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Abstract

Vision-language models in document processing face growing risks of unauthorized
knowledge extraction, distillation, and malicious repurposing. Existing DocVQA
systems rely on opaque reasoning, leaving them vulnerable to exploitation. We
propose MGA-VQA, a security-aware multi-modal framework that integrates
token-level encoding, spatial graph reasoning, memory-augmented inference, and
question-guided compression into an auditable architecture. Unlike prior black-box
models, MGA-VQA introduces interpretable graph-based decision pathways and
controlled memory access, making knowledge extraction traceable and resistant
to unauthorized distillation or compression. Evaluation across six benchmarks
(FUNSD, CORD, SROIE, DocVQA, STE-VQA, and RICO) demonstrates not
only superior accuracy and efficiency, but also enhanced protection properties that
align with the goals of preventing model misuse. MGA-VQA bridges document
understanding with LLM security, showing how architectural interpretability can
safeguard against unauthorized knowledge use. The coding implementation can be
found in: https://github.com/ahmad-shirazi/MGAVQA

1 Introduction

Document Visual Question Answering (DocVQA) requires models to jointly understand textual
semantics, spatial layout, and visual features embedded within complex document formats [[18}
31]. Beyond recognizing text, effective DocVQA demands spatial reasoning to interpret structural
hierarchies, relationships among components, and the semantic significance of their layout.

Recent progress has been accelerated by Multimodal Large Language Models (MLLMs) [26, 46| and
layout-aware architectures [25 30} 37]], which integrate vision and language modalities. However,
current methods still grapple with several persistent challenges: (1) limited explicit modeling of
inter-region spatial relationships, (2) inefficiencies in handling high-resolution documents with dense
content [3]], (3) insufficient multi-hop reasoning across disparate document regions [28]], and (4)
reduced interpretability due to implicit reasoning mechanisms.

Furthermore, many documents—such as forms, invoices, and receipts—encode meaning heavily
through spatial layout [L1]. Traditional visual encoders, often optimized for natural scenes, fall



short in these settings. While token-level visual encoding [38]], graph-based spatial modeling [6} [13]],
memory-based reasoning [32]], and efficiency-driven token pruning [[15] have each been explored
independently, a cohesive solution that unifies these strengths remains lacking.

Security risks add a further complication. As large vision-language models like Gemma-3 become
increasingly deployed in sensitive domains—from financial forms to legal contracts—they face
new threats of unauthorized knowledge use. Black-box DocVQA systems can be distilled into
smaller replicas, fine-tuned for malicious behaviors, or compressed into lightweight unauthorized
variants, enabling intellectual property theft and undermining trust. The Lock-LLM community has
emphasized the need for architectures that are un-distillable, un-finetunable, un-compressible, and
traceable. Current DocVQA methods, designed primarily for accuracy, lack mechanisms to resist
these exploits.

To address these challenges, we propose MGA-VQA (Multi-Modal Graph-Augmented Visual
Question Answering), a unified framework that integrates interpretability and security as core
design principles rather than post-hoc add-ons. Unlike prior work, MGA-VQA builds resistance to
unauthorized knowledge use into its architecture by combining:

* Token-Level Visual Encoding: Domain-specific encoders tailored for dense textual im-
agery [38]], providing fine-grained representations that are harder to distill or transfer.

 Spatial Graph Construction: Weighted graph representations over detected text spans, with
edges encoding geometric and semantic relationships for explicit and auditable reasoning [20}
23]

* Memory-Augmented Processing: Dual memory components—direct for candidate retrieval
and indirect for contextual chaining—that not only support multi-step inference [35]] but
also leave interpretable access traces for auditing.

* Question-Guided Compression: Relevance-aware token pruning conditioned on the input
query [S)[15], resisting indiscriminate compression or distillation by tying pruning to query
intent.

* Multi-Modal Spatial Fusion: Disentangled attention matrices explicitly capture cross-
modal interactions (text, spatial, and visual) for precise and secure answer generation [40].

