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ABSTRACT

When the scale parameters and skewness parameters are unknown, we con-
sider the problem of homogeneous test of location parameters in several
skew-normal populations. First, the conditional test statistic is constructed
and its approximate distribution is proved. Second, we estimate the unknown
parameters based on the methods of moment and maximum likelihood esti-
mation. Then we construct the Bootstrap test statistics and generalize the

ARTICLE HISTORY
Received 31 August 2020
Accepted 7 August 2021

KEYWORDS
Skew-normal population;
Moment estimation;
Maximum likelihood

results of Xu from normal population to skew-normal population. Further, the
Monte-Carlo simulation results indicate that in terms of controlling the Type |
error probability, the Bootstrap test statistic based on the moment estimator
performs better than that based on the maximum likelihood estimator.
Finally, the above approaches are illustrated with two real examples of gross
domestic product and turbine bearing performance.
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1. Introduction

In recent years, the real data of economics, physics and epidemiology often show obvious skewed
and asymmetric characteristics (e.g. Lin, Lee, and Yen 2007; Basso et al. 2010; Fruhwirth-
Schnatter and Pyne 2010). For this, Azzalini (1985) first proposed the skew-normal distribution,
whose density function can be expressed as

& a) =2¢(y; &)@ [oan ™' (y — &), (1)

where ¢ € R denotes the location parameter, #* € R™ denotes the scale parameter, o € R denotes
the skewness parameter, ¢(y; &, n?) is the normal density function with mean ¢ and variance 7,
and @(-) is the standard normal distribution function. Denote Y ~ SN(&, 7% o). When &=0 and
n* =1, Equation (1) is degenerated to the standard skew-normal distribution SN(2). When
o =0, Equation (1) is degenerated to the normal distribution N(¢,#?). In short, the alteration of
the skewness parameter allows for a continuous variation from normality to skew-normality.

In view of the extensive applications of the skew-normal distribution, many scholars have
made indepth studies on it and its properties. Azzalini and Genton (2007), Balakrishnan and
Scarpa (2012) gave statistical properties such as moment generation function, marginal distribu-
tion and conditional distribution, then applied them to discriminant analysis, regression analysis
and graph model analysis. Within a Bayesian framework, Maleki and Wraith (2019) combined
the skew-normal distribution with the factor analysis model to derive the mixture of skew-normal
factor analysis model and its parameter estimation. Based on the functional principal component
analysis, Hu et al. (2020) discussed the maximum likelihood (ML) estimation of the skew-normal
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partial functional linear model. Arellano-Valle et al. (2019) used the forward filtering and back-
ward sampling method to study the Bayesian inference of the skew-normal dynamic linear model,
and applied this methodology to the analysis of the condition factor index of male and female
anchovies off northern Chile. Based on the penalized ML estimation and penalized EM-type algo-
rithm, Jin et al. (2019) proposed the ML estimation of skew-normal mixture model. Said, Ning,
and Tian (2017) derived a detection procedure based on the likelihood ratio test for the change
point problem of skew-normal distribution, and applied it to the stock return problem.

At present, the statistical inference of location parameter in skew-normal distribution has become
one of the hot topics in statistics research. For example, Azzalini, Genton, and Scarpa (2010) thought
that it is of interest to estimate the location parameter and scale parameter, and used the invariance-
based estimating equations to obtain the estimation of them. Wang, Wang, and Wang (2016)
discussed the interval estimation of location parameter when the variation coefficient and skewness
parameter were known. Ye et al. (2020) studied the interval estimation and hypothesis testing of loca-
tion parameter with unknown scale parameter and skewness parameter. Gui and Guo (2018) derived
the explicit estimators of location parameter and scale parameter based on the approximate likelihood
equations. The inferences on the location parameter vector in the multivariate skew-normal distribu-
tion with different conditions on scale parameter and shape parameter were studied by Ma et al.
(2019) and Ma et al. (2020). However, the homogeneous test of location parameters in several popula-
tions is more common in practical applications. For example, the comparison of therapeutic effects of
multiple drugs with the same function, the comparison of life spans of multiple batches of the same
product, and the comparison of detection results of multiple institutions on the same material, and so
on. But most existing researches on homogeneous test of location parameters assume that the popula-
tions follow the normal distribution, inverse Gaussian distribution or exponential distribution (e.g.
Tian 2006; Krishnamoorthy, Lu, and Mathew 2007; Ma and Tian 2009; Shi and Lv 2012; Kharrati-
Kopaei and Eftekhar 2017; Eftekhar, Sadooghi-Alvandi, and Kharrati-Kopaei 2018; Eftekhar and
Kharrati-Kopaei 2019). However, the real data commonly show the characteristic of skew-normal dis-
tribution. In view of that, this paper studies the problem of homogeneous test of location parameters
in several skew-normal populations with unknown scale parameters and skewness parameters.

This article is organized as follows. In Sec. 2, we construct the conditional test statistic for
homogeneous test of location parameters in several skew-normal populations and prove its
approximate distribution. In Sec. 3, the moment estimation and ML estimation of unknown
parameters are given. In Sec. 4, the Bootstrap test statistics are established, which generalize the
results given by Xu (2016) under the normal distribution. Section 5 shows Monte-Carlo simula-
tion results based on two different approaches. In Sec. 6, the proposed approaches are used in
two real examples of regional GDP of China and performance data of high-speed turbine bear-
ings. Section 7 provides a summary of this paper.

2. Conditional test statistic

For convenience, let X denote the approximate distribution, and D(X) denote the variance of
random variable X. In this section, the conditional test statistic for homogeneous test of location
parameters in k skew-normal populations is constructed, and then the relevant properties of
skew-normal distribution are given.

Lemma 1. Suppose X; < N(0,1), j=1,...k and Xy,.... Xy are mutually independent to each
other, then ZJILIXJ-Z < 2.

The proof of Lemma 1 is given in Appendix.

