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ABSTRACT

Theory of mind (ToM), the ability to understand others’ thoughts and desires,
is a cornerstone of human intelligence. Because of this, a number of previous
works have attempted to measure the ability of machines to develop a theory of
mind, with one agent attempting to understand anothers’ internal “mental state”.
However, ToM agents are often tested as passive observers or in tasks with specific
predefined roles, such as speaker-listener scenarios. In this work, we propose to
model machine theory of mind in a more flexible and symmetric scenario; a multi-
agent environment SymmToM where all agents can speak, listen, see other agents,
and move freely through a grid world. An effective strategy to solve SymmToM
requires developing theory of mind to maximize each agent’s rewards. We show
that multi-agent deep reinforcement learning models that model the mental states
of other agents achieve significant performance improvements over agents with no
such ToM model. At the same time, our best agents fail to achieve performance
comparable to agents with access to the gold-standard mental state of other agents,
demonstrating that the modeling of theory of mind in multi-agent scenarios is very
much an open challenge.

1 INTRODUCTION

Human communication is shaped by the desire to efficiently cooperate and achieve communicative
goals (Tomasello, 2009). Children learn from a young age that the others they interact with have
independent mental states, and therefore communicating is necessary to obtain information from or
shape the intentions of those they interact with. Remembering and reasoning over others’ mental
states ensures efficient communication by avoiding having to repeat information, and in cases where
cooperation is involved contributes to achieving a common goal with minimal effort.

Because of this, there is growing interest in developing agents that can exhibit this kind of behavior,
referred to as Theory of Mind (ToM) by developmental psychologists (Premack & Woodruff, 1978).1
Previous work on agents imbued with some capability of ToM has focused mainly on two types of
tasks. The former are tasks where the agent is a passive observer of a scene that has to predict
the future by reasoning over others’ mental states. These tasks may involve natural language
(Nematzadeh et al., 2018) or be purely spatial (Gandhi et al., 2021; Rabinowitz et al., 2018; Baker
et al., 2011). The latter are tasks where the ToM agent has a specific role, such as “the speaker” in
speaker-listener scenarios (Zhu et al., 2021).

In contrast, human cooperation and communication is very often multi-party, and rarely assumes
that people have pre-fixed roles. Moreover, human interlocutors are seldom passive observers of
a scene but instead proactively interact with their environment. Since previous domains limited
us to research questions where most parties involved did not have an active role, we developed a
more flexible environment where we can now study what happens when all participants must act
as both speaker and listener. In this paper, we present SymmToM, a fully symmetric multi-agent
environment where all agents can see, hear, speak, and move, and are active players of a simple
information-gathering game. To solve SymmToM, agents need to exhibit different levels of ToM, as
well as efficiently communicate through a simple channel with a fixed set of symbols.

1In the present work we focus solely on reasoning over mental states. Other aspects of ToM include
understanding preferences, goals, and desires of others. Multi-agent scenarios for inferring agent’s goals have
been studied (Ullman et al., 2009), and passive-observer benchmarks (Gandhi et al., 2021; Shu et al., 2021;
Netanyahu* et al., 2021) have been proposed for evaluating understanding of agent’s goals and preferences.
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Figure 1: In SymmToM, agents aim to gain all the information available (depicted as diamonds,
black for known information, white for unknown). Since hearing is limited to its neighbor cells,
they must guess what happened beyond this range. Agents can see the whole grid, but even then,
mistakes in inferences may happen (as it did in this example to the red agent).

SymmToM is a partially observable setting for all agents: even when agents have full vision, hearing
may be limited. This also differentiates SymmToM from prior work, as modeling may require
probabilistic theory of mind. In other words, agents need to not only remember and infer other
agents’ knowledge based on what they saw, but also estimate the probability that certain events
happened. This estimation may be performed by assuming other agents’ optimal behavior and
processing the partial information available. Despite its simplicity, SymmToM fulfills the properties
required for symmetric ToM to arise, which will be discussed in the following section.

We find that SymmToM cannot be completely solved neither by using well-known multi-agent deep
reinforcement learning (RL) models, nor by tailoring those models to our task. We show that even
maintaining the simple rules of the environment, modifying its parameters results in much more
difficult challenges, even for models where we artificially introduce perfect information. We discuss
examples where different levels of theory of mind are required to solve the task, and possible metrics.

2 THEORY-OF-MIND AGENTS

A belief Theory-of-Mind agent can be defined as a modification of the standard multi-agent RL
paradigm, where the agents’ policies are conditioned on their beliefs about others. Formally, we
define a reinforcement learning problem M as a tuple of a state space S, action space A, state
transition probability function T ∈ S × A → R, and reward function R ∈ S × A → R, i.e.M :=
〈S,A, T,R〉. In this setting, an agent learns a (possibly probabilistic) policy π : S → A that maps
from states to actions, with the goal of maximizing reward.

In a multi-agent RL setting each agent can potentially have its own state space, action space,
transition probabilities, and reward function, so we can define an instance ofMi = 〈Si,Ai, Ti, Ri〉
for each agent i. For convenience, we can also define a joint state space S =

⋃
i Si that describes the

entire world in which all agents are interacting. Importantly, in this setting each agent will have its
own view of the entirety of the world, described by a conditional observation function ωi : S → Ωi

that maps from the state of the entire environment to only the information observable by agent i.

As elaborated above, ToM is the ability to know (and act upon) the knowledge that an agent has.
Agents with no ToM will follow a policy that depends only on their current (potentially partial or
noisy) observation of their environment: πi(ai,t | ωi(st)). Agents with zeroth order ToM can reason
over their own knowledge. These agents will be stateful, πi(· | ωi(st), h

(i)
t ), where h(i)t is i’s hidden

state. Hidden states are always accessible to their owner, i.e. i has access to h(i)t .

