∈D

(
∂

∂θ
LLM(x; θ)

)2

=: F̂θ(D), (2)

where LLM denotes the next-token prediction loss used to pretrain LMs, LLM(x; θ) =∑T
t=1 log(pθ(xt|x<t)). Within our LLM unlearning setup, a high empirical Fisher information

measured with Df indicates that LLM on Df leads to large absolute gradients on the parameter under
concern, and we consider such parameters to be important in generating sequences in Df .

Let F̂ f
W := F̂W (Df ) denote the empirical Fisher information matrix of the target parameter W

measured using the forget set Df (resp. F̂ r
W using the retain set Dr). Then, we use the relative

Fisher information F̂ rel
W := F̂ f

W /F̂ r
W ∈ Rd×r as an importance metric to identify parameters

that are important exclusively for Df and not for Dr. While generating Df involves extracting
memorized information on Df as well as composing linguistically fluent outputs, we only wish to
adjust parameters responsible for the former and thus use F̂ rel

W rather than F̂ f
W .

Fisher-weighted Initialization of Low-rank Adapters. Given the relative importance F̂ rel
W for each

target weight W , we propose to initialize the corresponding LoRA adapter weights with the solution
to the following Weighted Low-Rank Approximation (WLRA) problem:

min
A∈Rr×k,B∈Rd×r

∑
i,j

(
[F̂ rel

W ]i,j(W −BA)i,j

)2
.

Note that when all weights [F̂ rel
W ]i,j equal one, WLRA reduces to standard low-rank matrix ap-

proximation, for which the solution can easily be computed via rank-r SVD. For general weights,
however, this minimization problem does not have a closed-form solution and requires iterative
optimization (Srebro & Jaakkola, 2003). While we may resort to iterative methods to initialize LoRA
weights in a fine-grained manner, this would undermine the efficiency gains from deploying low-rank
adapters. Therefore, we assume that parameters in each row of W share the same importance equal
to the square-root of the row-wise sum of F̂ rel

W , and simplify the problem to

min
A∈Rr×k,B∈Rd×r

∥∥∥diag((F̂ rel
W1)

1
2

)
(W −BA)

∥∥∥
2

with 1 ∈ Rk and diag(·) indicating the all-one vector and the vector diagonalization function,
respectively. Unlike general WLRA, this row-wise WLRA problem has a closed-form solution, which
can be obtained by applying rank-r SVD to decompose diag(F̂ rel

W1)W = USV T and computing
B∗ = (F̂ rel

W1)−1US
1
2 and A∗ = S

1
2V T .

Given this solution, we use B∗ and A∗ as initial LoRA weights. To ensure that the model behavior
remains the same after LoRA initialization, the base layers are also updated with W ∗ = W −B∗A∗.
Intuitively, our Fisher-weighted Initialization of Low-rank Adapters (FILA) extracts parameters that
are important for generating Df , but not for generating Dr, such that LoRA tuning can be focused on
erasing knowledge relevant to Df while keeping information regarding Dr.

3.5 FINAL LOSS FUNCTION FOR LLM UNLEARNING

In summary, we perform unlearning on the model Θ = θ ∪ θFILA, consisted of original pre-
trained weights θ and the FILA-initialized low-rank adapter weights for each linear layer θFILA =
{A∗

ℓ ,B
∗
ℓ }Lℓ=1, where L represents the number of layers tuned via LoRA. Additionally, we incorporate

GD, which utilizes the auxiliary retain set Dr. The final loss function using both the proposed IHL
and FILA is defined as follows:

minimize
θFILA

∑
xr∈Df ,xf∈Dr

LIHL(xf ) + LLM(xr) (3)

In practice, training (unlearning) for the LLM model is conducted by minimizing Eq.3 through
stochastic gradient descent.
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Table 1: Evaluation results on reasoning and generative capabilities before and after unlearning
samples from the TDEC dataset. For each model, we test three unlearning objectives (i.e. GA, GD,
IHL) with full-parameter tuning, and four methods using LoRA with rank 16. IHL denotes replacing
the GA loss term in GD with our IHL, and +FILA denotes initializing LoRA weights with FILA.
Changes in performance after unlearning are in parentheses, with best results under LoRA-based
unlearning in bold.

Model Method Params. Epochs EL10 MA Reasoning Dialogue Pile
(%) (%)↓ (%)↓ (Acc)↑ (F1)↑ (PPL)↓

GPT-Neo
125M

Before - - 30.9 77.4 43.4 9.4 17.8

GA
100.0

17.2 1.0 27.4 39.9 (-3.5) 2.6 (-6.8) 577.8 (+560.0)
GD 4.6 0.7 24.9 42.4 (-1.0) 5.9 (-3.5) 54.2 (+36.4)
IHL 17.2 0.7 29.2 42.3 (-1.1) 10.3 (+0.9) 18.1 (+0.3)

GD

1.6

8.6 0.3 20.6 40.8 (-2.6) 2.5 (-6.9) 129.4 (+111.6)
IHL 11.4 0.4 22.7 41.9 (-1.5) 6.0 (-3.4) 32.9 (+15.1)
GD+FILA 7.4 1.2 27.4 42.0 (-1.4) 6.5 (-2.9) 89.5 (+71.7)
IHL+FILA 6.0 0.3 23.9 42.2 (-1.2) 10.1 (+0.7) 24.0 (+6.2)

