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PV-RCNN++: Point-Voxel Feature Set
Abstraction With Local Vector Representation for

3D Object Detection
Shaoshuai Shi, Li Jiang, Jiajun Deng, Zhe Wang, Chaoxu Guo,

Jianping Shi, Xiaogang Wang, Hongsheng Li

Abstract—3D object detection is receiving increasing attention from both industry and academia thanks to its wide applications in
various fields. In this paper, we propose the Point-Voxel Region-based Convolution Neural Networks (PV-RCNNs) for 3D object
detection from point clouds. First, we propose a novel 3D detector, PV-RCNN, which consists of two steps: the voxel-to-keypoint scene
encoding and keypoint-to-grid RoI feature abstraction. These two steps deeply integrate the 3D voxel CNN with the PointNet-based set
abstraction for extracting discriminative features. Second, we propose an advanced framework, PV-RCNN++, for more efficient and
accurate 3D object detection. It consists of two major improvements: the sectorized proposal-centric strategy for efficiently producing
more representative keypoints, and the VectorPool aggregation for better aggregating local point features with much less resource
consumption. With these two strategies, our PV-RCNN++ is more than 2x faster than PV-RCNN, while also achieving better
performance on the large-scale Waymo Open Dataset with 150m× 150m detection range. Also, our proposed PV-RCNNs achieve
state-of-the-art 3D detection performance on both the Waymo Open Dataset and the highly-competitive KITTI benchmark. The source
code is available at https://github.com/open-mmlab/OpenPCDet.

Index Terms—3D object detection, point clouds, LiDAR, autonomous driving, sparse convolution, Waymo Open Dataset.
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1 INTRODUCTION

3D object detection is indispensable to lots of real-world
applications like autonomous driving, intelligent traffic

system and robotics. The most commonly-used data repre-
sentation for 3D object detection is point cloud, which is
captured by 3D sensors (e.g., LiDAR sensors) to depict the
3D scene. The sparsity and irregularity of point cloud make
it challenging to extend 2D detection methods [1], [2], [3],
[4], [5], [6], [7] to 3D object detection from point clouds.

To learn discriminative features from the sparse and ir-
regular points, some 3D detection methods [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17] voxelize the points, then pro-
cess the regular voxels by conventional Convolution Neural
Networks (CNNs) and well-studied 2D detection heads [2],
[3]. But the voxelization inevitably brings information loss,
thus degrading the fine-grained localization accuracy of
these voxel-based methods. In contrast, powered by the pi-
oneer PointNet [18], [19], some other methods directly learn
effective features from raw point cloud and predict 3D boxes
around the foreground points [20], [21], [22], [23]. These
point-based methods preserve accurate point positions and
have flexible receptive field due to the radius-based local
feature aggregation operations (e.g., set abstraction [19]), but
are generally computationally intensive.

We observe that, the voxel representation with dense
bird’s eye view heads generally produce better 3D box
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proposals with higher recall rate [24], while the point-wise
features benefit the proposal refinement with fine-grained
and accurate point locations. Motivated by these obser-
vations, we propose a unified framework, namely, Point-
Voxel Region-based Convolutional Neural Networks (PV-
RCNNs), to take the best of both voxel and point represen-
tations. The principle lies in the fact that the voxel-based
operations can efficiently encode multi-scale features and
generate high-quality 3D proposals, while the point-based
operation can preserve accurate location information with
flexible receptive fields for proposal refinement.

In this paper, we first introduce a novel two-stage de-
tector, PV-RCNN, for accurate 3D object detection through
a two-step strategy of point-voxel feature aggregation. The
first step is voxel-to-keypoint scene encoding, where a voxel
CNN with sparse convolutions is adopted for voxel feature
learning and proposal generation. The multi-scale voxel
features are then summarized into a small set of keypoints
by set abstraction [19]. The keypoints with accurate point
locations are sampled by farthest point sampling (FPS) from
the raw point cloud. The second step is keypoint-to-grid RoI
feature abstraction, where we propose the RoI-grid pooling
module to aggregate the above keypoint features to the RoI
grids of each proposal. It encodes multi-scale contextual
information to form regular grid features for the following
proposal refinement.

We then propose an advanced two-stage detection net-
work, PV-RCNN++, on top of PV-RCNN, for achieving
more accurate, efficient and practical 3D object detection.
The improvements of PV-RCNN++ over PV-RCNN lie in
two aspects. First, we propose a sectorized proposal-centric
keypoint sampling strategy, where the limited number of
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keypoints is concentrated in and around the 3D propos-
als to encode more effective features for proposal refine-
ment. Meanwhile, the sectorized farthest point sampling
is conducted to parallelly sample keypoints in different
sectors, which accelerates the keypoint sampling process,
while ensuring the uniform distribution of keypoints. Our
proposed keypoint sampling strategy is much faster and
more effective than the vanilla farthest point sampling that
has a quadratic complexity. The efficiency of the whole
framework is thus greatly improved, which is particularly
important for large-scale 3D scenes with millions of points.
Second, we propose a novel local feature aggregation mod-
ule, VectorPool aggregation, for more effective and efficient
local feature encoding on sparse and irregular point cloud.
We argue that the relative point locations in a local re-
gion are robust, effective and discriminative information
for describing local geometry. We propose to split the 3D
local space into regular and compact voxels, the features
of which are sequentially concatenated to form a hyper
feature vector. The voxel features in different locations are
encoded with separate kernels to generate position-sensitive
local features. In this way, different feature channels of the
hyper feature vector are incorporated with different local
location information. Compared with previous set abstrac-
tion operation for local feature aggregation, our proposed
VectorPool aggregation can efficiently handle a very large
number of centric points due to the compact local feature
representation. Equipped with the VectorPool aggregation
in both voxel-based backbone and RoI-grid pooling module,
our proposed PV-RCNN++ is more memory-friendly and
faster than previous counterparts with comparable or even
better performance, which helps in establishing a practical
3D detector for resource-limited devices.

In summary, our proposed PV-RCNNs have three ma-
jor contributions. (1) Our proposed PV-RCNN adopts two
novel operations, voxel-to-keypoint scene encoding and
keypoint-to-grid RoI feature abstraction, to deeply integrate
the advantages of both point-based and voxel-based feature
learning strategies. (2) Our proposed PV-RCNN++ takes
a step in more practical 3D detection system with better
performance, less resource consumption and faster running
speed. This is enabled by our proposed sectorized proposal-
centric keypoint sampling strategy to obtain more repre-
sentative keypoints with faster speed, and is also powered
by our novel VectorPool aggregation for achieving local
aggregation on a very large number of central points with
less resource consumption and more effective representa-
tion. (3) Our proposed 3D detectors surpass all published
methods with remarkable margins on multiple challenging
3D detection benchmarks. In particular, our PV-RCNN++
achieves state-of-the-art results on the Waymo Open dataset
with 10 FPS inference speed for the 150m× 150m detection
range. The source code is available at https://github.com/
open-mmlab/OpenPCDet [25].

2 RELATED WORK

2D Object Detection with RGB Images. We summarize the
2D object detectors into anchor-based and anchor-free direc-
tions. The approaches following the anchor-based paradigm

advocate the empirically pre-defined anchor boxes to per-
form detection, where object detectors are further divided
into two-stage [2], [26], [27], [28], [29] and one-stage [3], [7],
[30], [31] categories. Two-stage approaches generally extract
the proposal-align features for box refinement, and one-
stage ones directly perform detection on feature maps. On
the other hand, studies of the anchor-free direction mainly
fall into keypoint-based [32], [33], [34], [35] and center-
based [36], [37], [38], [39] paradigms. The keypoint-based
methods represent bounding boxes as keypoints, i.e., cor-
ner/extreme points, grid points and a set of bounded points,
and the center-based approaches predict the bounding box
from foreground points inside objects. Besides, the recently
proposed DETR [40] leverages widely adopted transformers
to detect objects with attention mechanism and self-learned
object queries, which also gets rid of anchor boxes.
3D Object Detection with RGB images. Image-based 3D
object detection aims to estimate 3D bounding boxes from
a monocular image or stereo images. Mono3D [41] gener-
ates 3D region proposals with ground-plane assumption,
which are scored by exploiting the semantic knowledge
from images. The following works [42], [43] incorporate the
relations between 2D and 3D boxes as geometric constraint.
M3D-RPN [44] introduces an end-to-end 3D region proposal
network with depth-aware convolutions. [45], [46], [47],
[48], [49] predict 3D boxes based on a wire-frame template
obtained from CAD models. RTM3D [50] performs coarse
keypoints detection to localize 3d objects in real-time. On
the stereo side, Stereo R-CNN [51], [52] capitalizes on a
stereo RPN to associate proposals from left and right im-
ages. DSGN [53] introduces the differentiable 3D geometric
volume to simultaneously learn depth information and se-
mantic cues in an end-to-end optimized pipelines. Pseudo-
LiDARs [52], [54], [55] propose to covert the image pixels
to artificial point clouds, where the LiDAR-based detectors
can operate on them for 3D box estimation. These image-
based 3D detection methods suffer from inaccurate depth
estimation and can only generate coarse 3D bounding boxes.
Representation Learning on Point Clouds. Recently rep-
resentation learning on point clouds has drawn lots of
attention for improving the performance of point cloud
classification and segmentation [10], [18], [19], [56], [57], [58],
[59], [60], [61], [62], [63], [64], [65], [66], [67]. In terms of
3D detection, previous methods generally project the point
clouds to regular bird view grids [9], [12] or 3D voxels
[?], [10] for processing point clouds with 2D/3D CNN. 3D
sparse convolution [68], [69] are adopted in [16], [24] to
effectively learn sparse voxel-wise features from the point
clouds. Qi et al. [18], [19] proposes the PointNet to directly
learn point-wise features from the raw points, where set
abstraction operation enables flexible receptive fields by
setting different search radii. [70] combines both voxel-
based CNN and point-based multi-layer percetron (MLP)
network for efficient point feature learning. In comparison,
our PV-RCNNs take advantages from both the voxel-based
(i.e., 3D sparse convolution) and PointNet-based (i.e., set
abstraction operation) strategies to enable both high-quality
3D proposal generation and flexible receptive fields for
improving the 3D detection performance.
3D Object Detection with Grid-based Representation on
Point Clouds. To tackle the irregular data format of point
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clouds, most existing works project the point clouds to
regular grids. The pioneer work MV3D [9] projects the
point clouds to 2D bird view grids and places lots of
predefined 3D anchors for generating 3D boxes, and the
following works [11], [13], [17], [71], [72], [73] develop better
strategies for multi-sensor fusion. [12], [14], [15] introduce
more efficient frameworks with bird-eye view representa-
tion while [74] proposes to fuse grid features of multiple
scales. MVF [75] integrates 2D features from bird-eye view
and perspective view before projecting points into pillar
representations [15]. Some other works [8], [10] divide the
points into 3D voxels to be processed by 3D CNN. 3D sparse
convolution [69] is introduced by [16] for efficient 3D voxel
processing. [76], [77] utilize multiple detection heads for de-
tecting 3D objects with different scales. In addition, [78], [79]
predicts bounding box parameters following the anchor-free
paradigm. These grid-based methods are generally efficient
for accurate 3D proposal generation but the receptive fields
are constraint by the kernel size of 2D/3D convolutions.
3D Object Detection with Point-based Representation
on Point Clouds. F-PointNet [20] first proposes to apply
PointNet [18], [19] for 3D detection from the cropped points
based on the 2D image boxes. PointRCNN [21] generates 3D
proposals directly from 3D raw points for 3D detection with
point clouds only. [80] proposes the hough voting strategy
for better object feature grouping. 3DSSD [81] introduces F-
FPS as a complement of D-FPS and develops a one stage
object detector operating on raw points. These point-based
methods are mostly based on the PointNet series, especially
the set abstraction operation [19], which enables flexible
receptive fields for point cloud feature learning.
3D Object Detection with Hybrid Representation on Point
Clouds. There are also some works that utilize both the
point-based and grid-based point representations. STD [23]
proposes the PointsPool to transform point-wise features
to voxel features for refining the proposals. Fast Point R-
CNN [82] fuses the deep voxel features with raw point
data for 3D detection. Part-A2-Net [24] aggregates the point-
wise part locations by the voxel-based RoI-aware pooling
to improve the 3D detection performance. However, these
methods do not fuse the deeper features from both two
representations and also not fully explore the advantages of
these representations. In contrast, our proposed PV-RCNN
frameworks explore on how to deeply aggregate the fea-
tures by learning with both point-based (i.e., set abstraction)
and voxel-based (i.e., sparse convolution) feature learning
operations to boost the performance of 3D detection.

