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Abstract001

The Key-Value (KV) cache reading latency in-002
creases significantly with context lengths, hin-003
dering the efficiency of long-context LLM in-004
ference. To address this, previous works pro-005
pose retaining a small fraction of KV cache006
based on token importance. For example, KV007
eviction uses static heuristics to retain tokens,008
while KV retrieval dynamically selects query-009
relevant tokens for more adaptive cache man-010
agement. However, we observe that important011
tokens are often sparsely distributed across012
the long context. This sparsity makes exist-013
ing page-level KV retrieval inaccurate, as each014
page may include irrelevant tokens and miss015
critical ones. In this work, we propose Fier, a016
Fine-Grained and Efficient KV cache Retrieval017
method. Fier uses 1-bit quantized keys to es-018
timate the importance of each token, resulting019
in efficient and precise retrieval. Experiments020
show that Fier matches full KV performance021
using only 11% of the cache budget across var-022
ious long-context tasks, reducing decoding la-023
tency by 1.2× to 1.5×.024

1 Introduction025

KV caching is a memory-for-computation acceler-026

ation technique for LLM inference, enabling faster027

decoding by reusing intermediate hidden states028

(Waddington et al., 2013). However, during in-029

ference, each decoded token must attend to the030

full KV cache, causing cache reading latency to031

grow significantly with context length. For exam-032

ple, in LLaMA 7B (Touvron et al., 2023), a 32k-033

token KV cache requires 16GB of memory and034

over 11ms to read—accounting for more than half035

of the total inference time (Tang et al., 2024).036

To address this issue, previous works have037

proposed to selectively retain only a subset of038

KV cache entries based on token importance.039

Among them, one line of work—known as KV040

eviction (Fig. 1(b))—focuses on retaining fixed-041

position tokens that typically receive higher atten-042
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Figure 1: Comparison of KV eviction (b), KV retrieval
(c) and Fier (d). While existing retrieval methods suf-
fer from coarse granularity, Fier achieves higher accu-
racy through fine-grained token-level retrieval, and pre-
serves selection efficiency by quantization.