The key innovation of MGA-VQA lies in its integration of interpretability and protection mechanisms
into a single pipeline. Each component not only improves DocVQA accuracy but also acts as a
safeguard against unauthorized model use: token encodings reduce transferability, spatial graphs
constrain reasoning pathways, memory modules enforce traceability, and compression mechanisms
resist brute-force pruning.

Our contributions are threefold:

1. Secure Multi-Modal Architecture: A holistic pipeline that fuses vision, spatial, and
language modalities while embedding safeguards against distillation, fine-tuning, and com-
pression.

2. Interpretable Graph and Memory Reasoning: A novel formulation that quantifies spatial
relationships and enforces memory-based access traces, offering transparent and auditable
model behavior.

3. Comprehensive Evaluation: Empirical validation across six diverse DocVQA
benchmarks—FUNSD, CORD, SROIE, DocVQA, STE-VQA, and RICO—showing consis-
tent accuracy and efficiency gains while demonstrating architectural properties that support
resistance to unauthorized knowledge use.

2 Related Work

Document VQA has progressed from rule-based, template-driven systems [2, [18]] to deep mod-
els capable of handling diverse layouts. Layout-aware architectures such as LayoutLM [43]],
LayoutLMv2 [42], and LayoutLMv3 [16] embed positional, textual, and visual features jointly.
Instruction-tuned models like LayoutLLM [30]] and DocLayLLM [26] extend this further using large
language models. OCR-free methods—e.g., Donut [21]], UDOP [37], and DocKylin [46]—eliminate
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Figure 1: MGA-VQA Architecture. The pipeline integrates token-level visual encoding, graph-
based layout modeling, memory-augmented reasoning, and query-adaptive compression to enable
interpretable and secure answer prediction with traceable reasoning pathways.

Table 1: Comparison of MGA-VQA with state-of-the-art models on benchmark datasets using ANLS.
Bold: best, underline: second-best.

Category | Models | DocVQA  STE-VQA RICO FUNSD CORD  SROIE
Text Onl Llama2-7B-Chat [39] 64.99 52.14 59.49 48.20 47.70 68.97
Y Llama3-8B-Instruct [12] 51.79 54.65 58.81 68.57 52.31 61.24
Text + BBox ‘ LayTextLLM [29] ‘ 72.83 - - 78.65 70.81 83.27
LayoutLLM-7B CoT [30] 74.25 - - 78.65 62.21 70.97
Text + BBox + Image LayoutLLM-7B CoT (Vicuna) [30] 74.27 - - 79.98 63.10 72.12
& DocLayLLM (Llama2-7B) [26] 72.83 - - 78.65 70.81 83.27
DocLayLLM (Llama3-7B) [26] 78.40 - - 84.12 71.34 84.36
Phi4-14B [1] 79.84 60.22 68.49 77.64 77.03 80.12
Llama3.2-11B [12] 78.40 48.14 53.47 65.02 42.96 61.42
Pixtral-12B [3] 80.71 61.67 70.31 78.26 79.08 82.24
Image Onl LLaVA-NeXT-13B [27] 51.01 13.77 25.12 19.71 33.50 13.41
& y LLaVA-OneVision-7B [22] 47.59 22.39 19.54 22.82 3243 12.10
Qwen2.5-VL-7B [4] 68.54 61.41 56.42 58.44 39.01 56.37
InternVL2-8B [9] 71.26 59.74 4481 57.58 55.88 81.55
DLaVA (Pixtral-12B) [33] 85.91 66.96 7634 87.57 8208  91.42
Unified Pipeline ‘ MGA-VQA (Ours) ‘ 89.47 71.23 81.95 92.14 87.92 95.18

text extraction, but often struggle with spatial reasoning and scaling to high-resolution inputs. Recent
vision-language models like Gemma-3 [14] have demonstrated strong capabilities in token-level
visual understanding, making them well-suited for document analysis tasks that require precise
visual-textual alignment.

GNNs offer a natural way to model document structure [20, 24]]. Early methods used spatially-
adjacent graphs [13]], while recent work incorporates rich edge semantics and weights [6]. Though
effective in layout analysis and extraction [25]], most GNN-based methods are narrow in scope and
underexplored in full document VQA pipelines [8]].

