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Abstract

Recently, Vision-Language foundation models like CLIP and ALIGN, which are pre-trained
on large-scale data have shown remarkable zero-shot generalization to diverse datasets with
different classes and even domains. In this work, we take a step further and analyze whether
these models can be adapted to target datasets having very different distributions and
classes compared to what these models have been trained on, using only a few labeled
examples from the target dataset. In such scenarios, finetuning large pretrained models is
challenging due to problems of overfitting as well as loss of generalization, and has not been
well explored in prior literature. Since, the pre-training data of such models are unavailable,
it is difficult to comprehend the performance on various downstream datasets. First, we try
to answer the question: Given a target dataset with a few labelled examples, can we estimate
whether further fine-tuning can enhance the performance compared to zero-shot evaluation?
by analyzing the common vision-language embedding space. Based on the analysis, we
propose a novel prompt-tuning method, PromptMargin for adapting such large-scale VLMs
directly on the few target samples. PromptMargin effectively tunes the text as well as visual
prompts for this task, and has two main modules: 1) Firstly, we use a selective augmentation
strategy to complement the few training samples in each task; 2) Additionally, to ensure
robust training in the presence of unfamiliar class names, we increase the inter-class margin
for improved class discrimination using a novel Multimodal Margin Regularizer. Extensive
experiments and analysis across fifteen target benchmark datasets, with varying degrees of
distribution shifts from natural images, shows the effectiveness of the proposed framework
over the existing state-of-the-art approaches applied to this setting.

1 Introduction

With the rapid advancement of deep learning models, it is now possible to achieve very high performance
for tasks like classification, etc., where large amounts of training samples can be collected and annotated.
However, in real-world scenarios, the difficulty in curating huge amounts of labelled data has led to research
in Few-Shot Learning (FSL), where a model trained on a large dataset can be transferred to a downstream
task having few labelled samples from unseen categories. Furthermore, the target distribution can be very
different from the source distribution, making the problem even more challenging. Recently, vision-language
foundation models like CLIP have shown remarkable generalization capabilities in the zero-shot scenar-
ios (Radford et al., 2021). Efficient finetuning techniques like Prompt learning (Zhou et al., 2022b) (Zhou
et al., 2022a) have been successful in generalizing these models to new classes or new domains separately, but
adapting such multimodal models to few samples having both novel categories and domains simultaneously
is relatively less explored. Foundation models like CLIP have been pretrained on large web-scale data, which
is not public. Hence, it is unclear as to which classes and domains does this training data encompass, and
what is really in-distribution (ID) and out-of-distribution (OOD) for such models. In this work, we first
explore whether we can estimate CLIP’s performance on a given target dataset from the text and image
embeddings in the joint representation space, even before finetuning the model using the data. Based on
this observation, we aim to enhance the performance of CLIP on such datasets using prompt learning. For
this, we propose a novel prompt-learning framework, termed PromptMargin in a completely source-free
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setting. This implies that, unlike standard frameworks of few-shot learning, where the pre-trained model is
meta-trained on a source domain (e.g., ImageNet (Russakovsky et al., 2015)) before it is fine-tuned on the
downstream dataset, we utilize a more practical setting of directly adapting the original pre-trained CLIP
model on the few target samples. PromptMargin has two main modules, namely (i) Selective Augmentation
and (ii) Multimodal Margin Regularizer, to handle the different challenges in this setting. To address the
challenge of availability of few samples from the target data, we use a selective augmentation strategy to
increase the number of training samples. Prompt tuning generally relies on the class names of the new
categories, which may not be available for the target dataset or the names may not be meaningful to the
CLIP model (e.g., names of rare diseases, etc. which may not have been seen during training). In order to
learn discriminative classifiers even in such scenarios, we propose a novel Multimodal Margin Regularizer
(MMReg), which enforces a consistent separation between the class-wise embedding vectors in the joint
vision-language representation space. Extensive experiments on benchmark datasets, namely BSCDFSL
(Guo et al., 2020), and Metadataset (Triantafillou et al., 2019), show that the proposed framework performs
favourably compared to the state-of-the-art, even though it is fine-tuned in a completely source-free manner.
Our contributions can be summarized as follows:

1. We first empirically explore CLIP’s zero-shot performance on a few target datasets with limited
labels, by investigating the image and text feature distances in the multimodal representation space.
This provides insights into when CLIP’s performance is sufficient for some downstream task, and
how to enhance its performance in other cases.

2. We propose a novel prompt learning framework PromptMargin where we adapt CLIP directly to
a few-shot setting with different classes as well as distribution shifts, without training it on some
source dataset. To the best of our knowledge, this is the first work which addresses this task using
vision-language models (VLMs).

3. Towards this goal, we introduce a novel Multimodal Margin Regularizer (MMReg), which jointly
steers the image and text category embeddings to uniform separation, thereby improving the prompt-
learning performance.

4. Our framework performs favourably over zero-shot, meta-training, and baseline prompt-learning
methods across fifteen benchmark datasets in 1-shot and 5-shot settings.

Next, we discuss the related work in literature followed by the details of the proposed framework and
experimental evaluation.

2 Related Works

Here, we briefly discuss the related work on prompt learning and OOD few-shot learning.