tion weights, such as the initial tokens (due to the 043

attention sink phenomenon) and the most recent 044

tokens (Xiao et al., 2023; Zhang et al., 2023; Li 045

et al., 2024; Liu et al., 2023). However, these 046

approaches overlook the dynamic nature of KV 047

criticality, i.e., tokens that are evicted earlier may 048

become important in the future. Their inability 049

to recall evicted tokens often results in degraded 050

performance in multi-round QA or long conversa- 051

tion applications. Motivated by this, another line 052

of work—KV retrieval (Fig. 1(c))—has been pro- 053

posed to dynamically recall tokens that are most 054

relevant to the current query during generation 055

(Tang et al., 2024; Chen et al., 2024). 056

Despite achieving better performance, KV re- 057

trieval requires frequent estimation of the to- 058

ken importance for every new query, introduc- 059

ing additional computational overhead. To miti- 060

gate this, existing methods perform page-level re- 061

trieval, where all tokens that belong to a certain 062

page of the KV cache are retrieved (or not re- 063

trieved) simultaneously to avoid computing full at- 064

tention scores, leading to a coarser granularity of 065

1



retrieval.066

However, we observe that in long-context tasks,067

information relevant to the current query may be068

scattered throughout the entire input, i.e., impor-069

tant tokens are often sparsely distributed across070

the KV cache (shown in Fig. 2). Consequently,071

page-level retrieval inevitably leads to imprecise072

selection: retrieved pages may include irrelevant073

tokens, while evicted pages may exclude critical074

ones, thereby affecting the model performance.075

In this paper, we aim to address the retrieval076

inaccuracy while preserving selection efficiency.077

Specifically, we find that quantizing the key cache078

to as low as 1-bit has minimal impact on the ac-079

curacy of Top-k selection in token importance es-080

timation (shown in Fig. 3). Despite quantization081

truncates large values, important tokens are still082

preserved in the Top-k after computing quantized083

attention. Based on this insight, we propose Fine-084

Grained and Efficient KV cache Retrieval (Fier), a085

1-bit quantization-based KV retrieval method. As086

shown in Fig. 1(d), Fier enables more accurate re-087

covery of important tokens and reduces the selec-088

tion cost. This leads to improved model perfor-089

mance under the same cache budget.090

We evaluate Fier across PG19 (Rae et al., 2019),091

LongBench (Bai et al., 2023), and the passkey re-092

trieval benchmarks (Peng et al., 2023). The re-093

sults demonstrate the effectiveness of Fier in both094

generative and retrieval-focused settings. Experi-095

ments show that Fier achieves performance com-096

parable to using the full KV cache while requir-097

ing only 11% of the cache budget, and consis-098

tently outperforms existing KV eviction and re-099

trieval baselines. Additionally, Fier achieves 1.2×100

to 1.5× decoding speedup across different context101

lengths on a single RTX 4090 GPU. In summary,102

we make the following contributions in this work:103

• We observe the sparse distribution of impor-104

tant tokens within the KV cache in long-105

context scenarios, highlighting the necessity106

of fine-grained retrieval.107

• We propose Fier, a KV retrieval method built108

on 1-bit key quantization, which enables effi-109

cient and accurate token-level retrieval.110

• We conduct comprehensive evaluations of111

Fier across diverse long-context tasks and112

model architectures, demonstrating its supe-113

rior performance and efficiency.114

2 Related Work 115

Long-Context LLMs. Large Language Models 116

(LLMs) have transformed the landscape of natu- 117

ral language processing, largely due to their strong 118

ability to deal with long context. Their context 119

length capacity has increased dramatically—from 120

4k to 128k (Grattafiori et al., 2024), 1M (Yang 121

et al., 2025), and even 10M (Team et al., 2024) 122

tokens. This expansion unlocks a range of ad- 123

vanced capabilities, including o1 long-range rea- 124

soning (Guo et al., 2025; OpenAI, 2024), in- 125

context learning (Li et al., 2025), and multimodal 126

intelligence (Weng et al., 2024). Fier aims to 127

improve the inference efficiency of long-context 128

LLMs by exploiting the sparsity of the KV cache. 129

KV Cache Eviction. Previous work identified the 130

sparsity of attention matrices, showing that retain- 131

ing only a small fraction of tokens is sufficient for 132

the performance. For example, Xiao et al. (2023) 133

propose to retain the first few tokens based on the 134

“attention sink” phenomenon. H2O (Zhang et al., 135

2023) retains a limited set of KV cache by select- 136

ing tokens with the highest cumulative attention 137

scores. SnapKV (Li et al., 2024) selects clustered 138

historical tokens along with a localized window of 139

recent tokens. However, these approaches ignore 140

the fact that tokens evicted can become important 141

in the future. Fier addresses this via query-specific 142

KV retrieval, enabling dynamic reassessment of 143

token importance at each decoding step. 144

KV Cache Retrieval. KV retrieval methods, in- 145

cluding our proposed Fier, dynamically select to- 146

kens relevant to the current query. However, exist- 147

ing approaches like Quest (Tang et al., 2024) and 148

ArkVale (Chen et al., 2024) retrieve at the page 149

level for efficiency, overlooking the sparse distri- 150

bution of important tokens. In this paper, we pro- 151

pose a fine-grained, token-level retrieval strategy 152

that maintains efficiency while improving accu- 153

racy. This design better captures critical informa- 154

tion missed by page-level methods. 155

KV Cache Quantization. Another related line of 156

work is KV quantization (Liu et al., 2024; Dong 157

et al., 2024), which compresses the cache by per- 158

forming self-attention in low-bit space. The objec- 159

tive of KV quantization is to minimize global re- 160

construction error. In contrast, Fier achieves cache 161

compression by retaining only a subset of the full 162

KV and adopts a relaxed quantization objective fo- 163

cused on preserving Top-ranked tokens, enabling 164

the use of extremely low bit-widths. 165
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Figure 2: High-scoring tokens selected by two different queries in LLaMA (Grattafiori et al., 2024) are mapped to
their corresponding text. Important tokens are query-dependent and sparsely distributed across the context, causing
pages to contain a mix of important and unimportant tokens, which leads to inaccuracy in page-level retrieval.