Agents with capabilities of reasoning over other agents’ mental states will need to estimate h(j)t for
j 6= i. We will denote the estimation that i does of j’s mental state in time t as ĥ(i,j)t :

πi(· | ωi(st), h
(i)
t , ĥ

(i,1)
t , . . . ĥ

(i,i−1)
t , ĥ

(i,i+1)
t . . . ĥ

(n)
t )
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How do we estimate ĥ(i,j)t ? As a function of i’s (the predicting agent) previous hidden state t−1, i’s
observation in t−1, and i’s prediction of the hidden states of every agent in the previous turn:

ĥ
(i+1)
t = f(h

(i)
t−1, ωi(st−1), ĥ

(i,1)
t−1 , . . . ĥ

(i,i−1)
t−1 , ĥ

(i,i+1)
t−1 . . . ĥ

(i,n)
t−1 )

i’s prediction of other agents’ observation in t−1 is also crucial, but not explicitly mentioned since it
can be computed using ωi(st−1). For the initial turn, ĥ(i,j)0 may be initialized differently depending
on the problem: if initial knowledge is public, ĥ(i,j)0 is trivial; if not, ĥ(i,j)0 may be estimated.

3 SYMMETRIC THEORY-OF-MIND

We define symmetric theory of mind environments as settings where theory of mind is required to
perform a task successfully, and all agents have the same abilities. There are at least four defining
characteristics of symmetric ToM to arise:

Symmetric action space. In symmetric ToM all agents are required to have the same action space
(in contrast to, for example, ToM tasks in speaker-listener settings). Concretely,Ai = Aj 6= ∅ ∀i, j.

Imperfect information. In perfect information scenarios all knowledge is public, making it
impossible to have agents with different mental states. In ToM tasks in general, there could be
a subset of agents with perfect information: one example would a passive observer that needs to
predict future behavior. In symmetric ToM, since all agents have the same abilities and roles, all
agents must have imperfect information. More precisely, ωi must not be the identity for any agent i.

Observation of others. Agents must have at least partial information of another agent to estimate
its mental state. In contrast to passive-observer settings, in symmetric ToM every agent must be able
to partially observe all others. More precisely, ωi must observe at least partial information about
s
(j)
t (the subset of st that refers to agent j), although we do not require s(j)t 6= ∅ in every single

turn. Moreover, if communication is allowed, it is desirable to partially observe or infer interactions
between two or more agents to develop second order ToM (i.e. predicting what an agent thinks about
what another agent is thinking) or higher.

Information-seeking behavior. It should be relevant for successfully performing the task to gather
as much information as possible, and this information-gathering should involve some level of
reasoning over other agent’s knowledge. This is true for first-order ToM tasks in general, and could
be formalized as π∗ 6= π for any zeroth-order ToM policy πi(· | ωi(st), h

(i)
t ). Furthermore, it would

be desirable to design a task with perpetual information seeking behavior, since it would ensure that
all agents have an incentive to play efficiently even in long episodes. If one wants to design a task
with perpetual information-seeking and finite knowledge, information must be forgotten eventually.
A forgetting mechanism could be implemented as an explicit loss of knowledge under specific
conditions, or make remembrances less reliable or noisy. Moreover, this introduces the concept
of information staleness. Since information is not cumulative and the environment is only partially
observable, agents will need to estimate whether what they knew to be true still holds in the present.

4 THE SYMMTOM ENVIRONMENT

SymmToM is an environment where a agents are placed in a w×w grid world, and attempt to
maximize their reward by gathering all the information available in the environment. There are
c available information pieces, that each agent may or may not know initially. Information pieces
known at the start of an episode are referred to as first-hand information. Each turn, agents may move
through the grid to one of its four neighboring cells, and may speak exactly one of their currently
known information pieces. More precisely, the action space of agent j is defined as follows:

Aj = {left, right, up, down, no movement} × {1, . . . , c} (1)

When an agent utters an information piece, it is heard by every agent in its hearing range (an h×h
grid centered in each agent, with h < 2w−1). The agents who heard the utterance will be able
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a. b. c.

Figure 2: Example of three consecutive turns in an episode. There are three agents in a 5 × 5 grid,
each with a hearing range of 1 (shaded in the same color of the agent). Fully-colored cells depict
recharge bases. Information is represented by diamonds: black, gray, and white diamonds represent
an information piece known first-hand, second-hand, and not known, respectively. Black circles
show the information piece currently being said by each agent.

to share this newly-learned information with others in following turns. We refer to this as second-
hand information, since it is learned –as opposed to first-hand information, given at the start of each
episode. The state space is comprised of the position of the agents and their current knowledge:

S = {{(pi, ki), for i ∈ {1, . . . , a}} where pi ∈ {1, . . . , w} × {1, . . . , w}, and ki ∈ {0, 1}c}

Each agent aims to maximize their individual reward Ri via information seeking and sharing.
Rewards are earned by hearing a new piece of information, giving someone else a new piece of
information, or correctly using recharge bases. Recharge bases are special cells where agents
can reset their knowledge in exchange for a large reward (e.g. (n− 1)c times the reward for
listening to or sharing new information). Each agent has its own stationary recharge base during
an episode. To trigger a base, an agent must step into its designated base having acquired all the
available pieces of information, causing the agent to lose all the second-hand information it learned.
Recharge bases guarantee that there is always reward to seek in this environment. Concretely, if
s = {(pi, ki), for i ∈ {1, . . . , a}} and ai = (adir

i , a
comm
i ), we can define the reward as the addition

of the reward for hearing new information, giving new information, and using the recharge base:

Ri(s, ai) =
∑
i6=j

1{||pi − pj ||∞ ≤ h and ki,acomm
j

= 0}+
∑
i 6=j

1{||pi − pj ||∞ ≤ h and kj,acomm
i

= 0}

+ (n− 1) · c · 1{pi = basei and kj = {1, 1, . . . , 1}}

A non-ToM agent can have only limited success in this environment. Without reasoning about its
own knowledge (i.e. without zeroth order ToM), it does not know when to use a recharge base.
Moreover, without knowledge about other agent’s knowledge (i.e. without first order ToM) it is not
possibly to know which agents possess the information pieces it is lacking. Even if it accidentally
hears information, a non-first-order ToM agent cannot efficiently decide what to utter in response
to maximize its reward. Higher order ToM is also often needed in SymmToM, as we will discuss
further in Section 7.3.