Prompt Learning for Vision-Language Model (VLM): The recent emergence of foundation
VLM’s like CLIP (Radford et al., 2021), and ALIGN (Jia et al., 2021), has changed the landscape of
deep learning. These models are trained on abundant web-scale data, where they align the image-text
representations in a contrastive manner, exhibiting remarkable zero-shot performance. Though such models
generalize well to most cases, leveraging the knowledge learned by these models for downstream tasks
is a challenging task. Recently, prompt learning has emerged as an effective choice for finetuning these
large-scale models to downstream tasks, where a few additional trainable parameters are added to the
input branches. Prompt learning in VLM’s was first explored by CoOp (Zhou et al., 2022b), where the
handcrafted prefix of the text input was replaced by a few trainable parameters, to be finetuned for a
classification task. CoCoOp (Zhou et al., 2022a) addressed the reduced generalization of CoOp in certain
cases by conditioning the text prompts on the image embeddings. MaPLe (Khattak et al., 2023) first
introduced the concept of multimodal prompt learning, where a coupling function was utilized to enable
mutual synergy between the textual and visual prompts. This approach enabled joint training of both
the prompts in the CLIP representation space, and demonstrated improved performance over unimodal
prompting approaches. This state-of-the-art model serves as the baseline of our proposed framework, where
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we learn prompts in both the text and vision encoder branches.
Few-Shot Learning: Few-Shot Learning (FSL) aims to transfer a trained model to novel category
data when a few number of samples are available from each class (Snell et al., 2017; Sun et al., 2019;
Xu et al., 2021). Existing literature provides two approaches to this problem, namely meta-learning and
transfer-learning. Meta-learning based approaches typically aim to simulate few-shot tasks on a source
dataset, and then transfers this learner to the test domain tasks (Ravi & Larochelle, 2016; Finn et al.,
2017). The conventional transfer learning approaches are explored by methods like BSCDFSL (Guo et al.,
2020), BSR (Liu et al., 2020), and NSAE (Liang et al., 2021), where the models are first trained on a
source dataset like ImageNet, before finetuning them on the target datasets. Recently, the prominence of
foundation models saw the emergence of a variety of methods for adapting them to the few-shot learning
task. For instance, FDAlign (Song et al., 2024) and Wise-FT (Wortsman et al., 2022), finetunes the entire
CLIP model parameters on a source data using regularization techniques to avoid loss of rich representations
of the original model. Wise-FT utilizes weight interpolations between the zero-shot and the fine-tuned
models while training, to enhance the performance. FD-Align aims to maintain the spurious correlations
intact before and after finetuning, by minimizing the divergence between the predictions of the two
models. Training free approaches like Tip-Adapter (Zhang et al., 2021) constructs weights from a key-value
cache model from the few-shot training set, to adapt the CLIP model without any backpropagation.
An intermediate approach of parameter-efficient finetuning is adopted by CoOp (Zhou et al., 2022b),
MaPLe (Khattak et al., 2023), which first trains the prompts on a source dataset before transferring them
to the target dataset as discussed earlier.

Though prompt learning based approaches have been utilized in VLMs for FSL, to the best of our knowledge,
no work in literature addresses the additional significant distribution shift problem in this context. Inspired
by these advances, our proposed PromptMargin aims to address this task using an effective regularization
technique for prompt learning, in a completely source-free manner.

3 Analyzing the CLIP Representation Space for target datasets

Foundation models like CLIP have been pretrained on a large corpus of web-scale data, which is not publicly
known, and hence may span a wide variety of classes and domain data, ranging from standard academic
datasets to specialized datasets. Recent papers like Udandarao et al. (2024) have studied the possible
relationship of zero-shot performance of CLIP with the concept frequencies in pretraining datasets. A
pertinent question in this scenario is, Given a target dataset with a few labelled examples, can we estimate
whether further fine-tuning can enhance the performance compared to zero-shot evaluation? The zero-shot
generalizability of the model depends upon both the distribution and semantic difference of the target dataset
from the CLIP training dataset. Since the source dataset is unavailable and only few samples of the target
dataset are provided, directly estimating distribution difference and also understanding whether the target
classes are seen or not is not straightforward. Here, we propose a simple method to estimate the extent
of the distribution shifts of some of the target datasets, by relating their inter-class mean image and text
embedding distances in the CLIP representation space.

We consider some representative datasets from BSCDFSL (Guo et al., 2020) and MetaDataset (Triantafillou
et al., 2019) benchmarks to illustrate this point. We estimate the distribution and semantic difference using
the mean inter-class L2 distances of both text and image features from the frozen zero-shot CLIP model.
The class text features obtained by passing “A photo of [CLASS]” through the zero-shot model is denoted
by X̃zT

and the image feature prototypes are denoted by X̃zV
. The inter-class mean distances mT and mV

are computed as follows:

mT = 2
C2 − C

∑
i<j

∥X̃zTi
− X̃zTj

∥2
2, ∀j ∈ {2, 3, ..., C} (1)

mV = 2
C2 − C

∑
i<j

∥X̃zVi
− X̃zVj

∥2
2, ∀j ∈ {2, 3, ..., C} (2)
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Table 1: The mean inter-class text and image embedding distances along with the estimated combined
(semantic and distribution) differences for some of the target datasets. “*" denotes that pseudo class names
were used for that particular dataset, due to unavailability. We replace mT with a small value (0.1) for such
cases.