Suppose Yj,..., Yy, is a group of random samples from the skew-normal distribution
SN(¢;, n?,oci),i =1,...,k. The sample mean, the second-order, and third-order central moments
can be expressed as
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n; ~ 1 n; B .
= Z i S = fZ(Yij —Y)h Su=— (G- Y =1k 2)
() i =1
Obviously, the moment generating function of Y; is
212
My, (t) = 2exp (tfi + )@(tnlé ), i=1,..,k (3)

From (3), we can obtain
E(Y,) = My, (t)],—o = & + bn;ds,
E(Y7) = MY, (8)] =g = & +2bCmi0i + 1},
E(Y7) = My (0)lio = & +3bEmi0; + 38077 + 3b00; — bn}53,

where J; = o; /(1 + ocf)l/z, and b= (2/7r)1/2, i=1,..,k. For a given (;,9;), the estimator of ¢
and its variance can be expressed as

2 252
5 5 2 n; (1 —b%9; ;
Sy = i b D, o) =000 ik @)

n;

Fori=1,..,k, let & = &+ A&, where AE; denotes the difference between the i-th population
location parameter ¢; and the common location parameter . Then the homogeneous test of loca-
tion parameters is equal to

Hy: Aé, = A& = .. = A5 =0 vs Hy : 3 i, A& #0. (5)

When the null hypothesis Hy is true and (5;, ;) is known, using the idea of Graybill-Deal esti-
mation (Graybill and Deal 1959), the estimator of the common location parameter & is

koo 1z k
2int E év)>él|<’7i>ai> 2int (- bZaz & .00 S

é: Zk 1 = Zk n; - E wiéi'(ni)(ji)) (6)
i=1 D(éi‘(y,l,(ii)) i=1 ’7[2(1*5’25%) =l
112(1—;2152) .
where w; = — i i=1,..,k

P
i=1 ;,12(17520‘1_2)

Then, define a statistic

k
Zi:ﬁ(gu Z il ) i=1,..k (7)

Under Hy in (5), the expectation and variance of Z; are
k
n; ~ ~
E(Z;)) = —— | E(¢; - wiE(, s =0,
&) = = ( (Cili,a) ; ECily, »,>)>

n; 2 ~ k ”
P = <'7?(1 — bza?)) D (1= @)Cily,0) + D_@il,a

77

n; 2l (=B (1 8)
(7( )) (1— ) + > w;

2
'712 1-— b25i i i ! n;

i 2 (1-0%57) 1 i=1,..,k
Qm-w&ﬂ TS| bk

=1 2(1-125))
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By the central limit theorem, we have

.
Zi— B(Z) _ Eiloy — i @i€il 0
D(Zl) n; (1-6%5;) (1 _ wi)

nj

, i=1,.,k

‘ . . Zi—E(Z) - e
When n; — oo, the approximate distribution of —\/m is standard normal distribution N(0, 1),

i=1,...,k. Under Hy in (5), define the conditional test statistic as

2
k ~
T = Zk: Eilinoy = D @iCilis
B85 (g

i) 8)

fi (5= bnd) = 31 (3~ bm))”

1—!1262 1 —w;

i=1

i=1

Due to Lemma 1, we get T ~ z2(k).
Denote

Y = (Yl - b”hél; Yz - b17252) vy Yk — b']kak)/,
A_m%<%a_wx)@“‘”¥> @u—wgv.

3 eeey

n ’ ny 03
Obviously, the conditional test statistic T can be expressed as
T = (A7) B A(A12Y), )
where A =1, — (A2 11'A"Y?)/(’A™'1) is an idempotent matrix with rank k—1, B=

I —A7'/(I’A7"1), and I is an identity matrix of order k. By the properties of identity matrix
and orthogonal decomposition, we have A = P(I" ! g)P’l, where P is an orthogonal matrix.
Accordingly, we obtain

ABIA:P(I"OI 8>P131P(I"01 8>P1.

Let Z = <Ik61 g)P’lB’1P<Ik61 g). Based on the orthogonal decomposition, we have Z =

QAQ ', where A=diag (4,...,4), and Q is the eigenvector matrix corresponding to A. Thus,
Equation (9) can be expressed as

T = (A127) PQAQ~ P (A~1/27). (10)

Theorem 1. Let t={A"'(, where { = (&,...&)" Ifoy=0=...=04 =0, then T ~ Zle
4ix2(1,7), where x?(1,7) represents the non-central y* distribution with degree of freedom 1 and non-
centrality parameter 7, i = 1,....k. And y3(1,7), ..., x3(1, ©) are mutually independent to each other.

The proof of Theorem 1 is given in Appendix.

Remark 1. If oy =a, =..=0o =0, then T in Equation (8) can be expressed as T =
_ k = \2
Yi-) . iYi . ; .

ZL;—;(ZI;;;?), where w;; = (%)/(Zf:lg—;), i=1,...k. By Theorem 1, T can be used

as the conditional test statistic of homogeneous test of means in several normal populations.
Hence, T in Equation (8) is an extension of the result given by Xu (2016).



COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATION® 5

3. Parameter estimation

For i =1,..,k, it is well-known that (57,d;) is often unknown in practical issues. Then we con-
sider the parameter estimation problem of (17, 6;).

Theorem 2. If Y; ~ SN(&;, 07, o), then the moment estimators of (&, n?, o) satisfy

E=Yi— S 2=+ @8 4 =5,/(1-8))"% i=1,...k (11)

. 1/3
where ¢ = [2/(4 — 7)]'/* and §; = h(stW'

The proof of Theorem 2 is given in Appendix.

Pewsey (2000) proved that the results of using numerical techniques to maximize the log-likeli-
hood for direct parameters (¢;,n?,o;) may be highly misleading as for this case no unique solu-
tion exists. For this, we derive the ML estimators of the unknown parameters based on the
method of centered parametrization by Azzalini (1985), Azzalini and Capitanio (2014) and
Pewsey (2000). Denote

Yl - éi
n;

W; — E(W;)

Wi ==
D(W;)

~ SN(a), Yoi=p;+ 0i< ) ~ SNe (4> 77, 71), (12)

where SN¢(u;, 6%,7;) represents the skew-normal distribution with mean y; € R, variance ¢7 €
R*, and skewness coefficient y;, i = 1,...,k. Pewsey (2006) introduced the following relationship
between the direct parameter (&;, %7, 0;) and the centered one (u;, 6%,7;)

/3
&= y,—cylm o, 0 =0a:(1 +czy12/3, o i , i=1,...,k (13)

\/b2—|—c2 B — 1) 12/3

Theorem 3. Suppose Y; ~ SN(&;,n?, o). Let
Y; — & W; — E(W;
szié and YCi:,ui+6i # 5
i D(W;)
then Yo=Y, i= 1,... k.
The proof of Theorem 3 is given in Appendix.

Remark 2. If |o] — oo, then |0 — 1. By (A5) in Appendix, we have y; € (—0.99527,
0.99527), i=1,... k.