Even though we only discussed a collaborative task for SymmToM, it can easily be extended for
competitive tasks. Moreover, all our models are also designed to work under competitive settings.
SymmToM satisfies the desiderata we laid out in the previous section, as we will detail below:

Symmetric action space. As defined in Eq. 1,Ai = Aj for all i, j. Only a subset may be available
at a time since agents cannot step outside the grid, speak a piece they have not heard, or move if they
would collide with another agent in the same cell, but they all share the same action space.

Imperfect information. Messages sent by agents outside of the hearing range will not be heard.
For example, in Fig. 2a green sends a message but it is not heard by anyone, since it is outside of
red’s and blue’s range. Hearing ranges are guaranteed not to cover the whole grid, since h < 2w−1.

Observation of others. Agents have perfect vision of the grid, even if they cannot hear what was
said outside of their hearing range. Hence, an agent may see that two agents were in range of each
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other, and thus probably interacted, but not hear what was communicated. An example of this can
be seen in Fig. 2a, where green observes blue and red interacting without hearing what was uttered.

The uncertainty in the observation also differentiates SymmToM from prior work: to solve the task
perfectly, an agent needs to assess the probability that other agents outside its hearing range shared
a specific piece of information to avoid repetition. This estimation may be performed using the
knowledge of what each agent knows (first order ToM), the perceived knowledge of each of the
agents in the interaction (second order ToM), as well as higher order ToM.

Information-seeking behavior Rewards are explicitly given for hearing and sharing novel
information, guaranteeing information-seeking is crucial in SymmToM. Recharge bases ensure that
the optimal solution is not for all agents to accumulate in the same spot and quickly share all the
information available; and that the information tracking required is more complex than accumulating
past events. Conceptually, with recharge bases we introduce an explicit and observable forgetting
mechanism. As discussed in Section 3, this allows for perpetual information seeking and requires
information staleness estimation. An example of successful recharge base use is shown in Fig. 2b.

5 BASELINE LEARNING ALGORITHMS AND OTHER BOUNDS

To learn a policy for acting in the multi-agent SymmToM environment, it is a good strategy to use
a multi-agent reinforcement learning algorithm. We use MADDPG (Lowe et al., 2017), a well-
known multi-agent actor-critic framework with centralized planning and decentralized execution, to
counter the non-stationarity nature of multi-agent settings. In MADDPG, each actor policy receives
its observation space as input, and outputs the probability of taking each action.

Notably, actors in MADDPG have no mechanism for remembering past turns. This is a critical issue
in SymmToM, as agents cannot remember which pieces they currently know, which ones they shared
and to whom, and other witnessed interactions. To mitigate this, it is necessary to add a recurrence
mechanism to carry over information from past turns. One option would be to modify the agent
policy using a recurrent network like an LSTM, as RMADDPG (Wang et al., 2020) does.

Perfect Information, Heuristic and Lower Bound Models Performance is difficult to interpret
without simpler baselines. As a lower bound model we use the original MADDPG, that since it does
not have recurrence embedded, should perform worse or equal to any of the modifications described
above. We also include an oracle model (MADDPG-Oracle), that does not require theory of mind
since it receives the current knowledgeK for all agents in its observation space. The performance of
MADDPG-Oracle may not always be achieved, as there could be unobserved communication with
multiple situations happening with equal probability. Moreover, as the number of agents and size of
the grid increases, current reinforcement learning models may not be able to find an optimal spatial
exploration policy; they may also not be capable of inferring the optimal piece of information to
communicate in larger settings. In these cases, MADDPG-Oracle may not perform optimally, so we
also include a baseline with heuristic agents to compare performance.

Heuristic agents will always move to the center of the board and communicate round-robin all the
information pieces they know until they have all the available knowledge. Then, they will move
efficiently to their recharge base and come back to the center of the grid, where the process restarts.
We must mention that this heuristic is not necessarily the perfect policy, but it will serve as a baseline
to note settings where current MARL models fail even with perfect information. Qualitatively,
smaller settings have shown to approximately follow a policy like the heuristic just described.

6 DIRECT MODELING OF SYMMETRIC THEORY OF MIND

In contrast to RMADDPG (Wang et al., 2020), we specifically design algorithms for our environment
to maximize performance. Intuitively, our model computes a matrix, K ∈ {0, 1}c×a, that reflects
the information pieces known by each agent from the perspective of the agent being modeled: Kij

reflects if the agent being modeled believes that agent j knows i. K is updated every turn and
used as input of the following turn of the agent, obtaining the desired recurrent behavior. K is
also concatenated to the usual observation space, to be processed by a two-layer ReLU MLP and
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obtain the probability distributions for speech and movement, as in the original MADDPG. There
are several ways to approximate K. It is important to note that each agent can only partially observe
communication, and therefore it is impossible to perfectly compute K deterministically.

The current knowledge is comprised of first-hand information (the initial knowledge of every agent,
F , publicly available) and second-hand information. Second-hand information may have been heard
this turn (S, whose computation will be discussed below) or in previous turns (captured in the K
received from the previous turn, noted K(t−1)). Additionally, knowledge may be forgotten when
an agent steps on a base having all the information pieces. To express this, we precompute a vector
B ∈ {0, 1}a that reflects whether each agent is currently on its base; and a vector E ∈ {0, 1}a that
determines if an agent is entitled to use their recharge base: Ej = 1

∑
i Kij=c for all j ∈ {1, . . . , a}.

We are then able to compute K as follows:

K
(t)
ij = (Fij or Sij = 1 or K(t−1)

ij = 1) and not (Bij and Eij) (2)

F , K(t−1), and B are given as input, but we have not yet discussed the computation of the second-
hand information S. S often cannot be deterministically computed, since our setting is partially
observable. We will identify three behaviors and then compute S as the sum of the three:

S = S[0] + S[1] + S[2]

For simplicity, we will assume from now on that we are modeling agent k. S[0] will symbolize
the implications of the information spoken by agent k: if agent k speaks a piece of information,
they thus know that every agent in its hearing range must have heard it (first order ToM). S[1] will
symbolize the implications of information heard by k: this includes updating k’s known information
(zeroth order ToM) and the information of every agent that is also in hearing range of the speaker
heard by k. S[2] will symbolize the estimation of information pieces communicated between agents
that are out of k’s hearing range. Since we assume perfect vision, k will be able to see if two agents
are in range of each other, but not hear what they communicate (if they do at all).