Dataset EuroSAT ISIC Omniglot Quickdraw Plantae∗ Traffic Signs∗ MSCOCO∗ Aircraft mini-ImageNet
mT 0.588 0.561 0.679 0.716 0.100 0.100 0.100 0.700 0.860
mV 0.627 0.582 0.420 0.520 0.727 0.583 1.010 0.770 1.010
diff(mT , mV ) 1.296 1.500 1.854 1.320 9.376 9.715 8.990 0.730 0.153
ZS-CLIP (%) 47.70 22.40 28.14 61.54 26.54 12.68 18.61 80.98 99.21
MaPLe (%) 75.46 31.96 77.82 72.54 55.34 56.45 53.09 79.76 99.17

Here, C is the total number of classes. The combined estimated distribution and semantic difference is
approximated as follows:

diffDtarget
(mT , mV ) =

(
1

mT
+ 1

mV
− 2

)
(3)

When the target dataset Dtarget has significant semantic and distribution difference with the original training
data, the CLIP model will not be able to distinguish between the image and text embeddings of the target
dataset. Thus, the values of mT and mV will be smaller and the difference diffDtarget

will be larger and
vice-versa. Since, the extracted feature vectors are normalized between 0 and 1, we subtract 2 as an offset
from diffDtarget

to set its minimum value to zero, while preserving the relative differences.

Table 3 shows the difference along with the accuracy of zero-shot CLIP (ZS-CLIP) and MaPLe (Khattak
et al., 2023), where both the image and text encoders were fine-tuned using the few available labeled target
samples using prompt learning. We observe that for the first four datasets, diffDtarget

is large, i.e. the
classes are not well separated, and thus there is scope for improvement over zero-shot CLIP accuracy. This
is consistent with the improvement obtained with MaPLe. Similarly, ZS-CLIP performs very poorly when
placeholder classnames are used instead of original names due to their unavailability (Plantae, Traffic Signs
and MSCOCO datasets), thus implying the possibility of significant performance improvement, as can be
seen in MaPLe. On the other hand, for mini-ImageNet and Aircraft, since diffDtarget

is low (between 0 and
1), the classes are already well separated in the latent space, and fine-tuning using few samples can adversely
affect the model, thereby justifying the drop in accuracy of MaPLe.

This analysis illustrates that the relative separations between image and text features for the different
classes in the CLIP representation space is crucial in explaining the zero-shot performance on the respective
downstream datasets. We address this issue by introducing a simple and effective regularization framework
for prompt tuning, where we guide the image and text features to separate out in the feature space. We now
formally give the problem definition and describe our proposed approach in detail.

4 Problem Definition and Background

We address the problem of transferring a model trained on a large source dataset to a target domain
containing very few labeled training examples and having significantly different data distribution. For this,
we consider the N-way k-shot episodic setting, where random tasks/episodes T are sampled, comprising of
a support set S, and a query set Q. Both S and Q contains N classes randomly selected from among all the
novel categories of the target dataset. For the N-way k-shot setting, k samples are drawn from each of these
N sampled classes to create the support set. Additionally, q samples are also drawn from the same classes
to create the query set. The support and query sets are given by S = {(Xi, yi)}N×k

i=1 , Q = {(Xi, yi)}N×q
i=1 .

Thus, the objective is to classify the query set samples in each task, when are provided with few support set
samples from the target dataset.

Prompt Learning: Since PromptMargin is based on prompt learning, we briefly describe it here
for completion. Prompt learning is an efficient and popular method of finetuning large-scale models like
CLIP to downstream tasks, where a set of learnable vectors are appended to either the textual branch
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Figure 1: An overview of our proposed PromptMargin framework. A randomly sampled episode
from the target dataset is considered. The support set images along with their augmentations are passed
through the CLIP image encoder, and their labels are passed though the CLIP text encoder. The selective
augmentation strategy selects augmentations based on the embedding vectors. The Max-Margin Regularizer
(MMReg) enforces the class-wise image prototypes and the text embeddings to uniformly separate out.

(Zhou et al., 2022b;a), or the visual branch (Jia et al., 2022), or both (Khattak et al., 2023). For our
method, we use a multimodal prompt learning framework MaPLe (Khattak et al., 2023) as our baseline.

Let us denote the CLIP text encoder as ft and the image encoder as fv. The input image X ∈ RC×H×W is
broken up into M patches {e1, e2, ..., eM } and appended with the CLS token eCLS before passing it through
the image encoder. Similarly, the text input, which is typically of the form “a photo of a [CLASS]”, is
embedded into the tokenized format {tSOS , t1, t2, ..., ck, tEOS} before passing it through the text encoder,
where t1, t2, ... denotes the token embeddings, tSOS and tEOS denotes the Start-of-Sentence and End-of-
Sentence tokens respectively and ck denotes the kth classname. However, for multimodal prompt learning,
we append both the text and visual inputs with learnable prompts. Specifically, let the T learnable textual
prompts be denoted as θt = {θt1 , θt2 , ..., θtT

} and the V learnable visual prompts be denoted as θv =
{θv1 , θv2 , ..., θvV

}. In our setting, similar to Khattak et al. (2023), we project the textual prompts to visual
prompts by a function F , i.e., θv = F(θt). Then, the θt and θv are respectively appended to the text
and vision inputs as follows: XT = {tSOS , θt, t1, t2, ..., ck, tEOS} and XV = {eCLS , θv, e1, e2, ..., eM }, before
passing them through the text and image encoders. The final text and image embedding vectors can be
written as X̃T = ft(XT ) and X̃V = fv(XV ). Apart from adding learnable prompt parameters to the input
only (termed as shallow prompting), we also add such learnable prompts after every transformer block of
the encoders (deep prompting) (Khattak et al., 2023). The final prediction is taken as the cosine similarity
between the image and text embedding vectors. Finally, the multimodal prompts are jointly trained on a
downstream classification task. Now we describe the proposed framework in detail.