Now consider the ML estimators of the centered parameter (u;,0?,7;), i = 1,...,k. Denote the
observed value of (Y, Scai» Scsi) by (V¢ Scai» Scai). Similarly, let Y = (Ycij — Y¢i)/+/3c2i» where
Ysits .. Ysin, is @ group of samples from Y ~ SNc(pg,0%,7;) with uy = (1; — ¥;)/+/Sci and
05 = 0i/\/Sczi» i =1,...,k, j=1,...,n;. The density function of Yj; is obtained as follows

2 U 1
f(ysi;,usv"fi’ Vi) = ¢ ( Sla Sy C“/l/3>
si

/ 2/3
O scz,(l +c2 2/3) 1"‘52%‘/

« (D si ,uﬂ + C'yil/3
O-Sl

13 (14)
cy;

oo o

By (14), we derive the logarithmic likelihood function (without constant terms)
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i
Wity o Psns s 055 7;) = —milog o — —log (1 + 62“/12/3)

< ij — Msi 1
(e
i=1

1/2
si 1+CZ 2/3) (15)

n, (si— l‘sx)f/, 2, 2/3
’ erC ,
—l—Zlog(D a2 = 1.k
( +c 2/3) [b2+c2 (b2 — 1)}

Therefore, let (fi}, ,7) denote the ML estimate of (ug, 02,7;) in (15) with default starting
value given by the moment estimates of (i, 6%, 7;). Namely

bo; Y22 — 1) i
(1- 05 )3/2’

Further, the ML estimates of (y;, 07) are available, namely

'u CSC211/251C/331’ As =1 +Csczlszc/33,> “A/i - 1 ,k

~x _ 1/2 ~ %2 ~ %2 .
Hi =Y¢i+ SC/ZIM:I’ G =sci0g, i=1L..k
By (13), we obtain the ML estimates of the direct parameter (&;, 77, 0;) as follows
/3
¥ ~ ~ % % ~ % Vi
& =i _CV11/3°':F> =671 +627i2/3)’ o = L e (16)
NI

Then the ML estimate of J; is 5:6 =a;/(1+ &:‘2)1/2, i=1,....,k. Accordingly, we have the follow-
ing results.

Theorem 4. Suppose (fi,;,32,7;) be the ML estimator corresponding to (i, 6;2,51;‘), then we get
the ML estimators of the direct parameter (i, 1?7, ;)

2~ 2/ ~ 653/3
a; , (17)

, [ \/bZ i Cz b2 — ) ,-2/3

where (fi;,57) denotes the ML estimator corresponding to (i, 6;‘ ). Further, the ML estimator of
Siis o, =a;/(1+32)% i=1,..,k

Ei=fy— 5, =521+

4. Bootstrap test

For hypothesis testing problem (5), we can establish the Bootstrap test statistics. First, by replac-
ing (17, ;) with its moment estimators and ML estimators in (8), we construct the following test
statistics

_ . B NN 2
_— Ek: n; ((Yi - bﬁiéi) - Zi‘(:ld)i(Yi - bﬁi51>) (18)
LS -w) 1= b; ’
~ B 2
n; ((Yi - bﬁiéi) - Zi'(:l(bi(yl - b”iéi))
=) > - , (19)
=173 (1 = b20;) L= o
where @; = M, and the definition of @; is similar to @;.

Do
=132(1-4257)
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Under Hy in (5), denote Ypyj ~ SN(é*,f]i*z,&i*), i=1,..,k j=1,..,n; where

* 3 ¥ Ak ;" (1=b%;) 2 = Ak QK
=il 0 =G gy Sy
- Fara-re))

The sample mean, the second-order and third-order central moments can be expressed as
(Y sui> Spmai» Spmsi)» i = 1,..., k. By Theorem 2, we obtain the moment estimators of (177, d;) as

1/3
Spazi

ﬁlngi = Spmzi + CZS%\?B,-, Spmi = =
b \V Seamzi + Sghs;

Similarly, suppose Ypy;j ~ SN(E*,f/,-*Z,&;‘),i: 1,...,k, j=1,...,n;, where the definition of E* is

Li=1,..k 1)

analogous to E* in (20), and its sample mean is Yp;;. By theorem 4, (ﬁZBLi,SBLi) denotes the ML
estimator of (#%,9;), i =1,...,k. Furthermore, similar to (18) and (19), construct the Bootstrap
test statistics

. R - R 2
T Zk: n (o = bitgaadans) = S5 sdomas (Vo = bitauadons ) (22)
B1 = ~2 — WD ppi ’
i= 1’7§Mz(1 b2d ) b O
2
k (Vs = i) — 2 (Vs — b
. —Z n; BLi — YN pp;OBLi i=1@BLi\ Y BLi NBLiOBLi (23)
B = — <2 1— dpL; '

i=1 (1 — 020y,

"

2 732
A s (1-b*d gpgi)
where Gpy; = z:,f””’if”“
i=15%2 2
2 1t

"BMx)

, and the definition of @gp;; is similar to @gys;. Then, based on Tp;

and Tp,, we have
pi= 2min{P(TBi > t,‘),P(TBi < ti)}, i=1,2, (24)
where f; and f, denote the observed values of T; and T,, respectively. The null hypothesis H, in

(5) is rejected whenever the above p-values are less than the nominal significance level of f,
which means that there are at least two location parameters are unequal.

k .
Remark 3. If oy =o,=---=o0o =0, then Ty can be expressed as Tp =) ; 1,1:4
B C Mi
(Yemi— ) ., OaiY Bui) ~ k .
Zli;%lB’\/I' , where &gy = (ngw)/(Zl ln:;)’ i=1,..,k. Thus, Ts can be used as
Mi ,

the Bootstrap test statistic for homogeneous test of means in several normal populations, namely
the result of Xu (2016).

5. Monte-Carlo simulation

In this section, the Monte-Carlo simulation is adopted to study numerically the Type I error
probability and power of the above test approaches. For hypothesis testing problem (5), we only
provide the steps of the Bootstrap approach based on the moment estimator in k skew-normal
populations as follows.

Step 1: For a given (n;, &;, nf,oci), generate a group of random samples Yj; ~ SN(éi,nf,oci), and
(Y4, Sai, S3i) is computed by (2), i=1,...k j=1,..,n;.