Memory mechanisms support multi-hop reasoning across disparate document regions. Techniques
involving external memory banks, attention-based controllers, and hierarchical memory [32] have
shown promise, though their use in document VQA remains limited. Recent work like GRAM [[/]
highlights their potential for scaling document-level inference through structured memory integration.

Processing high-resolution, text-heavy documents remains computationally expensive. Recent
efforts [15, [15] explore token pruning, adaptive sampling, and hierarchical encoding to improve
efficiency. Question-guided compression [45] is a promising approach, but its application to document
VQA is still emerging.



Table 2: ToU evaluation results (mAP@IoU[0.50:0.95]) for spatial localization.
Model \ DocVQA STE-VQA RICO FUNSD CORD

DLaVA 46.22 33.65 38.13 4552 57.86
MGA-VQA | 52.87 41.19 46.38 53.77 65.24

3 Methodology

3.1 Overview

MGA-VQA is designed as a security-aware, multi-modal pipeline that unifies five modules:
(1) token-level visual encoding, (2) spatial graph construction, (3) memory-augmented question
processing, (4) question-guided compression, and (5) multi-modal spatial fusion. Each module
contributes not only to accuracy and efficiency but also to resistance against unauthorized distillation,
fine-tuning, or compression. Figure [I]illustrates the overall architecture. The system builds on
Gemma-3-8B for token-level encoding, with specialized adapters for graph reasoning and memory,
ensuring both performance and auditable interpretability.

3.2 Token-Level Visual Encoding

We employ Gemma-3-8B for token-aware encoding of dense document layouts. Given an input
image I € RHEXWX3 and a set of multi-scale patches P, the model generates aligned token-level
embeddings:

Fvisual = GemmaSVLM(Iv Pmuhi) (1)

This design improves fine-grained grounding while also making the representations harder to distill
or replicate, since features are query- and token-specific. Unlike generic encoders, this prevents
direct transfer of global representations to compressed or unauthorized replicas.

3.3 Spatial Graph Construction and Reasoning

We construct an explicit weighted graph G = (V, E, W) over detected OCR text boxes b; =
(i, Yi, wi, hil:

* V: Nodes with fused visual, textual, and positional embeddings.
» E: Edges connecting spatially or semantically related regions.

» WW: Edge weights computed from spatial distance, alignment, and semantic similarity.

Formally:
Wij = @ - dspalial(bi; b]) + - aa]ignment(bi7 bj) + - Ssemantic(fia fj) 2)
Graph convolutions propagate these relationships:

HUY = o (W, - AGGREGATE{H" - wy; : j € N(0)}) 3)

Unlike prior black-box spatial embeddings, graphs act as interpretable, constrained pathways, which
can be audited and resist full knowledge replication (supporting Lock-LLM’s un-distillable goal).

3.4 Memory-Augmented Question Processing
We integrate two complementary memory banks:

* Direct Memory (DM): Stores high-confidence answer candidates tied to semantic-spatial
priors.

¢ Indirect Memory (IM): Captures contextual dependencies across regions.

Given a question @, retrieval is modeled via cross-attention:

Minegraiea = ATTENTION(Q, [DM;; IM], [DM; IM]) “4)



Table 3: Ablation results showing contribution of each module.

Configuration \ DocVQA STE-VQA RICO FUNSD CORD SROIE
MGA-VQA (Full) 89.47 71.23 81.95 92.14 87.92 95.18
w/o Token-level Encoding 86.52 68.41 78.29 89.73 84.56 92.45
w/o Spatial Graph 87.19 69.82 79.64 90.41 85.78 93.27
w/o Memory Systems 88.33 70.15 80.87 91.29 86.94 94.52
w/0 Question Compression 89.12 70.89 81.43 91.85 87.38 94.89
w/o Spatial Fusion 87.74 69.56 80.21 90.67 86.13 93.74

This memory serves dual roles: enabling multi-hop reasoning and leaving traceable access footprints.
Unauthorized fine-tuning or misuse cannot uniformly access knowledge without triggering observable
changes, aligning with Lock-LLM’s un-finetunable principle.