GPT-Neo
1.3B

Before - - 67.6 92.2 49.8 11.5 11.5

GA
100.0

13.8 1.9 30.4 49.7 (-0.1) 8.5 (-3.0) 15.8 (+4.3)
GD 12.8 2.2 30.9 48.4 (-1.4) 12.7 (+1.2) 10.8 (-0.7)
IHL 7.6 0.7 30.4 48.4 (-1.4) 12.5 (+1.0) 11.0 (-0.5)

GD

0.8

19.3 1.7 31.4 45.0 (-4.8) 9.7 (-1.8) 31.8 (+20.3)
IHL 20.0 1.7 44.6 47.1 (-2.7) 10.2 (-1.3) 14.9 (+3.4)
GD+FILA 7.8 1.9 23.2 44.2 (-5.6) 5.5 (-6.0) 54.5 (+43.0)
IHL+FILA 13.0 0.5 29.6 48.3 (-1.5) 12.1 (+0.6) 14.7 (+3.2)

GPT-Neo
2.7B

Before - - 70.4 93.4 52.3 11.5 10.4

GA
100.0

10.8 1.6 31.0 51.9 (-0.4) 11.1 (-0.4) 17.9 (+7.5)
GD 8.0 0.7 28.3 51.8 (-0.5) 12.7 (+1.2) 17.9 (+7.5)
IHL 6.6 0.5 29.3 51.8 (-0.5) 12.9 (+1.4) 10.7 (+0.3)

GD

0.7

14.0 0.1 20.4 45.9 (-6.4) 6.7 (-4.8) 61.1 (+50.7)
IHL 17.8 0.0 26.7 49.6 (-2.7) 8.5 (-2.6) 22.2 (+11.8)
GD+FILA 6.8 1.6 28.9 44.8 (-7.5) 9.3 (-2.2) 68.7 (+58.3)
IHL+FILA 10.3 0.1 28.5 49.6 (-2.7) 10.7 (-0.8) 16.0 (+5.6)

4 EXPERIMENTS

In this section, we first perform experiments unlearning samples from the Training Data Extraction
Challenge (TDEC; §4.1), followed by ablation and analytical results (§4.2). We also conduct
experiments on the Task of Fictitious Unlearning (TOFU; §4.3), a benchmark that well-mimics a
real-world scenario for LLM unlearning evaluation. For brevity, we present results from additional
experiments such as continual unlearning in Appendix D.
4.1 TRAINING DATA EXTRACTION CHALLENGE

Experimental Setup. The Training Data Extraction Challenge (TDEC) dataset (Carlini et al., 2021)
consists of 20k examples from the Pile dataset (Gao et al., 2020) found to be easily extractable from a
pretrained LLM. For each experiment, we randomly sample 32 sequences with 200 tokens to consist
the forget set Df . For the retain set Dr, we use the subset of WikiText (Merity et al., 2017) as it
contains factual world knowledge that we wish to maintain after unlearning. We consider GPT-Neo
125M, 1.3B, and 2.7B pretrained on the Pile dataset as our base models, and unlearn Df using five
different forget sets. For this experiment, we use a fixed learning rate of 2e-4 and use LoRA adapters
with rank r = {4, 8, 16, 32}. For reasons we illustrate later in §4.2, we choose to apply LoRA on
query and value layers in the attention module and two linear layers within feed-forward layers.

Following previous work (Jang et al., 2023), we measure the unlearning efficacy with two metrics.
The n-gram Extraction Likelihood (ELn) measures the n-gram overlap between the ground truth
sequence in Df and the output generated by the model. The Memorization Accuracy (MA) measures
the token-wise accuracy of the LLM on Df . More details on these metrics are shared in Appendix B.
After each unlearning epoch, we measure EL10 and MA of the model, and we consider the model
has successfully unlearned Df if both values measured on Df become smaller than those measured
from a held-out validation set that the model has never seen before within 20 unlearning epochs.
Once unlearning is finished, we evaluate the unlearned model on various downstream benchmarks to
measure how well the LLM maintains its previously acquired reasoning and generative capabilities.
To assess its reasoning capabilities, we average accuracies across 9 different classification datasets.
To measure generative performance, we also average the F1 scores over four dialogue generation
datasets. Lastly, we measure the perplexity on the validation subset of the Pile (Gao et al., 2020). A
comprehensive list of evaluation datasets can be found in Appendix C.
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Figure 3: Results from unlearning examples in the TDEC dataset on the GPT-Neo LLM family.
Each row represents the performance averaged across datasets within each set of LLM capability
tests: Reasoning (higher is better), Dialogue (higher is better), and Perplexity (lower is better). The
circles and crosses represent successful and unsuccessful attempts, respectively, of unlearning a
particular forget set Df . Solid lines indicate the performance of different methods averaged only
across successful unlearning trials. The dashed lines indicate the base model performance prior to
unlearning. GD leads to significant loss in performance and also fails to unlearn in some cases even
with large LoRA ranks. Replacing the NCE loss in GD with IHL boosts retention of reasoning and
generation capabilities, but still fails to unlearn in multiple cases. Running GD with FILA notably
increases the rate of unlearning success, but at significant cost in overall performance. Using both
IHL and FILA best minimizes post-unlearning performance degradation in all three aspects.