S[0] and S[1] can be deterministically computed. To do so, it is key to note that every actor knows
the set of actions A ∈ {0, 1}c×a performed by each agent last turn, given that those actions were
performed in their hearing range. Moreover, each agent knows which agents are in its range, as they
all have perfect vision. We precompute H ∈ {0, 1}a×a to denote if two given agents are in range.

Then, S[0]
ij = 1 if and only if information piece i was said by k, and agents k and j are in hearing

range of each other. More formally,

S
[0]
ij = Aik ·Hkj

S
[1]
ij = 1 if and only if agent k (the actor we are modeling) heard some agent ` speaking information

piece i, and agent j is also in range of agent `. Note that agent k does not need to be in hearing
range of agent j. More precisely,

S
[1]
ij = Ai` ·Hk` ·H`j , for any agent `

S[2] –the interactions between agents not in hearing range of the agent we are modeling– can be
estimated in different ways. A conservative approach would be to not estimate interactions we do
not witness (S[2] = 0, which we will call MADDPG-ConservativeEncounter (MADDPG-CE)); and
another approach would be to assume that every interaction we do not witness results in sharing
a piece of information that will maximize the rewards in that immediate turn. We will call this
last approach MADDPG-GreedyEncounter (MADDPG-GE). MADDPG-GE assumes agents play
optimally, but does not necessarily know all the known information and that could lead to a wrong
prediction. This is particularly true during training, as agents may not behave optimally. The
computation of S[2] for MADDPG-GE is as follows.

First, we predict the information piece U` that agent ` uttered. MADDPG-GE predicts U` will be
the piece that the least number of agents in range know, as it will maximize immediate reward:

U` = arg min
i

∑
j

(Kij and Hj`) ∈ {1, . . . c}

With this prediction, agent j will know information i if at least one agent in its range said it:

S
[2]
ij = 1 if exists ` 6= k such that U` = j and Hj` and j 6= k else 0
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MADDPG-EstimatedEncounter (MADDPG-EE) MADDPG-CE and MADDPG-GE are two
paths to information sharing estimation, but in none of them do we estimate the probability of an
agent knowing a specific piece of information. In MADDPG-EstimatedEncounter (MADDPG-EE),
known information of other agents is not binary, i.e. Kij ∈ [0, 1]. This added flexibility can avoid
making predictions of shared information based upon unreliable information.

MADDPG-EE estimates the probability that an agent j uttered each piece of information (Uj ∈ Rc)
by providing the current information of all agents in its range to an MLP:

Uj = softmax(f(K1j , . . . ,Kcj , {K1`, . . . ,Kc` for all ` where Hj`})), with f an MLP

Then, the probability of having heard a specific piece of information will be the complement of not
having heard it, which in turn means that none of the agents in range said it. More formally,

S
[2]
ij = 1−

∏
`,Hj`=1

1− U`

Since MADDPG-EE requires functions to be differentiable, we use a differential approximation of
Eq. 2. A pseudocode of MADDPG-EE’s implementation can be found in Section A.4. MADDPG-
EE solely focuses on first order ToM, and we leave to future work modeling with second order ToM.
The structure of the model would be similar but with an order of magnitude more parameters.

7 EXPERIMENTS

7.1 EXPERIMENTAL SETTINGS

In this section, we compare the different algorithms explained in the previous section. The
observation space will be constituted of a processed version of the last turn in the episode, to keep
the input size controlled. More precisely, the observation space is composed of: the position of
all agents, all recharge bases, the current direction each agent is moving towards to and what they
communicated in the last turn, the presence of a wall in each of the immediate surroundings, and
every agents’ first-hand information. First-hand information is publicly available in our experiments
to moderate the difficulty of the setup, but this constraint could also be removed. This simple setting
is still partially observable, since the agents cannot hear interactions outside of their hearing range.

We use the reward as our main evaluation metric. This metric indirectly evaluates ToM capabilities,
since information-seeking is at the core of SymmToM. We train through 60000 episodes, and with 7
random seeds to account for high variances in the rewards obtained. Our policies are parametrized
by a two-layer ReLU MLP with 64 units per layer, as in the original MADDPG (Lowe et al., 2017).
MADDPG-EE’s function f is also a two-layer ReLU MLP with 64 units per layer.

We test two board sizes (w = 6, and w = 12), two numbers of agents (a = 3 and a = 4), and three
quantities of information pieces (c = a, c = 2a c = 3a). The length of each episode is set to 5w.
More detail about design decisions can be found in Section A.5.

7.2 MAIN RESULTS

As we can observe in Table 1, there is a significant difference in performance between MADDPG-
Oracle and MADDPG (MADDPG-Oracle is 123% better on average): this confirms that developing
ToM and recurrence is vital to perform successfully in SymmToM. MADDPG-Oracle is often not
an upper bound: when c > a, the heuristic performs better (101% on average). This shows that even
with perfect information, it can be difficult to learn the optimal policy using MADDPG. Moreover,
models with a recurrence mechanism perform significantly better than MADDPG (61% better on
average), also showing that remembering past information gives a notable advantage. As expected,
having recurrent models tailored to our problem resulted in better performance than a general
LSTM recurrence (RMADDPG). The performance of the best of the tailored models (MADDPG-
CE, MADDPG-GE, MADDPG-EE) was 42% better on average than plain RMADDPG. LSTM was
able to surpass the best of the tailored models only for a = 3, w = 12, c = 3a.