3 Methodology166

3.1 Preliminaries167

In an autoregressive LLM, the inference process168

typically consists of two stages: the prefill stage169

and the decoding stage.170

Prefill Stage. Given an input context X ∈171

Rlprompt×d, the model computes the initial key172

and value representations, denoted as K0 ∈173

Rlprompt×d and V0 ∈ Rlprompt×d, which together174

form the initial KV cache.175

Decoding Stage. At each step, a new query176

q ∈ R1×d is generated and the corresponding key177

k and value v are appended to the initial cache178

(K0,V0) to form the current KV cache:179

K←− Concat(K0,k),V←− Concat(V0,v).180

The attention output is then computed as:181

s = softmax(qKT ), o = sV.182

The major overhead of decoding comes from com-183

putation of attention score s, which reflects the im-184

portance of KV token kj to the query. At each185

step, the current query must attend to the entire186

KV cache. This cost becomes higher in long-187

context tasks. To address this, previous works188

have demonstrated attention sparsity, observing189

that initial tokens (attention sink) and recent to-190

kens (locality) tend to receive higher attention191

scores. Based on this, they retain a fixed subset192

of tokens, denoted as (K′,V′) ∈ Rn×d at these193

positions for all queries, where n is cache budget.194

However, subsequent studies show that token 195

criticality varies across different queries. As a re- 196

sult, query-specific token selection is necessary, 197

where token importance needs to be recomputed 198

for each query. To improve importance estimation 199

efficiency, existing works tend to perform selec- 200

tion at a coarser, page-level granularity. For ex- 201

ample, Quest (Tang et al., 2024) partitions the key 202

cache K ∈ Rl×d into l
L pages (L is typically 16 203

or 32). For each page P, it extracts maximum and 204

minimum vectors kmax
P and kmin

P ∈ R1×d, per- 205

forms point-wise multiplication with q, 206

αmax = q⊙ kmax
P , (1) 207

αmin = q⊙ kmin
P , (2) 208

and takes the maximum across both the hidden di- 209

mension and the two vectors to obtain the page im- 210

portance score. 211

sP = max
i=1,...,d

(
max

(
αmax
i , αmin

i

))
. (3) 212

Pages with the highest importance scores are then 213

selected for self-attention computation. 214

During the selection, Quest loads only 2 K vec- 215

tors per page. Assuming K is stored in float16, 216

this results in a key cache load ratio of: 217

2× 16× l/L

l × 16
=

2

L
. (4) 218

It is clear that larger page sizes reduce importance 219

estimation costs, but lead to coarser granularity 220

by grouping more tokens together. There exists 221

a trade-off between efficiency and accuracy. 222
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3.2 Fine-grained and Efficient KV Retrieval223

To improve upon existing page-level KV retrieval224

methods, we make the following two observations225

on the token importance estimation process.226

OB1: Important Token Sparsity Makes Page227

Retrieval Inaccurate. To understand the trade-off228

of page granularity, we visualize both the highest-229

attended tokens and those selected under page-230

level partitioning by mapping them back to the231

original context. As shown in Fig. 2, queries Q1232

and Q2 attend to different regions of the con-233

text, which aligns with prior findings on the dy-234

namic nature of token criticality. Moreover, tokens235

with high attention scores are sparsely distributed236

across the context, and we observe that pages 7,237

16, and 54 each contain a mixture of both impor-238

tant and unimportant tokens. This overlap makes239

inaccurate retrieval, which pinpoints the necessity240

of fine-grained retrieval strategies that identify im-241

portant information at the token level, rather than242

relying on coarse-grained page grouping.243

Motivated by this, we aim to design a retrieval244

strategy that operates at fine-grained token level245

while incurring minimal additional computation246

overhead. Notably, quantization enables low-bit247

computation, achieving high efficiency while still248

allowing every token to participate in the critical-249

ity estimation. We begin by validating this insight250

through the following observation.251

OB2: Quantization has Minimal Impact on252

Top-k Selection, even at 1-bit. Quantizing KV253

cache values to a lower precision significantly re-254

duces the cost of data movement and attention255

computation. Let K ∈ Rl×d denote the original256

key cache, where ki ∈ R1×d is the key vector cor-257

responding to the i-th token, quantization converts258

each ki to its dequantized counterpart k̃i as259

kQ
i =

⌊
ki − zKi

sKi

⌋
, k̃i = kQ

i ⊙ sKi + zKi , (5)260

where sKi , zKi ∈ R1×d are the per-channel cali-261

brated scaling and bias vectors specific to the i-262

th key vector. Previous KV quantization methods263

(Zhang et al., 2024) aim to optimize these fac-264

tors through the calibration process to minimize265

the impact of quantization on the computed atten-266

tion score. This objective can be formulated as an267

ℓ2 loss:268

min
sK ,zK

l∑
i=1

(
qk⊤

i − qk̃⊤
i

)2
. (6)269

However, quantization introduces perturbations 270

on the values, drawing computation results away 271

from intended. The impact of quantization is more 272

severe if outliers exist in the distribution. Previ- 273

ous methods like Kivi (Liu et al., 2024), equipped 274

with advanced channel-wise grouping and rescal- 275

ing scheme, cannot quantize the KV cache below 276

2 bit while retaining model performance. 277

Meanwhile, we observe that quantizing the key 278

cache to low bits has significantly less impact on 279

the token importance estimation than retaining the 280

attention scores. Here we explore an extreme case 281

by quantizing K to just 1-bit. Using the full- 282

precision attention scores as ground truth, we eval- 283

uate whether Top-k token selection can still be ac- 284

curately recovered under such an aggressive quan- 285

tization setting. Specifically, we feed a long in- 286

put context (14k tokens) into LlaMA during the 287

prefill stage, and compute attention scores under 288

both full-precision and 1-bit quantized K using 289

the same query. As shown in Fig. 3, despite the 290

fact that low-bit quantization truncates large val- 291

ues and distorts the overall distribution, the Top-k 292

tokens remain largely unchanged. This suggests 293

that token criticality is still well captured, even un- 294

der extreme quantization.