We consider two LLM unlearning baselines, Gradient Ascent (GA) (Jang et al., 2023) and Gradient
Difference (GD) (Liu et al., 2022a; Maini et al., 2024), both of which only require the original
language model and datasets Df and Dr representing knowledge we wish to unlearn and retain,
respectively. We exclude methods that require another auxiliary model (Wang et al., 2023; Liu et al.,
2024) or the entire training data (Wang et al., 2023; Chen & Yang, 2023) from our baselines.

Results. Table 1 shows evaluation results using a fixed LoRA rank of 16 and Figure 3 shows
analogous results using a different LoRA ranks. Our key findings are as follows. First, using GD not
only meets the forgetting criteria in fewer epochs across all model sizes but it also preserves previously
acquired knowledge (i.e., performance on Reasoning, Dialogue, and Pile) better than GA. Mainly
for 125M and 1.3B models, GA causes a significant decline in generative performance, whereas GD
partially mitigates this decline and improves both Dialogue F1 scores and the Pile perplexity. Second,
we find that simply applying GD with LoRA fails to unlearn effectively across all model sizes. While
enjoying great parameter-efficiency by tuning only about 0.7% to 1.6% of the total parameters when
using LoRA, its application to unlearning with GD results in large loss in overall language capability,
especially on generative tasks. Third, replacing GA in GD with IHL leads to performance gains in
both full-parameter and LoRA-based unlearning, but requires larger number of epochs for successful
unlearning than GD especially when confined to low-rank weight changes. However, this is resolved
when IHL is used together with FILA, which significantly reduces the number of required epochs.
Note that using FILA with GD also reduces the number of epochs required, but worsens downstream
performance in many cases, as FILA essentially accelerates the divergent behavior of GA in GD. In
essence, whether the ability of FILA to accelerate tuning also translates to benefits in downstream
performance depends on the loss function being optimized. On the other hand, when paired with our
bounded IHL, FILA leads to better retention of LLM performance, showcasing the strong synergy of
our approach that enjoys not only the stability of IHL but also the speedup from FILA.

4.2 ANALYSIS

What modules do we need to adapt? Figure 4 presents experiments where low-rank adapters
are attached to various target parameter groups, including those for Query (Q), Value (V), Key (K),
Output (O) in the attention module, and the Feed-Forward Network (FFN). While the original LoRA
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Figure 4: Results from unlearning examples from TDEC dataset using LoRA with rank 32 to adapt
sets of layers on GPT-Neo-125M. The marker shapes and colors are used similarly as in Figure 3.
Based on the rate of unlearning success, tuning FFN layers (e.g., FFN, QVFFN) is more receptive to
targeted knowledge removal compared to tuning attention layers (e.g., QV, QKVO).

paper (Hu et al., 2022) indicates that applying LoRA to Q and V yields superior performance on
downstream tasks, our experiments indicate that using LoRA on Q and V only is insufficient to meet
the unlearning criteria within our timeframe of 20 epochs. Notably, when LoRA is applied to FFNs,
we observe significant increase in rate of successful unlearning. Furthermore, integrating FILA with
IHL achieves the best post-unlearning performance across all LoRA target module combinations.

Cost-efficiency of the proposed method. Our compute-cost vs. performance comparisons
in Figure 2 show that, while vanilla LoRA allows significant reduction in unlearning costs (i.e.,
FLOPs) by freezing the majority of parameters, it incurs substantial performance losses compared to
full-parameter unlearning due to excessive stability originating from its low-rankness. In contrast,
combining the proposed IHL with FILA not only achieves the best performance but also leverages
the cost advantages of LoRA.

4.3 TASK OF FICTITIOUS UNLEARNING

Experimental Setup. The Task of Fictitious Unlearning (TOFU) benchmark (Maini et al., 2024)
is a synthetic dataset containing 20 question-answer pairs for each of 200 fictitious author profiles
generated by GPT-4. The TOFU evaluation pipeline first finetunes a pretrained LLM on all QA
pairs. Given this finetuned LLM that serves as our base model, our task is to unlearn all information
regarding 1%, 5%, or 10% of the authors from the model. Note that we can obtain reference models
finetuned only on the retain set (QA-pairs on 99%, 95%, or 90% of authors), with which we evaluate
the Forget Quality of unlearned models by measuring the p-value from a Kolmogorov-Smirnov test.
A high p-value indicates high distributional similarity between the unlearned model and the reference
model, thus implying strong forgetting. To evaluate how well the model retains other information
outside the forget set, we measure the Model Utility as the aggregation of the probability of correct
answers, ROUGE-L scores, and Truth Ratio of correct answers vs. incorrect answers on questions
from three datasets pertaining to the retain set of fictitious authors, real authors, and world facts.