5 Proposed PromptMargin Framework

The proposed PromptMargin works in a completely source-free setting, i.e. we directly finetune the CLIP
model on the small number of samples provided in the support set of the target dataset. We do not
perform any meta-training on a separate source domain like mini-ImageNet as the existing state-of-the-art
approaches (Song et al., 2024). For this, we utilize prompt learning in both the textual and the visual
branches, similar to Khattak et al. (2023) as described in the previous section. Given the support and
query set from a randomly sampled episode, we train the prompts on the few samples available in the
support set, and evaluate the model performance on the query set. In particular, suppose (X, y) ∈ S,
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where X ∈ Rk×C×H×W denotes the k images in the support set, and y ∈ {c1, c2, ..., cN } denotes the N
classname texts. We append the textual and visual prompts to the classname texts and images respectively,
and pass it through the CLIP encoders (ft and fv). Let the final text and vision embedding vectors
obtained be denoted as X̃T and X̃V (Sec. 4). Next, the prompts are learned through a cross-entropy
loss objective, while the encoder parameters are kept frozen. The objective function can be written as follows:

LCE = argmin
{θt,θv}

E(X,y)∼S L(sim(X̃T , X̃V ), y) (4)

where, sim(.) denotes the cosine similarity. In this work, we aim to address the two important issues of
this problem: (i) less data in the support set, (ii) unknown/specialized categories in the target domains.
To address data scarcity, we use a Selective Augmentation strategy, where we only select the image
augmentations, whose embeddings are close enough to the respective text embeddings in the joint represen-
tation space. In order to address the second challenge, we propose a Multimodal Margin Regularizer
(MMReg) which uniformly separates the class-wise image and text prototypes in the joint feature space,
thereby enforcing inter-class variability. The proposed framework is illustrated in Fig. 1. We now describe
the two modules in detail.

5.1 Selective Augmentation

We use a selective augmentation strategy to increase the handful number of support set samples in the
target dataset. For example, in the 5-way, 1-shot setting, we have only 5 images (one image from each
class) for the model to train on. Naturally, training the prompts on such less number of data samples can
cause overfitting, hence, reducing the accuracy on the query set. To address this problem, we first take a
combination of different augmentations of the support set images like HorizontalFlip, RandomRotation,
ColorJitter, etc. However, instead of considering all the augmentations, we efficiently select only a few of
the above augmented images, which works equally good, or better than taking all the augmentations, with
a reduction in training time.

Let us consider the support set images as Xs
orig, and the respective augmented versions as Xs

aug. The total
support samples can then be written as Xs = {Xs

orig; Xs
aug}. Consider the 5-way setting. We have five

classnames (XT ), with which we append the learnable textual prompts and pass them through the frozen
CLIP text encoder ft, to obtain five text embeddings. Similarly, we append learnable visual prompts to Xs

and pass them through the CLIP image encoder fv, and get the image embeddings. In the vision-language
multimodal space, the LCE tries to train the prompts such that the respective class text embeddings and the
image prototypes (mean of the class-wise image embeddings) come closer. For the selective augmentation
strategy, we choose a subset of Xs, whose cosine similarity with the corresponding class text embedding in
the feature space is higher, i.e.,

Xsel,r = topr(sim(fv([θv; Xs]), ft([θt; XT ])); s.t., Xsel,r ⊂ Xs. (5)

Here, topr(.) function takes the r top values of its argument and Xsel,r is the r selected images from the
set of all images Xs. Unlike scenarios where large number of training samples may be present and strong
augmentations may be more beneficial, in this application with as few as one example per class, it is important
that the augmentations are trained with class representative examples, which aids the model training.

We perform a simple experiment to justify this selection strategy. Here, we initially generate different number
of augmentations for each support image and then select 15 examples based on the proposed selection strategy.
Table 2 shows the accuracies and training time for the four datasets in the BSCDFSL benchmark (Guo et al.,
2020). We note that if the difference in the number of original and selected augmentations is low, the time
and accuracy differences are not significantly impacted, and it may be feasible to consider all the original
augmentations instead of a selection strategy. However, as the difference increases, it is worth considering
this strategy due to time and accuracy considerations. Only for PlantDisease, we observe a slight decrease
in performance, which upon analyzing the augmented images, we feel can be attributed to the quality of
the initial augmentations. In conclusion, our proposed strategy reduces the training time by 40% while
maintaining or even improving the accuracies consistently across the four datasets in majority of the cases.
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Table 2: Effectiveness of selective augmentation module. We generate different augmentations and select
15 examples based on the proposed strategy. We report accuracies and training time for the BSCDFSL
benchmark after training on the same 20 sampled episodes.

EuroSAT ISIC Plant Disease Chest X-Ray

Augmentations Accuracy (%) Time (mins.) Accuracy (%) Time (mins.) Accuracy (%) Time (mins.) Accuracy (%) Time (mins.)