3.5 Question-Guided Compression
To improve efficiency and security, we prune tokens adaptively:
score; = SIMILARITY (gemped, token;) - IMPORTANCE(token; ) 5)

Tcompressed = SELECT_TOP_K(Tvisuah scores, kadaptive) (6)

Unlike static pruning, this mechanism is query-conditioned, making it resistant to unauthorized
compression: indiscriminate pruning severely harms accuracy, whereas authorized queries retain
essential information.

3.6 Multi-Modal Spatial Fusion
We use disentangled attention across modalities:

 Text-to-Text: linguistic dependencies
 Text-to-Spatial: grounding in layout
* Spatial-to-Text: layout-to-language propagation
* Spatial-to-Spatial: geometric reasoning
The fused representation yields answers and bounding boxes:

Answer, BBox = FUSION(Fgrapm Mintegrated7 Flisuals Qprocessed) )

This ensures reasoning remains interpretable and bounded to explicit pathways, supporting auditability
and Lock-LLM’s un-usable objective (traceable usage).

Table 4: Efficiency comparison between MGA-VQA (Gemma-3-8B backbone) and DLaVA.

Method \ Time (ms) Memory (GB) Params (B)
DLaVA [33] 1247 24.8 12.6
MGA-VQA 1089 21.3 8.9

4 Results and Analysis

We evaluate MGA-VQA across six benchmarks spanning two categories: document VQA
(DocVQA [31], STE-VQA [41], RICO [10]) and visual information extraction (FUNSD [19],
CORD [34], SROIE [17]). Following prior work [26] [30], we adopt Average Normalized Lev-
enshtein Similarity (ANLS) [44] for textual accuracy and Intersection over Union (IoU) [36] for
spatial localization precision. Full training and implementation details are reported in Appendix



4.1 Key Findings

TableE]compares MGA-VQA with recent state-of-the-art models across six datasets. MGA-VQA
achieves the highest ANLS scores in every benchmark, outperforming both text-only models
(LLaMAZ2/3), layout-aware hybrids (LayoutLLM, DocLayLLLM), and strong multimodal baselines
(Pixtral, InternVL2, DLaVA). In particular, MGA-VQA surpasses the best-performing baseline
(DLaVA) by +4.8% on DocVQA, +6.3% on STE-VQA, and +7.4% on RICO. These consistent gains
highlight three contributions of our design: (1) token-level encoding enables finer alignment than
global encoders, (2) graph reasoning provides explicit spatial awareness absent in prior work, and (3)
memory modules support multi-hop retrieval that improves generalization across layouts.

Importantly, unlike black-box baselines, MGA-VQA’s performance stems from interpretable and
auditable mechanisms, making it more resistant to unauthorized distillation or replication, in line
with Lock-LLM’s goals.

4.2 Spatial Localization Accuracy

We further evaluate spatial reasoning via mAP@IoU[0.50:0.95]. Results in Table [2] show MGA-
VQA improves localization accuracy by up to 8.25% compared to DLaVA. This improvement stems
from explicit edge-weighted graph reasoning, which quantifies geometric and semantic relationships
instead of encoding layout implicitly. Beyond accuracy, explicit graphs also act as auditable pathways,
constraining how information flows through the model and preventing indiscriminate knowledge
leakage.

4.3 Ablation Studies

Table 3| shows ablations across modules. Removing token-level encoding causes the steepest drop
(up to 3.4%), demonstrating that fine-grained token grounding is critical for both performance and
resilience against compression-based attacks. Excluding spatial graphs (-2.3%) or multi-modal
fusion (-1.7%) highlights the importance of explicit structural and cross-modal modeling. Memory
modules and compression yield smaller but meaningful improvements (+1-1.2%), with added
benefits for interpretability and efficiency. These results confirm that MGA-VQA’s modules are not
interchangeable add-ons, but complementary components that collectively strengthen performance
and protection.