Following the original paper of TOFU, we prepare two base models by finetuning Phi-1.5B and
Llama2-7B on TOFU for 5 epochs with learning rates 2e-5 and 1e-5, respectively. We then unlearn
with various methods using LoRA adapters of rank 4, 8, 16, or 32. While we mainly compare our
methods against GD, we also compare IHL and FILA against existing unlearning methods such as
KL (Maini et al., 2024), DPO (Rafailov et al., 2024), and NPO (Zhang et al., 2024), results from
which can be found in Appendix D. For unlearning, we use a learning rate of 2e-4 if our base model
is from Phi-1.5B and 1e-4 for Llama2-7B. All training procedures run 5 epochs with an effective
batch size of 32 using the AdamW optimizer (Loshchilov & Hutter, 2019).

Results. Figure 5 shows the model utility vs. forget quality curves from unlearning three differently-
sized TOFU forget sets from Phi-1.5B and Llama2-7B models. Comparing results among different
forget set sizes, we first observe that forgetting 1% of author profiles is fairly straightforward, as all
curves quickly approach the reference model with a single epoch, with increasing the LoRA rank
leading to incremental improvements in performance. On the other hand, when unlearning a larger
set of profiles (i.e., 5% or 10%), we see that both GA and GD quickly degrades model utility.

With regards to our proposed method, we find that replacing the NCE loss in GD with our IHL better
retains model utility across all LoRA ranks and forget set sizes, as curves are more aligned straight-up
towards the reference point with negligible shift in model utility. This stability comes at the cost
of unlearning efficiency, however, as randomly initialized LoRA weights are unable to effectively
represent weight changes required to decrease IHL. Nonetheless, initializing LoRA adapters with
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(a) Phi-1.5B
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(b) Llama2-7B

Figure 5: TOFU results using Phi-1.5B and Llama2-7B models. Each row corresponds to unlearning
a different forget set (1%, 5%, or 10%), and each column uses a distinct LoRA rank between 4 and 32.
The relative size of markers represent the number of epochs. Ideally, the unlearning curves should
start from the pretrained model (■) and approach towards the reference model tuned on the retain set
only (⋆) as unlearning progresses. Both GD and GD+FILA suffers from significant loss of model
utility due to using GA for unlearning. Replacing GA with IHL largely retains model utility, then
initializing LoRA adapters with FILA significantly boosts the unlearning efficiency of IHL.

FILA largely alleviates this issue and significantly enhances unlearning efficiency of IHL by focusing
gradient updates on parameters important to generating Df .

Interestingly, we find the prior weight assignment via FILA can lead to excessive unlearning in some
cases (e.g., unlearning 10% forget set with ranks 8 or 16 on Llama2-7B), with model updates reducing
the forget quality after reaching the upper bound at zero. This behavior resembles the Streisand
effect as unlearning gradients beyond a certain point in optimization unintentionally renders Df

more noticeable within the model (Golatkar et al., 2020). As reference models are not available for
measuring forget quality in real-world scenarios, finding the optimal point at which to stop unlearning
to prevent this effect as well as designing a robust evaluation metric that does not depend upon oracle
models would be interesting directions, which we leave as future work.

5 CONCLUDING REMARKS

In this paper, we address limitations of Gradient Ascent (GA), a widely used method for LLM
unlearning, and introduce a novel Inverted Hinge Loss (IHL) to replace the negative cross-entropy
loss in GA and resolve issues with dispersed gradients and unboundedness. We also propose Fisher-
weighted initialization for low-rank adaptation (FILA) that pre-assigns weights relatively important
to generating unwanted information as means to facilitate efficient LLM unlearning with LoRA.
Experiments on the Training Data Extraction Challenge dataset with GPT-Neo models along with the
TOFU benchmark using Phi-1.5B and Llama2-7B models show that our proposed methods enable
faster and more stable LoRA-based LLM unlearning, significantly outperforming existing baselines
in computational efficiency as well as post-unlearning performance.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the effectiveness of
language model fine-tuning. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7319–7328, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.568. URL
https://aclanthology.org/2021.acl-long.568.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
MathQA: Towards interpretable math word problem solving with operation-based formalisms. In Jill Burstein,
Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 2357–2367, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1245. URL https://aclanthology.org/N19-1245.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and John Patrick Cunningham.
LoRA learns less and forgets less. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.
URL https://openreview.net/forum?id=aloEru2qCG. Featured Certification.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense in
natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 7432–7439,
2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015 IEEE
Symposium on Security and Privacy, pp. 463–480. IEEE, 2015.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam
Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data from large language
models. In 30th USENIX Security Symposium (USENIX Security 21), pp. 2633–2650, 2021.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan Zhang.
Quantifying memorization across neural language models. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=TatRHT_1cK.

Sungmin Cha, Sungjun Cho, Dasol Hwang, Honglak Lee, Taesup Moon, and Moontae Lee. Learning to unlearn:
Instance-wise unlearning for pre-trained classifiers. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 11186–11194, 2024.

Jiaao Chen and Diyi Yang. Unlearn what you want to forget: Efficient unlearning for LLMs. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 12041–12052, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.738. URL https://aclanthology.org/2023.
emnlp-main.738.