20 augs 79.39 22.20 33.60 22.50 81.46 21.88 22.90 22.11
15 sel. augs 78.26 18.23 34.40 18.23 78.00 18.58 23.00 18.57

30 augs 79.20 30.03 33.20 30.48 80.27 29.97 20.60 30.06
15 sel. augs 81.93 18.30 35.47 18.79 79.40 18.42 21.93 18.51

45 augs 78.26 41.61 33.86 42.21 80.13 41.83 22.33 42.01
15 sel. augs 81.93 18.35 35.33 18.95 77.66 18.55 22.53 18.56

(a) (b) (c) (d) (e)

Figure 2: Effectiveness of the MMReg. All the heatmaps represent inter-class L2 distances between
embeddings for a representative episode in the 5-way setting of the Omniglot dataset. Darker hues represent
higher values and vice versa. (a) represents initial text features, (b) and (c) represent the text and image
embedding distances without MMReg, while (d) and (e) represent the text and image embeddings with
MMReg. We observe from (b) and (c) that there is significant difference between the interclass distance of
the image and text embeddings, implying that their embeddings are not that similar. In contrast, the maps
are very similar for (d) and (e), which justifies the usefulness of the MMReg.

5.2 Multimodal Margin Regularization

When deploying the model on a downstream task, the target dataset can contain examples of novel categories
which are unseen and very different from what was encountered during pretraining. These data can be from
specialized domains, e.g., EuroSAT (Helber et al., 2019) which contains satellite images, Chest X-Ray
(Wang et al., 2017), containing medical X-Ray images, plant disease data (Mohanty et al., 2016), etc. Since
the CLIP model may not have seen similar data during training, it may not be able to generalize to these
classes and bring their text and image embeddings close in the multimodal latent space using few labeled
training examples. In addition, generalization of CLIP significantly depends on the presence of meaningful
class names of the unseen categories. But often, such class names may not be provided, or even if they are
available, they may not be semantically meaningful in the CLIP space. We have observed this in Section
3, which demonstrates a clear correspondence between zero-shot performance and the joint feature space
alignments of the text and image embeddings. Thus, while finetuning with less amount of support set data,
the model may not be able to generalize and discriminate between these classes. Now, we describe the
proposed Multimodal Margin Regularizer (MMReg), which tries to simultaneously improve the inter-class
discrimination and bring the inter-modal embeddings closer.

Our proposed MMReg is inspired from Hayat et al. (2019), where the regularizer addresses the training
data imbalance problem in classification tasks by uniformly spreading out the classifier weights in the
feature space. In our context, we aim to spread out the text embeddings in the feature space to avoid
confusion between the distinct classes. The regularization term can be expressed as follows:

R(X̃T ) = 2
N2 − N

∑
i<j

(∥X̃Ti
− X̃Tj

∥2
2 − µt)2, ∀j ∈ {2, 3, ..., N} (6)
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Here, N denotes the number of classes in each episode, in a N-way k-shot setting. Each classname text,
appended to learnable prompts is passed through the text encoder to obtain the classwise text embedding
vectors X̃T . The mean distance between these text embeddings is denoted by µt and can be written as:

µt = 2
N2 − N

∑
i<j

∥X̃Ti
− X̃Tj

∥2
2, ∀j ∈ {2, 3, ..., N} (7)

This regularizer trains the prompts in such a way that the text representations are uniformly separated by
a distance of µt. Since, the text prompts are coupled to the visual prompts through a function F(.), it is
expected that this regularization term will also guide the visual representations to separate out. However,
because of the presence of few training samples, we empirically observe that there is a lack of consistent
separation between the image embedding prototypes compared to their textual counterparts. Hence, we add
another regularization term to the loss function, to separate out the image prototypes as follows:

R(X̃V ) = 2
N2 − N

∑
i<j

(∥X̃Vi − X̃Vj ∥2
2 − µt)2, ∀j ∈ {2, 3, ..., N} (8)

where, X̃V are the prototypes (means) of the class image embeddings obtained from the visual encoder, i.e.,
fv([θv; Xsel]). µt is the same mean distance from Eqn. (7). This additional regularization term enforces the
class-wise image prototypes to be equally separated by the same mean distance as the text representation em-
beddings. In Fig. 2, we illustrate how the proposed MMReg equally separates the classname representations
and the image prototypes. Thus, the final loss function for training the prompts is given as:

Ltotal = LCE + R(X̃T ) + R(X̃V ) (9)

Minimizing this objective function ensures that the class text embeddings come close to the respective class
image prototypes, and at the same time uniformly spreads out both of them in the joint vision-language
representation space.
Inference. Once we train the joint VLM prompts on the support set image-text pairs of a sampled episode,
we freeze the prompt parameters for the inference phase. Next, we feed the query set image-text pairs of
that episode to our frozen model, and take the highest probability class as the final prediction.

6 Experimental Evaluation

Here, we describe the results of extensive experiments performed to evaluate the performance of the proposed
approach. First, we describe the datasets used.