Increasing c generally decreases global rewards for learned agents (on average, rewards for c =
2a are 75.54% of those for c = a, and rewards for c = 3a are 75.66% of those for c = a).
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Table 1: Average rewards per agent in trained models evaluated during 1000 episodes. 7 runs are
averaged for each, using the best checkpoint: this compensates for collapses in performance seen
in Fig. 5 and Fig. 6. Values shown are individual rewards to normalize by the number of agents.
Bold lettering represents the best result of a learned imperfect-information model for each setting.
Standard deviations are detailed in A.5.

agents (a) 3 4
grid width (w) 6 12 6 12
info pieces (c) a 2a 3a a 2a 3a a 2a 3a a 2a 3a

Heuristic 38 54 58 37 57 72 60 73 74 58 89 101
MADDPG-Oracle 42 49 39 54 38 41 71 45 30 57 33 29

MADDPG 39 18 16 35 32 11 34 23 13 18 14 14
+RNN (RMADDPG) 37 19 19 44 27 19 29 20 16 32 17 16
+Conservative (CE) 36 26 33 46 43 14 40 30 25 27 27 16
+Greedy (GE) 34 25 33 47 68 15 35 30 25 35 29 17
+Estimated (EE) 40 19 15 39 26 11 36 22 14 25 19 15

This suggests that probabilistic decisions are harder to learn, or impossible to successfully navigate
when several events are equally likely. MADDPG-EE did not show improvements over the other
learned agents, and in some cases decreased its performance more heavily than other learned agents
(e.g. w = 6, c = 3a). MADDPG-EE uses an MLP in its definition of S[2], which gives more
flexibility but also implies a more complex function to learn. We leave to future work to explore other
probabilistic agents, but the significant difference in performance between all of the learned models
and the highest performing ones (MADDPG-Oracle and the heuristic) shows there is ample space
for improvement in this task, and hence proves SymmToM to be a simple yet unsolved benchmark.

Increasing a results in a 10% reduction of performance on average for learned models. Nonetheless,
the heuristic improved its rewards by an average of 46%, given the larger opportunities for rewards
when including an additional listener. Overall, this implies that increasing a also makes the setup
significantly more difficult. Finally, increasing w did not have a conclusive result: for a = 4 it
consistently decreased performance in ∼17%, but for a = 3 we saw an improvement of 16% and
61% for c = a and c = 2a respectively.

In sum, modifying c and a provides an easy way of making a setting more difficult without
introducing additional rules.

7.3 DISCUSSION

In the past section we analyzed results using the metric of episode rewards. Although the rewards
in SymmToM are designed to correlate with information seeking and knowledge state of the agent
themselves and others, they do not show explicitly if agents are exhibiting theory of mind. To do
so more directly, we develop two categories of possible analyses: scenarios specifically designed to
test theory of mind, and post-hoc analyses of episodes.

A classic example of a scenario specifically designed to test ToM behavior is the Sally-Anne task
(Wimmer & Perner, 1983). This false belief task, originally designed for children, aims to test if
a passive observer can answer questions about the beliefs of another person, in situations where
that belief may not match reality. If we were to use it for machine ToM, we could repeat the
experiment and ask an agent to predict the position of an object varying the underlying conditions.
This test is feasible because there is only one agent with freedom of action, which ensures that
desired conditions are met every time. Testing becomes unfeasible when giving multiple agents
freedom of action, as constraints planned in test design may be broken by a collective drift from the
strategy thought by the designer. Testing becomes easier if we allow for controlling all agents but
one, as shown in Fig. 3. Other tests besides the ones shown may be designed. In particular, in Fig. 3d
we show an example of probabilistic ToM where two communicative events are equally likely, but
one could modify this scenario to have different probabilities and test the expected value of the turns
until red successfully shares an information piece. One could also design retroactive deduction tests:
for example, in Fig. 3d if red communicates and receives no reward, it can deduce that green had
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(a) 0th order ToM
test.

(b) 1st and 2nd order ToM test. (c) 2nd order ToM test.

(d) Probabilistic
ToM test.

Figure 3: Example of tests for zeroth, first, second order, and probabilistic ToM. We test red agents,
immobilize gray agents, and control blue and green agents’ movements. In Fig. 3a, red will go to
the top right if it remembers to have heard the first piece, and to the left otherwise. In Fig. 3b, red
will move to the right if and only if it assumes that the two agents on the left played optimally (red
cannot hear what they communicated). In Fig. 3c, blue is controlled to ensure it will search the agent
on the bottom left (its optimal play, in five moves). Red’s optimal move is to meet blue, and hence
must only move to the bottom left, even if the agent currently there will not provide any reward. In
Fig. 3d, red will interact with green not knowing what it communicated with blue in the previous
turn. It should be able to communicate the missing piece with an expected value of 1.5 turns.

received that information from blue. If there had been another agent (let’s say, a yellow agent) in
range of blue when it spoke to green, the red agent could also update its knowledge about yellow.
Results for the tests proposed in Figure 3 are detailed in Appendix A.1.

Post-hoc analysis also has its challenges in multi-agent settings, even in the most direct cases.
Thanks to our reward shaping, using recharge bases is always the optimal move when an agent
has all the information available: an agent will have a reward of (n−1)c for using the base, whereas
it can only gain up to n− 1 + c− 1 per turn if it decides not to use it. Even in this case, small delays
in using the base may occur, for example if the agent can gather additional rewards on its path to the
base. More generally, having multiple agents makes a specific behaviors attributable to any of the
several events happening at once, or a combination of them.

Even though it may be difficult to establish causality when observing single episodes, we developed
metrics that comparatively show which models are using specific features of the environment better
than others. Examples of metrics are unsuccessful recharge base usage count; number of times
an agent shares an information piece everyone in its range already knows when having better
alternatives; number of times an agent moves away from every agent when not having all the
information pieces available; among others. See Appendix A.2 for detailed description and results.
Reward can also be understood as a post-hoc metric with a more indirect intepretation.

Post-hoc analyses of single episodes can also be blurred by emergent communication. Because
agents were trained together, they may develop special meaning assignment to particular physical
movements or messages. Even though qualitatively this does not seem to be the case for the models
presented in the paper, tests should also account for future developments. This also implies that one
should not overinterpret small differences in the metrics described in the paragraph above.