3 PRELIMINARIES
State-of-the-art 3D object detectors mostly adopt two-stage
frameworks that generally achieve higher performance by
splitting the complex detection problem into two stages,
including the region proposal generation and per-proposal
refinement. In this section, we briefly introduce our chosen
strategy for the fundamental feature extraction and proposal
generation stage, and then discuss the challenges of straight-
forward methods for the 3D proposal refinement.
3D Voxel CNN and Proposal Generation. Voxel CNN with
3D sparse convolution [68], [69] is a popular choice of state-
of-the-art 3D detectors [16], [24], [83] thanks to its efficiency

of converting irregular points into 3D sparse feature vol-
umes. The input points P are first divided into small voxels
with spatial resolution ofL×W×H , where non-empty voxel
features are directly calculated by averaging the features of
inside points ( e.g., 3D coordinates and reflectance intensi-
ties). The network utilizes a series of 3D sparse convolution
to gradually convert the points into feature volumes with
1×, 2×, 4×, 8× downsampled sizes. Such sparse feature
volumes at each level can be viewed as a set of sparse
voxel-wise feature vectors. The Voxel CNN backbone can
be naturally combined with the 2D detection heads [2], [3],
[38] by converting the encoded 8× downsampled 3D feature
volumes into 2D bird-view feature maps. Specifically, we
follow [16] to stack the 3D feature volumes along Z axis
to obtain the L

8 ×
W
8 bird-view feature maps, which can

be combined with both the anchor-based head [3] and the
center head [84] for high quality 3D proposal generation.
Discussions on 3D Proposal Refinement. In the proposal
refinement stage, the proposal-specific features are required
to be extracted from the 3D feature volumes or 2D maps.
Intuitively, the feature extraction should be conducted in
the 3D space instead of the 2D feature maps to learn more
fine-grained features. However, these 3D feature volumes
from the 3D voxel CNN have major limitations in the
following aspects. (i) These feature volumes are generally
of low spatial resolution as they are downsampled by up to
8 times, which hinders accurate localization of objects. (ii)
Even if one can upsample to obtain feature volumes/maps
with larger spatial sizes, they are generally still quite sparse.
The commonly used trilinear or bilinear interpolation in the
RoIPool/RoIAlign [6] operations can only extract features
from very small neighborhoods (i.e., 4 and 8 for bilinear and
trilinear interpolation respectively), which would therefore
obtain features with mostly zeros and waste much compu-
tations and memory for proposal refinement.

On the other hand, the point-based local feature aggrega-
tion methods [19] have shown strong capability of encoding
sparse features from local neighborhoods with arbitrary
scales. We therefore propose to incorporate a 3D voxel CNN
with the point-based local feature aggregation operation for
conducting accurate and robust proposal refinement.

4 PV-RCNN: POINT-VOXEL FEATURE SET AB-
STRACTION FOR 3D OBJECT DETECTION

To learn effective features from sparse points, state-of-the-
art 3D detectors are based on either 3D voxel CNNs with
sparse convolution or PointNet-based operators. Generally,
the 3D voxel CNNs with sparse convolutional layers are
more efficient and are able to generate high-quality 3D
proposals [24], [84], while the PointNet-based operators
naturally preserve accurate point locations and can capture
rich context information with flexible receptive fields [19].

We propose a novel two-stage 3D detection framework,
PV-RCNN, to deeply integrate the advantages of two types
of operators for 3D object detection from point clouds. As
shown in Fig. 1, PV-RCNN consists of a 3D voxel CNN
with sparse convolution as the backbone for efficient feature
encoding and proposal generation. Given each 3D proposal,
we propose to generate the proposal-aligned features in
two novel steps for proposal refinement, which consists of
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Fig. 1. The overall architecture of our proposed PV-RCNN. The raw point clouds are first voxelized to feed into the 3D sparse convolution based
encoder to learn multi-scale semantic features and generate 3D object proposals. Then the learned voxel-wise feature volumes at multiple neural
layers are summarized into a small set of key points via the novel voxel set abstraction module. Finally the keypoint features are aggregated to the
RoI-grid points to learn proposal specific features for fine-grained proposal refinement and confidence prediction.

the voxel-to-keypoint scene encoding and keypoint-to-grid
RoI feature abstraction. They are introduced in Sec. 4.1 and
Sec. 4.2, respectively.

4.1 Voxel-to-Keypoint Scene Encoding

Our proposed PV-RCNN first aggregates the voxel-wise
scene features at multiple neural layers of 3D voxel CNN
into a small number of keypoints, which bridge the 3D voxel
CNN feature encoder and the proposal refinement network.
Keypoints Sampling. We simply adopt the farthest point
sampling (FPS) algorithm to sample a small number of key-
points K = {p1, · · · , pn} from the point clouds P , where n
is a hyper-parameter (n=4,096 for Waymo Open Dataset [85]
and n=2,048 for KITTI dataset [86]). It encourages that
the keypoints are uniformly distributed around non-empty
voxels and can be representative to the overall scene.
Voxel Set Abstraction Module. We propose the Voxel Set
Abstraction (VSA) module to encode multi-scale semantic
features from 3D feature volumes to the keypoints. The
set abstraction [19] is adopted for aggregating voxel-wise
feature volumes. Different with the original set abstraction,
the surrounding local points are now regular voxel-wise
semantic features from 3D voxel CNN, instead of the neigh-
boring raw points with features learned by PointNet [18].

Specifically, denote F (lk) = {f (lk)1 , . . . , f
(lk)
Nk
} as the set

of voxel-wise features in the k-th level of 3D voxel CNN,
V(lk) = {v(lk)1 , . . . , v

(lk)
Nk
} as their corresponding 3D coor-

dinates in the uniform 3D metric space, where Nk is the
number of non-empty voxels in the k-th level. For each
keypoint pi, to retrieve the set of neighboring voxel-wise
feature vectors, we first identify its neighboring non-empty
voxels at the k-th level within a radius rk as

S
(lk)
i =


(
f
(lk)
j , v

(lk)
j − pi

) ∣∣∣∣∣∣∣∣
∥∥∥v(lk)j − pi

∥∥∥ < rk,

∀v(lk)j ∈ V(lk),
∀f (lk)j ∈ F (lk)

 , (1)

where the local relative position v
(lk)
j −pi is concatenated

to indicate the relative location of f (lk)j . The features within

neighboring set S(lk)
i are then aggregated by a PointNet-

block [18] to generate the keypoint feature as

f
(pvk)
i = max

{
G
(
M
(
S
(lk)
i

))}
, (2)

whereM(·) denotes randomly sampling at most Tk voxels
from the neighboring set S(lk)

i for saving computations,G(·)
denotes a multi-layer perceptron (MLP) network to encode
voxel-wise features and relative locations. The operation
max(·) maps diverse number of neighboring voxel features
to a single keypoint feature f (pvk)i . Here multiple radii are
utilized to capture richer contextual information.

The above voxel feature aggregation is performed at the
outputs of different scales of the 3D voxel CNN, and the
aggregated features from different scales are concatenated
to obtain the multi-scale semantic feature for keypoint pi as

f
(pv)
i =

[
f
(pv1)
i , f

(pv2)
i , f

(pv3)
i , f

(pv4)
i

]
, for i = 1, . . . , n, (3)

where the generated feature f
(pv)
i incorporates both the

voxel-wise feature f (lk)j from 3D CNN and the PointNet-
based features from Eq. (2). Moreover, the 3D coordinates of
pi also naturally preserves accurate location information.
Further Enriching Keypoint Features. We further enrich the
keypoint features with the raw points P and with the 8×
downsampled 2D bird-view feature maps, where the raw
points can partially make up the quantization loss of the
point voxelization while the 2D bird-view maps have larger
receptive fields along the Z axis. Specifically, the raw point
feature f (raw)

i is also aggregated as that in Eq. (2), while
the bird-view features f (bev)i are obtained by performing
bilinear interpolation with projected 2D keypoints on the 2D
feature maps. Hence, the keypoint features for pi is further
enriched by concatenating all its associated features as

f
(p)
i =

[
f
(pv)
i , f

(raw)
i , f

(bev)
i

]
, for i = 1, . . . , n, (4)

which have the strong capacity of preserving 3D structural
information of the entire scene for the following fine-grained
proposal refinement step.
Predicted Keypoint Weighting. As mentioned before,
the keypoints are chosen by farthest point sampling and
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Fig. 2. Illustration of RoI-grid pooling module. Rich context information of
each 3D RoI is aggregated by the set abstraction operation with multiple
receptive fields.

some of them might only represent the background regions.
Intuitively, keypoints belonging to the foreground objects
should contribute more to the proposal refinement, while
the ones from the background regions should contribute
less. Hence, we propose a Predicted Keypoint Weighting
(PKW) module to re-weight the keypoint features with extra
supervisions from point segmentation. The segmentation
labels are free-of-charge and can be generated from the 3D
box annotations, i.e., by checking whether each keypoint is
inside or outside of a ground-truth 3D box, since the 3D ob-
jects in autonomous driving scenes are naturally separated
in the 3D space. This module can be formulated as

f̃
(p)
i = A(f

(p)
i ) · f (p)i , (5)

where A(·) is a three-layer MLP network with a sigmoid
function to predict foreground confidence. It is trained with
focal loss [7] (default hyper-parameters) to handle the im-
balanced foreground/background points of the training set.