6.1 Dataset Description and Experimental Protocol

The proposed PromptMargin works in a source-free setting, i.e. the model is directly fine-tuned on the
episodic support set of the target datasets. Thus, unlike many of the prior approaches, we do not require a
source domain like ImageNet for pre-training our model. We conduct experiments on fifteen target bench-
mark datasets with varying distribution shifts, namely, EuroSAT (Helber et al., 2019), ISIC (Codella et al.,
2019), Plant Disease (Mohanty et al., 2016), Chest X-Ray (Wang et al., 2017) (from BSCDFSL (Guo et al.,
2020)), Omniglot (Lake et al., 2015), Traffic Signs (Houben et al., 2013), MSCOCO (Lin et al., 2014), Tex-
tures (Cimpoi et al., 2014), CUB (Wah et al., 2011), Quickdraw (Jongejan et al., 2016), Aircraft (Maji et al.,
2013), VGG Flower (Nilsback & Zisserman, 2008), Fungi (Schroeder & Cui, 2018), mini-ImageNet (Vinyals
et al., 2016) (from Metadataset (Triantafillou et al., 2019)), and the iNaturalist Plantae dataset (Van Horn
et al., 2018). These datasets contain images ranging across different styles and categories, including medical
images, satellite images, handwritten character images, etc.

As in the existing literature, we consider two settings for the experiments, namely, 5-way 1-shot and 5-way
5-shot, where one and five images from each of the five classes are randomly sampled in each episode for
training. Following standard protocol (Guo et al., 2020; Liu et al., 2020; Liang et al., 2021), we also take 15
query images from the same set of classes, and evaluate the model on 600 episodes, and report the average
accuracies and 95% confidence intervals.

8



Under review as submission to TMLR

Table 3: The performances (accuracies) of CLIP-based methods Wise-FT, FDAlign, MaPLe and Ours
(PromptMargin) on all the target datasets for both the 5-way 1-shot and 5-shot settings. Wise-FT and
FD-Align has been trained on a source dataset while MaPLe and PromptMargin is directly trained on the
few target samples. Highest values are marked in bold.

Datasets 5-way 1-shot 5-way 5-shot
WiSE-FT FD-Align MaPLe PromptMargin WiSE-FT FD-Align MaPLe PromptMargin

EuroSAT 63.99 ± 0.39 60.39 ± 0.43 75.46 ± 0.19 78.95 ± 0.19 80.96 ± 0.19 77.25 ± 0.16 89.55 ± 0.10 91.40 ± 0.10
ISIC 29.40 ± 0.34 28.84 ± 0.44 31.96 ± 0.15 33.90 ± 0.15 39.54 ± 0.40 38.91 ± 0.44 45.92 ± 0.14 46.88 ± 0.16

Plant Disease 75.66 ± 0.33 75.13 ± 0.33 79.38 ± 0.22 83.48 ± 0.19 91.78 ± 0.31 91.84 ± 0.19 93.32 ± 0.11 94.31 ± 0.10
ChestX 22.27 ± 0.28 22.31 ± 0.17 21.30 ± 0.10 21.51 ± 0.10 25.08 ± 0.14 24.95 ± 0.15 23.29 ± 0.10 23.92 ± 0.09

iNaturalist Plantae − − 55.34 ± 0.29 66.13 ± 0.27 − − 83.07 ± 0.26 85.36 ± 0.19
Omniglot 83.56 ± 0.28 83.81 ± 0.25 77.82 ± 0.29 87.01 ± 0.22 95.26 ± 0.09 94.81 ± 0.19 96.23 ± 0.10 96.37 ± 0.13

Traffic Signs 60.84 ± 0.29 57.32 ± 0.26 56.45 ± 0.24 67.24 ± 0.24 78.11 ± 0.24 73.39 ± 0.29 85.21 ± 0.19 87.55 ± 0.16
MSCOCO 67.28 ± 0.32 69.16 ± 0.28 53.09 ± 0.24 56.12 ± 0.24 81.08 ± 0.35 81.37 ± 0.24 75.13 ± 0.22 78.68 ± 0.23
Textures 63.55 ± 0.19 66.05 ± 0.12 79.28 ± 0.18 78.99 ± 0.20 83.31 ± 0.31 83.60 ± 0.34 88.45 ± 0.14 88.71 ± 0.15

CUB 81.16 ± 0.71 82.38 ± 0.69 96.96 ± 0.22 96.97 ± 0.22 93.41 ± 0.32 93.87 ± 0.24 97.65 ± 0.06 97.12 ± 0.06
Quickdraw 62.54 ± 0.59 64.49 ± 0.58 72.54 ± 0.22 74.84 ± 0.20 82.78 ± 0.37 82.78 ± 0.28 85.08 ± 0.14 85.21 ± 0.13

Aircraft 62.64 ± 0.62 63.45 ± 0.65 79.76 ± 0.27 77.21 ± 0.26 77.66 ± 0.59 78.21 ± 0.58 87.56 ± 0.21 86.53 ± 0.20
VGG Flower 94.16 ± 0.23 93.50 ± 0.24 98.24 ± 0.06 97.65 ± 0.07 99.06 ± 0.09 98.95 ± 0.09 99.23 ± 0.02 99.27 ± 0.02

Fungi 53.10 ± 0.27 53.83 ± 0.30 58.55 ± 0.27 61.16 ± 0.24 73.28 ± 0.10 73.69 ± 0.14 79.69 ± 0.20 80.91 ± 0.18
Mini-test 93.55 ± 0.17 95.04 ± 0.18 99.17 ± 0.03 98.85 ± 0.03 98.44 ± 0.06 98.52 ± 0.07 99.39 ± 0.02 99.19 ± 0.02