8 CONCLUSIONS AND FUTURE WORK

We defined a framework to analyze machine theory of mind in a multi-agent symmetric setting, a
more realistic setup than the tasks currently used in the community. Based on the four properties
needed for symmetric theory of mind to arise, we provided a simplified setup on which to test
the problem, and we showed we can easily increase difficulty by growing the number of agents or
communication pieces. Our main goal in this work was not to solve symmetric theory of mind, but
rather to give a starting point to explore more complex models in this area. We showed that even
with this minimal set of rules, SymmToM proves algorithmically difficult for current multi-agent
deep reinforcement learning models, even when tailoring them to our specific task. We leave to
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future work to develop models that handle second-order theory of mind and beyond, and models
that periodically reevaluate past turns to make new deductions with information gained a posteriori
(i.e., models that pass retroactive deduction tests). Another interesting direction would be to replace
the information pieces with constrained natural language: communication sharing in our task is
binary, whereas in language there is flexibility to communicate different subsets of a knowledge
base using a single sentence. We will make our codebase public upon publication, that also includes
additional observation space restrictions to increase difficulty.

ETHICS AND REPRODUCIBILITY STATEMENT

Theory of mind research at its core deals with understanding the mental states of other individuals.
In the present work we focused on collaborative machine theory of mind, which entails interactions
only between artificial agents, and only in scenarios where every party involved has the same
incentive structure. This design decision is intentional. Other approaches to theory of mind
research could include scenarios with human-agent interaction, which could potentially lead to
agents learning to model human players’ mental states. This is not concerning per se, but in scenarios
where players do not have the same incentive structure, it could lead to agents learning to deceive
other players (potentially human players). The state of the art in machine theory of mind is still far
away from these capabilities, but we believe that experiment design choices should always take this
matter into account.

Regarding reproducibility, we will make all code public upon acceptance, including the environment
and the models’ code. The exact set of parameters used for training will also be shared. Multi-agent
reinforcement learning models do have high variance, so models should be run several times to see
similar confidence intervals as the ones shown in Fig. 5 and Fig. 6.
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(a) 0th order ToM test, w = 6.
Minimum turns to succeed: 3.

(b) 1st & 2nd order test, w = 6
Minimum turns to succeed: 2.

(c) Probabilistic ToM test, w = 12
Minimum turns to succeed: 1.5.

(d) 0th order ToM test, w = 12
Minimum turns to succeed: 9.

(e) 1st & 2nd order test, w = 12
Minimum turns to succeed: 8.

(f) 2nd order ToM test,
w = 12.

Figure 4: Depictions of rescaled tests from Figure 3, designed to match some of the parameter
combinations already experimented on.

A APPENDIX

A.1 AD-HOC THEORY OF MIND TESTS

We test on the four examples shown in Figure 3, adapting the examples to fit one of the grid sizes we
already experimented on. For the tests described in Figure 3a and Figure 3b, we test two different
grid sizes: w = 6 and w = 12. For the tests described in Figure 3c and Figure 3d we only test
w = 12 and w = 6 respectively. Image depictions of the exact test configurations can be seen in
Figure 4.

We measure three metrics: average success rate, average failure rate, and ratio of average turns to
succeed vs. optimum (RATSO). Note that Average Success Rate and Average Failure Rate do not
necessarily sum 1 since these two metrics only include trials where the agent reached any of the
two proposed outcomes. If, for example, the agent never moved from the starting point, the trial
would not be counted positively towards Avg. Success Rate or Avg. Failure Rate. In addition, ratio
of average turns to succeed vs. optimum (RATSO) is the ratio between the average turns it took to
succeed in successful trials, and the optimum number of turns to succeed in a specific trial.

For the tests in Figure 4a, 4b, 4d, and 4e, the trial ends when the red agent reaches the hearing range
of one of the two possible target agents. The test depicted in Figure 4f is a pass/fail test: if red
moves suboptimally at any point before meeting blue, the trial is declared as failed. This makes it a
particularly difficult test to pass at random. Because of the nature of this second order ToM test, we
only report the average success rate. Finally, for the probabilistic ToM test we want to measure how
fast can red communicate all the information it has to green. The optimal number of turns is 1.5 (as
discribed in Figure 3), and because of the nature of this test we will only report RATSO.

All results can be found in Table 2. As expected, a larger average success rate correlates with
higher reward models (MADDPG-CE and MADDPG-GE are the best models), suggesting that the
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ToM test Fig. 3a
(0th order)

Fig. 3c
(2nd

order)
grid width (w) 6 12 12

SR FR 1-SR-FR RATSO SR FR 1-SR-FR RATSO SR

MADDPG 17% 75% 9% 3.66 1% 44% 55% 3.75 33%
RMADDPG 18% 59% 24% 5.30 1% 3% 96% 5.39 32%
MADDPG-CE 32% 49% 19% 4.94 10% 1% 89% 5.00 24%
MADDPG-GE 32% 40% 28% 4.97 10% 12% 78% 4.99 32%
MADDPG-EE 16% 54% 29% 5.26 0% 25% 75% 4.39 33%

ToM test Fig. 3b
(1st and 2nd order)

Fig. 3d
(probabilistic)

grid width (w) 6 12 6
SR FR 1-SR-FR RATSO SR FR 1-SR-FR RATSO RATSO

MADDPG 9% 79% 12% 3.37 0% 62% 38% 5.49 6.40
RMADDPG 18% 74% 8% 3.70 2% 61% 37% 4.49 5.02
MADDPG-CE 16% 74% 10% 3.67 2% 67% 31% 4.71 7.12
MADDPG-GE 27% 72% 1% 3.36 2% 66% 32% 4.62 6.33
MADDPG-EE 14% 81% 5% 3.94 0% 85% 15% 3.52 6.40

Table 2: Results for tests depicted in Fig. 4, evaluated during 1000 episodes for each of 7 different
random seeds. SR means average success rate, FR means average failure rate, and RATSO is the
ratio of average turns to succeed vs. the optimum turns to succeed. 1-SR-FR depicts the ratio of
episodes where an agent did not reach any grid cell to terminated the test (either successfully or
unsuccessfully) before the trial reached the maximum number of turns allowed (5w). A horizontal
line means a metric could not be computed.

reward is a valuable overall metric. The low average success rates across all tests show there is
significant room to improve in this benchmark. Success rate drops sharply when increasing the grid
size, suggesting larger grids impose more difficult training settings. In this analysis, we used models
that were trained specifically for each parameter combination.