4.2 Keypoint-to-Grid RoI Feature Abstraction

After summarizing the multi-scale semantic features into
a small number of keypoints, in this step, we propose
keypoint-to-grid RoI feature abstraction to generate accu-
rate proposal-aligned features from the keypoint features
F̃ = {f̃ (p)1 , · · · , f̃ (p)n } for fine-grained proposal refinement.
RoI-grid Pooling via Set Abstraction. Given each 3D
proposal, as shown in Fig. 2, we propose the RoI-grid pooling
module to aggregate the keypoint features to the RoI-grid
points with multiple receptive fields. We uniformly sample
6×6×6 grid points within each 3D proposal, which are then
flattened and denoted as G = {g1, · · · , g216}. We utilize set
abstraction to obtain features of grid points via aggregating
the keypoint features. Specifically, we firstly identify the
neighboring keypoints of grid point gi as

Ψ̃ =

{(
f̃
(p)
j , pj − gi

) ∣∣∣∣∣ ‖pj − gi‖ < r̃,
∀pj ∈ K, ∀f̃ (p)j ∈ F̃

}
, (6)

where pj − gi is appended to indicate the local relative
location within the ball of radius r̃. A PointNet-block [18] is
then adopted to aggregate the neighboring keypoint feature
set Ψ̃ to obtain the feature for grid point gi as

f̃
(g)
i = max

{
G
(
M
(

Ψ̃
))}

, (7)

whereM(·) and G(·) are defined in the same way as Eq. (2).
We set multiple radii r̃ and aggregate keypoint features with
different receptive fields, which are concatenated together
for capturing richer multi-scale contextual information.

Next, all RoI-grid features of the same RoI can be vector-
ized and transformed by a two-layer MLP with 256 feature
dimensions to represent the overall features of proposal.

Our proposed RoI-grid pooling operation can aggregate
much richer contextual information than the previous RoI-
pooling/RoI-align operation [21], [23], [24]. It is because a
single keypoint can contribute to multiple RoI-grid points
due to the overlapped neighboring balls of RoI-grid points,
and their receptive fields are even beyond the RoI bound-
aries by capturing the contextual keypoint features outside
the 3D RoI. In contrast, the previous state-of-the-art methods
either simply average all point-wise features within the
proposal as the RoI feature [21], or pool many uninformative
zeros as the RoI features because of the very sparse point-
wise features [23], [24].
Proposal Refinement and Confidence Prediction. Given
the RoI feature extracted by the above RoI-grid pooling
module, the refinement network learns to predict the size
and location (i.e. center, size and orientation) residuals rel-
ative to the 3D proposal box. Two sibling sub-networks
are employed for confidence prediction and proposal re-
finement. Each sub-network consists of a two-layer MLP
and a linear prediction layer. We follow [24] to conduct the
IoU-based confidence prediction. The binary cross-entropy
loss is adopted to optimize the IoU branch while the box
residuals are optimized with smooth-L1 loss.

4.3 Training Losses

The proposed PV-RCNN framework is trained end-to-end
with the region proposal loss Lrpn, keypoint segmentation
loss Lseg and the proposal refinement loss Lrcnn. (i) We adopt
the same region proposal loss Lrpn as that in [16],

Lrpn = Lcls + β
∑
r∈O
Lsmooth-L1(∆̂ra,∆ra) + αLdir, (8)

where O = {x, y, z, l, h, w, θ}, the anchor classification loss
Lcls is calculated with the focal loss [7], Ldir is a binary
classification loss for orientation to eliminate the ambiguity
of ∆θa as in [16], and smooth-L1 loss is for anchor box
regression with the predicted residual ∆̂ra and regression
target ∆ra. Loss weights are set as α = 0.2 and β = 2.0
in the training process. (ii) The keypoint segmentation loss
Lseg is also conducted with the focal loss as mentioned in
Sec. 4.1. (iii) The proposal refinement loss Lrcnn includes
the IoU-guided confidence prediction loss Liou and the box
refinement loss as

Lrcnn = Liou +
∑
r∈O
Lsmooth-L1(∆̂rp,∆rp), (9)

where ∆̂rp is the predicted box residual and ∆rp is the
proposal regression target that is encoded same with ∆ra.
The overall training loss are then the sum of these three
losses with equal loss weights.
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keypoints to the neighborhoods of 3D proposals while it can also accelerate the process with sectorized farthest point sampling. Moreover, our
proposed VectorPool module is utilized in both the voxel set abstraction module and the RoI-grid pooling module to improve the local feature
aggregation and save memory/computation resources

5 PV-RCNN++: FASTER AND BETTER 3D DE-
TECTION WITH PV-RCNN FRAMEWORK

To make our PV-RCNN framework more practical for real-
world applications, we propose an improved version of PV-
RCNN, i.e., PV-RCNN++ framework, for more accurate and
efficient 3D object detection with less resource consumption.

As shown in Fig. 3, we present two novel modules to
improve both the accuracy and efficiency of the PV-RCNN
framework. One is the sectorized proposal-centric strategy
for much faster and better keypoint sampling, and the other
one is the VectorPool aggregation module for more effective
and efficient local feature aggregation from large-scale point
clouds. These two novel modules are adopted to replace
their counterparts in the PV-RCNN framework, which are
introduced in Sec. 5.1 and Sec. 5.2, respectively.

5.1 Sectorized Proposal-Centric Sampling for Efficient
and Representative Keypoint Sampling
The keypoint sampling is critical for our PV-RCNN frame-
work since keypoints bridge the point-voxel representa-
tions and influence the performance of proposal refinement.
However, the previous keypoint sampling algorithm has
two main drawbacks. (i) Farthest point sampling is time-
consuming due to its quadratic complexity, which hinders
the training and inference speed of PV-RCNN, especially

for keypoint sampling of large-scale points. (ii) Previous
algorithm would generate a large number of background
keypoints that are generally useless to the proposal refine-
ment, since only the keypoints around the proposals can
be retrieved by the RoI-grid pooling module. To mitigate
these drawbacks, we propose a more efficient and effective
keypoint sampling algorithm for 3D object detection.
Sectorized Proposal-Centric (SPC) Keypoint Sampling. As
discussed above, the number of keypoints is limited and
vanilla farthest point sampling algorithm would generate
wasteful keypoints in the background regions, which de-
crease the capability of keypoints to well represent objects
for proposal refinement. Hence, as shown in Fig. 4, we pro-
pose the Sectorized Proposal-Centric (SPC) keypoint sampling
to uniformly sample keypoints from more concentrated
neighboring regions of proposals, while also being much
faster than the vanilla farthest point sampling algorithm,

Specifically, we denote the raw point clouds as P , and
denote the centers and sizes of 3D proposal as C and D,
respectively. To better generate the set of restricted key-
points, we first restrict the keypoint candidates P ′ to the
neighboring point sets of all proposals as

P ′ =

pi
∣∣∣∣∣∣
‖pi − cj‖ < max(dxj ,dyj ,dzj)

2 + r(s),
(dxj , dyj , dzj) ∈ D ⊂ R3,
pi ∈ P ⊂ R3, cj ∈ C ⊂ R3,

 , (10)
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Fig. 4. Illustration of Sectorized Proposal-Centric (SPC) keypoint sampling. It contains two steps, where the first proposal filter step concentrates the
limited number of keypoints to the neighborhoods of proposals, and the following sectorized-FPS step divides the whole scene into several sectors
for accelerating the keypoint sampling process while also keeping the keypoints uniformly distributed.

where r(s) is a hyperparameter indicating the maximum
extended radius of the proposals, and dxj , dyj , dzj are the
sizes of the 3D proposal. Through this proposal-centric
filtering process, the number of candidate keypoints for
sampling is greatly reduced from |P| to |P ′|, which not only
reduces the time complexity of the follow-up keypoint sam-
pling, but also concentrates the limited number of keypoints
to better encode the neighboring regions of proposals.

To further parallelize the keypoint sampling process for
acceleration, as shown in Fig. 4, we divide the proposal-
centric point setP ′ into s sectors centered at the scene center,
and the point set of the k-th sector can be represented as

S′k =

{
pi

∣∣∣∣ ⌊(arctan(pyi, pxi) + π)× s
2π

⌋
= k − 1,

pi = (pxi, pyi, pzi) ∈ P ′ ⊂ R3

}
, (11)

where k ∈ {1, . . . , s}, and arctan(pyi, pxi) ∈ (−π, π] is to
indicate the angle between the positive X axis and the ray
ended with (pxi, pyi). Through this process, we divide the
task of sampling n keypoints into s subtasks of sampling
local keypoints, where the k-th sector samples

⌊
|S′

k|
|P ′| × n

⌋
keypoints from S′k. These subtasks are eligible to be exe-
cuted in parallel on GPUs, while the scale of keypoint sam-
pling (i.e., the time complexity) is further reduced from |P ′|
to maxk∈{1,...,s} |S′k|. Note that here we adopt the farthest
point sampling algorithm in each subtask since we find
that farthest point sampling can generate more uniformly
distributed keypoints to better cover the whole regions,
which is critical for the final detection performance.

Therefore, our proposed sectorized proposal-centric key-
point sampling greatly reduces the scale of keypoint sam-
pling from |P| to the much smaller maxk∈{1,...,s} |S′k|, which
not only effectively accelerates the keypoint sampling pro-
cess, but also increases the capability of keypoint feature
representation by concentrating the keypoints to the more
important neighboring regions of 3D proposals.