Average 65.26 65.40 69.02 72.00 78.55 78.01 81.92 82.76

Implementation Details: We use the CLIP ViT-B/16 backbone for all our experiments, similar to MaPLe
(Khattak et al., 2023). For the learnable text prompts, we initialize the vectors with the standard text prompt
“A photo of a”. The function F(.) is taken as a linear layer which projects the text prompts to visual prompts.
The vision and text prompt lengths are set as 2. For deep prompting, we introduce learnable prompts before
every transformer block upto a depth of 9. For the 1-shot setting, we generate multiple augmentations, out
of which we selectively choose 15 augmentations as discussed. Similarly, for the 5-shot setting, we consider
3 selective augmentations, such that there are 15 examples per class. We jointly train the prompts on the
support set images to minimize the final loss function, with SGD optimizer for 150 epochs with a learning
rate of 0.01 and momentum of 0.9. Following Liang et al. (2021), we keep the above hyperparameters same
across all datasets and settings. All the experiments are performed on a single NVIDIA RTX A5000 GPU.
Now we report the results of experimental evaluation.

6.2 Comparison to the state-of-the-art methods

We compare our method with the most recent CLIP-based methods for all the fifteen datasets and report
the results in Table 3. This includes full finetuned methods as well as prompt-tuning methods of CLIP.
We also explicitly mention the backbones as well as different training procedures followed by the different
approaches, which should be considered while comparing them.

A recent state-of-the-art approach, FDAlign (Song et al., 2024), was the first to investigate CLIP’s gen-
eralization capability to the few-shot learning datasets with domain differences under similar settings. It
proposes a CLIP finetuning technique, which is meta-trained on the miniImageNet dataset before adapting to
the target datasets. Wise-FT (Wortsman et al., 2022) was originally proposed for the domain generalization
task, where the CLIP model was finetuned with parameter weight interpolations, which was adapted to the
given setting. We compare with both of these methods, and include their performance accuracies as reported
in (Song et al., 2024). Additionally, for prompt learning methods we report MaPLe (Khattak et al., 2023),
which is a vision-language prompt tuning method, which serves as another strong baseline for our method.
We adapted this in our setting, where we finetune it directly on the few samples from the sampled episodes
of the target datasets.

Hence, we primarily explore whether CLIP can be deployed using prompt learning on very few samples on
the target dataset without any meta-training on a large-scale dataset like ImageNet. Here, in addition to
the challenge of robustly learning prompts with few samples, for many datasets, the class names are either
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Table 4: Ablation study: Both selective augmentation and MMReg are important.

Method Omniglot Plantae ISIC Plant Disease
MaPLe (baseline) 77.82 55.34 31.96 79.38
MaPLe + MMReg 78.46 58.04 32.49 79.59
MaPLe + 15 sel augs 85.49 64.69 33.54 82.66
MaPLe + 15 sel augs + MMReg (PromptMargin) 87.01 66.13 33.90 83.48

Table 5: Effect of the proposed regularization terms (MMReg) in separating out the interclass joint features
in the CLIP representation space with only a single example per class.

Dataset EuroSAT ISIC Omniglot Plant Disease Quickdraw Plantae Traffic Signs MSCOCO mini-ImageNet
mT 0.588 0.561 0.679 0.770 0.716 0.100 0.100 0.100 0.860
mV 0.627 0.582 0.420 0.540 0.520 0.727 0.583 1.010 1.010
MaPLe (%) 75.46 31.96 77.82 79.38 72.54 55.34 56.45 53.09 99.17
MaPLe + MMReg (%) 75.81 32.49 78.46 79.59 73.02 58.04 59.24 51.90 98.99

not provided or are not quite meaningful for CLIP to generalize, thus making prompt-tuning even more
challenging.

For the 5-way 1-shot setting, we observe that both full finetuning methods (FDAlign and Wise-FT) perform
poorly compared to the parameter efficient finetuning methods. Our proposed method outperforms the
baseline method MaPLe in eleven out of fifteen datasets, achieving an average accuracy of 72% compared
to MaPLe’s 69.02%. In some cases, where original classnames were not present or are semantically not
meaningful, e.g., Plantae, Plant Disease, Traffic Signs, we achieve absolute accuracy gains of 10.79%, 4.10%,
10.79% respectively over MaPLe, highlighting the fact that our method gives significant improvement even
when original classname texts are not present in the datasets. This is discussed in details further in the
following section. However, our method exhibits slight decrements on certain datasets (like mini-ImageNet
and Aircraft), which can be attributed to the dataset distributions being not so shifted in the CLIP space, as
discussed later. For the 5-way 5-shot setting, we observe a similar trend, where PromptMargin outperforms
MaPLe in twelve out of fifteen datasets, achieving an average accuracy of 82.76%.

Our method aims to highlight that large-scale VLMs like CLIP can be efficiently transferred to out-of-
distribution datasets with few-shot samples, without any access to source datasets, and can still provide a
relatively close performance to meta-trained and finetuned methods.

6.3 Ablation Studies

Here, we analyze the effectiveness of the two proposed modules in PromptMargin, and summarize the results
in Table 4. For analysis, we consider four representative datasets from across all the benchmarks and report
accuracies for the 5-way 1-shot setting using the same hyperparameters from Sec. 6.1 for 600 episodes. Since
our framework is built upon MaPLe (Khattak et al., 2023), we report its accuracies as the baseline method.
As illustrated in the table, both the proposed modules improve the baseline method significantly.