Kongyang Chen, Zixin Wang, Bing Mi, Waixi Liu, Shaowei Wang, Xiaojun Ren, and Jiaxing Shen. Machine
unlearning in large language models. arXiv preprint arXiv:2404.16841, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching induce
forgetting? unlearning in deep networks using an incompetent teacher. In Proceedings of the Thirty-
Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications
of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence,
AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023. ISBN 978-1-57735-880-0. doi: 10.1609/aaai.v37i6.25879.
URL https://doi.org/10.1609/aaai.v37i6.25879.

11

https://aclanthology.org/2021.acl-long.568
https://aclanthology.org/N19-1245
https://openreview.net/forum?id=aloEru2qCG
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=TatRHT_1cK
https://aclanthology.org/2023.emnlp-main.738
https://aclanthology.org/2023.emnlp-main.738
https://doi.org/10.1609/aaai.v37i6.25879


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20:273–297, 1995.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston. Wizard of wikipedia:
Knowledge-powered conversational agents. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=r1l73iRqKm.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Chongyang Gao, Lixu Wang, Chenkai Weng, Xiao Wang, and Qi Zhu. Practical unlearning for large language
models. arXiv preprint arXiv:2407.10223, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027, 2020.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective
forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9304–9312, 2020.

Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. SemEval-2012 task 7: Choice of plausible
alternatives: An evaluation of commonsense causal reasoning. In Eneko Agirre, Johan Bos, Mona Diab,
Suresh Manandhar, Yuval Marton, and Deniz Yuret (eds.), *SEM 2012: The First Joint Conference on
Lexical and Computational Semantics – Volume 1: Proceedings of the main conference and the shared
task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval
2012), pp. 394–398, Montréal, Canada, 7-8 June 2012. Association for Computational Linguistics. URL
https://aclanthology.org/S12-1052.

Michael M Grynbaum and Ryan Mac. The times sues openai and microsoft over ai use of copyrighted work.
The New York Times, 27, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on computer
vision, pp. 1026–1034, 2015.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model com-
pression with weighted low-rank factorization. 2022. URL https://openreview.net/forum?id=
uPv9Y3gmAI5.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. LoRA: Low-rank adaptation of large language models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. Editing models with task arithmetic. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=6t0Kwf8-jrj.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and Minjoon Seo.
Knowledge unlearning for mitigating privacy risks in language models. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 14389–14408, Toronto, Canada, July 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.acl-long.805. URL https://aclanthology.org/
2023.acl-long.805.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. PubMedQA: A dataset for
biomedical research question answering. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.),
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2567–2577, Hong
Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1259. URL
https://aclanthology.org/D19-1259.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

12

https://openreview.net/forum?id=r1l73iRqKm
https://aclanthology.org/S12-1052
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=6t0Kwf8-jrj
https://aclanthology.org/2023.acl-long.805
https://aclanthology.org/2023.acl-long.805
https://aclanthology.org/D19-1259


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mojtaba Komeili, Kurt Shuster, and Jason Weston. Internet-augmented dialogue generation. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 8460–8478, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.579. URL https:
//aclanthology.org/2022.acl-long.579.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix adaptation. In
The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=NjNfLdxr3A.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension of
objective landscapes. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=ryup8-WCW.

Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning. In Conference on Lifelong
Learning Agents, pp. 243–254. PMLR, 2022a.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin A Raffel.
Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. Advances in Neural
Information Processing Systems, 35:1950–1965, 2022b.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen Liu, Juyeon
Heo, Songyou Peng, et al. Parameter-efficient orthogonal finetuning via butterfly factorization. arXiv preprint
arXiv:2311.06243, 2023.

Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Towards safer large language models
through machine unlearning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the
Association for Computational Linguistics ACL 2024, pp. 1817–1829, Bangkok, Thailand and virtual meeting,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.107. URL
https://aclanthology.org/2024.findings-acl.107.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https://arxiv.
org/abs/1711.05101.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task of fictitious
unlearning for llms. arXiv preprint arXiv:2401.06121, 2024.

Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N Ravi. Deep unlearning via randomized conditionally
independent hessians. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10422–10431, 2022.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors adaptation
of large language models. arXiv preprint arXiv:2404.02948, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.
In International Conference on Learning Representations, 2017. URL https://openreview.net/
forum?id=Byj72udxe.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset: Word prediction
requiring a broad discourse context. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1144. URL
https://aclanthology.org/P16-1144.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, and
Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. Advances in Neural
Information Processing Systems, 36:79320–79362, 2023.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides,
Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models: Methods, analysis &
insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct
preference optimization: Your language model is secretly a reward model. Advances in Neural Information
Processing Systems, 36, 2024.

13

https://aclanthology.org/2022.acl-long.579
https://aclanthology.org/2022.acl-long.579
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=ryup8-WCW
https://openreview.net/forum?id=ryup8-WCW
https://aclanthology.org/2024.findings-acl.107
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://aclanthology.org/P16-1144


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hannah Rashkin, Eric Michael Smith, Margaret Li, and Y-Lan Boureau. Towards empathetic open-domain
conversation models: A new benchmark and dataset. In Anna Korhonen, David Traum, and Lluís Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5370–
5381, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1534.
URL https://aclanthology.org/P19-1534.