5.2 Local Vector Representation for Structure-
Preserved Local Feature Learning from Point Clouds
How to aggregate informative features from local point
clouds is critical in our proposed point-voxel-based object

detection system. As discussed in Sec. 4, PV-RCNN adopts
the set abstraction for local feature aggregation in both voxel
set abstraction module and RoI grid-pooling. However, we
observe that the set abstraction operation can be extremely
time- and resource-consuming on large-scale point clouds.
Hence, in this section, we first analyze the limitations of set
abstraction, and then propose the VectorPool aggregation
module for local feature aggregation on the large-scale point
clouds, which is integrated into our PV-RCNN++ frame-
work for more accurate and efficient 3D object detection.
Limitations of Set Abstraction. As shown in Eqs. (2) and
(7), the set abstraction operation samples Tk point-wise
features from each local neighborhood, which are encoded
separately by several shared-parameter MLPs. Suppose that
there are a total number of N local point-cloud neighbor-
hoods and the feature dimensions of each point is Cin, then
N × Tk point-wise features with Cin channels should be
encoded by the shared-parameter MLP G(·). It generates
point-wise features of size N×Tk×Cout (generally multiple
MLPs are utilized and each MLP will generate such a ten-
sor). Both the space complexity and computations would be
significant when either the number of local neighborhoods
or the number of MLPs or Tk are quite large.

For instance, in our RoI-grid pooling module, the num-
ber of RoI-grid points can be very large (N = 100 × 6 ×
6 × 6 = 21, 600) with 100 proposals and grid size 6. This
module is therefore slow and also consumes much GPU
memory in PV-RCNN, which restricts its capability to be
run on lightweight devices with limited computation and
memory resources. Moreover, the max-pooling operation in
set abstraction abandons the spatial distribution information
of local points and harms the representation capability of
locally aggregated features from point clouds.
VectorPool Aggregation for Structure-Preserved Local Fea-
ture Learning. To extract more informative features from
local point-cloud neighborhoods, we propose a novel local
feature aggregation operation, VectorPool aggregation, which
preserves spatial point distributions of local neighborhoods
and also costs less memory/computation resources than
the commonly used set abstraction. We propose to generate
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Fig. 5. Illustration of VectorPool aggregation for local feature aggregation from point clouds. The local space around a center point is divided into
dense voxels, where the inside point-wise features are generated by interpolating from three nearest neighbors. The features of each volume
are encoded with position-specific kernels to generate position-sensitive features, that are sequentially concatenated to generate the local vector
representation to explicitly encode the spatial structure information.

position-sensitive features in different local neighborhoods
by encoding them with separate kernel weights and sepa-
rate feature channels, which are then concatenated to explic-
itly represent the spatial structures of local point features.

Specifically, denote the input point coordinates and fea-
tures as P = {(fi, pi) | fi ∈ RCin , pi ∈ R3, i ∈ {1, . . . ,M}},
and the centers of N local neighborhoods as Q = {qi | qi ∈
R3, i ∈ {1, . . . , N}}. We are going to extract N local point-
wise features with Cout channels for each point in Q.

To reduce the parameter size, computational and mem-
ory consumption, motivated by [87], we first summarize the
point-wise features fi ∈ RCin to more compact representa-
tions f̂i ∈ RCr1 with a parameter-free scheme as

f̂i(k) =
nr−1∑
j=0

fi(jCr1 + k), k ∈ {0, . . . , Cr1 − 1}, (12)

where Cr1 is the number of output feature channels and
Cin = nr × Cr1 . Eq. (12) sums up every nr input feature
channels into one output feature channel to reduce the
feature channels by nr times, which can effectively reduce
the resource consumptions of the follow-up processing.

To generate position-sensitive features for a local cubic
neighborhood centered at qk, we split its neighboring cubic
space (denote the half length of this cubic space as l) into
nx × ny × nz small local voxels. The features of each local
voxel are generated by aggregating the above point-wise
features from its neighborhood. Specifically, this feature ag-
gregation process depends on the set of neighboring points
of each local neighborhood qk, hence we first identify these
neighboring points as follows:

Yk =

(f̂j , pj)
∣∣∣∣∣∣

max(|rx|, |ry|, |rz|) < 2× l,
(rx, ry, rz) = (pj − qk) ∈ R3,
∀(pj , fj) ∈ P

 . (13)

Note that we double the half length (e.g., 2×l) of the original
cubic space to contain more neighboring points for feature
aggregation of the small local voxels.

For calculating the features of local voxel with index
(ix, iy, iz), inspired by [19], we utilize the inverse distance
weighted strategy to interpolate its features based on 3
nearest neighbors from Yk:

f
(v)
ix,iy,iz

=

∑3
j=1

(
wσ(j)f̂σ(j)

)
∑3
j=1 wσ(j)

,
(
f̂σ(j), pσ(j)

)
∈ Yk, (14)

where wσ(j) = (||pσ(j) − vix,iy,iz ||)−1 with vix,iy,iz as
the center position of this local voxel, and σ(j) finds the

index of its three nearest neighbor in Yk. Here we have
ix ∈ {1, . . . , nx}, iy ∈ {1, . . . , ny}, iz ∈ {1, . . . , nz}. The
resulted features f (v)ix,iy,iz

encodes the local features of the
specific local voxel (ix, iy, iz) in this local cubic.

There are also two other alternative strategies to aggre-
gate the features of local voxels by simply averaging the
features within each local voxel or by randomly choosing
one point within each local voxel. Both of them generate
lots of empty features in the empty local voxels, which
may degrade the performance. In contrast, our interpolation
based strategy can generate more effective features even on
empty local voxels.

Those features in different local voxels may represent
very different local features. Hence, instead of encoding the
local features with a shared-parameter MLP as in [19], we
propose to encode different local voxels with separate local
kernel weights for capturing position-sensitive features as

Û(ix, iy, iz) = E
(
r̂ix,iy,iz , f

(v)
ix,iy,iz

)
×Wv, (15)

where Û(ix, iy, iz) ∈ RCr2 , r̂ix,iy,iz ∈ R(3×3) indicating the
relative positions of its three nearest neighbors, and E(·) is
an operation fusing the relative position and features (by
default, we use concatenation). Wv ∈ R(9+Cr1 )×Cr2 is the
learnable kernel weights for encoding the specific features
of local voxel (ix, iy, iz) with channel Cr2 , and different po-
sitions have different kernel weights for encoding position-
sensitive local features.

Finally, we directly sort the local voxel features
Û(ix, iy, iz) according to their spatial order (ix, iy, iz), and
their features are sequentially concatenated to generate the
final local vector representation as

U =[Û(1, 1, 1), . . . , Û(ix, iy, iz), . . . , Û(nx, ny, nz)], (16)

where U ∈ Rnx×ny×nz×Cr2 encodes the structure-preserved
local features by simply assigning the features of different
locations to their corresponding feature channels, which
naturally preserves the spatial structures of local features
in the neighboring space centered at qk, This local vector
representation would be finally processed with another
MLPs to encode the local features to Cout feature channels
for follow-up processing.

Note that compared with set abstraction, our proposed
VectorPool aggregation can greatly reduce the needed com-
putations and memory resources by adopting channel sum-
mation and utilizing our local vector representation be-
fore MLPs. Moreover, instead of conducting max-pooling
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on local point-wise features as in the set abstraction, our
proposed spatial-structure-preserved local vector represen-
tation can encode the position-sensitive local features with
different feature channels, to provide more effective repre-
sentation for local feature learning.
PV-RCNN++ with VectorPool Aggregation for Local Fea-
ture Aggregation. Our proposed VectorPool aggregation
is integrated in our PV-RCNN++ detection framework, to
replace the set abstraction operation in both the voxel set
abstraction layer and the RoI-grid pooling module. Thanks
to our VectorPool aggregation operation, compared with
PV-RCNN framework, our PV-RCNN++ not only consumes
much less memory and computation resources, but also
achieves better 3D detection performance.

6 EXPERIMENTS

In this section, we evaluate our proposed framework in
the large-scale Waymo Open Dataset [85] and the highly-
competitive KITTI dataset [86]. In Sec. 6.1, we first intro-
duce our experimental setup and implementation details.
In Sec. 6.2, we conduct extensive ablation experiments and
analysis to investigate the individual components of both
our PV-RCNN and PV-RCNN++ frameworks. In Sec. 6.3,
we present the main results of our PV-RCNN/PV-RCNN++
frameworks and compare with state-of-the-art methods on
both the Waymo dataset and the KITTI dataset.

6.1 Experimental Setup

Datasets and Evaluation Metrics. Our methods are evalu-
ated on the following two datasets.

Waymo Open Dataset [85] is currently the largest dataset
with LiDAR point clouds for autonomous driving. There
are totally 798 training sequences with around 160k LiDAR
samples, 202 validation sequences with 40k LiDAR sam-
ples and 150 testing sequences with 30k LiDAR samples.
It annotated the objects in the full 360◦ field instead of
annotating the front view only as in KITTI dataset. The
evaluation metrics are calculated by the official evaluation
tools, where the mean average precision (mAP) and the
mean average precision weighted by heading (mAPH) are
used for evaluation. The 3D IoU threshold is set as 0.7 for
vehicle detection and 0.5 for pedestrian/cyclist detection.
We present the comparison in terms of two ways. The first
way is based on objects’ different distances to the sensor:
0 − 30m, 30 − 50m and > 50m. The second way is to
split the data into two difficulty levels, where the LEVEL 1
denotes the ground-truth objects with at least 5 inside points
while the LEVEL 2 denotes the ground-truth objects with
at least 1 inside points. As utilized by the official Waymo
evaluation server, the mAPH of LEVEL 2 difficulty is the
most important evaluate metric for all experiments.

KITTI Dataset [86] is one of the most popular 3D de-
tection datasets for autonomous driving. There are 7, 481
training samples and 7, 518 test samples. We compare
PV-RCNNs with state-of-the-art methods on this highly-
competitive 3D detection learderboard [88]. The evaluation
metrics are calculated by the official evaluation tools, where
the mean average precision (mAP) is calculated with 40
recall positions on three difficulty levels.

Network Architecture. For the PV-RCNN framework, the
3D voxel CNN has four levels (see Fig. 1) with feature
dimensions 16, 32, 64, 64, respectively. Their two neigh-
boring radii rk of each level in the voxel set abstraction
module are set as (0.4m, 0.8m), (0.8m, 1.2m), (1.2m, 2.4m),
(2.4m, 4.8m), and the neighborhood radii of set abstraction
for raw points are (0.4m, 0.8m). For the proposed RoI-grid
pooling operation, we uniformly sample 6×6×6 grid points
in each 3D proposal and the two neighboring radii r̃ of each
grid point are (0.8m, 1.6m).