We had proposed the MMReg module based on the observations of the feature alignments in the joint
CLIP vision-language space. Now, we see in Table 5 how this simple regularization term is effective in
guiding the vision language features to separate out even for a single example per class. As noted in
Section 3, when the inter-class text and image embedding distances (mT and mV ) were low, prompt-learning
(MaPLe) had improved the performance, but additionally incorporating our regularizer further improves the
class discriminations and results in better accuracy. Notably, we observe that when the image feature
separation (mV ) is low, and placeholder classnames have been used, the improvement with our MMReg
module is significant (+2.7 and +2.79 for Plantae and Traffic Signs respectively). Although in MSCOCO,
pseudo-classnames have been used, the image features are extremely well separated, resulting in the MMReg
module slightly decreasing the performance. However, utilizing only the text regularization term R(X̃T )
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Figure 3: Some qualitative results across different datasets. From top left, samples are shown
from Quickdraw (Jongejan et al., 2016), EuroSAT (Helber et al., 2019), ISIC (Codella et al., 2019) and
Fungi (Schroeder & Cui, 2018) datasets. Green and red denote correct and incorrect predictions respectively.

(a) (b)

Figure 4: Some instances of poor augmentations generated for two support set images, leading to reduced
generalization. (a) and (b) represents images from two classes of the Aircraft dataset, namely “Hawk T1”
and “Boeing 747-400”.

improves the prompt-learning accuracy by +1.28, hence conforming with our proposed notion of separating
out closely situated embeddings in the representation space. For mini-ImageNet, since both modalities are
well separated, prompt-learning, even with our regularizer, on the few samples does not improve results,
and can adversely affect the latent space alignment. We also illustrate some qualitative results in Fig. 9 for
visualization of some of the different datasets.

Scope for future work: Although the two modules of our proposed framework demonstrate good perfor-
mance for most of the datasets, in few cases, it failed to outperform MaPLe. As for the first module, a lack of
carefully chosen augmentation strategies may hurt the generalization more than it improves. As an example,
in Fig. 4, we illustrate some poor augmentations generated for the Aircraft dataset, where our method
fails to improve over MaPLe. Similarly, in some cases, where the features in the latent space are already
well separated, further finetuning with MMReg may adversely affect the CLIP space, hence reducing the
performance. Nevertheless, this work may serve as a strong baseline for robust prompt learning techniques
of foundation models like CLIP for such challenging and real-world settings.

7 Conclusion

Large-scale vision-language models like CLIP are emerging as a popular choice due to their powerful zero-
shot generalization capabilities. Prompt learning is an efficient technique to transfer CLIP-like models to
downstream datasets with few samples. However, to the best of our knowledge, there has been no work
where prompt learning has been utilized for classification tasks where the datasets simultaneously contains
few samples as well as a shift in distribution from natural images. In this work, we explore the possibility of
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learning only a few prompt parameters on the target datasets, in a completely source-free manner. Extensive
experiments on standard benchmark datasets highlight the efficacy of our proposed approach over state-of-
the-art methods.
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8 Appendix

8.1 Additional Analysis

Here we provide some additional qualitative analysis to better explain our proposed PromptMargin frame-
work.

(a) (b) (c) (d)

Omniglot

(a) (b) (c) (d)

Plant Disease

Figure 5: All the heatmaps represent inter-class L2 distances between embeddings for a representative
episode in the 5-way setting. Darker hues represent higher values and vice versa. In all images, the text
features are followed by image features from left to right. (a) represents initial text and image feature
distances, (b) represents the text and image embedding distances without MMReg, (c) represents the text
and image distances with only text regularization, while (d) represents the text and image embeddings with
MMReg. We observe in (b) that there is significant difference between the interclass distance of the image
and text embeddings, implying that their embeddings are not that similar. Using only text regularization
part separates the text but not the image features. In contrast, the maps are very similar for (d), which
justifies the usefulness of the MMReg.
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Omniglot

(a) (b) (c)

(a) (b) (c)

Plant Disease

Figure 6: Visualizations of the image embeddings using t-SNE for the 5-way setting. (a) denotes the image
features initially, (b) trained with MaPLe and (c) with the proposed MMReg. We see that MMReg more
compactly clusters and uniformly separates the embeddings in the feature space compared to normal training.

Figure 7: Visualizations of the augmentations being selected by the proposed Selective Augmentation module
for EuroSAT and ISIC with 20 initial augmentations. Each row corresponds to a particular class. The red
borders denote the ones which are discarded. We observe that augmentations where the region of interest
are removed or darkened, have fairly more chance of getting discarded. However, in some cases, more
augmentations may be needed to be removed than only five.
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Example episode classes where strong augmentations can be better than weak augmentations

Example episode classes where weak augmentations can be better than strong augmentations

Figure 8: Visualizations of strong augmentations and weak augmentations for the ISIC dataset. Each block
corresponds to a particular class. The first and the second rows in each block corresponds to strong and
weak augmentations respectively. In some instances, the strong augmentatioons can be better than weak
augmentations and vice versa.

Weak augmentations are better than strong augmentations

Figure 9: Visualizations of strong augmentations and weak augmentations for the EuroSAT dataset. Here,
strong augmentations are always worse than weak augmentations since the region of interest is not confined
to a specific region.
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