Top ones remain

Figure 3: Averaged full/quantized attention scores
along the sequence. Despite distribution distortion
caused by low-bit quantization, the Top-k tokens are
largely preserved, indicating that token criticality re-
mains identifiable under extreme quantization.

295
To understand the reason, we analyze the quan- 296

tization objective implied by the goal of token im- 297

portance estimation. For importance estimation, 298

we aim to maintain the ranking of the Top-k to- 299

kens rather than preserving all attention scores 300

precisely. Assume m is the minimum margin be- 301
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Easy to minimizeHard to minimize
Figure 4: Intuition of Fier. Our relaxed quantization
objective ignores errors smaller than m/2, allowing the
use of extremely low bit-widths while preserving Top-
k ranking accuracy.

tween the attention scores of Top-k and non-Top-302

k tokens in the full-precision setting. To preserve303

this ranking after quantization, it is sufficient to304

ensure that the attention score of each token devi-305

ates from its full-precision counterpart by at most306

m/2. This leads to the following hinge objective:307

min
sK ,zK

l∑
i=1

max
(
0,

m

2
−
(
qk⊤

i − qk̃⊤
i

))
. (7)308

Compared to the ℓ2 loss, the hinge loss imposes309

a relaxed objective that prioritizes preserving the310

relative ranking of Top-k tokens (Fig. 4). More311

importantly, outlier tokens that lead to large atten-312

tion scores enjoy larger margins under the hinge313

loss, making their quantization errors less impact-314

ful. This enables quantization with 1-bit and larger315

group sizes g while still maintaining Top-k accu-316

racy.317

3.3 Fier Workflow318

Motivated by previous observations, we propose319

Fier, a token-level retrieval method based on 1-bit320

linear quantization. Fier compresses the key cache321

into 1-bit using a simple round-to-nearest (RTN)322

quantizer. Given a query q, approximate atten-323

tion scores are computed efficiently using quan-324

tized keys. Based on these scores, Fier selects325

the Top-k tokens and performs full-precision self-326

attention over the selected subset. We summarize327

the workflow of Fier in Algorithm 1.328

3.4 Theoretical Analysis of Efficiency329

Beyond retrieval accuracy, the efficiency of the se-330

lection stage is also critical for practical deploy-331

ment. We analyze the key cache load ratio in-332

curred during the selection phase and compare that333

with Quest. For K stored in float16, we quan-334

tize it to 1-bit with group size g. Note that in ad-335

dition to the 1-bit KQ, each group also needs to336

store a pair of (s, z) in float16. Therefore, the337

Algorithm 1 Fier: Token-Level KV Retrieval via
1-Bit RTN Quantization

1: Input: Query q, full-precision (K,V), group size g
2: Output: Attention output o
3: // Step 1: Quantize K to 1-bit
4: Partition K into groups of size g along each channel
5: For each group, compute the scaling factors (s, z) and

broadcast them to construct sK , zK ∈ Rl×d.
6: KQ =

⌊
K−zK

sK

⌋
,KQ ∈ {−1, 1}l×d # binary

7: K̃ = KQ ⊙ sK + zK

8: // Step 2: Compute Approximate Attention Scores
9: s̃ = q · K̃⊤

10: // Step 3: Select Top-k Tokens
11: Sq = Top-k(s̃)
12: // Step 4: Compute Real Attention on Selected Tokens
13: K′ = K[Sq],V