For the PV-RCNN++ framework, we set the maximum
extended radius r(s) = 1.6m for the proposal-centric fil-
tering, and each scene is split into 6 sectors for parallel
keypoint sampling. Two VectorPool aggregation operations
are adopted to the 4× and 8× feature volumes of the voxel
set abstraction module with the half length l = (1.2m, 2.4m)
and l = (2.4m, 4.8m) respectively, and both of them have
local voxels nx = ny = nz = 3 and channel reduced factor
nr = 2. The VectorPool aggregation operation on the raw
points is set with local voxels nx = ny = nz = 2 and with-
out channel reduction. All VectorPool aggregation utilize
the concatenation operation as E(·) for encoding relative
positions and point-wise features. For RoI-grid pooling, we
adopt the same number of RoI-grid points (6 × 6 × 6) with
PV-RCNN, and the utilized VectorPool aggregation has local
voxels nx = ny = nz = 3, channel reduced factor nr = 3
and half length l = (0.8m, 1.6m).

Training and Inference Details. Both PV-RCNN and PV-
RCNN++ frameworks are trained from scratch in an end-
to-end manner with ADAM optimizer, learning rate 0.01
and cosine annealing learning rate decay strategy. To train
the proposal refinement stage, we randomly sample 128
proposals with 1:1 ratio for positive and negative proposals,
where a proposal is considered as a positive sample if it has
at least 0.55 3D IoU with the ground-truth boxes, otherwise
it is treated as a negative sample.

During training, we adopt the widely used data aug-
mentation strategies for 3D object detection, including the
random scene flipping, global scaling with a random scaling
factor sampled from [0.95, 1.05], global rotation around
Z axis with a random angle sampled from [−π4 ,

π
4 ], and

the ground-truth sampling augmentation [16] to randomly
”paste” some new objects from other scenes to current train-
ing scene for simulating objects in various environments.

For the Waymo Open dataset, the detection range is
set as [−75.2, 75.2]m for both the X and Y axes, and
[−2, 4]m for the Z axis, while the voxel size is set as
(0.1m, 0.1m, 0.15m). For the KITTI dataset, the detection
range is set as [0, 70.4]m for X axis, [−40, 40]m for Y axis
and [−3, 1]m for the Z axis, which is voxelized with voxel
size (0.05m, 0.05m, 0.1m) in each axis.

For the inference speed, our final PV-RCNN++ frame-
work can achieve state-of-the-art performance with 10 FPS
for 150m × 150m detection range on the Waymo Open
Dataset (three times faster than PV-RCNN framework),
while also achieving state-of-the-art performance with 16
FPS for 70m × 80m detection region on the KITTI dataset.
Both of them are profiling on a single TITAN RTX GPU card.
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Point Feature
Extraction

RoI Pooling
Module

LEVEL 1 (3D) LEVEL 2 (3D)
mAP mAPH mAP mAPH

UNet-decoder RoI-aware Pooling [24] 71.82 71.29 64.33 63.82
UNet-decoder RoI-grid Pooling 73.84 73.18 64.76 64.15

VSA RoI-aware Pooling [24] 69.89 69.25 61.03 60.46
VSA RoI-grid Pooling 74.06 73.38 64.99 64.38

TABLE 1
Effects of voxel set abstraction (VSA) and RoI-grid pooling modules.

We adopt same UNet-decoder with [24]. All experiments are based on
our PV-RCNN framework with an anchor-based head for proposal

generation, and only the above two modules are changed during the
ablation experiments.

6.2 Ablation Studies for PV-RCNN Framework
We investigate the individual components of our proposed
PV-RCNN/PV-RCNN++ frameworks with extensive abla-
tion experiments. We conduct all experiments on the large
Waymo Open Dataset [85] with detection range 150m ×
150m for more comprehensive evaluation. For efficiently
conducting the ablation experiments, we generate a small
representative training set by uniformly sampling 20%
frames (about 32k frames) from the training set as in [25],
and all results are evaluated on the full validation set (about
40k frames) with the official evaluation tool. All models are
trained with 30 epochs and batch size 2 on each GPU.

6.2.1 The Component Analysis of PV-RCNN
In this section, all models are equipped with the anchor-
based RPN head as in [16], [24], and all experiments are con-
ducted on the vehicle category of Waymo Open Dataset [85].
Effects of Voxel-to-Keypoint Scene Encoding. In Sec. 4.1,
we propose the voxel-to-keypoint scene encoding strategy
to encode the global scene features to a small set of key-
points, which serves as a bridge between the backbone
network and the proposal refinement network. As shown
in the 2nd and 4th rows of Table 1, our proposed voxel-
to-keypoint encoding strategy achieves comparable perfor-
mance with the UNet-based decoder by summarizing the
scene features to much less point-wise features than the
UNet-based decoder. For instance, our voxel set abstraction
module encodes the whole scene to around 4k keypoints
for feeding into the RoI-grid pooling module, while the
UNet-based decoder network needs to summarize the scene
features to around 80k point-wise features, which validates
the effectiveness of our proposed voxel-to-keypoint scene
encoding strategy. We consider that it might benefit from
the fact that the keypoint features are aggregated from
multi-scale feature volumes and raw point clouds with
large receptive fields, while also keeping the accurate point
locations. Besides that, the feature dimension of UNet-based
decoder is generally smaller than the feature dimensions of
our keypoints since it is limited to its large memory con-
sumption on large-scale point clouds, which may degrade
its performance.

We also notice that our voxel set abstraction module
achieves worse performance (the 1st and 3rd rows of Ta-
ble 1) than the UNet-decoder when it is combined with RoI-
aware pooling [24]. This is to be expected since RoI-aware
pooling module generates lots of empty voxels in each pro-
posal by taking only 4k keypoints, which may degrade the
performance. In contrast, our voxel set abstraction module
can be ideally combined with RoI-grid pooling module and

VSA Input Feature LEVEL 1 (3D) LEVEL 2 (3D)
f
(pv1),(pv2)
i f

(pv3),(pv4)
i f

(bev)
i f

(raw)
i mAP mAPH mAP mAPH

X 71.55 70.94 64.04 63.46
X 71.97 71.36 64.44 63.86

X 72.15 71.54 64.66 64.07
X X 73.77 73.09 64.72 64.11
X X X 74.06 73.38 64.99 64.38

X X X X 74.10 73.42 65.04 64.43

TABLE 2
Effects of different feature components for voxel set abstraction

module. All experiments are based on our PV-RCNN framework with an
anchor-based head for proposal generation.

Use PKW LEVEL 1 (3D) LEVEL 2 (3D)
mAP mAPH mAP mAPH

7 73.90 73.29 64.75 64.23
X 74.06 73.38 64.99 64.38

TABLE 3
Effects of predicted keypoint weighting (PKW) module. The
experiments are based on our PV-RCNN framework with an

anchor-based head for proposal generation.

they can benefit each other by taking a small number of
keypoints as the intermediate connection.
Effects of Different Features for Voxel Set Abstraction.
Our proposed voxel set abstraction module incorporates
multiple feature components (see Sec. 4.1 ), and their effects
are explored in Table 2. We can summarize the observations
as follows: (i) The performance drops a lot if we only ag-
gregate features from high level bird-view semantic features
(f (bev)i ) or accurate point locations (f (raw)

i ), since neither 2D-
semantic-only nor point-only are enough for the proposal
refinement. (ii) As shown in 5th row of Table 2, f (pv3)i

and f
(pv4)
i contain both 3D structure information and high

level semantic features, which can improve the performance
a lot by combining with the bird-view semantic features
f
(bev)
i and the raw point locations f (raw)

i . (iii) The shallow
semantic features f (pv1)i and f (pv2)i can slightly improve the
performance and the best performance is achieved by taking
all the feature components as the keypoint features.
Effects of Predicted Keypoint Weighting Module. We
propose the predicted keypoint weighting (PKW) module
in Sec. 4.1 to re-weight the point-wise features of keypoints
with extra keypoint segmentation supervision. As shown in
Table 3, the experiments show that the performance slightly
drops after removing this module, which demonstrates that
the predicted keypoint weighting module enables better
multi-scale feature aggregation by focusing more on the
foreground keypoints, since they are more important for the
succeeding proposal refinement network.
Effects of RoI-grid pooling module. RoI-grid pooling mod-
ule is proposed in Sec. 4.2 for aggregating RoI features
from very sparse keypoints. Here we investigate the effects
of RoI-grid pooling module by replacing it with the RoI-
aware pooling [24] and keeping other modules consistent.
As shown in Table 1, the experiments show that the perfor-
mance drops significantly when replacing RoI-grid pooling
module. It validates that our proposed RoI-grid pooling
module can aggregate much richer contextual information
to generate more discriminative RoI features.

Compared with the previous RoI-aware pooling module,
our proposed RoI-grid pooling module [24] can generate
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Keypoint Sampling
Algorithm

Running
Time

LEVEL 1 (3D) LEVEL 2 (3D) Coverage Rate under Different Radii Average
Coverage RatemAP mAPH mAP mAPH 0.1m 0.2m 0.3m 0.4m 0.5m

FPS 133ms 74.06 73.38 64.99 64.38 - - - - - -
PC-Filter + FPS 27ms 75.05 74.41 65.98 65.40 43.22 82.78 97.97 99.95 99.99 84.78
PC-Filter + Random Sampling <1ms 69.85 69.23 60.97 60.42 51.44 77.06 87.32 92.16 94.74 80.54
PC-Filter + Voxelized-FPS-Voxel 17ms 74.12 73.46 65.06 64.47 6.52 52.00 89.93 98.89 99.92 69.45
PC-Filter + Voxelized-FPS-Point 17ms 74.38 73.71 65.36 64.76 34.14 75.84 96.28 99.77 99.99 81.20
PC-Filter + RandomParallel-FPS 2ms 73.94 73.28 64.90 64.31 38.12 64.47 81.72 91.82 96.90 74.61
PC-Filter + Sectorized-FPS 9ms 74.94 74.27 65.81 65.21 47.63 82.38 95.20 98.87 99.72 84.76

TABLE 4
Effects of different keypoint sampling algorithms. The running time is the average running time of keypoint sampling process on the validation set
of the Waymo Open Dataset. The coverage rate is calculated by averaging the coverage rate of each scene on the validation set of the Waymo
Open Dataset. “FPS” indicates the farthest point sampling and “PC-Filter” indicates our proposal-centric filtering strategy. All experiments are

conducted by adding different keypoint sampling algorithms to our PV-RCNN framework with an anchor-based head.

denser grid-wise feature representation by supporting dif-
ferent overlapped ball areas among different grid points,
while RoI-aware pooling module may generate lots of zeros
due to the sparse inside points of RoIs. That means our
proposed RoI-grid pooling module is especially effective
for aggregating local features from very sparse point-wise
features, such as in our PV-RCNN framework to aggregate
features from a very small number of keypoints.