Step 2: Using (20) and (A4) in Appendix, (E*,f i112,87), the feasible estimate of (&, &, 02, ;)
is computed, i = 1,...,k. Further, T} is computed by (18).
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Table 1. Simulation results on Type | error probability as k=2 at the nominal significance level of 5%.
(001,00)=(3, 4)
N1 N2 N3 N4 N5
p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
n 0.0416 0.0644 0.0364 0.0668 0.0300 0.0588 0.0240 0.0396 0.0328 0.0248
11% 0.0416 0.0644 0.0364 0.0668 0.0300 0.0588 0.0240 0.0396 0.0328 0.0248
r[% 0.0476 0.0888 0.0472 0.0748 0.0476 0.0672 0.0328 0.0404 0.0340 0.0228
11‘2, 0.0532 0.0892 0.0452 0.0748 0.0476 0.0652 0.0336 0.0436 0.0304 0.0240
11§ 0.0532 0.0892 0.0452 0.0748 0.0476 0.0652 0.0336 0.0436 0.0304 0.0240
(0t1,02)=(6, 7)
N1 N2 N3 N4 N5
p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
n 0.0356 0.0420 0.0304 0.0412 0.0304 0.0412 0.0304 0.0412 0.0304 0.0412
" 0.0356 0.0420 0.0304 0.0412 0.0304 0.0412 0.0304 0.0412 0.0304 0.0412
11% 0.0336 0.0644 0.0304 0.0520 0.0304 0.0520 0.0304 0.0520 0.0304 0.0520
r[ﬁ 0.0356 0.0640 0.0340 0.0420 0.0340 0.0420 0.0340 0.0420 0.0340 0.0420
11§ 0.0356 0.0640 0.0340 0.0420 0.0340 0.0420 0.0340 0.0420 0.0340 0.0420

Note: 13 = (0.22,0.6%), 3 = (0.3%,0.92), 13 = (0.5%,0.7%), 2 = (0.9%,1.22), 52 = (1.52,22); N1 = (30,40),N2 = (40,60),N3 =
(50,80), N4 = (80, 120), N5 = (180, 240).

Table 2. Simulation results on Type | error probability as k = 3 at the nominal significance level of 5%.
(01, 02, 03)=(2-4)
N1 N2 N3 N4 N5
p1 p2 p1 p2 p1 p2 p1 p2 p p2
n? 0.0372 0.0784 0.0308 0.0632 0.0312 0.0548 0.0260 0.0404 0.0252 0.0180
n 0.0320 0.0756 0.0324 0.0648 0.0408 0.0592 0.0392 0.0420 0.0280 0.0184
11% 0.0388 0.0748 0.0408 0.0652 0.0504 0.0636 0.0420 0.0472 0.0264 0.0364
r]ﬁ 0.0404 0.0704 0.0432 0.0660 0.0500 0.0624 0.0396 0.0464 0.0272 0.0400
11% 0.0404 0.0704 0.0432 0.0660 0.0500 0.0624 0.0396 0.0464 0.0272 0.0400
(o1, 01z, 013)=(5, 6)
N1 N2 N3 N4 N5

p1 p2 p1 p2 p1 p2 p1 p2 p1 p2

n 0.0376 0.0612 0.0304 0.0312 0.0268 0.0236 0.0172 0.0120 0.0208 0.0102
" 0.0380 0.0576 0.0240 0.0352 0.0228 0.0224 0.0148 0.0128 0.0260 0.0104
" 0.0344 0.0544 0.0264 0.0364 0.0268 0.0248 0.0232 0.0328 0.0252 0.0500
n 0.0352 0.0588 0.0292 0.0344 0.0244 0.0260 0.0244 0.0340 0.0252 0.0568
n? 0.0352 0.0588 0.0292 0.0344 0.0244 0.0260 0.0244 0.0340 0.0252 0.0568
Note: n? = (0.22,0.42,0.6%), 3 = (0.3%,0.5%,0.72), 13 = (0.5%,0.7%,0.9%), i3 = (0.9%,1.2%,1.5%), 2 = (1.52,2%,2.5%);

N1 = (30,40, 40), N2 = (60, 60,80), N3 = (80, 100, 120), N4 = (120, 150,150), N5 = (180, 240, 300).

Step 3: Under H,, generate the Bootstrap samples YBMijNSN(%*,ﬁ;‘Z,&f), and com-

pute (?BMh SZBMi) SSBMi) fOf i= 1, veesy k, ] = 1, .o Ny

Step 4: From (A4), (fi5h05y)> the moment estimate of (7?,¢) from Bootstrap samples is
computed, i =1,...,k. Then Tj, is obtained by (22).

Step 5: Repeat Steps 3-4 n; times and compute p; by (24). If p; < 0.05, then Q = 1; otherwise,
Q=0.

Step 6: Repeat Steps 1-5 n, times and we get Qy,...,Q,,. Then the Type I error probability is
,%22721 Q;. Based on the above steps, the power of hypothesis testing problem (5) under H; can

be obtained similarly.
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Table 3. Simulation results on Type | error probability as k=5 at the nominal significance level of 5%.

(0q,012,013,014,015)=(3~6)

N1 N2 N3 N4 N5
p1 p2 p1 p2 pl p2 p1 p2 p1 p2
nf 0.0408 0.0444 0.0364 0.0544 0.0224 0.0464 0.0220 0.0548 0.0220 0.0600
'1% 0.0384 0.0456 0.0320 0.0468 0.0248 0.0408 0.0268 0.0360 0.0240 0.0356
r@ 0.0392 0.0516 0.0328 0.0500 0.0244 0.0444 0.0312 0.0332 0.0280 0.0308
113, 0.0400 0.0560 0.0368 0.0548 0.0252 0.0464 0.0332 0.0308 0.0308 0.0324
n§ 0.0424 0.0560 0.0364 0.0588 0.0276 0.0536 0.0324 0.0392 0.0284 0.0364
(004,0t,03,04,0t5) =(5-8)
N1 N2 N3 N4 N5
p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
'1% 0.0396 0.0440 0.0332 0.0560 0.0204 0.0476 0.0220 0.0560 0.0220 0.0616
17% 0.0380 0.0436 0.0308 0.0468 0.0220 0.0300 0.0252 0.0296 0.0220 0.0284
r@ 0.0372 0.0492 0.0300 0.0420 0.0232 0.0316 0.0288 0.0284 0.0252 0.0236
nﬁ 0.0428 0.0516 0.0352 0.0476 0.0232 0.0336 0.0300 0.0256 0.0248 0.0268
n§ 0.0448 0.0540 0.0348 0.0552 0.0220 0.0396 0.0316 0.0340 0.0284 0.0328

Note: 12 = (0.12,0.3%,0.5%,0.72,0.9%), n = (0.2%,0.4%,0.62,0.8%,12), 2 = (0.32,0.5%,0.7,0.9%,0.9%), 2 = (0.4%,0.6%,0.8, 1%,
1.2%), 2 = (0.5%,0.72,0.9%,1.12,1.3%); N1 = (30,30, 40,40,50), N2 = (40,50, 60, 60, 70), N3 = (60, 70, 80, 80, 90), N4 = (80,
90,90, 100, 120), N5 = (90,100, 100, 120, 150).