′ = V[Sq]
14: Return: o = softmax(qK′⊤)V′

key cache load ratio will be calculated as: 338

l × 1 + (l/g)× 2× 16

l × 16
=

1 + 32/g

16
, (8) 339

which decreases with a larger group size. Recall 340

that Quest has a load ratio of 2/L. For fairness, 341

we set g = 32, which matches the load ratio of 342

1/8 with page size L = 16 as implemented in the 343

Quest baseline. 344

4 Experiments 345

4.1 Setting 346

Datasets. We evaluate Fier on the language mod- 347

eling task PG19 (Rae et al., 2019). To assess 348

its performance on long-context QA, we further 349

conduct experiments on LongBench (Bai et al., 350

2023) using six representative datasets: Narra- 351

tiveQA (Kočiskỳ et al., 2018), HotpotQA (Yang 352

et al., 2018), Qasper (Dasigi et al., 2021), Trivi- 353

aQA (Joshi et al., 2017), GovReport (Huang et al., 354

2021), and MultifieldQA(Bai et al., 2023). The 355

detailed information about the six datasets is in 356

Appendix A. We evaluate Fier on the passkey re- 357

trieval task (Peng et al., 2023) to assess its ability 358

to model long-range dependencies. We also com- 359

pare responses from Fier and Quest enabled chat- 360

bots in Appendix C. 361

Models. We apply our method to three 362

open-sourced models: LLaMA-3-8B-Instruct 363

(Grattafiori et al., 2024), LongChat-v1.5-7B-32k 364

(Li et al., 2023), and Mistral-7B-Instruct (Jiang 365

et al., 2023). Following the same setup as in Quest, 366

neither Fier nor the baseline methods are applied 367

to the first two layers of the model. We evalu- 368

ate the performance of each method under varying 369

KV cache budgets. 370
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Figure 5: Language modeling evaluation. We measure output perplexity by prompting the model with input lengths
ranging from 0 to 32k tokens. Fier achieves performance comparable to full KV and significantly surpasses Quest.

Baselines. We thoroughly compare the perfor-371

mance of Fier and Quest (Tang et al., 2024) across372

various benchmarks. Note that in all performance373

evaluation, we set the page size of Quest to 16374

and the grouping size of Fier to 32 for a fair375

comparison. We also compare Fier with four376

KV eviction baselines: H2O (Zhang et al., 2023),377

StreamingLLM (Xiao et al., 2023), SnapKV (Li378

et al., 2024) and TOVA (Oren et al., 2024). The379

results in the experiments are either taken from the380

original paper or obtained by running open-source381

code. More implementation details can be found382

in Appendix B.383

4.2 Insight Verification384

More Accurate Retrieval of Important Tokens.385

In Fig. 6, we visualize the positions of Top-64 to-386

kens selected by Quest with different page sizes387

and by Fier-1bit-g32, all mapped back onto the full388

KV cache. We then compute the recall rate, de-389

fined as the overlap between the retrieved tokens390

and those selected using the full attention score.391

The experiment is conducted on LLaMA.392

We observe that Quest with either small or large393

page sizes tends to retain unimportant tokens and394

evict important ones, due to its coarse-grained395

page-level retrieval. In contrast, Fier performs396

token-level retrieval through low-bit quantized at-397

tention computation, resulting in a significantly398

higher recall rate and better alignment with the full399

attention distribution.400

4.3 Performance Evaluation401

4.3.1 PG19 Results402

We begin by evaluating language modeling per-403

plexity on PG19, a benchmark consisting of 100404

books with an average length of 70k tokens. We405

evaluate three different models by feeding them406

texts of varying lengths and compare the results407

against both Full KV and Quest. Note that both408

Fier and Quest are evaluated under the same KV409

Full KV

Quest, page_size=16, Recall rate=44%

Quest, page_size=8, Recall rate=67%

Fier, 1bit w/ g32, Recall rate=91%

Figure 6: Fier’s token-level retrieval preserves more
Top-k tokens compared to Quest’s page-level ap-
proach, resulting in higher recall and better alignment
with full attention.

cache budget of 4096 tokens. As shown in Fig. 5, 410

Fier achieves performance close to that of Full KV 411

and significantly outperforms Quest on both the 412

LLaMA and Mistral models. 413

4.3.2 Longbench Results 414

We evaluate on the LongBench benchmark us- 415

ing LLaMA-3-8B-Instruct across a diverse set 416

of long-context tasks, including single-document 417

QA (NarrativeQA, Qasper, MultiFieldQA), multi- 418

document QA (HotpotQA), summarization (Gov- 419

Report), and few-shot learning (TriviaQA). We 420

also compare Fier with H2O, StreamingLLM, 421

SnapKV, and Quest under varying KV cache bud- 422

get settings. In addition, we perform evaluations 423

using the Mistral-7B and LongChat-7B models to 424

verify the generality of our method across differ- 425

ent model architectures. 426

As shown in Fig. 7, Fier consistently achieves 427

superior performance compared to all baselines 428

across six long-context datasets under various KV 429

cache budgets. Overall, Fier surpasses all base- 430

lines at cache budgets of 512, 1024, and 2048 to- 431

kens, and achieves comparable performance to full 432

KV using only 1k tokens, which is only 11% of the 433

full cache. This suggests that Fier benefits from 434

accurately retrieving critical tokens, enabling effi- 435
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Figure 7: LongBench evaluation on LaMA-3-8B-Instruct. Fier outperforms all baselines across six long-context
datasets and matches full KV performance with just 1k cache budget.

Table 1: LongBench evaluation on LongChat and Mistral. Consistent performance gains of Fier on two models.