6.2.2 The Component Analysis of PV-RCNN++
In this section, the experiments in Table 4 adopt the same
setting with the experiments in Sec. 6.2.1. Except for that,
all other models are equipped with the center-based RPN
head as in [84], and all experiments are jointly conducted on
three categories (vehicle, pedestrian and cyclist) of Waymo
Open Dataset [85], where the mAPH of LEVEL 2 difficulty
is adopted as the evaluation metric as used by the official
Waymo Open Dataset [85].
Effects of Proposal-Centric Filtering for Keypoint Sam-
pling: In the 1st and 2nd rows of Table 4, we investigate
the effectiveness of our proposed proposal-centric keypoint
filtering (see Sec. 5.1), where we can see that compared
with the strong baseline PV-RCNN, our proposal-centric
keypoint filtering can further improve the detection per-
formance by about 1.0 mAP/mAPH in both LEVEL 1 and
LEVEL 2 difficulties. It validates our argument that our
proposed proposal-centric keypoint sampling strategy can
generate more representative keypoints by concentrating
the small number of keypoints to the more informative
neighboring regions of proposals. Moreover, improved by
our proposal-centric keypoint filtering, our keypoint sam-
pling algorithm is about five times (133ms vs. 27ms) faster
than the baseline farthest point sampling algorithm by re-
ducing the number of candidate keypoints.
Comparison of Different Strategies for Local Keypoint
Sampling. In Sec. 5.1, we propose the sectorized farthest
point sampling algorithm to further speed up the local
keypoint sampling after the above proposal-centric filtering.
Besides our proposed algorithm, we further explore four
alternative strategies for accelerating the keypoint sam-
pling strategy, which are as follows: (i) Random Sampling:
the keypoints are randomly chosen from raw points. (ii)
Voxelized-FPS-Voxel: the raw points are firstly voxelized
to reduce the number of points (i.e., voxels), then the
farthest point sampling is applied to sample keypoints
from voxels by taking the voxel centers. (iii) Voxelized-
FPS-Point: unlike Voxelized-FPS-Voxel, here a raw point is
randomly selected within the selected voxels as keypoints.

(iv) RandomParallel-FPS: the raw points are randomly split
into several groups, then farthest point sampling is utilized
to these groups in parallel for faster keypoint sampling. As
shown in Table 4, compared with the vanilla farthest point
sampling (2nd row) algorithm, the detection performances
of all four alternative strategies drop a lot. In contrast,
the performance of our proposed sectorized farthest point
sampling algorithm is on par with the vanilla farthest point
sampling algorithm while being three times (27ms vs. 9ms)
faster than the vanilla farthest point sampling algorithm.

We argue that the uniformly distributed keypoints are
important for the following proposal refinement, where a
better keypoint distribution should cover more input points
to benefit the scene feature aggregation. Hence, to better
demonstrate the quality of different keypoint distributions
in terms of statistics, we propose an evaluation metric, cov-
erage rate, which is defined as the ratio of input points that
are within the coverage region of any keypoints. Specifically,
for a set of input points P = {p1, p2, · · · , pm} and a set of
sampled keypoints K = {p′1, p′2, ..., p′n}, the coverage rate C
can be formulated as follows:

C =

∑m
i=1 min

(
1.0,

∑n
j=1 1

(
||pi − p′j || < Rc

))
m

, (17)

where Rc is a scalar that denotes the coverage radius of
each keypoint, and 1 (·) is the indicator function to indicate
whether pi is covered by p′j .

As shown in Table 4, we evaluate the coverage rate of
different keypoint sampling algorithms in terms of multi-
ple coverage radii. Our proposed sectorized farthest point
sampling achieves similar average coverage rate (84.76%)
with the vanilla farthest point sampling algorithm (84.78%),
which is much better than other sampling algorithms. The
higher average coverage rate demonstrates that our pro-
posed sectorized farthest point sampling can sample more
uniformly distributed keypoints to better cover the input
points, which is consistent with the qualitative visualization
of different keypoint sampling strategies as in Fig. 6.

Besides that, the coverage rate (Table 4) and qualitative
visualization (Fig. 6) also demonstrate some properties of
different sampling algorithms: (i) The random sampling can
achieve higher coverage rate with small radius (51.44% with
0.1m radius) since it can probably sample more keypoints on
the clustered region, but it can not guarantee the coverage
rate with large radius (94.74% with 0.5m radius) and may
lose some important points such as the distant points. (ii)
Compared with the Voxelized-FPS-Voxel, the Voxelized-
FPS-Point achieves much better coverage rate with small
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Random Sampling Voxelized-FPS-Voxel Voxelized-FPS-Point RandomParallel-FPS Sectorized-FPS (Ours)

Fig. 6. Illustration of the keypoint distributions from different keypoint sampling strategies. Some dashed circles are utilized to highlight the missing
parts and the clustered keypoints after using these keypoint sampling strategies. We can see that our proposed Sectorized-FPS generates better
uniformly distributed keypoints that cover more input points to better encode the scene features for proposal refinement, while other strategies may
miss some important regions or generate some clustered keypoints.

Setting Keypoint
Sampling

Point Feature
Extraction

RoI Feature
Aggregation

Vehicle Pedestrian Cyclist Average GFLOPS Memory
(MB)L1 L2 L1 L2 L1 L2 L1 L2

PV-RCNN FPS VSA (SA) RoI-grid pool (SA) 75.43 67.54 69.40 61.62 68.98 66.57 71.27 65.24 -0 10617
- SPC-FPS VSA (SA) RoI-grid pool (SA) 76.44 68.03 70.52 62.43 69.84 67.29 72.27 65.92 -0 10617
- SPC-FPS VSA (VP) RoI-grid pool (SA) 77.41 68.73 70.98 63.30 69.63 67.19 72.67 66.41 -1.712 9453
- SPC-FPS VSA (SA) RoI-grid pool (VP) 77.12 68.43 70.82 63.15 70.11 67.66 72.68 66.41 -2.967 8565

PV-RCNN++ SPC-FPS VSA (VP) RoI-grid pool (VP) 77.32 68.62 71.36 63.74 70.71 68.26 73.13 66.87 -4.679 7583

TABLE 5
Effects of different components in our proposed PV-RCNN++ frameworks. All models are trained with 20% frames from the training set and are
evaluated on the full validation set of the Waymo Open Dataset, and the evaluation metric is the mAPH in terms of LEVEL 1 (L1) and LEVEL 2
(L2) difficulties as used in [85]. “FPS” denotes farthest point sampling, “SPC-FPS” denotes our proposed sectorized proposal-centric keypoint
sampling strategy, “VSA” denotes the voxel set abstraction module, “SA” denotes the set abstraction operation and “VP” denotes our proposed

VectorPool aggregation. All models adopt the center-based head for proposal generation.

radii and also achieves better performance by taking raw
points as keypoints. However, it is still about twice slower
than our method and its performance is also lower than our
method. (iii) The RandomParallel-FPS generates small clus-
tered keypoints since the nearby raw points can be divided
into different groups, and all of them can be sampled as
keypoints from different groups.

In short, our sectorized farthest point sampling can
generate uniformly distributed keypoints to better cover the
input points, by splitting points into different groups based
on the radial distribution of LiDAR points. Although there
may still exist a very small number of clustered keypoints in
the margins of different groups, the experiments show that
they have negligible effect on the performance. We consider
the reason may be that the clustered keypoints are mostly in
the regions around the scene centers, where the objects are
generally easier to detect since the raw points around scene
centers are much denser than distant regions.
Effects of VectorPool Aggregation. In Sec. 5.2, to tackle
the resource-consuming problem of set abstraction in our
PV-RCNN framework, we propose the VectorPool aggre-
gation module to effectively and efficiently summarize the
structure-preserved local features from point clouds. As
shown in Tabel 5, by adopting our VectorPool aggregation
in both the voxel set abstraction module and the RoI-grid
pooling module, our PV-RCNN++ framework consumes

much less computations (i.e., a reduction of 4.679 GFLOPS)
and GPU memory (from 10.62GB to 7.58GB) than the orig-
inal PV-RCNN framework, while the performance is also
consistently increased from 65.92% to 66.87% in terms of
average mAPH (LEVEL 2) of three categories. Note that
the reduction of memory consumption / calculations can
be more significant with larger batch size.

The significant reduction of memory consumption and
calculations demonstrates the effectiveness of our Vector-
Pool aggregation for feature learning from large-scale point
clouds, which makes our PV-RCNN++ framework a more
practical 3D detector to be used on resource-limited devices.
Moreover, the final PV-RCNN++ framework also benefits
from the structure-preserved spatial features from our Vec-
torPool aggregation, which is critical for the following fine-
grained proposal refinement.

We further analyze the effects of VectorPool aggregation
by separately investigating the effects of channel reduc-
tion [87] (see Eq. 12). As shown in Table 6, our VectorPool
aggregation is more effective in reducing the memory con-
sumption no matter whether the channel reduction is incor-
porated (by comparing the 1st / 3rd rows or the 2nd / 4th

rows), since the activations in our VectorPool aggregation
modules consume much less memory than those in the set
abstraction, by adopting a single local vector representation
before multi-layer percetron networks. Meanwhile, Table 6
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Strategy Channel
Reduction Vehicle Ped. Cyclist Average GFLOPS Memory

(MB)
SA 7 68.03 62.43 67.29 65.92 -0 10617
SA X 68.43 62.06 66.96 65.81 -3.467 9795
VP 7 68.82 64.06 67.96 66.95 -1.988 8549
VP X 68.62 63.74 68.26 66.87 -4.679 7583

TABLE 6
Effects of VectorPool aggregation with and without channel

reduction [87]. For the local feature extraction strategies, “SA” denotes
the set abstraction operation and “VP” denotes our proposed

VectorPool aggregation module. All experiments are based on our
PV-RCNN++ framework with a center-based head for proposal

generation, and only the local feature extraction modules are changed
during the ablation experiments.