Results for Oracle were omitted since some tests assumed no knowledge about communication (e.g.
even though agents in Figure 4b do not communicate during the test, the test was designed to test if
the red agent assumed them to be).

As we emphasized in the main text, many more tests can be proposed. The code base we will release
allows for easily adding new tests to the suite.

13
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A.2 POST-HOC ANALYSES

We developed several post hoc metrics to analyze specific aspects of our models.

• Unsuccessful recharge base usage rate: Average times per episode an agent steps on
its recharge base without having all the information available (i.e. wrong usage of the
recharge base). Note that an agent may step on its base just because it is on the shortest
path to another cell. Therefore, a perfect theory of mind agent will likely not have zero on
this score; but generally, lower is better. See results in Table 3.

• Wrong communication piece selection count: Average times per episode an agent
attempted to say an information they currently do not possess. In these cases, no
communication happens. Lower is better. See results in Table 4.

• Useless communication piece selection count: Average times per episode an agent
communicated an information piece that everyone in its hearing range already knew, when
having a piece of information that at least one agent in its range did not know. Lower is
better. See results in Table 5.

• Useless movement: Average times per episode an agent moves away from every agent that
does not have the exact same information it has, given that the agent does not currently
possess all the information available. This means that the agent is moving away from any
possible valuable interaction. Lower is better. See results in Table 6.

All metrics are normalized by number of agents (i.e., they show the score for a single agent). This
allows for better comparison between a = 3 and a = 4 settings.

RMADDPG had the worst scores for unsuccessful recharge base use rate and useless communication
piece selection count. RMADDPG scored 43% more than Oracle for unsuccessful base usage on
average, and 63% more than Oracle on average for usage of a useless communication piece. The
best tailored models (MADDPG-CE and MADDPG-GE) performed similarly to Oracle on average
for these two metrics. In contrast, MADDPG-CE and MADDPG-GE performed significantly worse
than Oracle for the wrong communication piece selection count (48% and 56% more than Oracle
on average). This suggests that all models may be making wrong decisions, but RMADDPG is
biased towards communicating redundant information whereas MADDPG-CE and MADDPG-EE
tend towards not communicating at all (the true effect of trying to communicate something they are
not allowed). Further analysis is needed to truly understand if these apparently wrong behaviors
were done in turns where the agent had all the information available to make a better move, or if this
is their default when they believe they have nothing of value to communicate. A priori RMADDPG
bias seems more principled, but it still showed worse performance overall.

No learned model performed particularly better in the useless movement metric (average differences
in performance were less than 10%), suggesting that they perform pointless movements in similar
frequencies. It is important not to overinterpret small differences in these metrics. For example,
a useless movement may be a signal of emergent communication. Furthermore, an agent may
communicate something suboptimal for its immediate reward but this move may not affect its
expected reward for the trial.

agents (a) 3 4
grid width (w) 6 12 6 12
info pieces (c) a 2a 3a a 2a 3a a 2a 3a a 2a 3a

MADDPG-Oracle 3.6 3.1 4.4 4.9 3.7 3.1 2.8 4.4 1.3 2.4 3.1 1.0

MMADPG 4.8 3.5 2.9 6.7 6.3 0.4 6.6 3.5 0.8 6.5 2.7 0.6
RMADDPG 5.9 5.0 3.2 9.9 6.3 4.7 5.4 4.8 0.8 7.3 2.6 0.5
MADDPG-CE 4.1 5.7 3.3 4.3 2.8 0.4 3.1 3.4 1.1 4.3 1.7 0.5
MADDPG-GE 4.1 5.5 3.7 4.9 5.0 0.3 4.3 3.3 1.0 3.7 2.3 0.6
MADDPG-EE 4.8 4.1 2.4 6.2 6.4 0.3 6.6 3.0 0.7 7.0 3.5 0.4

Table 3: Results for unsuccessful recharge base usage rate, normalized by agent. Bold lettering
represents the best result of a learned imperfect-information model for each setting (lower is better).
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agents (a) 3 4
grid width (w) 6 12 6 12
info pieces (c) a 2a 3a a 2a 3a a 2a 3a a 2a 3a

MADDPG-Oracle 3.2 3.0 3.5 10.7 10.2 5.2 2.7 5.1 2.0 7.5 6.4 3.4

MADDPG 4.7 0.4 0.3 11.8 4.8 1.3 5.7 0.3 1.3 10.3 0.8 2.0
RMADDPG 3.2 1.7 1.0 9.7 5.9 3.4 3.3 2.0 1.0 10.3 5.5 5.0
MADDPG-CE 6.2 3.8 3.5 11.4 5.3 3.8 7.0 4.2 3.7 15.5 4.7 10.9
MADDPG-GE 6.3 3.9 3.3 11.3 6.6 3.9 7.9 4.2 3.5 14.2 7.8 11.9
MADDPG-EE 4.5 0.4 0.2 9.5 4.1 0.4 5.1 0.1 0.8 9.1 1.5 2.9

Table 4: Results for wrong communication piece selection count, normalized by agent. Bold
lettering represents the best result of a learned imperfect-information model for each setting (lower
is better).

agents (a) 3 4
grid width (w) 6 12 6 12
info pieces (c) a 2a 3a a 2a 3a a 2a 3a a 2a 3a

MADDPG-Oracle 8.4 13.2 14.7 20.6 26.2 19.0 10.6 17.3 12.2 24.0 17.3 12.6

MADDPG 8.4 13.1 20.4 18.2 30.5 43.2 14.6 16.9 24.3 25.1 38.6 49.8
RMADDPG 8.1 16.4 18.6 18.3 33.4 38.4 14.3 19.7 24.4 29.0 38.1 50.0
MADDPG-CE 11.8 9.5 9.8 20.7 13.3 8.6 17.4 13.2 14.8 27.2 12.1 28.4
MADDPG-GE 12.4 9.3 10.4 19.8 12.7 9.6 16.7 11.7 16.8 24.7 17.4 27.5
MADDPG-EE 7.8 12.8 20.3 16.1 35.0 41.3 14.4 17.7 25.2 23.2 36.5 49.6