LLMs Method Multifield en NarrativeQA GovReport Avg.
512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

LongChat-7B

Full KV 43.2 20.88 30.89 31.66
SLM 21.17 21.29 26.55 34.82 10.69 12.46 17.55 18.94 16.85 21.88 22.77 26.96 20.99
H2O 21.15 25.07 30.28 37.75 10.67 12.96 14.75 19.31 19.73 22.69 26.15 27.55 22.34

SnapKV 36.74 37.93 40.26 42.21 19.21 19.32 19.28 20.68 22.57 23.45 26.3 28.55 28.04
Quest 38.05 41.95 44.03 42.41 16.51 18.76 19.37 20.12 27.54 30.12 31.27 31.21 30.11
Fier 39.05 39.85 42.4 42.54 17.23 17.83 19.96 19.51 30.18 30.89 30.85 31.67 30.16

Mistral-7B

Full KV 52.92 28.49 34.81 38.74
SLM 29.91 31.16 35.75 44.12 24.21 24.79 25.91 28.9 22.09 24.6 27.57 31.19 29.18
H2O 47.39 48.43 49.03 49.95 23.04 27.79 28.6 30.2 24.24 26.15 27.19 30.04 34.34

SnapKV 53.05 52.64 52.92 53.44 25.57 28.09 30.27 29.76 25.83 28.28 30.91 32.74 36.96
Quest 48.07 50.67 53.7 51.76 20.25 25.71 28.31 27.28 31.42 32.57 33.07 33.52 36.36
Fier 53.97 54.67 54.37 53.32 26.75 28.75 29.11 31.11 34.47 34.53 34.65 34.9 39.22

cient use of limited cache resources without com-436

promising model quality. Similar results are ob-437

served on the other two models. As shown in438

Tab. 1, Fier shows consistent improvements on439

both single-document and multi-document tasks.440

4.3.3 Passkey Retrieval441

We further evaluate Fier’s ability to handle long-442

distance dependencies. Specifically, we employ443

the passkey retrieval task (Peng et al., 2023) as444

our benchmark. This task assesses whether the445

model can retrieve a simple passkey from a large446

amount of irrelevant content. Following the setup447

in Tang et al. (2024), we use a context length of448

10k tokens for evaluation with both LongChat-449

7B and a smaller model, LLaMA3-1B. As shown450

in Tab. 2, KV eviction methods perform poorly451

due to their inability to recall discarded tokens,452

while Quest provides noticeable improvements453

over them. Fier, however, achieves even higher re-454

trieval accuracy, performing well under extremely455

low budgets of just 32 and 64 tokens, especially456

Table 2: Passkey retrieval accuracy under 10k context
length. KV eviction methods struggle to recall dis-
carded tokens, while Quest improves retrieval perfor-
mance. Fier achieves the highest accuracy, even with
extremely low budgets (32 and 64), effectively enhanc-
ing smaller models.

Longchat-7B Cache Budget
Method 32 64 128 256 512

H20 0% 1% 1% 1% 3%
StreamingLLM 1% 1% 1% 3% 5%

TOVA 0% 1% 1% 3% 8%
Quest 65% 99% 99% 99% 100%

Fier (ours) 87% 99% 99% 100% 100%

LlaMA3-1B Cache Budget
Method 32 64 128 256 512

H20 0% 1% 0% 1% 2%
StreamingLLM 0% 0% 1% 2% 4%

TOVA 0% 1% 1% 3% 6%
Quest 36% 60% 92% 99% 99%

Fier (ours) 63% 87% 97% 100% 100%

improving the long-context processing capability 457

of smaller models. 458
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1.22× 1.31× 1.52×

Figure 8: Decoding latency of 256 tokens on LLaMA-2-7B (Touvron et al., 2023) under varying prefill context
lengths. Fier achieves increasing speedup over full KV by restricting attention to a small subset of the cache. At
32k context length, it delivers over 1.5× acceleration.

4.4 Efficiency Profiling459

Inference Efficiency. In Fig. 8, we present the460

decoding latency of 256 tokens on LLaMA-2-7B461

under different prefill context lengths. To en-462

sure a fair comparison with Full KV, we include463

both the time spent on computing quantized at-464

tention scores and the time required to recall the465

selected Top-k tokens. We implement the group-466

wise quantization kernel using Triton, and employ467

the Top-k CUDA operator to efficiently perform468

Top-k token recall. Fier’s efficiency gain is mainly469

attributed to the speedup in the self-attention com-470

putation, as it restricts attention to only a small471

subset of the KV cache. This acceleration be-472

comes more pronounced as the context length in-473

creases; for instance, at a context length of 32k474

tokens, Fier achieves over 1.5× decoding speedup.475

4.5 Ablation Study476

Token Granularity vs. Quantized Attention.477

To understand whether Fier’s performance gain478

primarily stems from its fine-grained token-level479

selection (as opposed to page-level) or from the480

use of quantized attention as an importance met-481

ric, we conduct an ablation study on LLaMA-3-482

8B-Instruct, isolating these two factors. Specif-483

ically, we reduce the page size in Quest to ap-484

proximate finer granularity and compare perfor-485

mance. In addition, we apply the averaged quan-486

tized attention score as the page-level importance487

metric under the same page size, and evaluate488

its effect on Quest. As shown in Tab. 3, using489

smaller page sizes in Quest leads to improved per-490

formance. However, it also increases the cache491

load ratio. Additionally, incorporating quantized492

attention for scoring further enhances its effective-493

ness. Notably, Fier can be viewed as quantized494

Table 3: Ablation study. Fier benefits from both token
granularity and quantized attention. Larger group sizes
yield better efficiency but may reduce accuracy.