Aggregation Strategy
of Local Voxels Vehicle Pedestrian Cyclist Average

Average Pooling 68.35 62.33 67.50 66.06
Random Selection 68.36 62.82 67.68 66.29

Interpolation 68.62 63.74 68.26 66.87

TABLE 7
Effects of the feature aggregation strategies in the feature aggregation
process of local voxels of VectorPool aggregation. All experiments are

based on our PV-RCNN++ framework with a center-based head for
proposal generation.

also demonstrates that our proposed VectorPool aggregation
can achieve better performance than set abstraction [19] in
both two cases (with or without channel reduction).
Effects of Different Feature Aggregation Strategies for
Local Voxels. As mentioned in Sec. 5.2, in addition to our
adopted interpolation-based method, there are two alterna-
tive strategies (average pooling and random selection) for
aggregating features of local voxels. We investigate the ef-
fects of these three strategies in Table 7, where we notice that
the our interpolation based feature aggregation achieves
much better performance than the other two strategies,
especially for the small objects like pedestrian and cyclist.
We consider that our strategy can generate more effective
features by interpolating from three nearest neighbors (even
beyond this local voxel), while both of the other two meth-
ods might generate lots of zero features on the empty local
voxels, which may degrade the final performance.
Effects of Separate Local Kernel Weights in VectorPool
Aggregation. We have demonstrated the fact in Eq. (15) that
our proposed VectorPool aggregation generates position-
sensitive features by encoding relative position features with
separate local kernel weights. The 1st and 2nd rows of
Table 8 show that the performance drops a bit if we remove
the separate local kernel weights and adopt shared kernel
weights for relative position encoding. It validates that
the separate local kernel weights are better than previous
shared-parameter MLP based local feature encoding, and it
is important in our VectorPool aggregation operation.
Effects of Dense Voxel Numbers in VectorPool Aggrega-
tion. We investigate the number of dense voxels nx×ny×nz
in VectorPool aggregation for voxel set abstraction module
and RoI-grid pooling module, where we can see that Vec-
torPool aggregation with 3 × 3 × 3 and 4 × 4 × 4 achieve
similar performance while the performance of 2 × 2 × 2
setting drops a lot. We consider that our interpolation-based
VectorPool aggregation can generate effective voxel-wise
features even with large dense voxels, hence the setting
with 4 × 4 × 4 achieves slightly better performance than

Kernel
Weights

Number of
Dense Voxels Vehicle Pedestrian Cyclist Average

Share 3× 3× 3 68.17 63.28 67.36 66.27
Separate 3× 3× 3 68.62 63.74 68.26 66.87
Separate 2× 2× 2 68.21 62.88 67.44 66.18
Separate 3× 3× 3 68.62 63.74 68.26 66.87
Separate 4× 4× 4 68.74 63.99 67.98 66.90

TABLE 8
Effects of separate local kernel weights and the number of dense

voxels in our proposed VectorPool aggregation module. All experiments
are based on our PV-RCNN++ framework with a center-based head for

proposal generation.

Number of
Keypoints Vehicle Pedestrian Cyclist Average

8192 68.85 64.11 67.88 66.95
4096 68.62 63.74 68.26 66.87
2048 67.99 62.14 67.41 65.85
1024 66.67 59.21 65.07 63.65

TABLE 9
Effects of the number of keypoints for encoding the global scene. All

experiments are based on our PV-RCNN++ framework with a
center-based head for proposal generation.

the setting with 3 × 3 × 3. However, since the setting with
4 × 4 × 4 greatly improves the calculations and memory
consumption, we finally choose the setting of 3×3×3 dense
voxel representation in both voxel set abstraction module
(except the raw point layer) and RoI-grid pooling module
of our PV-RCNN++ framework.
Effects of the Number of Keypoints. In Table 9, we inves-
tigate the effects of the number of keypoints for encoding
the scene features. Table 9 shows that larger number of
keypoints achieves better performance, and similar perfor-
mance is observed when using more than 4,096 keypoints.
Hence, to balance the performance and computation cost,
we empirically choose to encode the whole scene to 4,096
keypoints for the Waymo dataset (2,048 keypoints for the
KITTI dataset since it only needs to detect the frontal-view
areas). The above experiments show that our method can
effectively encode the whole scene to a small number of
keypoints while keeping similar performance with a large
number of keypoints, which demonstrates the effectiveness
of the keypoint feature encoding strategy of our proposed
PV-RCNN detection framework.
Effects of the Grid Size in RoI-grid Pooling. Table 10
shows the performance of adopting different RoI-grid sizes
for RoI-grid pooling module. We can see that the perfor-
mance increases along with the RoI-grid sizes from 3×3×3
to 6× 6× 6, and the settings with larger RoI-grid sizes than
6×6×6 achieve similar performance. Hence we finally adopt
RoI-grid size 6× 6× 6 for the RoI-grid pooling module.

RoI-grid Size Vehicle Pedestrian Cyclist Average
8× 8× 8 68.88 63.74 67.84 66.82
7× 7× 7 68.76 63.81 68.00 66.85
6× 6× 6 68.62 63.74 68.26 66.87
5× 5× 5 68.28 63.54 67.69 66.50
4× 4× 4 68.21 63.58 67.56 66.45
3× 3× 3 67.33 62.93 67.22 65.83

TABLE 10
Effects of the grid size in RoI-grid pooling module. All experiments are

based on our PV-RCNN++ framework with a center-based head for
proposal generation.
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Method Reference Veh. (LEVEL 1) Veh. (LEVEL 2) Ped. (LEVEL 1) Ped. (LEVEL 2) Cyc. (LEVEL 1) Cyc. (LEVEL 2)
mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH

†SECOND [16] Sensors 2018 72.27 71.69 63.85 63.33 68.70 58.18 60.72 51.31 60.62 59.28 58.34 57.05
StarNet [89] NeurIPSw 2019 53.70 - - - 66.80 - - - - - - -

∗PointPillar [15] CVPR 2019 56.62 - - - 59.25 - - - - - - -
MVF [75] CoRL 2019 62.93 - - - 65.33 - - - - - - -

Pillar-based [78] ECCV 2020 69.80 - - - 72.51 - - - - - - -
†Part-A2-Net [24] TPAMI 2020 77.05 76.51 68.47 67.97 75.24 66.87 66.18 58.62 68.60 67.36 66.13 64.93

‡CenterPoint-Voxel [84] CVPR 2021 76.7 76.2 68.8 68.3 79.0 72.9 71.0 65.3 - - - -
PV-RCNN (anchor) - 77.51 76.89 68.98 68.41 75.01 65.65 66.04 57.61 67.81 66.35 65.39 63.98

PV-RCNN++ (anchor) - 79.19 78.64 70.45 69.95 77.97 69.26 68.85 60.94 72.10 70.86 69.42 68.22
PV-RCNN (center) - 78.00 77.50 69.43 68.98 79.21 73.03 70.42 64.72 71.46 70.27 68.95 67.79

PV-RCNN++ (center) - 79.10 78.63 70.34 69.91 80.62 74.62 71.86 66.30 73.49 72.38 70.70 69.62
‡PV-RCNN++ (center) - 79.25 78.78 70.61 70.18 81.83 76.28 73.17 68.00 73.72 72.66 71.21 70.19

TABLE 11
Performance comparison on the Waymo Open Dataset with 202 validation sequences. ∗: re-implemented by [75]. †: re-implemented by ourselves

with their open source code. ‡: use the 3D voxel CNN with residual connections as the backbone network, while other settings of our
PV-RCNN/PV-RCNN++ frameworks utilize a commonly used 3D voxel CNN without residual connections [16], [24]. We highlight the top two results

for each evaluation metric.

Difficulty Method Vehicle Pedestrian Cyclist
mAP mAPH mAP mAPH mAP mAPH

LEVEL 1 PV-RCNN 80.60 80.15 78.16 72.01 71.80 70.42
PV-RCNN++ 81.62 81.20 80.41 74.99 71.93 70.76

LEVEL 2 PV-RCNN 72.81 72.39 71.81 66.05 69.13 67.80
PV-RCNN++ 73.86 73.47 74.12 69.00 69.28 68.15

TABLE 12
Performance comparison on the test set of Waymo Open Dataset by

submitting to the official test evaluation server. Both the PV-RCNN and
PV-RCNN++ frameworks are equipped with the center-based RPN

head for 3D proposal generation.

Method Vehicle 3D mAP (IoU=0.7) Vehicle BEV mAP (IoU=0.7)
Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf

LaserNet [90] 55.10 84.90 53.11 23.92 71.57 92.94 74.92 48.87
†SECOND [16] 72.26 90.66 70.03 47.55 89.18 96.84 88.39 78.37
∗PointPillar [15] 56.62 81.01 51.75 27.94 75.57 92.10 74.06 55.47

MVF [75] 62.93 86.30 60.02 36.02 80.40 93.59 79.21 63.09
Pillar-based [78] 69.80 88.53 66.50 42.93 87.11 95.78 84.74 72.12
†Part-A2-Net [24] 77.05 92.35 75.91 54.06 90.81 97.52 90.35 80.12
PV-RCNN (center) 78.00 92.96 76.47 55.96 90.99 97.76 90.20 80.69

PV-RCNN++ (center) 79.10 93.34 78.08 57.19 91.57 98.13 90.95 81.54

TABLE 13
Performance comparison on the Waymo Open Dataset with 202

validation sequences for the vehicle detection. ∗: re-implemented by
[75]. †: re-implemented by ourselves with their open source code.

Moreover, from Table 10 and Table 5, we also notice that
PV-RCNN++ with a much smaller RoI-grid size 4 × 4 × 4
(66.45% in terms of mAPH@L2) can also outperform PV-
RCNN with larger RoI-grid size 6 × 6 × 6 (65.24% in terms
of mAPH@L2), which further validates the effectiveness of
our proposed sectorized proposal-centric sampling strategy
and the VectorPool aggregation module.

6.3 Main Results of PV-RCNN Framework and Compar-
ison with State-of-the-Art Methods

In this section, we demonstrate the main results of our pro-
posed PV-RCNN/PV-RCNN++ frameworks, and make the
comparison with state-of-the-art methods on both the large-
scale Waymo Open Dataset [85] and the highly-competitive
KITTI dataset [86].