Jeffrey Rosen. The right to be forgotten. Stan. L. Rev. Online, 64:88, 2011.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Nianwen Si, Hao Zhang, Heyu Chang, Wenlin Zhang, Dan Qu, and Weiqiang Zhang. Knowledge unlearning for
llms: Tasks, methods, and challenges. arXiv preprint arXiv:2311.15766, 2023.

Eric Michael Smith, Mary Williamson, Kurt Shuster, Jason Weston, and Y-Lan Boureau. Can you put it all
together: Evaluating conversational agents’ ability to blend skills. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 2021–2030, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.183. URL https://aclanthology.org/2020.acl-main.183.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared Casper, Zhun
Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deepspeed and megatron to train
megatron-turing nlg 530b, a large-scale generative language model. arXiv preprint arXiv:2201.11990, 2022.

Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In Proceedings of the 20th international
conference on machine learning (ICML-03), pp. 720–727, 2003.

Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effective machine
unlearning. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization without
overfitting: Analyzing the training dynamics of large language models. Advances in Neural Information
Processing Systems, 35:38274–38290, 2022.

Eduard Fosch Villaronga, Peter Kieseberg, and Tiffany Li. Humans forget, machines remember: Artificial
intelligence and the right to be forgotten. Computer Law & Security Review, 34(2):304–313, 2018.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical Guide, 1st
Ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

Lingzhi Wang, Tong Chen, Wei Yuan, Xingshan Zeng, Kam-Fai Wong, and Hongzhi Yin. KGA: A general
machine unlearning framework based on knowledge gap alignment. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 13264–13276, Toronto, Canada, July 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.acl-long.740. URL https://aclanthology.org/
2023.acl-long.740.

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi Xiong. DEPN:
Detecting and editing privacy neurons in pretrained language models. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 2875–2886, Singapore, December 2023. Association for Computational Linguistics. doi: 10.
18653/v1/2023.emnlp-main.174. URL https://aclanthology.org/2023.emnlp-main.174.

Shih yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, and
Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In Forty-first International Conference
on Machine Learning, 2024. URL https://openreview.net/forum?id=3d5CIRG1n2.

Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, and Xiang Yue. Machine unlearning
of pre-trained large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
8403–8419, Bangkok, Thailand, August 2024a. Association for Computational Linguistics. doi: 10.18653/
v1/2024.acl-long.457. URL https://aclanthology.org/2024.acl-long.457.

Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, and Xiang Yue. Machine unlearning
of pre-trained large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
8403–8419, Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/
v1/2024.acl-long.457. URL https://aclanthology.org/2024.acl-long.457.

14

https://aclanthology.org/P19-1534
https://aclanthology.org/2020.acl-main.183
https://aclanthology.org/2023.acl-long.740
https://aclanthology.org/2023.acl-long.740
https://aclanthology.org/2023.emnlp-main.174
https://openreview.net/forum?id=3d5CIRG1n2
https://aclanthology.org/2024.acl-long.457
https://aclanthology.org/2024.acl-long.457


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. arXiv preprint arXiv:2310.10683,
2023.

Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard BW Yang, Giyeong Oh, and Yanmin Gong. Navigating
text-to-image customization: From lycoris fine-tuning to model evaluation. In The Twelfth International
Conference on Learning Representations, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine
really finish your sentence? In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4791–4800, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1472. URL https:
//aclanthology.org/P19-1472.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao.
Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International Conference on
Learning Representations, 2023.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic collapse
to effective unlearning. arXiv preprint arXiv:2404.05868, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang,
Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023.

15

https://aclanthology.org/P19-1472
https://aclanthology.org/P19-1472


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DERIVATIVE ANALYSIS FOR THE INVERTED HINGE LOSS FUNCTION

The function pθ(xt|x<t) represents a probability distribution that indicates the likelihood of xt

taking a specific token xt given the previous tokes x<t. This probability is expressed using the
softmax function: pθ(xt|x<t) = exp(y

(xt)
t )/

∑V
v=1 exp(y

(v)
t ), where y

(v)
t denotes the score for

the v-th token in the vocabulary. To differentiate this function with respect to y
(xt)
t , we rewrite

pθ(xt|x<t) = exp(y
(xt)
t )/Z where Z =

∑V
v=1 exp(y

(v)
t ) is the normalization constant.

We differentiate this function with respect to y
(k)
t considering two cases: 1) k = xt and 2) k ̸= xt.