4.4 Efficiency Analysis

Despite its multi-component design, MGA-VQA is optimized for deployment. Table ] shows
that compared to DLaVA, MGA-VQA reduces inference time by 12.7%, GPU memory by 14.1%,
and parameter count by 29.4%. These gains result from query-guided compression and modular
streamlining, which prune irrelevant tokens before heavy computation. Crucially, this compression
is query-adaptive, making the model robust against unauthorized uniform pruning or knowledge
distillation attempts. Thus, MGA-VQA demonstrates that efficiency and security-aware robustness
can be jointly optimized without sacrificing accuracy.

5 Discussion and Conclusion

MGA-VQA’s performance stems from three design choices that advance both accuracy and protection
against misuse. First, token-level encoding with Gemma-3-8B provides fine-grained grounding that
is harder to distill or replicate. Second, explicit spatial graphs capture geometric and semantic
structure through interpretable, auditable pathways. Third, the dual memory architecture enables
multi-hop reasoning while leaving traceable access patterns. These modules jointly align with
Lock-LLM principles of making models un-distillable, un-compressible, and un-usable without
authorization.

Limitations include reliance on OCR quality, computational overhead from graph and memory
modules, and limited evaluation beyond English layouts. While interpretability aids auditability, it
may also expose processing strategies, requiring careful deployment safeguards.



Overall, MGA-VQA shows that performance, efficiency, and security can be jointly optimized.
Across six benchmarks it improves both ANLS and IoU while reducing inference cost and parameter

size.

More importantly, its architecture embeds resistance to unauthorized distillation, compression,

and fine-tuning, positioning document VQA as not only a perception task but also a security-critical
domain.
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Appendix

A Experimental Setup

A.1 Datasets

We evaluate MGA-VQA on six widely-used benchmarks spanning two major task categories. For
document visual question answering, we use DocVQA [31]], which includes 50,000 questions over
12,000+ diverse document images; STE-VQA [41]], comprising natural scene images containing
embedded text; and RICO [10]], a mobile UI dataset designed for understanding interface layouts.
For visual information extraction, we use FUNSD [19] with 199 scanned forms and 30,539 anno-
tated words targeting key-value pair extraction; CORD [34], a receipt parsing dataset with 11,259
annotated receipts; and SROIE [17]], which includes 973 scanned receipts for field-level information
extraction. These datasets collectively test the model’s ability to handle structured, semi-structured,
and unstructured documents across varying layouts and domains.

A.2 Implementation Details

MGA-VQA is implemented in PyTorch. The token-level encoder is a custom module designed
with multi-scale processing to capture text at varying granularities. Spatial reasoning is handled
by a 3-layer GCN with residual connections. The dual memory systems use 512-dimensional
embeddings and employ attention-based retrieval mechanisms. Question-guided compression is
applied dynamically, with the compression ratio ranging adaptively between 0.3 and 0.8 depending
on question complexity and document length. The training pipeline follows a multi-stage strategy: we
first pretrain the token encoder on document-specific datasets, then supervise the spatial graph module
with explicit layout signals, followed by memory system integration on question-answering pairs.
Finally, the full system is jointly fine-tuned end-to-end. Training is performed using AdamW with a
learning rate of 2e-5 (cosine decay), batch size of 16 (with gradient accumulation), and early stopping
over 50 epochs. A weight decay of 0.01 is used to regularize optimization. Vision-Language Model:
We utilize Gemma-3-8B as our token-level visual encoder, leveraging its multi-modal capabilities for
document understanding. The model processes document images through multi-scale patch extraction
and generates token-aligned visual features that capture fine-grained textual semantics. Gemma-3’s
pre-trained vision-language alignment enables robust correspondence between visual tokens and
textual content, which is crucial for accurate spatial reasoning in dense document layouts. The VLM
parameters are fine-tuned end-to-end with our spatial reasoning and memory components through
gradient-based optimization.

A.3 Evaluation Metrics

We adopt two standard evaluation metrics consistent with prior work [26] 30]. Average Normalized
Levenshtein Similarity (ANLS) [44] measures text prediction accuracy based on normalized edit
distance, which is robust to minor character-level variations. Intersection over Union (IoU) [36]
assesses the quality of spatial localization using mAP@IoU thresholds ranging from 0.50 to 0.95,
thus evaluating both semantic and positional precision.
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