6.3.1 3D Detection on the Waymo Open Dataset

To evaluate our methods on the Waymo Open Dataset [85],
we adopt two settings of both PV-RCNN and PV-RCNN++
frameworks by equipping with different RPN heads for

Method Pedestrian 3D mAP (IoU=0.7) Pedestrian BEV mAP (IoU=0.7)
Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf

LaserNet [90] 63.40 73.47 61.55 42.69 70.01 78.24 69.47 52.68
†SECOND [16] 68.70 74.39 67.24 56.71 76.26 79.92 75.50 67.92
∗PointPillar [15] 59.25 67.99 57.01 41.29 68.57 75.02 67.11 53.86

MVF [75] 65.33 72.51 63.35 50.62 74.38 80.01 72.98 62.51
Pillar-based [78] 72.51 79.34 72.14 56.77 78.53 83.56 78.70 65.86
†Part-A2-Net [24] 75.24 81.87 73.65 62.34 80.25 84.49 79.22 70.34
PV-PCNN (center) 79.21 83.33 78.53 69.36 84.23 87.20 83.87 76.74

PV-RCNN++ (center) 80.62 84.88 79.65 70.64 85.43 88.48 84.88 77.80

TABLE 14
Performance comparison on the Waymo Open Dataset with 202

validation sequences for the pedestrian detection. ∗: re-implemented
by [75]. †: re-implemented by ourselves with their open source code.

Method Cyclist 3D mAP (IoU=0.7) Cyclist BEV mAP (IoU=0.7)
Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf

†SECOND [16] 60.61 73.33 55.51 41.98 63.55 74.58 59.31 46.75
†Part-A2-Net [24] 68.60 80.87 62.57 45.04 71.00 81.96 66.38 48.15
PV-RCNN (center) 71.46 81.10 65.65 52.58 74.00 82.07 69.43 57.61

PV-RCNN++ (center) 73.49 83.65 68.90 51.41 75.94 84.06 72.89 57.10

TABLE 15
Performance comparison on the Waymo Open Dataset with 202

validation sequences for the cyclist detection. †: re-implemented by
ourselves with their open source code.

proposal generation, which are the anchor-based RPN head
as in [24] and the center-based RPN head as in [84].
Comparison with State-of-the-Art Methods. As shown
in Table 11, by equipping with the commonly used 3D
voxel CNN as in [16], [24], our PV-RCNN++ with anchor-
based RPN head achieves state-of-the-art performance on
vehicle category, which surpasses the previous state-of-the-
art work CenterPoint [84] with +1.65% mAPH of LEVEL
2 difficulty. Our PV-RCNN++ with center-based RPN head
outperforms previous state-of-the-art works [24], [84] on all
three categories with remarkable performance gains (+1.61%
for vehicle, +1.0% for pedestrian and +4.69% for cyclist in
terms of mAPH of LEVEL 2 difficulty). Moreover, by im-
proving the backbone network with residual connections as
used in CenterPoint [84], the performance of PV-RCNN++
with center-based RPN head can be further boosted, which
outperforms CenterPoint significantly with a +1.88% mAPH
gain for vehicle detection and +2.70% mAPH gain for pedes-
trian detection in terms of LEVEL 2 difficulty.

We also present the performance of center-based PV-
RCNN/PV-RCNN++ at different distance ranges (see Ta-
ble 13, Table 14 and Table 15) for reference, where we follow
[75], [89] to evaluate the models on the LEVEL 1 difficulty
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Method Modality 3D Detection (Car) BEV Detection (Car) 3D Detection (Ped.) BEV Detection (Ped.) 3D Detection (Cyc.) BEV Detection (Cyc.)
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D [9] R+L 74.97 63.63 54.00 86.62 78.93 69.80 - - - - - - - - - - - -
ContFuse [13] R+L 83.68 68.78 61.67 94.07 85.35 75.88 - - - - - - - - - - - -

AVOD-FPN [11] R+L 83.07 71.76 65.73 90.99 84.82 79.62 50.46 42.27 39.04 58.49 50.32 46.98 63.76 50.55 44.93 69.39 57.12 51.09
F-PointNet [20] R+L 82.19 69.79 60.59 91.17 84.67 74.77 50.53 42.15 38.08 57.13 49.57 45.48 72.27 56.12 49.01 77.26 61.37 53.78

UberATG-MMF [17] R+L 88.40 77.43 70.22 93.67 88.21 81.99 - - - - - - - - - - - -
3D-CVF at SPA [72] R+L 89.20 80.05 73.11 93.52 89.56 82.45 - - - - - - - - - - - -

CLOCs [91] R+L 88.94 80.67 77.15 93.05 89.80 86.57 - - - - - - - - - - - -
SECOND [16] L 83.34 72.55 65.82 89.39 83.77 78.59 - - - - - - 71.33 52.08 45.83 76.50 56.05 49.45

PointPillars [15] L 82.58 74.31 68.99 90.07 86.56 82.81 51.45 41.92 38.89 57.60 48.64 45.78 77.10 58.65 51.92 79.90 62.73 55.58
PointRCNN [21] L 86.96 75.64 70.70 92.13 87.39 82.72 47.98 39.37 36.01 54.77 46.13 42.84 74.96 58.82 52.53 82.56 67.24 60.28
3D IoU Loss [92] L 86.16 76.50 71.39 91.36 86.22 81.20 - - - - - - - - - - - -

STD [23] L 87.95 79.71 75.09 94.74 89.19 86.42 53.29 42.47 38.35 60.02 48.72 44.55 78.69 61.59 55.30 81.36 67.23 59.35
Part-A2-Net [24] L 87.81 78.49 73.51 91.70 87.79 84.61 53.10 43.35 40.06 59.04 49.81 45.92 79.17 63.52 56.93 83.43 68.73 61.85

3DSSD [81] L 88.36 79.57 74.55 92.66 89.02 85.86 54.64 44.27 40.23 60.54 49.94 45.73 82.48 64.10 56.90 85.04 67.62 61.14
Point-GNN [93] L 88.33 79.47 72.29 93.11 89.17 83.90 51.92 43.77 40.14 55.36 47.07 44.61 78.60 63.48 57.08 81.17 67.28 59.67

PV-RCNN (Ours) L 90.25 81.43 76.82 94.98 90.65 86.14 52.17 43.29 40.29 59.86 50.57 46.74 78.60 63.71 57.65 82.49 68.89 62.41
PV-RCNN++ (Ours) L 90.14 81.88 77.15 92.66 88.74 85.97 54.29 47.19 43.49 59.73 52.43 48.73 82.22 67.33 60.04 84.60 71.86 63.84

TABLE 16
Performance comparison on the KITTI test set. The results are evaluated by the mean Average Precision with 40 recall positions by submitting to
the official KITTI evaluation server. “L” indicates the LiDAR-only methods while “R+L” indicates that multi-modality methods with both RGB images

and LiDAR sensors.

for comparing with previous methods.
Comparison between PV-RCNN and PV-RCNN++. Ta-
ble 11 demonstrates that no matter which type of RPN
head is adopted, our PV-RCNN++ framework consistently
outperforms previous PV-RCNN framework on all three
categories of all difficulty levels. Specifically, for the anchor-
based setting, PV-RCNN++ surpasses PV-RCNN with a
performance gain of +1.54% for vehicle, +3.33% for pedes-
trian and 4.24% for cyclist in terms of LEVEL 2 difficulty.
By taking the center-based head, PV-RCNN++ also outper-
forms PV-RCNN with a +0.93% mAPH gain for vehicle, a
+1.58% mAPH gain for pedestrian and a +1.83% mAPH
gain for cyclist in terms of LEVEL 2 difficulty. Meanwhile,
we also evaluate our PV-RCNN/PV-RCNN++ frameworks
with center-based head on the test set by submitting to the
official test server of Waymo Open Dataset [85]. As shown in
Table 12, our PV-RCNN++ outperforms previous PV-RCNN
with remarkable margins on all three categories.

The stable and consistent improvements on both the
validation and test set of Waymo Open Dataset prove the
effectiveness of our proposed sectorized proposal-centric
sampling algorithm and the VectorPool aggregation mod-
ule. Moreover, our PV-RCNN++ consumes much less calcu-
lations and GPU memory than PV-RCNN framework, while
also increasing the processing speed from 3.3 FPS to 10 FPS
for the 3D detection of 150m×150m such a large area, which
further validates the efficiency and the effectiveness of our
proposed PV-RCNN++.

6.3.2 3D detection on the KITTI dataset
To evaluate our PV-RCNN frameworks on the highly-
competitive 3D detection learderboard of KITTI dataset,
we train our models with 80% of train + val data and the
remaining 20% data is used for validation. Both PV-RCNN
and PV-RCNN++ frameworks are equipped with an anchor-
based RPN head to generate 3D proposals. All results are
evaluated by submitting to the official evaluation server.
Comparison with State-of-the-Art Methods. As shown in
Table 16, our PV-RCNN and PV-RCNN++ outperform all
published methods with remarkable margins on the most
important moderate difficulty level. Specifically, compared
with previous LiDAR-only state-of-the-art methods on the
3D detection benchmark of car category, our PV-RCNN++

increases the mAP by +1.78%, +2.17%, +2.06% on easy,
moderate and hard difficulty levels, respectively. For the 3D
detection and bird-view detection of both pedestrian and
cyclist, our methods outperforms all previous methods with
large margins on the moderate and hard difficulty level.

Compared with our preliminary work PV-RCNN, our
PV-RCNN++ achieves better performance on the moderate
and hard levels of 3D detection over all three categories,
while also greatly reducing the GPU-memory consumption
and increasing the running speed from 10 FPS to 16 FPS in
the KITTI dataset. The significant improvements on both the
performance and the efficiency manifest the effectiveness of
our PV-RCNN++ framework.

7 CONCLUSION

In this paper, we present two novel frameworks, named PV-
RCNN and PV-RCNN++, for accurate 3D object detection
from point clouds. Our PV-RCNN framework adopts a
novel voxel set abstraction module to deeply integrates both
the multi-scale 3D voxel CNN features and the PointNet-
based features to a small set of keypoints, and the learned
discriminative keypoint features are then aggregated to the
RoI-grid points through our proposed RoI-grid pooling
module to capture much richer contextual information for
proposal refinement. Our PV-RCNN++ further improves the
PV-RCNN framework by efficiently generating more rep-
resentative keypoints with our novel sectorized proposal-
centric keypoint sampling strategy, and also by equipping
with our proposed VectorPool aggregation module to learn
structure-preserved local features in both the voxel set ab-
straction module and RoI-grid pooling module. Thus, our
PV-RCNN++ finally achieves better performance with much
faster running speed than the PV-RCNN.

Both of our proposed two PV-RCNN frameworks sig-
nificantly outperform previous 3D detection methods and
achieve new state-of-the-art performance on both the
Waymo Open Dataset and the KITTI 3D detection bench-
mark, and extensive experiments are designed and con-
ducted to deeply investigate the individual components of
our proposed frameworks.
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