Table 4. Simulated powers of hypothesis testing problem (5) as k =2 and &, = 2.
(2, 173)=(0.3,0.8)

(061, 062):(3, 4) (flh flz):(6, 7)
N1 N2 N3 N1 N2 N3
& p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
25 01928 0.1072 03592 00780 0.6292 0.0620 02388 0.0704 05096 00624 08096  0.0536
26 03464 0.1220 05532 00992 07696 0.0820 04428 0.0884 07076 00720 09208  0.1256
27 05044 0.1520 07356 0.1340 09128 0.1812 06328 0.1168 0.8748 0.1396 09892  0.2944
28 06880 02032 08844 02224 09832 03656 0.8124 0.1932 09684 02768 09992  0.5236
29 08268 02792 09624 03624 09968 05768 09184 02948 09956 04560 0.9996  0.7308
(n3,13)=(0.5,0.7)
(061, 12):(3, 4) (Olh az):(ﬁ, 7)
N1 N2 N3 N1 N2 N3
& p1 p2 p1 p2 pl p2 p1 p2 p1 p2 p1 p2
25 03344 01292 05364 01048 07684 0.1480 04344 0.0972 06976 00964 07684  0.1480
26 05092 0.1700 07196 0.1784 09144 03092 06560 0.1540 0.8760 02348 09144 03092
27 06808 02440 08632 03228 09776 05460 0.8216 0.2656 09692 04360 09776  0.5460
28 08092 03524 09408 05052 0.9908 07552 09236 04148 09928 06480 0.9908  0.7552
29 08980 04944 09732 06792 09972 0.889 09732 05812 09980 0.8100 09972  0.889
(2, 72)=(0.6,0.6)
(01, 02)=(3, 4) (o1, 002)=(6, 7)
N1 N2 N3 N1 N2 N3
& p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
25 03944 0.1168 05640 02092 0.8384 03516 05500 0.1148 07492 02908 0.9548  0.5532
26 06416 0.1940 07952 03112 09572 0.4800 0.7892 02180 09260 04232 09972  0.7028
27 07984 03156 0.8944 04596 09724 06820 09148 03796 09756 06048 09992  0.8660
28 08612 04968 09248 06428 09764 0.8736 09488 0.6016 09880 07884 09996  0.9628
29 08860 0.6548 09424 08200 09876 09604 09612 07792 09924 09212 1.0000  0.9952

Note: N1 = (20,30), N2 = (30,40), N3 = (50, 60).

In simulation, the parameters and sample sizes are set as follows. First, Let the nominal signifi-
cance level be 5%, the number of inner loops #; and number of outer loops #, both be 2500, and
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Table 5. Simulated powers of hypothesis testing problem (5) as k =3 and & = &, = 2.
(11%, 11%, 11§):(0.1 ,0.4,0.7)
(o7, 0, 03)=(2-4) (o7, 01, 3)=(5, 6)
N1 N2 N3 N1 N2 N3
& p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
26 03616 0.1112 0.6604  0.1152 0.8800 0.1960  0.5028 0.0780 0.8344 0.1636 09736  0.2516
2.7 05408 0.1556  0.8512 0.2416 0.9628 03920 0.6752 0.1296 09312 0.3376  0.9904  0.4692
28 0.6956 0.2320 09524 0.3880 0.9924 05576 0.7996 0.2376 09776  0.5012 0.9980 0.6976
29 08272 03260 09856 0.5092 0.9992 0.6924 0.8924 03708 09936 0.6388 0.9996  0.8356
30 09124 04356 09968 0.6140 1.0000 0.7860 0.9484 0.4960 0.9976  0.7368 1.0000 0.9144
(2, 13, 12)=(0.4,0.8,0.8)
(o7, 01, 03)=(2-4) (o1, 012, 03)=(5, 6)
N1 N2 N3 N1 N2 N3
& p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
26  0.1500 0.0812 0.4984 0.0516 0.8056  0.0584 0.2012 0.0548 0.7524 0.0540 0.9572 0.1048
27 02504 0.0928 07112 0.0640 0.9140 0.1132 03668 0.0596 0.8860 0.1180 0.9780  0.2100
28 04052 0.1112 0.8636  0.1408 09588 0.2580 0.5628 0.0924  0.9472 0.2480 0.9908  0.3796
29 05556 0.1436 09416 0.2644 0.9872 04256  0.7332 0.1356 09784 03992 0.9960 0.5708
3.0 07132 0.1972 09720 0.4140 09960 0.5896 0.8548 0.2116  0.9892 0.5628 0.9988  0.7260
(72,113, 73)=(0.6,0.7,0.8)
(o7, 0, 03)=(2-4) (o1, 012, 03)=(5, 6)
N1 N2 N3 N1 N2 N3
& p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
26 01544 0.0768 0.4596 0.0540 0.7412 0.0912 0.2504 0.0596 07228 0.0964 0.9384  0.2436
27 02884 0.0924 0.6552 0.0788 0.8704 0.1480 04280 0.0676 0.8580 0.1832 0.9704 0.3856
28 04284 0.1108 0.8112 0.1264 0.9420 02308 0.6136 0.0984 09316 0.2880 0.9892  0.5572

29 05632 0.1484 0.8952 0.2156 09752 03696 07552 0.1508 0.9712 0.4200 0.9960  0.6892
30 06884 02028 09416 03316 0.9904 05068 0.8520 0.2292 09904 0.5536 0.9988  0.7852

Note: N1 = (30,40,40), N2 = (60, 60,80), N3 = (80, 100, 120).

¢ =2. Second, for two populations, we set 77 = (0.2%,0.6%),175 = (0.3%,0.9%),#5 = (0.5%,0.7%),
n = (0.9%1.2%), n2 = (1.5%2%), (u1,0) = (3,4),(6,7), and (n1,n,) = (30,40), (40,60), (50, 80),
(80,120), (180,240).