Table 5: Results for useless communication piece selection count, normalized by agent. Bold
lettering represents the best result of a learned imperfect-information model for each setting (lower
is better).

agents (a) 3 4
grid width (w) 6 12 6 12
info pieces (c) a 2a 3a a 2a 3a a 2a 3a a 2a 3a

MADDPG-Oracle 2.4 1.3 1.9 4.1 6.0 3.6 0.8 1.4 0.9 2.6 2.5 1.8

MADDPG 2.1 2.2 1.4 5.0 3.9 3.1 2.1 1.2 0.7 4.4 3.4 1.4
RMADDPG 2.8 2.5 1.6 3.8 4.2 3.7 1.9 1.5 0.4 4.1 3.3 1.2
MADDPG-CE 2.3 2.4 1.7 5.4 2.3 3.4 1.9 0.8 1.0 4.2 1.0 3.8
MADDPG-GE 3.0 2.1 1.7 4.5 1.8 3.1 1.9 0.6 0.8 4.2 2.0 3.6
MADDPG-EE 2.4 2.2 1.7 4.2 5.0 3.4 2.2 1.3 0.5 4.6 3.5 1.9

Table 6: Results for useless movement count, normalized by agent. Bold lettering represents the
best result of a learned imperfect-information model for each setting (lower is better).
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A.3 TRAINING CURVES FOR THREE RANDOM SEEDS COMBINED

(a) a = 3, c = a,w = 6 (b) a = 4, c = a,w = 6

(c) a = 3, c = 2a,w = 6 (d) a = 4, c = 2a,w = 6

(e) a = 3, c = 3a,w = 6 (f) a = 4, c = 3a,w = 6

Figure 5: Average episode rewards throughout training for 60000 episodes for all combinations of
a ∈ {3, 4}, w = 6, and c ∈ {a, 2a, 3a}.
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(a) a = 3, c = a,w = 12 (b) a = 4, c = a,w = 12

(c) a = 3, c = 2a,w = 12 (d) a = 4, c = 2a,w = 12

(e) a = 3, c = 3a,w = 12 (f) a = 4, c = 3a,w = 12

Figure 6: Average episode rewards throughout training for 60000 episodes for all combinations of
a ∈ {3, 4}, w = 12, and c ∈ {a, 2a, 3a}.
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A.4 PSEUDOCODE OF MADDPG-EE

Algorithm 1 Actor implementation of MADDPG-EE, approximating K to make it differentiable.
Input: observation, A ∈ {0, 1}c×a, agent idx ∈ 0, . . . a− 1, F ∈ {0, 1}c×a, K ∈ {0, 1}c×a,
B ∈ {0, 1}a, H ∈ {0, 1}a×a

Make agents not be in their own hearing range, to avoid talking to themselves from the previous
turn. This would be problematic when using recharge bases.

H = H − 1a×a

Compute S[0], all the heard information spoken by agent idx:
S[0] = copy

a times
A[:, agent idx]� copy

c times
H[agent idx, :]

Compute S[1], all heard information by agent idx, spoken by all agents:
S[1] = (A� copy

C times
H[agent idx, :]) ·H

Compute S[2], an estimation of information pieces communicated between agents that were out
of agent idx’s hearing range:

Uj = softmax(f1(K1j , . . . ,Kcj , {K1`, . . . ,Kc` for all ` where Hj`})), with f1 an MLP
S
[2]
ij = 1−

∏
`,Hj`=1 1− U` for all i ∈ {0, . . . , c− 1} and j ∈ {0, . . . , a− 1}

S = S[0] + S[1] + S[2]

Ei = 1sum(K[:,i])=c ∈ {0, 1}a for all i ∈ {0, . . . , c− 1}

K = step
(
F · 100 +K + S − 2 · copy

c times
(B � E)

)
return softmax(f2([observation K])), K where f2 is an MLP

A.5 EXPERIMENT DESIGN DECISIONS AND CONSIDERATIONS ABOUT RESULT
PRESENTATION

All our experiments are with h = 1: only the immediate neighbors of an agent will hear what they
communicate.

We tested with a = 3 and a = 4 and not larger numbers of agents, as the training time increases
quadratically with a; also, the intrinsic difficulty of larger setup –even with perfect information–
would possibly degrade performance to the point of making it impossible to compare models.

Running experiments with the same number of turns for every setting would imply that agents can
move less in combinations with larger values of w, hence the need of making it proportional to the
size of the grid. Since the duration of the experiment is directly proportional to the length of the
episodes, we settled on a small multiplier. 5w allows agents to move to each edge of the grid and
back to the center. A similar decision is required when choosing c: having a constant number of
information pieces when increasing the number of agents would make the problem easier, as each
agent would have fewer options of first-hand information pieces.

We decided to evaluate running additional episodes over the best checkpoints of each model because
there was high variance for some runs, and drops in performance after achieving the highest rewards.
Those results are the base of the discussion and can be seen in Table 1. Still, we share the training
curves so that the reader can observe these behaviors in Fig. 5 and Fig. 6.

We used the same hyperparameters as the ones used in MADDPG, except with a reduced learning
rate and tau (lr = 0.001 and τ = 0.005). We used the same parameters for all our experiments.
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agents (a) 3 4
grid width (w) 6 12 6 12
info pieces (c) a 2a 3a a 2a 3a a 2a 3a a 2a 3a

MADDPG-Oracle 20 16 13 53 35 55 15 20 14 41 25 21
MADDPG 5 7 2 34 41 2 24 12 2 17 4 3
RMADDPG 15 8 8 25 47 18 13 8 6 24 10 3
MADDPG-CE 15 11 15 32 86 5 20 12 15 29 35 6
MADDPG-GE 16 9 12 56 70 6 43 16 13 26 51 8
MADDPG-EE 11 8 6 25 32 2 35 11 3 59 12 4

Table 7: Standard deviations of the average episode reward averaged by seed shown in Table 1.
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