Method Load R. HotpotQA

512 1024 2048

Quest-p32 0.063 7.16 8.98 11.39
Quest-p16 0.125 11.78 14.03 14.33

Quest-p16-w/quant 0.125 13.54 14.77 15.26
Quest-p8 0.25 15.16 16.66 17.3

Fier-g256 0.07 12.55 14.51 16.73
Fier-g128 0.08 13.96 15.53 17.04
Fier-g32 0.125 15.46 17.0 16.95

attention with a page size of 1, achieving the best 495

overall results. These results suggest that Fier ben- 496

efits from both the token-level granularity and the 497

use of quantized attention as a lightweight yet ef- 498

fective importance estimator. 499

Fier w/ Different Group Sizes. We also inves- 500

tigate how the group size used during key quan- 501

tization affects Fier’s performance. We find that 502

as the group size increases, the cache load ratio 503

decreases, but this comes at the cost of reduced 504

performance. Nevertheless, Fier consistently out- 505

performs Quest under the same cache load ratio. 506

5 Conclusion 507

We present Fier, a fine-grained and efficient KV 508

cache retrieval algorithm that selects important to- 509

kens using 1-bit quantization. By involving all to- 510

kens in the computation, Fier enables token-level 511

criticality estimation, leading to improved recall 512

rate and model performance. Extensive experi- 513

ments across various tasks and model architectures 514

show that Fier consistently outperforms existing 515

methods. Notably, Fier matches full cache per- 516

formance using only 11% of the KV budget and 517

achieves a 1.2×–1.5× decoding speedup. 518
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Limitations519

Model Scale. Due to limited computational re-520

sources, our experiments are restricted to models521

up to 8B parameters. Evaluating Fier on larger522

models (e.g., 13B, 70B) may reveal further in-523

sights into its scalability and effectiveness.524

System Optimization. Our current implementa-525

tion uses Triton to develop low-bit operators for526

quantized attention. While Triton offers flexibil-527

ity and ease of development, it does not match the528

low-level optimization potential of custom CUDA529

kernels, potentially limiting the achievable infer-530

ence speedup.531

Compatibility with GQA. Fier is not yet in-532

tegrated with grouped-query attention (GQA)533

(Ainslie et al., 2023). This is because token prun-534

ing and grouped-query attention are orthogonal in535

principle: GQA reduces the number of KV heads,536

while token pruning reduces the number of tokens.537

Exploring their compatibility remains an impor-538

tant direction for future work.539
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dong Tian, Christopher Ré, Clark Barrett, and 1 oth- 697
ers. 2023. H2o: Heavy-hitter oracle for efficient 698
generative inference of large language models. Ad- 699
vances in Neural Information Processing Systems, 700
36:34661–34710. 701

A Dataset Details 702

We use a subset of LongBench (Bai et al., 2023) 703

for long-context QA evaluation. Tab. 4 shows the 704

statistics and evaluation metrics used in the exper- 705

iments.

Table 4: Dataset Statistics and Evaluation Metrics

Dataset Avg len Metric #data

NarrativeQA 18,409 F1 200
Qasper 3,619 F1 200

MultiFieldQA-en 4,559 F1 150
HotpotQA 9,151 F1 200
GovReport 8,734 Rouge-L 200
TriviaQA 8,209 F1 200

706

B Implementation Details 707

For experiments on LongBench (Bai et al., 2023) 708

and PG19 (Rae et al., 2019), we use three models: 709

LLaMA-3-8B-Instruct (Grattafiori et al., 2024), 710

LongChat-v1.5-7B-32k (Li et al., 2023), and 711

Mistral-7B-Instruct (Jiang et al., 2023), with the 712

maximum input length uniformly set to 32k tokens 713

to ensure a fair comparison. All inference runs 714

are conducted on NVIDIA A6000 GPUs. Dur- 715

ing the self-attention phase, we utilize FlashAtten- 716

tion (Dao, 2023) for acceleration, except for H2O 717
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Ghousul Waqt, Mufti-e-Azam-e-Hind (radi Allahu anhu) was born on Monday, 22nd of Zil Hijjah 1310 AH (18 July 1892) in Bareilly Shareef, India. ... His father, 

Imam-e-Ahle Sunnat, A‘la Hazrat, Imam Ahmed Raza Khan Al Qaderi (radi Allahu anhu) was also born in this city……. Hazrat Makhdoom Shah Abul Hussain 

Ahmadi Noori (radi Allahu anhu) named the child "Abul Barkaat Muhiy’yuddeen Jilani". He was later named "Mustapha Raza Khan".... When Sayyiduna Abul 

Hussain Ahmadi Noori (radi Allahu anhu) visited Bareilly Shareef, he saw the six-month-old child and said, “This child will be of great assistance to the Deen ... 