For three populations, we set n? = (0.2%,0.4%,0.6%),173 = (0.3%,0.5%,0.7%),n3 = (0.5%,0.72,
0.9%), 13 = (0.9%, 1.2%,1.5%), 572 = (1.5%,2%,2.5%), (o1, 00,03) = (2,3,4),(5,5,6), and (ny,ny,n3) =
(30,40, 40), (60, 60, 80), (80, 100, 120), (120, 150, 150), (180, 240, 300).

For five populations, we set 77 = (0.1%,0.3%0.5%,0.7%,0.9%), 7 = (0.2%,0.4%,0.6%,0.8%,1%),113 =
(0.3%,0.5%, 0.72,0.9%,0.9%), n; = (0.4%,0.6%,0.8%,1%,1.2%),n% = (0.5%,0.7%,0.9%,1.1%,1.3%), (o, o,
o304 05) = (3,4,4,5, 6),(5,5,6,7,8), and (n1,ny n3, n4, n5) = (30,30,40,40,50), (40,50, 60,
60,70), (60,70, 80,80,90), (80,90,90, 100,120), (90,100,100, 120, 150).

For hypothesis testing problem (5), Tables 1-3 present the simulated Type I error probabilities
of the proposed two approaches p; and p,. No matter in two populations, three populations or
five populations, the actual levels of p; are all strictly less than the nominal significance level of
5%, which can effectively control the Type I error probabilities under certain parameter settings.
The performance of p, is liberal relatively when sample sizes and skewness parameters are small.
With the increase of skewness parameters, p, appears conservative individually. However, in the
case of five populations, the actual levels of p, are controlled around the nominal significance
level of 5%, and perform well generally.

Tables 4-6 present the simulated powers of the proposed approaches. As &; departs from the
null hypothesis, the powers of the proposed approaches are significantly improved no matter in
two populations, three populations or five populations. However, the power of the Bootstrap test
statistic based on the moment estimator performs significantly better than that based on the ML
estimator. In terms of the Bootstrap test statistic based on the ML estimator, the power rise more
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Table 6. Simulated powers of hypothesis testing problem (5) as k =5 and & =&, =& =&, = 2.
(2,2, n2, n2, n2)=(0.1,0.3,0.5,0.7,0.9)
(o1, 01, 03, 04, 015)=(3-6) (o0, 02, 03, 014, 05)=(5-8)
N1 N2 N3 N1 N2 N3
&opl p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
31 04940 0.0996 07552 0.1296 0.8148 0.1840 0.5544 0.0932 0.8200 0.1572  0.8628  0.2368
32 06448 0.1344 08500 0.1796 0.8848 0.2464 0.6952 0.1288 0.8948 0.2180 0.9232  0.3192
33 07700 0.1736 09180 0.2420 0.9444 03160 0.8080 0.1676  0.9452 0.2928  0.9612 0.4020
34 08620 0.2152 09580 03144 09768 03936 0.8916 0.2160 09740 0.3692 0.9860  0.4808
35 09240 0.2688 09824 0.3864 0.9896 0.4680  0.9412 0.2712 09900 0.4388 0.9936  0.5476
(2, 3, 3, 113, 12)=(0.2,0.4,0.6,0.8,1)
(o1, 002, 013, g, 0t5)=(3-6) (01, 01, 03, 0la, 0t5)=(5-8)
N1 N2 N3 N1 N2 N3
& pl p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
31 0.2096  0.0652 0.4368  0.0592 05716  0.0568 0.2348 0.0552 0.5476  0.0612  0.6812 0.0652
32 03064 0.0716 05692 0.0760 0.6808 0.0784 03416 0.0636 0.6712 0.0824 0.7696  0.0972
33 04172  0.0852 0.6976  0.1004 0.7704 0.1252 04780 0.0768 0.7828 0.1112  0.8364  0.1572
34 05372 0.1040 0.7952 0.1376 0.8492 0.1752 05960 0.0972 0.8480 0.1500 0.8924  0.2232
35 06508 0.1332 08636 0.1736 09012 0.2288 0.7112 0.1312  0.9072 0.2012  0.9332 0.2892
(3,3, n3, n3, n2)=(0.3,0.5,0.7,0.9,0.9)
(o1, 002, 013, 04, 0t5)=(3-6) (01, 01z, 03, 0la, 0t5)=(5-8)
N1 N2 N3 N1 N2 N3
& pl p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
3.1 05048 0.0944 07792 0.1128 0.8408 0.1328 0.5628 0.0876 ~ 0.8348 0.1204  0.8892  0.1648
32 0639  0.1252 0.8636 0.1640 09068 0.2016  0.7020 0.1212 09108 0.1880  0.9420  0.2520
33 07636 0.1704 09260 0.2276 0.9568 0.2788 0.8188 0.1680 0.9508 0.2616  0.9732 03376

34 08612 02192 09652 03132 09820 03576 0.8940 0.2248 0.9800 0.3444 0.9912  0.4408
35 09224 02732 09860 03872 0.9940 04572 09464 02772 09912 04380 0.9964 05220

Note: N1 = (30,30, 40,40, 50), N2 = (40, 50, 60, 60, 70), N3 = (60, 70, 80, 80, 90).

slowly as &; departs from the null hypothesis when scale parameters are small. With the increase
of scale parameters and sample sizes, the power is improved significantly.

Tables 7 and 8 respectively present the simulated powers under the condition of &; # &, #
.-+ # & in three and five populations. The simulated results from Tables 7 and 8 are, respect-
ively, similar to those of Tables 5 and 6. However, the powers of the proposed approach based
on the ML estimator decrease slightly as &; departs from the null hypothesis with k=>5.

Remark 4. To compare the proposed approaches with the likelihood ratio test, we do the simula-
tions of Type I error probability and power of likelihood ratio test. The simulation results show
that the likelihood ratio test performs poorly in the Type I error probability and power, so they
are not given in this section.

6. lllustrative examples

To verify the reasonableness and effectiveness of the proposed approaches in this section, two
real examples of regional GDP of China and performance data of high-speed turbine bearings
are presented.