For the first case, we can get the following by using the chain rule:

∂pθ(xt|x<t)

∂y
(xt)
t

=
∂

∂y
(xt)
t

(
exp(y

(xt)
t )

Z

)
=

1

Z

∂ exp(y
(xt)
t )

∂y
(xt)
t

− exp(y
(xt)
t )

Z2

∂Z

∂y
(xt)
t

Here, ∂ exp(y
(xt)
t )

∂y
(xt)
t

= exp(y
(xt)
t ) and ∂Z

∂y
(xt)
t

= exp(y
(xt)
t ). Therefore, it becomes:

∂pθ(xt|x<t)

∂y
(xt)
t

=
exp(y

(xt)
t )

Z
− exp(y

(xt)
t )2

Z2
= pθ(xt|x<t)− pθ(xt|x<t)

2 = pθ(xt|x<t)(1− pθ(xt|x<t))

For the second case, using the chain rule again, we get:

∂pθ(xt|x<t)

∂y
(k)
t

=
∂

∂y
(k)
t

(
exp(y

(xt)
t )

Z

)
= −exp(y

(xt)
t )

Z2

∂Z

∂y
(k)
t

where ∂Z

∂y
(k)
t

= exp(y
(k)
t ). Therefore,

∂pθ(xt|x<t)

∂y
(k)
t

= −exp(y
(xt)
t ) exp(y

(k)
t )

Z2
= −pθ(xt|x<t) · pθ(k|x<t)

Thus, we can summarize them as below:

∂pθ(xt|x<t)

∂y
(v)
t

=

{
pθ(xt|x<t)(1− pθ(xt|x<t)) if v = xt

−pθ(xt|x<t) · pθ(v|x<t) if v ̸= xt

Based on the derivative of pθ(xt|x<t) above , we can calculate the derivative of LIHL. Firstly, for
convenience, we define pt = pθ(xt|x<t) and p̂t = maxv ̸=xt(pθ(v|x<t)). The loss function can be
rewritten as:

LIHL(x) = 1 + pt − p̂t

To calculate the derivative of LIHL, we need to consider three cases: 1) when v = xt, 2) when v = v⋆

where v⋆ = argmaxv ̸=xt
pθ(v|x<t), 3) when v ̸= xt and v ̸= v⋆. Using the derivative of pθ(xt|x<t)

mentioned earlier, the derivative of LIHL with respect to y
(v)
t is as follows:

∂LIHL

∂y
(xt)
t

=
∂

∂y
(xt)
t

(1 + pθ(xt|x<t)− pθ(v
⋆|x<t))

= pθ(xt|x<t)(1− pθ(xt|x<t)) + pθ(xt|x<t) · pθ(v⋆|x<t)

= pθ(xt|x<t) (1− pθ(xt|x<t) + pθ(v
⋆|x<t))
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∂LIHL

∂y
(v⋆)
t

=
∂

∂y
(v⋆)
t

(1 + pθ(xt|x<t)− pθ(v
⋆|x<t))

= −pθ(xt|x<t) · pθ(v⋆|x<t)− pθ(v
⋆|x<t)(1− pθ(v

⋆|x<t))

= −pθ(v
⋆|x<t) (1− pθ(v

⋆|x<t) + pθ(xt|x<t))

∂LIHL

∂y
(v)
t

=
∂

∂y
(v)
t

(1 + pθ(xt|x<t)− pθ(v
⋆|x<t))

= −pθ(xt|x<t) · pθ(v|x<t) + pθ(v
⋆|x<t) · pθ(v|x<t)

= pθ(v|x<t) (pθ(v
⋆|x<t)− pθ(xt|x<t))

In summary, the derivatives of the loss function LIHL with respect to y
(v)
t for the three cases are:

∂LIHL(x)

∂y
(v)
t

=


pθ(xt|x<t)(pθ(v

⋆|x<t)− pθ(xt|x<t) + 1) if v = xt

pθ(v
⋆|x<t)(pθ(v

⋆|x<t)− pθ(xt|x<t)− 1) if v = v⋆

pθ(v|x<t)(pθ(v
⋆|x<t)− pθ(xt|x<t)) if v ̸= xt and v ̸= v⋆,

B EVALUATION METRICS

How to measure success of unlearning? Following previous work Jang et al. (2023); Tirumala et al.
(2022), we empirically measure the success of unlearning using two metrics, Extraction Likelihood
(EL) and Memorization Accuracy (MA), which we briefly discuss below.

After unlearning each sequence x = (x1, . . . , xT ) ∈ Df , the Extraction Likelihood (EL) is measured
as the n-gram overlap between the ground truth sequence x and the output of the model after
unlearning.

OVERLAPn(a, b) =

∑
c∈n-GRAM(a) 1{c ∈ n-GRAM(b)}

|n-GRAM(a)|
(4)

ELn(x) =

∑T−n
t=1 OVERLAPn (fθ(x<t), x≥t)

T − n
(5)

The Memorization Accuracy (MA) measures the token-wise memorization of the LM pθ.

MA(x) =

∑T
t=1 1{argmaxx pθ(x|x<t) = xt}

T − 1
(6)

Given these two metrics, we flag successful unlearning when the average EL and MA on Df

goes below the EL and MA values measured on the validation set unseen during training. In our
experiments we measure EL with 10-grams, which results in the following early stopping criterion.

1

Df

∑
x∈Df

EL10(x) ≤
1

Dval

∑
x∈Dval

EL10(x) and
1

Df

∑
x∈Df

MA(x) ≤ 1

Dval

∑
x∈Dval

MA(x)

C ADDITIONAL DETAILS ON EXPERIMENTAL SETTING

Experiemtal Settings All experiments were conducted on a remote server equipped with NVIDIA
A100 40GB Tensor Core GPUs.