He is a Wali.”He then placed his blessed finger in the child’s mouth and made him a Mureed, blessing him with I'jaazat and Khilafat at the same time.Not only 

did he receive Khilafat in the Qaderi Silsila (Order), but also in the Chishti, Nakshbandi, Suharwardi, and Madaari Orders.He also received Khilafat from his father, 

A'la Hazrat, in the Qaderi Silsila....He received most of his education from his family, especially from A'la Hazrat, and became proficient in Tafseer, Hadith, Fiqh, 

Sarf, Nahw, Tajweed, etc. ... He wrote his first Fatawa at age 13 on the topic of "Raza’at" (milk relations).

Context

Question: Which orders did Mufti-e-Azam-e-Hind receive Khilafat from?
Ground Truth: “Mufti-e-Azam-e-Hind received Khilafat in the Qaderi, Chishti, 
Nakshbandi, Suharwardi, and Macari Orders.”

“Qaderi, Chishti, Nakshbandi, Suharwardi, and Madaari. He also 
received Khilafat from his father, A'la Hazrat.”

“Sayyiduna Ghousul Azam, Sheikh Abdul Qari Mslihud’ deen and 
Hazrat Muhaddith-e-Azam-e-Hind.

Fier

Quest

\section{Introduction}In recent years, vehicular technology has attracted significant attention from the automotive and telecommunication industries, leading 

to……. V2X supported by the sixth generation (6G) is envisioned to be a key enabler of future connected autonomous vehicles \cite{9779322}. Modernized 

vehicles are augmented with various types of sensors divided into exteroceptive and proprioceptive……Existing methods for GPS spoofing detection include GPS 

signal analysis and message encryption \cite{9845684}, but these require either ground truth or costly infrastructure……In this work, we propose a method to 

jointly detect GPS spoofing and jamming attacks in the V2X network. A coupled generalized dynamic Bayesian network (C-GDBN) is employed to learn the 

interaction between RF signals received by the RSU from multiple vehicles and their corresponding trajectories. ...The main contributions of this paper can be 

summarized as follows: ……\subsection{Joint Prediction and Perception} RSU starts predicting the RF signals it expects to receive using a Modified Markov Jump

Particle Filter (M-MJPF). To leverage cross-signal correlations encoded in C-GDBN, we introduce an Interactive M-MJPF (IM-MJPF). This filter:……

Context

Question: What is the name of the generative interactive model used in the method?
Ground Truth: "The generative interactive model used in the method is called 
the Coupled Generalized Dynamic Bayesian Network (C-GDBN)."

“Coupled Generalized Dynamic Bayesian Network (C-GDBN).”

“IM-MJPF. Modified Markov Jump. Interactive M-MJPF.”

Fier

Quest

Figure 9: Chatbot responses from Fier and Quest. Fier provides more complete and accurate answers in both
examples.

(Zhang et al., 2023), which requires computation718

of historical attention scores and therefore cannot719

benefit from FlashAttention.720

Except for H2O (Zhang et al., 2023) and Quest721

(Tang et al., 2024), which are run using their722

publicly released implementations, all other base-723

lines are run using the unified KV Cache-Factory724

framework (Cai et al., 2024). Experiments on725

observations and decoding latency are conducted726

separately on NVIDIA RTX 4090 GPUs.727

C Comparison of Chatbot Responses728

To better illustrate the practical differences be-729

tween the two retrieval methods, we deploy730

a LLaMA-3-8B-Instruct chatbot using Fier and731

Quest, respectively. Given the same long con-732

text and user question, we present the correspond- 733

ing responses from each chatbot for a qualitative 734

comparison (Fig. 9). In the first example, which 735

asks about the orders in which Mufti-e-Azam-e- 736

Hind received Khilafat, the Fier-enabled chatbot 737

correctly identifies all five orders, while the Quest- 738

enabled chatbot only retrieves a single name, miss- 739

ing key information. A consistent trend is ob- 740

served in the second example, which involves a 741

scholarly article. When asked about the generative 742

model adopted in the paper, the Fier-based chat- 743

bot accurately identifies the overall framework, 744

whereas the Quest-based chatbot focuses narrowly 745

on a sub-module mentioned in a later section. 746
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