Example 1. The above approaches are applied to the GDP data of Tianjin and Chongqing
Municipalities from 1996 to 2018. As in Figures 1 and 2, the distributions of the GDPs of Tianjin and
Chongging don’t follow the normal distribution but show asymmetric and right-skewed characteristics.
To confirm the conclusion, we first conduct the normality test for these data. It turns out that the p-
values of Shapiro-Wilk test and Kolmogorov—-Smirnov test for Tianjin’s GDP are 0.001 and 0.016, and
for Chongging’s GDP are 0.001 and 0.005. Hence, the GDPs of Tianjin and Chongging are not
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Table 7. Simulated powers of hypothesis testing problem (5) as k = 3, &, = 1and&, = 1.1.
(11%, 11%, 11§):(0.4,0.4,0.8)
(o7, 0, 03)=(2-4) (o7, 01, 3)=(5, 6)
N1 N2 N3 N1 N2 N3
& p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
1.6 0.1616  0.0852 0.4948 0.0776  0.6868 0.0876  0.3240 0.0740  0.8632 0.1040  0.9692 0.2440
1.7 02760 0.1028 0.7000 0.1056 0.8680 0.1308 0.5116 ~ 0.0840 0.9472 0.1884 09932 0.3816
1.8 04252 0.1224 08432 0.1484 09612 0.2140 0.6852 0.1192 09780 0.3124 0.9996  0.5396
1.9 05832 01664 09160 0.2320 09856 0.3096 0.8092 0.1764 0.9948 04648 09996  0.6744
20 07148 0.2136 0.9600 0.3400 0.9952 04276 0.8944 02496 0.9988 0.5880 1.0000 0.7860
(2, 13, 12)=(0.5,0.7,0.8)
(o7, 01, 03)=(2-4) (o1, 012, 03)=(5, 6)
N1 N2 N3 N1 N2 N3
& p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
1.6 0.1444 0.0840 04768 0.0548 0.7516 0.0620 0.2164 0.0560  0.7472 0.0524  0.9452 0.1352
1.7 02460 0.0920 0.6804 0.0660 0.8576 0.1072 0.3696 0.0692 0.8712 0.1208 09732  0.2684
1.8 03644 0.1108 0819 0.1144 09264 0.2104 0.5456 0.1000 0.9388 0.2296  0.9932 0.4448
1.9 04992 0.1412 0.8980 0.2104 09732 03532 0.6980 0.1456 09740 03932 0.9984  0.5952
20 06304 0.1956 09400 0.3448 0.9876  0.5040 0.8096 0.2212  0.9920 0.5412 1.0000 0.7420
(72,173, 73)=(0.6,0.8,0.8)
(o7, 0, 03)=(2-4) (o1, 012, 03)=(5, 6)
N1 N2 N3 N1 N2 N3
& p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
1.6 01396 0.0744 04476 0.0580 0.7252 0.0812 02208 0.0548 0.7288 0.0848 0.9384 0.2116
1.7 0.2428 0.0904 0.6484 0.0732 0.8420 0.1224 03720 0.0716 0.8664 0.1584 0.9720  0.3552
1.8 03588 0.1076 0.7996 0.1204 09144 0.2044 0.5396 0.1092 0.9408 0.2712 0.9928  0.5132

19 04860 0.1424 0.8864 0.2044 09676 03312 0.6880 0.1596 09744 04160 09984  0.6524
20 06100 0.1932 09276 03180 0.9824 04836 08012 0.2384 09920 0.5460 1.0000 0.7688

Note: N1 = (30,40,40), N2 = (60, 60,80), N3 = (80, 100, 120).

normally distributed at the nominal significance level of 5%. In addition, we should prove whether the
distributions of the GDPs of Tianjin and Chongqing are skew-normal by the Chi-square goodness-of-
fit test. By calculation, the fitted value of Tianjin is y? = 5.9149 < #3(0.95) = 5.99 with p-value
0.0520, and the one of Chongging is x> = 4.2243 < x3(0.95) = 5.99 with p-value 0.1210. Therefore,
the GDPs of Tianjin and Chongging from 1996 to 2018 follow the skew-normal distributions
SN(&,n?,0¢) and SN(&, %, o) respectively at the nominal significance level of 5%.

Consider the hypothesis testing problem

Hy:&=¢ vs H: & # &

The p-values of the Bootstrap test statistics based on the moment estimator and ML estimator are
0.5666 and 0.6694, respectively. Thus, the null hypothesis H, cannot be rejected at the nominal
significance level of 5%, which means that there is no significant difference between the location
parameters of the GDPs of Tianjin and Chongging from 1996 to 2018.

Example 2. Consider comparing the performance of high-speed turbine bearings made of two
different compounds. In this study, 10 bearings of each type were tested, and the failure times of
each bearing were recorded in units of millions of cycles. Similar to Example 1, we conduct the nor-
mality test for the bearings made of two different compounds, named X and Y. It turns out that the
p-values of Shapiro-Wilk test and Kolmogorov-Smirnov test for X are 0.014 and 0.026 and for Y are
0.001 and 0.011. Hence, the failure times of each type are not normally distributed at the nominal sig-
nificance level of 5%. Furthermore, to verify the skew-normality of the failure times of each type, we
intend to test the null hypothesis Hy: the failure times of X and Y are skew-normally distributed. It
can be obtained by calculation that the fitted values of X is y2 = 1.5498 < #3(0.95) = 3.84 with p-
value 0.2132, and the one of Y is y = 3.5732 < 75(0.95) = 5.99 with p-value 0.1675. Therefore, the
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Table 8. Simulated powers of hypothesis testing problem (5) as k =5,&, =1,& =1.1,& = 1.2, and & = 1.3.
(2,2, n2, n2, n2)=(0.2,0.4,0.6,0.8,0.9)
(o1, 01, 03, 04, 015)=(3-6) (o0, 02, 03, 014, 05)=(5-8)
N1 N2 N3 N1 N2 N3
S p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
14 03160 0.1952 0.6904  0.1792 0.9248 0.2264 03940 0.1760 0.8344 0.1916 09780 0.2516
1.5 04184 01760 0.7960 0.1600 09612 0.2012 0.5180 0.1528 0.8952 0.1672 09912  0.2184
1.6 05488 0.1652 0.8736  0.1352 09812  0.1608  0.6632 0.1332 0939  0.1384 0.9968 0.1776
1.7 06824 01476 09336 0.1100 09924 0.1224 0.7780  0.1204 0.9700 0.1008  0.9992  0.1300
1.8 0.7904 0.1432 0.9692  0.0912 0.9968 0.0940 0.8708 0.1128 0.9900 0.0828 0.9996 0.1024
(2, 13, 3, 113, 12)=(0.3,0.4,0.5,0.8,0.9)
(o1, 002, 013, g, 0t5)=(3-6) (01, 01, 03, 0la, 0t5)=(5-8)
N1 N2 N3 N1 N2 N3
Ss p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
14 02524  0.1252 0.5248 0.1060 0.8504 0.1088 0.3216 0.1112  0.7248 0.0984 0.9500 0.1004
1.5 03328 01216 0.6484 0.0972 09092 0.0984 04280 0.1056 0.8136  0.0852 0.9726  0.0864
1.6 04496 0.1232 0.7588 0.0820 0.9440 0.0832 0.5572 0.0976  0.8832 0.0684 0.9884 0.0740
1.7 05744 0.1224 0.8484 0.0696 09676 0.0688 0.6972 0.0984 09384 0.0544 0.9956 0.0604
1.8 0.7048 0.1196 09064 0.0644 09836 0.0620 0.8152 0.0988 0.9712 0.0512  0.9980  0.0640
(2,3, n%, n3, n2)=(0.3,0.5,0.6,0.8,1.0)
(o1, 002, 013, 04, 0t5)=(3-6) (01, 01z, 03, 0la, 0t5)=(5-8)
N1 N2 N3 N1 N2 N3
s p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2
14 01104 0.1748 0.1944 02092 0.5240 0.2764 0.0920 0.1788 0.3408 02324  0.7492 0.3336
1.5 01224 0.1700 0.2624 0.1988 0.6156  0.2588  0.1232 0.1716  0.4376  0.2216  0.8124  0.3120
1.6 01540 0.1600 03620 0.1780 07076  0.2368  0.1800  0.1556  0.5412  0.1924 0.8688  0.2764