Datasets for Evaluation in the TDEC To evaluate reasoning capabilities, we utilize nine dif-
ferent classification datasets: LAMBADA (Paperno et al., 2016), Hellaswag (Zellers et al., 2019),
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Winogrande (Sakaguchi et al., 2021), COPA (Gordon et al., 2012), ARC-Easy (Clark et al., 2018),
ARC-Challenge (Clark et al., 2018), PiQA (Bisk et al., 2020), MathQA (Amini et al., 2019), and
PubmedQA (Jin et al., 2019). To assess generative performance, we employ Blended Skill Talk (Smith
et al., 2020), Empathetic Dialogues (Rashkin et al., 2019), Wizard of Internet (Komeili et al., 2022),
and Wizard of Wikipedia (Dinan et al., 2019).

Details of metrics of TOFU We evaluate the Forget Quality of unlearned models by measuring the
p-value from the Kolmogorov-Smirnov test that compares the empirical distribution of our unlearned
model to that of the reference model. To evaluate how well the model retains other information
outside the forget set, we measure the Model Utility as the aggregated model performance on the
retain set of remaining fictitious author profiles, and two held-out sets consisted of QA-pairs regarding
real author profiles and other world facts.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 CONTINUAL UNLEARNING

Because of the importance of continual unlearning (or sequential unlearning) in real-world applica-
tions, previous studies have underscored its relevance through a sequence of unlearning tasks (Cha
et al., 2024; Jang et al., 2023). Building on them, we conduct continual unlearning experiments
involving four tasks. Figure 6 of the Appendix shows that IHL consistently outperforms GD across
all metrics. Notably, the proposed IHL demonstrates significantly enhanced performance on the four
Dialogue and Pile datasets. Finally, we confirm that the combination of IHL and FLoRA achieves
more robust and cose-efficient continual unlearning, as evidenced by the experimental results for
Reasoning, Dialogue, and Pile, while utilizing only about 1.6% of the total parameters.

Figure 6: Experimental results of continual unlearning. Each task consists of 32 disjoint sequences
sampled from the TDEC dataset, leading to a total of 128 sequences to unlearn. For these experiments,
we use the pretrained GPT-Neo 125M model. The experimental setup for unlearning and the forgetting
criteria are configured as in the previous TDEC experiments. Task 0 refers to the result before
unlearning.

D.2 TOFU RESULTS WITH ADDITIONAL BASELINES

We compare our IHL and FILA methods against three additional existing unlearning baselines:
KL (Maini et al., 2024) uses GA to forget samples in Df while minimizing the Kullback-Leibler (KL)
divergence between representations of retain samples in Dr output by the unlearned model and those
from the pretrained base model. Instead of GA, Direct Preference Optimization (DPO; Rafailov et al.
(2024)) performs unlearning by training the model to output variants of “I don’t know” when given a
sample in Df . NPO (Zhang et al., 2024) is an approach similar to GA, but with adaptive weighting
on the gradients such that it alleviates the divergent behavior of GA. Note that both DPO and NPO
are regularized by the LM-loss on Dr. We use the same hyperparameterization (e.g., learning rate
and effective batch size) as in our main results. Figure 7 shows the results. We find that all three
baselines lead to significant decrease in model utility, while IHL+FILA shows negligible change.
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(a) Phi-1.5B

0.0 0.5 1.0
20

10

0

Fo
rg

et
 1

%
 Q

ua
lit

y
(lo

g 
p-

va
lu

e)

Rank = 4

0.0 0.5 1.0
20

10

0
Rank = 8

0.0 0.5 1.0
20

10

0
Rank = 16

0.0 0.5 1.0
20

10

0
Rank = 32

0.0 0.5 1.0
20

10

0

Fo
rg

et
 5

%
 Q

ua
lit

y
(lo

g 
p-

va
lu

e)

0.0 0.5 1.0
20

10

0

0.0 0.5 1.0
20

10

0

0.0 0.5 1.0
20

10

0

0.0 0.5 1.0
Model Utility

20

10

0

Fo
rg

et
 1

0%
 Q

ua
lit

y
(lo

g 
p-

va
lu

e)

0.0 0.5 1.0
Model Utility

20

10

0

0.0 0.5 1.0
Model Utility

20

10

0

0.0 0.5 1.0
Model Utility

20

10

0

Retain Set Only Pretrained GD IHL GD+FILA IHL+FILA GA GA+FILA KL DPO NPO

(b) Llama2-7B

Figure 7: TOFU results using Phi-1.5B and Llama2-7B models. Each row corresponds to unlearning
a different forget set (1%, 5%, or 10%), and each column uses a distinct LoRA rank between 4 and 32.
The relative size of markers represent the number of epochs. Ideally, the unlearning curves should
start from the pretrained model (■) and approach towards the reference model tuned on the retain set
only (⋆) as unlearning progresses. Our method IHL+FILA outperforms existing KL- and preference
optimization-based unlearning approaches in both model utility and forget quality.
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