1.7 0209 0.1456 04756 0.1524 0.7956 0.1960 0.2616  0.1372  0.6644 0.1636 09140  0.2308
18 03000 0.1364 0.6100 0.1208 0.8684 0.1532 03708 0.1152 0.7700 0.1280 0.9444  0.1836

Note: N1 = (30,30, 40,40, 50), N2 = (40, 50, 60, 60, 70), N3 = (60, 70, 80, 80, 90).

failure times of X and Y follow the skew-normal distributions SN(&,,#%,0,) and SN(&,, ni,ocy)

respectively at the nominal significance level of 5%.

Consider the hypothesis testing problem
Hozéx:éy vs leéx#éy

The p-values of the Bootstrap test statistics based on the moment estimator and ML estimator are
0.8480 and 0.8432, respectively. Thus, the null hypothesis Hy cannot be rejected at the nominal
significance level of 5%, which means that there is no significant difference between high-speed
turbine bearings made of these two different compounds.

7. Conclusion

When the scale parameters and skewness parameters are unknown, we consider the problem of
homogeneous test of location parameters in several skew-normal populations. First, we construct
the conditional test statistic and prove its approximate distribution. Second, the moment estimation
and ML estimation of unknown parameters are given. Then we construct the Bootstrap test statistics,
which generalize the results of Xu (2016) from normal population to skew-normal population.
Further, the Monte-Carlo simulation results show that the Bootstrap test statistic based on the
moment estimator performs better than that based on the ML estimator in most cases. Finally, the
above approaches are used in two real examples of regional GDP of China and performance data of
high-speed turbine bearings to verify the reasonableness and effectiveness of the proposed approaches.
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Figure 1. GDP histogram and probability density curve of Tianjin (1995-2018).
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Figure 2. GDP histogram and probability density curve of Chongging (1995-2017).

In summary, the Bootstrap test statistic based on the moment estimator is preferentially suggested to
be used for homogeneous test of location parameters in several skew-normal populations.

Appendix

Proof of Lemma 1. Suppose the distribution function of X; is Fj(x), j =1,..,k. And let F(x) denote the stand-
ard normal distribution function. From the weak convergence theorem (Hu 2009), we get

Jei”‘zdﬂ(x) — Jei"‘zdF(x), ji=1..k
namely

E(eitx}) _ E(eitxz)’ ]: 1,...k

By the continuity theorem (Wu et al. 1979), we obtain
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asy .
Xj2~ Xz(l), j=1..,k

Since Xj, ..., X are mutually independent to each other, we have by Zhong (2010)

k
asy
DX 7).
=
Therefore, the proof of Lemma 1 is completed.
Proof of Theorem 1. If a; = 0, = ... = = 0, then

ATPY ~ N(ATPG L),
(A7) PQQ P HATYPY) ~ (A1),

Further,
—\/ — k
T = (A"2Y)PQAQ'PTH(A™2Y) ~ 3 " hi (1,0).
i=1

Therefore, the proof of Theorem 1 is completed.

Proof of Theorem 2. Let (3,,5,s3i) be the observed value of (Y}, Sy, S3:). Denote Xy, ..., Xin, as the standardized

samples, where X; = (Y; —¥;)/+/ss from X;~SN(&pnZ o), i=1,...k j=1,..,n.

denote
&i = (fi _)7!,)/\/32‘1-, Nsi = '7:‘/\/571‘»" =1..k
Obviously, the moment generating function of X; is
E
2

MX’(f) = 2exp (ti;i + )q)(tl’]siéi), i=1, ,k

From (A2), we can obtain
Mgc,(f)h:o =& +bngd; =0,
M;/Q (Do = észr + 2bEn;0; + ’7?,- =1,
M (D)]iy = &+ 3bEngd; + 37 + 36130, — b8} = 55,753

By (A1) and (A3), we get the moment estimates of (¢;, 7%, 0;) as follows

s 13 - 22/3 s 0,
Ci =)i—Cs3i» Ny =i+ sy, o = >

1/3

m i=1,...,k. Then the proof of Theorem 2 is completed.
satersy )

where 3,* = =
Proof Of Theorem 3. By (3), we can derive the skewness coefficient y; as follows
E[(v, —EV)’] L

[E(Y, — BV o0 -b2e)"?

o =n\/1 =020, =& +bnd, i=1,..k

For W; ~ SN(;), it easy to see that
E(W;) =bd;, D(W))=1-b*, i=1,..,k

From (13) and (A5), we have

Then,

For convenience, we

(AD)

(A2)

(A3)

(A4)

(A5)

(A6)
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Yi—&

Yeh g,
Yo =& +bnd + /1 - 026 '7722 =Y.
J1— 26

Therefore, the proof of Theorem 3 is completed.
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